# HG changeset patch # User clasohm # Date 803739667 -7200 # Node ID 5750eba8820d02d8ebfd1262d450ee2c812202f3 # Parent e125fc7a11837a0dd0ab57aae6e21fb125b2f8a9 removed \...\ inside strings diff -r e125fc7a1183 -r 5750eba8820d src/CCL/CCL.thy --- a/src/CCL/CCL.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/CCL/CCL.thy Wed Jun 21 15:01:07 1995 +0200 @@ -64,11 +64,11 @@ (*** Properties of evaluation: note that "t ---> c" impies that c is canonical ***) - canonical "[| t ---> c; c==true ==> u--->v; \ -\ c==false ==> u--->v; \ -\ !!a b.c== ==> u--->v; \ -\ !!f.c==lam x.f(x) ==> u--->v |] ==> \ -\ u--->v" + canonical "[| t ---> c; c==true ==> u--->v; + c==false ==> u--->v; + !!a b.c== ==> u--->v; + !!f.c==lam x.f(x) ==> u--->v |] ==> + u--->v" (* Should be derivable - but probably a bitch! *) substitute "[| a==a'; t(a)--->c(a) |] ==> t(a')--->c(a')" @@ -86,9 +86,9 @@ (* behavioural equivalence (ie the relations PO and EQ defined below). *) SIM_def - "SIM(t,t',R) == (t=true & t'=true) | (t=false & t'=false) | \ -\ (EX a a' b b'.t= & t'= & : R & : R) | \ -\ (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x. : R))" + "SIM(t,t',R) == (t=true & t'=true) | (t=false & t'=false) | + (EX a a' b b'.t= & t'= & : R & : R) | + (EX f f'.t=lam x.f(x) & t'=lam x.f'(x) & (ALL x. : R))" POgen_def "POgen(R) == {p. EX t t'. p= & (t = bot | SIM(t,t',R))}" EQgen_def "EQgen(R) == {p. EX t t'. p= & (t = bot & t' = bot | SIM(t,t',R))}" diff -r e125fc7a1183 -r 5750eba8820d src/CCL/Hered.thy --- a/src/CCL/Hered.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/CCL/Hered.thy Wed Jun 21 15:01:07 1995 +0200 @@ -23,8 +23,8 @@ (*** Definitions of Hereditary Termination ***) HTTgen_def - "HTTgen(R) == {t. t=true | t=false | (EX a b.t= & a : R & b : R) | \ -\ (EX f. t=lam x.f(x) & (ALL x.f(x) : R))}" + "HTTgen(R) == {t. t=true | t=false | (EX a b.t= & a : R & b : R) | + (EX f. t=lam x.f(x) & (ALL x.f(x) : R))}" HTT_def "HTT == gfp(HTTgen)" end diff -r e125fc7a1183 -r 5750eba8820d src/CCL/Term.thy --- a/src/CCL/Term.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/CCL/Term.thy Wed Jun 21 15:01:07 1995 +0200 @@ -75,13 +75,13 @@ letrec_def "letrec g x be h(x,g) in b(g) == b(%x.fix(%f.lam x.h(x,%y.f`y))`x)" - letrec2_def "letrec g x y be h(x,y,g) in f(g)== \ -\ letrec g' p be split(p,%x y.h(x,y,%u v.g'())) \ -\ in f(%x y.g'())" + letrec2_def "letrec g x y be h(x,y,g) in f(g)== + letrec g' p be split(p,%x y.h(x,y,%u v.g'())) + in f(%x y.g'())" - letrec3_def "letrec g x y z be h(x,y,z,g) in f(g) == \ -\ letrec g' p be split(p,%x xs.split(xs,%y z.h(x,y,z,%u v w.g'(>)))) \ -\ in f(%x y z.g'(>))" + letrec3_def "letrec g x y z be h(x,y,z,g) in f(g) == + letrec g' p be split(p,%x xs.split(xs,%y z.h(x,y,z,%u v w.g'(>)))) + in f(%x y z.g'(>))" napply_def "f ^n` a == nrec(n,a,%x g.f(g))" diff -r e125fc7a1183 -r 5750eba8820d src/CCL/ex/Flag.thy --- a/src/CCL/ex/Flag.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/CCL/ex/Flag.thy Wed Jun 21 15:01:07 1995 +0200 @@ -26,21 +26,21 @@ ccase_def "ccase(c,r,w,b) == when(c,%x.r,%wb.when(wb,%x.w,%x.b))" - flag_def "flag == lam l.letrec \ -\ flagx l be lcase(l,<[],<[],[]>>, \ -\ %h t. split(flagx(t),%lr p.split(p,%lw lb. \ -\ ccase(h, >, \ -\ >, \ -\ >)))) \ -\ in flagx(l)" + flag_def "flag == lam l.letrec + flagx l be lcase(l,<[],<[],[]>>, + %h t. split(flagx(t),%lr p.split(p,%lw lb. + ccase(h, >, + >, + >)))) + in flagx(l)" Flag_def - "Flag(l,x) == ALL lr:List(Colour).ALL lw:List(Colour).ALL lb:List(Colour). \ -\ x = > --> \ -\ (ALL c:Colour.(c mem lr = true --> c=red) & \ -\ (c mem lw = true --> c=white) & \ -\ (c mem lb = true --> c=blue)) & \ -\ Perm(l,lr @ lw @ lb)" + "Flag(l,x) == ALL lr:List(Colour).ALL lw:List(Colour).ALL lb:List(Colour). + x = > --> + (ALL c:Colour.(c mem lr = true --> c=red) & + (c mem lw = true --> c=white) & + (c mem lb = true --> c=blue)) & + Perm(l,lr @ lw @ lb)" end diff -r e125fc7a1183 -r 5750eba8820d src/CCL/ex/List.thy --- a/src/CCL/ex/List.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/CCL/ex/List.thy Wed Jun 21 15:01:07 1995 +0200 @@ -33,12 +33,12 @@ isort_def "isort(f) == lam l.lrec(l,[],%h t g.insert(f,h,g))" partition_def - "partition(f,l) == letrec part l a b be lcase(l,,%x xs.\ -\ if f`x then part(xs,x$a,b) else part(xs,a,x$b)) \ -\ in part(l,[],[])" - qsort_def "qsort(f) == lam l. letrec qsortx l be lcase(l,[],%h t. \ -\ let p be partition(f`h,t) \ -\ in split(p,%x y.qsortx(x) @ h$qsortx(y))) \ -\ in qsortx(l)" + "partition(f,l) == letrec part l a b be lcase(l,,%x xs. + if f`x then part(xs,x$a,b) else part(xs,a,x$b)) + in part(l,[],[])" + qsort_def "qsort(f) == lam l. letrec qsortx l be lcase(l,[],%h t. + let p be partition(f`h,t) + in split(p,%x y.qsortx(x) @ h$qsortx(y))) + in qsortx(l)" end diff -r e125fc7a1183 -r 5750eba8820d src/CCL/ex/Nat.thy --- a/src/CCL/ex/Nat.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/CCL/ex/Nat.thy Wed Jun 21 15:01:07 1995 +0200 @@ -21,18 +21,18 @@ add_def "a #+ b == nrec(a,b,%x g.succ(g))" mult_def "a #* b == nrec(a,zero,%x g.b #+ g)" - sub_def "a #- b == letrec sub x y be ncase(y,x,%yy.ncase(x,zero,%xx.sub(xx,yy))) \ -\ in sub(a,b)" - le_def "a #<= b == letrec le x y be ncase(x,true,%xx.ncase(y,false,%yy.le(xx,yy))) \ -\ in le(a,b)" + sub_def "a #- b == letrec sub x y be ncase(y,x,%yy.ncase(x,zero,%xx.sub(xx,yy))) + in sub(a,b)" + le_def "a #<= b == letrec le x y be ncase(x,true,%xx.ncase(y,false,%yy.le(xx,yy))) + in le(a,b)" lt_def "a #< b == not(b #<= a)" - div_def "a ## b == letrec div x y be if x #< y then zero else succ(div(x#-y,y)) \ -\ in div(a,b)" + div_def "a ## b == letrec div x y be if x #< y then zero else succ(div(x#-y,y)) + in div(a,b)" ack_def - "ackermann(a,b) == letrec ack n m be ncase(n,succ(m),%x. \ -\ ncase(m,ack(x,succ(zero)),%y.ack(x,ack(succ(x),y))))\ -\ in ack(a,b)" + "ackermann(a,b) == letrec ack n m be ncase(n,succ(m),%x. + ncase(m,ack(x,succ(zero)),%y.ack(x,ack(succ(x),y)))) + in ack(a,b)" end diff -r e125fc7a1183 -r 5750eba8820d src/CTT/CTT.thy --- a/src/CTT/CTT.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/CTT/CTT.thy Wed Jun 21 15:01:07 1995 +0200 @@ -112,22 +112,22 @@ NI_succL "a = b : N ==> succ(a) = succ(b) : N" NE - "[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \ -\ ==> rec(p, a, %u v.b(u,v)) : C(p)" + "[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] + ==> rec(p, a, %u v.b(u,v)) : C(p)" NEL - "[| p = q : N; a = c : C(0); \ -\ !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] \ -\ ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)" + "[| p = q : N; a = c : C(0); + !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] + ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)" NC0 - "[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \ -\ ==> rec(0, a, %u v.b(u,v)) = a : C(0)" + "[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] + ==> rec(0, a, %u v.b(u,v)) = a : C(0)" NC_succ - "[| p: N; a: C(0); \ -\ !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> \ -\ rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))" + "[| p: N; a: C(0); + !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> + rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))" (*The fourth Peano axiom. See page 91 of Martin-Lof's book*) zero_ne_succ @@ -139,22 +139,22 @@ ProdF "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type" ProdFL - "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> \ -\ PROD x:A.B(x) = PROD x:C.D(x)" + "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> + PROD x:A.B(x) = PROD x:C.D(x)" ProdI "[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x.b(x) : PROD x:A.B(x)" ProdIL - "[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> \ -\ lam x.b(x) = lam x.c(x) : PROD x:A.B(x)" + "[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> + lam x.b(x) = lam x.c(x) : PROD x:A.B(x)" ProdE "[| p : PROD x:A.B(x); a : A |] ==> p`a : B(a)" ProdEL "[| p=q: PROD x:A.B(x); a=b : A |] ==> p`a = q`b : B(a)" ProdC - "[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> \ -\ (lam x.b(x)) ` a = b(a) : B(a)" + "[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> + (lam x.b(x)) ` a = b(a) : B(a)" ProdC2 "p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)" @@ -170,17 +170,17 @@ SumIL "[| a=c:A; b=d:B(a) |] ==> = : SUM x:A.B(x)" SumE - "[| p: SUM x:A.B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C() |] \ -\ ==> split(p, %x y.c(x,y)) : C(p)" + "[| p: SUM x:A.B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C() |] + ==> split(p, %x y.c(x,y)) : C(p)" SumEL - "[| p=q : SUM x:A.B(x); \ -\ !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C()|] \ -\ ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)" + "[| p=q : SUM x:A.B(x); + !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C()|] + ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)" SumC - "[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C() |] \ -\ ==> split(, %x y.c(x,y)) = c(a,b) : C()" + "[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C() |] + ==> split(, %x y.c(x,y)) = c(a,b) : C()" fst_def "fst(a) == split(a, %x y.x)" snd_def "snd(a) == split(a, %x y.y)" @@ -198,24 +198,24 @@ PlusI_inrL "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B" PlusE - "[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); \ -\ !!y. y:B ==> d(y): C(inr(y)) |] \ -\ ==> when(p, %x.c(x), %y.d(y)) : C(p)" + "[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); + !!y. y:B ==> d(y): C(inr(y)) |] + ==> when(p, %x.c(x), %y.d(y)) : C(p)" PlusEL - "[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); \ -\ !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] \ -\ ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)" + "[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); + !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] + ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)" PlusC_inl - "[| a: A; !!x. x:A ==> c(x): C(inl(x)); \ -\ !!y. y:B ==> d(y): C(inr(y)) |] \ -\ ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))" + "[| a: A; !!x. x:A ==> c(x): C(inl(x)); + !!y. y:B ==> d(y): C(inr(y)) |] + ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))" PlusC_inr - "[| b: B; !!x. x:A ==> c(x): C(inl(x)); \ -\ !!y. y:B ==> d(y): C(inr(y)) |] \ -\ ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))" + "[| b: B; !!x. x:A ==> c(x): C(inl(x)); + !!y. y:B ==> d(y): C(inr(y)) |] + ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))" (*The type Eq*) diff -r e125fc7a1183 -r 5750eba8820d src/Cube/Cube.thy --- a/src/Cube/Cube.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/Cube/Cube.thy Wed Jun 21 15:01:07 1995 +0200 @@ -46,8 +46,8 @@ pi_ss "[| A:*; !!x. x:A ==> B(x):* |] ==> Prod(A, B):*" - lam_ss "[| A:*; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):* |] \ -\ ==> Abs(A, f) : Prod(A, B)" + lam_ss "[| A:*; !!x. x:A ==> f(x):B(x); !!x. x:A ==> B(x):* |] + ==> Abs(A, f) : Prod(A, B)" beta "Abs(A, f)^a == f(a)" diff -r e125fc7a1183 -r 5750eba8820d src/FOLP/IFOLP.thy --- a/src/FOLP/IFOLP.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/FOLP/IFOLP.thy Wed Jun 21 15:01:07 1995 +0200 @@ -84,8 +84,8 @@ disjI1 "a:P ==> inl(a):P|Q" disjI2 "b:Q ==> inr(b):P|Q" -disjE "[| a:P|Q; !!x.x:P ==> f(x):R; !!x.x:Q ==> g(x):R \ -\ |] ==> when(a,f,g):R" +disjE "[| a:P|Q; !!x.x:P ==> f(x):R; !!x.x:Q ==> g(x):R + |] ==> when(a,f,g):R" (* Implication *) diff -r e125fc7a1183 -r 5750eba8820d src/FOLP/ex/Nat.thy --- a/src/FOLP/ex/Nat.thy Wed Jun 21 11:35:10 1995 +0200 +++ b/src/FOLP/ex/Nat.thy Wed Jun 21 15:01:07 1995 +0200 @@ -22,8 +22,8 @@ rec0, recSuc :: "p" rules - induct "[| b:P(0); !!x u. u:P(x) ==> c(x,u):P(Suc(x)) \ -\ |] ==> nrec(n,b,c):P(n)" + induct "[| b:P(0); !!x u. u:P(x) ==> c(x,u):P(Suc(x)) + |] ==> nrec(n,b,c):P(n)" Suc_inject "p:Suc(m)=Suc(n) ==> ninj(p) : m=n" Suc_neq_0 "p:Suc(m)=0 ==> nneq(p) : R"