# HG changeset patch # User huffman # Date 1235014346 28800 # Node ID 57975b45ab70e60407e4c1c6b46a3bf262804c88 # Parent 5155c7c45233890bc71fbd4bf22cee6f26f87be2 split polynomial-related stuff from Deriv.thy into Library/Poly_Deriv.thy diff -r 5155c7c45233 -r 57975b45ab70 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Wed Feb 18 17:02:38 2009 -0800 +++ b/src/HOL/Deriv.thy Wed Feb 18 19:32:26 2009 -0800 @@ -1457,311 +1457,6 @@ qed -subsection {* Derivatives of univariate polynomials *} - -definition - pderiv :: "'a::real_normed_field poly \ 'a poly" where - "pderiv = poly_rec 0 (\a p p'. p + pCons 0 p')" - -lemma pderiv_0 [simp]: "pderiv 0 = 0" - unfolding pderiv_def by (simp add: poly_rec_0) - -lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)" - unfolding pderiv_def by (simp add: poly_rec_pCons) - -lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)" - apply (induct p arbitrary: n, simp) - apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split) - done - -lemma pderiv_eq_0_iff: "pderiv p = 0 \ degree p = 0" - apply (rule iffI) - apply (cases p, simp) - apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc) - apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0) - done - -lemma degree_pderiv: "degree (pderiv p) = degree p - 1" - apply (rule order_antisym [OF degree_le]) - apply (simp add: coeff_pderiv coeff_eq_0) - apply (cases "degree p", simp) - apply (rule le_degree) - apply (simp add: coeff_pderiv del: of_nat_Suc) - apply (rule subst, assumption) - apply (rule leading_coeff_neq_0, clarsimp) - done - -lemma pderiv_singleton [simp]: "pderiv [:a:] = 0" -by (simp add: pderiv_pCons) - -lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q" -by (rule poly_ext, simp add: coeff_pderiv algebra_simps) - -lemma pderiv_minus: "pderiv (- p) = - pderiv p" -by (rule poly_ext, simp add: coeff_pderiv) - -lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q" -by (rule poly_ext, simp add: coeff_pderiv algebra_simps) - -lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)" -by (rule poly_ext, simp add: coeff_pderiv algebra_simps) - -lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p" -apply (induct p) -apply simp -apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps) -done - -lemma pderiv_power_Suc: - "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p" -apply (induct n) -apply simp -apply (subst power_Suc) -apply (subst pderiv_mult) -apply (erule ssubst) -apply (simp add: smult_add_left algebra_simps) -done - -lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c" -by (simp add: DERIV_cmult mult_commute [of _ c]) - -lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)" -by (rule lemma_DERIV_subst, rule DERIV_pow, simp) -declare DERIV_pow2 [simp] DERIV_pow [simp] - -lemma DERIV_add_const: "DERIV f x :> D ==> DERIV (%x. a + f x :: 'a::real_normed_field) x :> D" -by (rule lemma_DERIV_subst, rule DERIV_add, auto) - -lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x" -apply (induct p) -apply simp -apply (simp add: pderiv_pCons) -apply (rule lemma_DERIV_subst) -apply (rule DERIV_add DERIV_mult DERIV_const DERIV_ident | assumption)+ -apply simp -done - -text{* Consequences of the derivative theorem above*} - -lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)" -apply (simp add: differentiable_def) -apply (blast intro: poly_DERIV) -done - -lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)" -by (rule poly_DERIV [THEN DERIV_isCont]) - -lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |] - ==> \x. a < x & x < b & (poly p x = 0)" -apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl) -apply (auto simp add: order_le_less) -done - -lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |] - ==> \x. a < x & x < b & (poly p x = 0)" -by (insert poly_IVT_pos [where p = "- p" ]) simp - -lemma poly_MVT: "(a::real) < b ==> - \x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)" -apply (drule_tac f = "poly p" in MVT, auto) -apply (rule_tac x = z in exI) -apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique]) -done - -text{*Lemmas for Derivatives*} - -lemma order_unique_lemma: - fixes p :: "'a::idom poly" - assumes "[:-a, 1:] ^ n dvd p \ \ [:-a, 1:] ^ Suc n dvd p" - shows "n = order a p" -unfolding Polynomial.order_def -apply (rule Least_equality [symmetric]) -apply (rule assms [THEN conjunct2]) -apply (erule contrapos_np) -apply (rule power_le_dvd) -apply (rule assms [THEN conjunct1]) -apply simp -done - -lemma lemma_order_pderiv1: - "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q + - smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)" -apply (simp only: pderiv_mult pderiv_power_Suc) -apply (simp del: power_poly_Suc of_nat_Suc add: pderiv_pCons) -done - -lemma dvd_add_cancel1: - fixes a b c :: "'a::comm_ring_1" - shows "a dvd b + c \ a dvd b \ a dvd c" - by (drule (1) Ring_and_Field.dvd_diff, simp) - -lemma lemma_order_pderiv [rule_format]: - "\p q a. 0 < n & - pderiv p \ 0 & - p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q - --> n = Suc (order a (pderiv p))" - apply (cases "n", safe, rename_tac n p q a) - apply (rule order_unique_lemma) - apply (rule conjI) - apply (subst lemma_order_pderiv1) - apply (rule dvd_add) - apply (rule dvd_mult2) - apply (rule le_imp_power_dvd, simp) - apply (rule dvd_smult) - apply (rule dvd_mult) - apply (rule dvd_refl) - apply (subst lemma_order_pderiv1) - apply (erule contrapos_nn) back - apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n") - apply (simp del: mult_pCons_left) - apply (drule dvd_add_cancel1) - apply (simp del: mult_pCons_left) - apply (drule dvd_smult_cancel, simp del: of_nat_Suc) - apply assumption -done - -lemma order_decomp: - "p \ 0 - ==> \q. p = [:-a, 1:] ^ (order a p) * q & - ~([:-a, 1:] dvd q)" -apply (drule order [where a=a]) -apply (erule conjE) -apply (erule dvdE) -apply (rule exI) -apply (rule conjI, assumption) -apply (erule contrapos_nn) -apply (erule ssubst) back -apply (subst power_Suc2) -apply (erule mult_dvd_mono [OF dvd_refl]) -done - -lemma order_pderiv: "[| pderiv p \ 0; order a p \ 0 |] - ==> (order a p = Suc (order a (pderiv p)))" -apply (case_tac "p = 0", simp) -apply (drule_tac a = a and p = p in order_decomp) -using neq0_conv -apply (blast intro: lemma_order_pderiv) -done - -lemma order_mult: "p * q \ 0 \ order a (p * q) = order a p + order a q" -proof - - def i \ "order a p" - def j \ "order a q" - def t \ "[:-a, 1:]" - have t_dvd_iff: "\u. t dvd u \ poly u a = 0" - unfolding t_def by (simp add: dvd_iff_poly_eq_0) - assume "p * q \ 0" - then show "order a (p * q) = i + j" - apply clarsimp - apply (drule order [where a=a and p=p, folded i_def t_def]) - apply (drule order [where a=a and p=q, folded j_def t_def]) - apply clarify - apply (rule order_unique_lemma [symmetric], fold t_def) - apply (erule dvdE)+ - apply (simp add: power_add t_dvd_iff) - done -qed - -text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *} - -lemma order_divides: "[:-a, 1:] ^ n dvd p \ p = 0 \ n \ order a p" -apply (cases "p = 0", auto) -apply (drule order_2 [where a=a and p=p]) -apply (erule contrapos_np) -apply (erule power_le_dvd) -apply simp -apply (erule power_le_dvd [OF order_1]) -done - -lemma poly_squarefree_decomp_order: - assumes "pderiv p \ 0" - and p: "p = q * d" - and p': "pderiv p = e * d" - and d: "d = r * p + s * pderiv p" - shows "order a q = (if order a p = 0 then 0 else 1)" -proof (rule classical) - assume 1: "order a q \ (if order a p = 0 then 0 else 1)" - from `pderiv p \ 0` have "p \ 0" by auto - with p have "order a p = order a q + order a d" - by (simp add: order_mult) - with 1 have "order a p \ 0" by (auto split: if_splits) - have "order a (pderiv p) = order a e + order a d" - using `pderiv p \ 0` `pderiv p = e * d` by (simp add: order_mult) - have "order a p = Suc (order a (pderiv p))" - using `pderiv p \ 0` `order a p \ 0` by (rule order_pderiv) - have "d \ 0" using `p \ 0` `p = q * d` by simp - have "([:-a, 1:] ^ (order a (pderiv p))) dvd d" - apply (simp add: d) - apply (rule dvd_add) - apply (rule dvd_mult) - apply (simp add: order_divides `p \ 0` - `order a p = Suc (order a (pderiv p))`) - apply (rule dvd_mult) - apply (simp add: order_divides) - done - then have "order a (pderiv p) \ order a d" - using `d \ 0` by (simp add: order_divides) - show ?thesis - using `order a p = order a q + order a d` - using `order a (pderiv p) = order a e + order a d` - using `order a p = Suc (order a (pderiv p))` - using `order a (pderiv p) \ order a d` - by auto -qed - -lemma poly_squarefree_decomp_order2: "[| pderiv p \ 0; - p = q * d; - pderiv p = e * d; - d = r * p + s * pderiv p - |] ==> \a. order a q = (if order a p = 0 then 0 else 1)" -apply (blast intro: poly_squarefree_decomp_order) -done - -lemma order_pderiv2: "[| pderiv p \ 0; order a p \ 0 |] - ==> (order a (pderiv p) = n) = (order a p = Suc n)" -apply (auto dest: order_pderiv) -done - -definition - rsquarefree :: "'a::idom poly => bool" where - "rsquarefree p = (p \ 0 & (\a. (order a p = 0) | (order a p = 1)))" - -lemma pderiv_iszero: "pderiv p = 0 \ \h. p = [:h:]" -apply (simp add: pderiv_eq_0_iff) -apply (case_tac p, auto split: if_splits) -done - -lemma rsquarefree_roots: - "rsquarefree p = (\a. ~(poly p a = 0 & poly (pderiv p) a = 0))" -apply (simp add: rsquarefree_def) -apply (case_tac "p = 0", simp, simp) -apply (case_tac "pderiv p = 0") -apply simp -apply (drule pderiv_iszero, clarify) -apply simp -apply (rule allI) -apply (cut_tac p = "[:h:]" and a = a in order_root) -apply simp -apply (auto simp add: order_root order_pderiv2) -apply (erule_tac x="a" in allE, simp) -done - -lemma poly_squarefree_decomp: - assumes "pderiv p \ 0" - and "p = q * d" - and "pderiv p = e * d" - and "d = r * p + s * pderiv p" - shows "rsquarefree q & (\a. (poly q a = 0) = (poly p a = 0))" -proof - - from `pderiv p \ 0` have "p \ 0" by auto - with `p = q * d` have "q \ 0" by simp - have "\a. order a q = (if order a p = 0 then 0 else 1)" - using assms by (rule poly_squarefree_decomp_order2) - with `p \ 0` `q \ 0` show ?thesis - by (simp add: rsquarefree_def order_root) -qed - - subsection {* Theorems about Limits *} (* need to rename second isCont_inverse *) diff -r 5155c7c45233 -r 57975b45ab70 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Wed Feb 18 17:02:38 2009 -0800 +++ b/src/HOL/IsaMakefile Wed Feb 18 19:32:26 2009 -0800 @@ -336,6 +336,7 @@ Library/Boolean_Algebra.thy Library/Countable.thy \ Library/RBT.thy Library/Univ_Poly.thy \ Library/Random.thy Library/Quickcheck.thy \ + Library/Poly_Deriv.thy \ Library/Enum.thy Library/Float.thy $(SRC)/Tools/float.ML $(SRC)/HOL/Tools/float_arith.ML \ Library/reify_data.ML Library/reflection.ML @cd Library; $(ISABELLE_TOOL) usedir $(OUT)/HOL Library diff -r 5155c7c45233 -r 57975b45ab70 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Wed Feb 18 17:02:38 2009 -0800 +++ b/src/HOL/Library/Library.thy Wed Feb 18 19:32:26 2009 -0800 @@ -35,6 +35,7 @@ Option_ord Permutation Pocklington + Poly_Deriv Primes Quickcheck Quicksort diff -r 5155c7c45233 -r 57975b45ab70 src/HOL/Library/Poly_Deriv.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Poly_Deriv.thy Wed Feb 18 19:32:26 2009 -0800 @@ -0,0 +1,316 @@ +(* Title: Poly_Deriv.thy + Author: Amine Chaieb + Ported to new Polynomial library by Brian Huffman +*) + +header{* Polynomials and Differentiation *} + +theory Poly_Deriv +imports Deriv Polynomial +begin + +subsection {* Derivatives of univariate polynomials *} + +definition + pderiv :: "'a::real_normed_field poly \ 'a poly" where + "pderiv = poly_rec 0 (\a p p'. p + pCons 0 p')" + +lemma pderiv_0 [simp]: "pderiv 0 = 0" + unfolding pderiv_def by (simp add: poly_rec_0) + +lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)" + unfolding pderiv_def by (simp add: poly_rec_pCons) + +lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)" + apply (induct p arbitrary: n, simp) + apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split) + done + +lemma pderiv_eq_0_iff: "pderiv p = 0 \ degree p = 0" + apply (rule iffI) + apply (cases p, simp) + apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc) + apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0) + done + +lemma degree_pderiv: "degree (pderiv p) = degree p - 1" + apply (rule order_antisym [OF degree_le]) + apply (simp add: coeff_pderiv coeff_eq_0) + apply (cases "degree p", simp) + apply (rule le_degree) + apply (simp add: coeff_pderiv del: of_nat_Suc) + apply (rule subst, assumption) + apply (rule leading_coeff_neq_0, clarsimp) + done + +lemma pderiv_singleton [simp]: "pderiv [:a:] = 0" +by (simp add: pderiv_pCons) + +lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q" +by (rule poly_ext, simp add: coeff_pderiv algebra_simps) + +lemma pderiv_minus: "pderiv (- p) = - pderiv p" +by (rule poly_ext, simp add: coeff_pderiv) + +lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q" +by (rule poly_ext, simp add: coeff_pderiv algebra_simps) + +lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)" +by (rule poly_ext, simp add: coeff_pderiv algebra_simps) + +lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p" +apply (induct p) +apply simp +apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps) +done + +lemma pderiv_power_Suc: + "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p" +apply (induct n) +apply simp +apply (subst power_Suc) +apply (subst pderiv_mult) +apply (erule ssubst) +apply (simp add: smult_add_left algebra_simps) +done + +lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c" +by (simp add: DERIV_cmult mult_commute [of _ c]) + +lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)" +by (rule lemma_DERIV_subst, rule DERIV_pow, simp) +declare DERIV_pow2 [simp] DERIV_pow [simp] + +lemma DERIV_add_const: "DERIV f x :> D ==> DERIV (%x. a + f x :: 'a::real_normed_field) x :> D" +by (rule lemma_DERIV_subst, rule DERIV_add, auto) + +lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x" +apply (induct p) +apply simp +apply (simp add: pderiv_pCons) +apply (rule lemma_DERIV_subst) +apply (rule DERIV_add DERIV_mult DERIV_const DERIV_ident | assumption)+ +apply simp +done + +text{* Consequences of the derivative theorem above*} + +lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)" +apply (simp add: differentiable_def) +apply (blast intro: poly_DERIV) +done + +lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)" +by (rule poly_DERIV [THEN DERIV_isCont]) + +lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |] + ==> \x. a < x & x < b & (poly p x = 0)" +apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl) +apply (auto simp add: order_le_less) +done + +lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |] + ==> \x. a < x & x < b & (poly p x = 0)" +by (insert poly_IVT_pos [where p = "- p" ]) simp + +lemma poly_MVT: "(a::real) < b ==> + \x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)" +apply (drule_tac f = "poly p" in MVT, auto) +apply (rule_tac x = z in exI) +apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique]) +done + +text{*Lemmas for Derivatives*} + +lemma order_unique_lemma: + fixes p :: "'a::idom poly" + assumes "[:-a, 1:] ^ n dvd p \ \ [:-a, 1:] ^ Suc n dvd p" + shows "n = order a p" +unfolding Polynomial.order_def +apply (rule Least_equality [symmetric]) +apply (rule assms [THEN conjunct2]) +apply (erule contrapos_np) +apply (rule power_le_dvd) +apply (rule assms [THEN conjunct1]) +apply simp +done + +lemma lemma_order_pderiv1: + "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q + + smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)" +apply (simp only: pderiv_mult pderiv_power_Suc) +apply (simp del: power_poly_Suc of_nat_Suc add: pderiv_pCons) +done + +lemma dvd_add_cancel1: + fixes a b c :: "'a::comm_ring_1" + shows "a dvd b + c \ a dvd b \ a dvd c" + by (drule (1) Ring_and_Field.dvd_diff, simp) + +lemma lemma_order_pderiv [rule_format]: + "\p q a. 0 < n & + pderiv p \ 0 & + p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q + --> n = Suc (order a (pderiv p))" + apply (cases "n", safe, rename_tac n p q a) + apply (rule order_unique_lemma) + apply (rule conjI) + apply (subst lemma_order_pderiv1) + apply (rule dvd_add) + apply (rule dvd_mult2) + apply (rule le_imp_power_dvd, simp) + apply (rule dvd_smult) + apply (rule dvd_mult) + apply (rule dvd_refl) + apply (subst lemma_order_pderiv1) + apply (erule contrapos_nn) back + apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n") + apply (simp del: mult_pCons_left) + apply (drule dvd_add_cancel1) + apply (simp del: mult_pCons_left) + apply (drule dvd_smult_cancel, simp del: of_nat_Suc) + apply assumption +done + +lemma order_decomp: + "p \ 0 + ==> \q. p = [:-a, 1:] ^ (order a p) * q & + ~([:-a, 1:] dvd q)" +apply (drule order [where a=a]) +apply (erule conjE) +apply (erule dvdE) +apply (rule exI) +apply (rule conjI, assumption) +apply (erule contrapos_nn) +apply (erule ssubst) back +apply (subst power_Suc2) +apply (erule mult_dvd_mono [OF dvd_refl]) +done + +lemma order_pderiv: "[| pderiv p \ 0; order a p \ 0 |] + ==> (order a p = Suc (order a (pderiv p)))" +apply (case_tac "p = 0", simp) +apply (drule_tac a = a and p = p in order_decomp) +using neq0_conv +apply (blast intro: lemma_order_pderiv) +done + +lemma order_mult: "p * q \ 0 \ order a (p * q) = order a p + order a q" +proof - + def i \ "order a p" + def j \ "order a q" + def t \ "[:-a, 1:]" + have t_dvd_iff: "\u. t dvd u \ poly u a = 0" + unfolding t_def by (simp add: dvd_iff_poly_eq_0) + assume "p * q \ 0" + then show "order a (p * q) = i + j" + apply clarsimp + apply (drule order [where a=a and p=p, folded i_def t_def]) + apply (drule order [where a=a and p=q, folded j_def t_def]) + apply clarify + apply (rule order_unique_lemma [symmetric], fold t_def) + apply (erule dvdE)+ + apply (simp add: power_add t_dvd_iff) + done +qed + +text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *} + +lemma order_divides: "[:-a, 1:] ^ n dvd p \ p = 0 \ n \ order a p" +apply (cases "p = 0", auto) +apply (drule order_2 [where a=a and p=p]) +apply (erule contrapos_np) +apply (erule power_le_dvd) +apply simp +apply (erule power_le_dvd [OF order_1]) +done + +lemma poly_squarefree_decomp_order: + assumes "pderiv p \ 0" + and p: "p = q * d" + and p': "pderiv p = e * d" + and d: "d = r * p + s * pderiv p" + shows "order a q = (if order a p = 0 then 0 else 1)" +proof (rule classical) + assume 1: "order a q \ (if order a p = 0 then 0 else 1)" + from `pderiv p \ 0` have "p \ 0" by auto + with p have "order a p = order a q + order a d" + by (simp add: order_mult) + with 1 have "order a p \ 0" by (auto split: if_splits) + have "order a (pderiv p) = order a e + order a d" + using `pderiv p \ 0` `pderiv p = e * d` by (simp add: order_mult) + have "order a p = Suc (order a (pderiv p))" + using `pderiv p \ 0` `order a p \ 0` by (rule order_pderiv) + have "d \ 0" using `p \ 0` `p = q * d` by simp + have "([:-a, 1:] ^ (order a (pderiv p))) dvd d" + apply (simp add: d) + apply (rule dvd_add) + apply (rule dvd_mult) + apply (simp add: order_divides `p \ 0` + `order a p = Suc (order a (pderiv p))`) + apply (rule dvd_mult) + apply (simp add: order_divides) + done + then have "order a (pderiv p) \ order a d" + using `d \ 0` by (simp add: order_divides) + show ?thesis + using `order a p = order a q + order a d` + using `order a (pderiv p) = order a e + order a d` + using `order a p = Suc (order a (pderiv p))` + using `order a (pderiv p) \ order a d` + by auto +qed + +lemma poly_squarefree_decomp_order2: "[| pderiv p \ 0; + p = q * d; + pderiv p = e * d; + d = r * p + s * pderiv p + |] ==> \a. order a q = (if order a p = 0 then 0 else 1)" +apply (blast intro: poly_squarefree_decomp_order) +done + +lemma order_pderiv2: "[| pderiv p \ 0; order a p \ 0 |] + ==> (order a (pderiv p) = n) = (order a p = Suc n)" +apply (auto dest: order_pderiv) +done + +definition + rsquarefree :: "'a::idom poly => bool" where + "rsquarefree p = (p \ 0 & (\a. (order a p = 0) | (order a p = 1)))" + +lemma pderiv_iszero: "pderiv p = 0 \ \h. p = [:h:]" +apply (simp add: pderiv_eq_0_iff) +apply (case_tac p, auto split: if_splits) +done + +lemma rsquarefree_roots: + "rsquarefree p = (\a. ~(poly p a = 0 & poly (pderiv p) a = 0))" +apply (simp add: rsquarefree_def) +apply (case_tac "p = 0", simp, simp) +apply (case_tac "pderiv p = 0") +apply simp +apply (drule pderiv_iszero, clarify) +apply simp +apply (rule allI) +apply (cut_tac p = "[:h:]" and a = a in order_root) +apply simp +apply (auto simp add: order_root order_pderiv2) +apply (erule_tac x="a" in allE, simp) +done + +lemma poly_squarefree_decomp: + assumes "pderiv p \ 0" + and "p = q * d" + and "pderiv p = e * d" + and "d = r * p + s * pderiv p" + shows "rsquarefree q & (\a. (poly q a = 0) = (poly p a = 0))" +proof - + from `pderiv p \ 0` have "p \ 0" by auto + with `p = q * d` have "q \ 0" by simp + have "\a. order a q = (if order a p = 0 then 0 else 1)" + using assms by (rule poly_squarefree_decomp_order2) + with `p \ 0` `q \ 0` show ?thesis + by (simp add: rsquarefree_def order_root) +qed + +end