# HG changeset patch # User huffman # Date 1178668619 -7200 # Node ID 5804926e0379aaa257c09a4f87d78890cee19bd6 # Parent 005be8dafce0761dad9dae5cda0eb30c79ba798a remove redundant lemmas diff -r 005be8dafce0 -r 5804926e0379 src/HOL/Complex/Complex.thy --- a/src/HOL/Complex/Complex.thy Wed May 09 01:26:04 2007 +0200 +++ b/src/HOL/Complex/Complex.thy Wed May 09 01:56:59 2007 +0200 @@ -272,14 +272,6 @@ lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r" by (simp add: i_def complex_of_real_def) -lemma complex_of_real_inverse: - "complex_of_real(inverse x) = inverse(complex_of_real x)" -by (rule of_real_inverse) - -lemma complex_of_real_divide: - "complex_of_real(x/y) = complex_of_real x / complex_of_real y" -by (rule of_real_divide) - subsection{*The Functions @{term Re} and @{term Im}*} @@ -707,7 +699,7 @@ by (simp add: cis_def complex_inverse_complex_split diff_minus) lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)" -by (simp add: divide_inverse rcis_def complex_of_real_inverse) +by (simp add: divide_inverse rcis_def) lemma cis_divide: "cis a / cis b = cis (a - b)" by (simp add: complex_divide_def cis_mult real_diff_def) @@ -738,7 +730,7 @@ lemma complex_expi_Ex: "\a r. z = complex_of_real r * expi a" apply (insert rcis_Ex [of z]) -apply (auto simp add: expi_def rcis_def complex_mult_assoc [symmetric] of_real_mult) +apply (auto simp add: expi_def rcis_def complex_mult_assoc [symmetric]) apply (rule_tac x = "ii * complex_of_real a" in exI, auto) done