# HG changeset patch # User paulson # Date 976700071 -3600 # Node ID 58b6cfd8ecf3bad90cfd22bd35a7fbbe2c5ef33a # Parent b9d43a2add79cc88f21a29f5a2bafad82de62299 working proofs up to isCont_has_Ub diff -r b9d43a2add79 -r 58b6cfd8ecf3 src/HOL/Real/Hyperreal/Lim.ML --- a/src/HOL/Real/Hyperreal/Lim.ML Wed Dec 13 10:31:46 2000 +0100 +++ b/src/HOL/Real/Hyperreal/Lim.ML Wed Dec 13 10:34:31 2000 +0100 @@ -1736,19 +1736,13 @@ (*----------------------------------------------------------------------------*) (* Intermediate Value Theorem (prove contrapositive by bisection) *) (*----------------------------------------------------------------------------*) -(* proved elsewhere surely? *) -Goal "!!P. (~P ==> ~Q) ==> Q ==> P"; -by (auto_tac (claset() addIs [ccontr],simpset())); -qed "contrapos2"; -(* -see junk.ML Goal "[| f(a) <= y & y <= f(b); \ \ a <= b; \ \ (ALL x. a <= x & x <= b --> isCont f x) \ \ |] ==> EX x. a <= x & x <= b & f(x) = y"; -by (rtac contrapos2 1); -by (assume_tac 2); +by (rtac contrapos_pp 1); +by (assume_tac 1); by (cut_inst_tac [("P","%(u,v). a <= u & u <= v & v <= b --> \ \ ~(f(u) <= y & y <= f(v))")] lemma_BOLZANO2 1); by (Step_tac 1); @@ -1761,8 +1755,8 @@ by (rotate_tac 3 2); by (dres_inst_tac [("x","1r")] spec 2); by (Step_tac 2); -by (asm_full_simp_tac (simpset() addsimps []) 2); -by (asm_full_simp_tac (simpset() addsimps []) 2); +by (Asm_full_simp_tac 2); +by (Asm_full_simp_tac 2); by (REPEAT(blast_tac (claset() addIs [real_le_trans]) 2)); by (REPEAT(dres_inst_tac [("x","x")] spec 1)); by (Asm_full_simp_tac 1); @@ -1779,13 +1773,15 @@ by (cut_inst_tac [("R1.0","f x"),("R2.0","y")] real_linear 1); by (Auto_tac); by (dres_inst_tac [("x","ba - x")] spec 1); -by (auto_tac (claset(),simpset() addsimps [abs_iff,real_diff_le_eq, - (real_diff_def RS meta_eq_to_obj_eq) RS sym,real_less_le_iff, - real_le_diff_eq,CLAIM "(~(x::real) <= y) = (y < x)", +by (auto_tac (claset(), + simpset() + addsimps [abs_iff, real_diff_le_eq, + (real_diff_def RS meta_eq_to_obj_eq) RS sym, + real_less_le_iff, real_le_diff_eq, + CLAIM "(~(x::real) <= y) = (y < x)", CLAIM "(-x < -y) = ((y::real) < x)", - CLAIM "(-(y - x)) = (x - (y::real))"])); -by (dres_inst_tac [("z","x"),("w","ba")] real_le_anti_sym 1); -by (assume_tac 1 THEN Asm_full_simp_tac 1); + CLAIM "(-(y - x)) = (x - (y::real))", + CLAIM "(x-y=#0) = (x = (y::real))"])); by (dres_inst_tac [("x","aa - x")] spec 1); by (case_tac "x <= aa" 1); by (auto_tac (claset(),simpset() addsimps [real_minus_zero_le_iff2, @@ -1907,8 +1903,3 @@ (*----------------------------------------------------------------------------*) (* Now show that it attains its upper bound *) (*----------------------------------------------------------------------------*) - - - - - *) \ No newline at end of file