# HG changeset patch # User berghofe # Date 1120219430 -7200 # Node ID 5a89d3622ac01c41e52273f9f143a6acc5a5c897 # Parent 3dc904d93767fa1a8783df2eeb1f7eb0e81738cc Removed setsubgoaler hack (thanks to strengthened finsum_cong). diff -r 3dc904d93767 -r 5a89d3622ac0 src/HOL/Algebra/UnivPoly.thy --- a/src/HOL/Algebra/UnivPoly.thy Fri Jul 01 14:02:58 2005 +0200 +++ b/src/HOL/Algebra/UnivPoly.thy Fri Jul 01 14:03:50 2005 +0200 @@ -285,10 +285,6 @@ shows "p \\<^bsub>P\<^esub> q = q \\<^bsub>P\<^esub> p" by (rule up_eqI, simp add: a_comm R, simp_all add: R) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_full_simp_tac; -*} - lemma (in UP_cring) UP_m_assoc: assumes R: "p \ carrier P" "q \ carrier P" "r \ carrier P" shows "(p \\<^bsub>P\<^esub> q) \\<^bsub>P\<^esub> r = p \\<^bsub>P\<^esub> (q \\<^bsub>P\<^esub> r)" @@ -318,10 +314,6 @@ by (simp add: Pi_def) qed (simp_all add: R) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_simp_tac; -*} - lemma (in UP_cring) UP_l_one [simp]: assumes R: "p \ carrier P" shows "\\<^bsub>P\<^esub> \\<^bsub>P\<^esub> p = p" @@ -630,10 +622,6 @@ "monom P \ n = \\<^bsub>P\<^esub>" by (simp add: UP_def P_def) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_full_simp_tac; -*} - lemma (in UP_cring) monom_mult_is_smult: assumes R: "a \ carrier R" "p \ carrier P" shows "monom P a 0 \\<^bsub>P\<^esub> p = a \\<^bsub>P\<^esub> p" @@ -651,19 +639,11 @@ by (simp add: UP_m_comm) qed (simp_all add: R) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_simp_tac; -*} - lemma (in UP_cring) monom_add [simp]: "[| a \ carrier R; b \ carrier R |] ==> monom P (a \ b) n = monom P a n \\<^bsub>P\<^esub> monom P b n" by (rule up_eqI) simp_all -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_full_simp_tac; -*} - lemma (in UP_cring) monom_one_Suc: "monom P \ (Suc n) = monom P \ n \\<^bsub>P\<^esub> monom P \ 1" proof (rule up_eqI) @@ -739,10 +719,6 @@ qed qed (simp_all) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_simp_tac; -*} - lemma (in UP_cring) monom_mult_smult: "[| a \ carrier R; b \ carrier R |] ==> monom P (a \ b) n = a \\<^bsub>P\<^esub> monom P b n" by (rule up_eqI) simp_all @@ -993,10 +969,6 @@ with boundm R show "coeff P (p \\<^bsub>P\<^esub> q) m = \" by simp qed (simp add: R) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_full_simp_tac; -*} - lemma (in UP_domain) deg_mult [simp]: "[| p ~= \\<^bsub>P\<^esub>; q ~= \\<^bsub>P\<^esub>; p \ carrier P; q \ carrier P |] ==> deg R (p \\<^bsub>P\<^esub> q) = deg R p + deg R q" @@ -1033,10 +1005,6 @@ coeff P (finsum P p A) k = (\i \ A. coeff P (p i) k)" using fin by induct (auto simp: Pi_def) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_full_simp_tac; -*} - lemma (in UP_cring) up_repr: assumes R: "p \ carrier P" shows "(\\<^bsub>P\<^esub> i \ {..deg R p}. monom P (coeff P p i) i) = p" @@ -1089,10 +1057,6 @@ finally show ?thesis . qed -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_simp_tac; -*} - subsection {* Polynomials over an integral domain form an integral domain *} lemma domainI: @@ -1178,10 +1142,6 @@ !!i. i \ B ==> f i = g i |] ==> finsum G f A = finsum G g B" sorry*) -ML_setup {* - simpset_ref() := simpset() setsubgoaler asm_full_simp_tac; -*} - theorem (in cring) diagonal_sum: "[| f \ {..n + m::nat} -> carrier R; g \ {..n + m} -> carrier R |] ==> (\k \ {..n + m}. \i \ {..k}. f i \ g (k - i)) =