# HG changeset patch # User huffman # Date 1315320539 25200 # Node ID 5b1e1432c3201ea332a5c4033738c1f83a73a7e2 # Parent 7f6838b3474a45638fedab1dd6c1bbc3a6ccdcd0 remove redundant lemma real_sum_squared_expand in favor of power2_sum diff -r 7f6838b3474a -r 5b1e1432c320 NEWS --- a/NEWS Tue Sep 06 07:45:18 2011 -0700 +++ b/NEWS Tue Sep 06 07:48:59 2011 -0700 @@ -276,6 +276,7 @@ real_squared_diff_one_factored ~> square_diff_one_factored realpow_two_diff ~> square_diff_square_factored reals_complete2 ~> complete_real + real_sum_squared_expand ~> power2_sum exp_ln_eq ~> ln_unique expi_add ~> exp_add expi_zero ~> exp_zero diff -r 7f6838b3474a -r 5b1e1432c320 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Tue Sep 06 07:45:18 2011 -0700 +++ b/src/HOL/Complex.thy Tue Sep 06 07:48:59 2011 -0700 @@ -321,8 +321,6 @@ lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \ cmod a" by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp) -lemmas real_sum_squared_expand = power2_sum [where 'a=real] - lemma abs_Re_le_cmod: "\Re x\ \ cmod x" by (cases x) simp diff -r 7f6838b3474a -r 5b1e1432c320 src/HOL/Library/Product_Vector.thy --- a/src/HOL/Library/Product_Vector.thy Tue Sep 06 07:45:18 2011 -0700 +++ b/src/HOL/Library/Product_Vector.thy Tue Sep 06 07:48:59 2011 -0700 @@ -450,7 +450,7 @@ assumes x: "0 \ x" and y: "0 \ y" shows "sqrt (x + y) \ sqrt x + sqrt y" apply (rule power2_le_imp_le) -apply (simp add: real_sum_squared_expand x y) +apply (simp add: power2_sum x y) apply (simp add: mult_nonneg_nonneg x y) apply (simp add: x y) done diff -r 7f6838b3474a -r 5b1e1432c320 src/HOL/Multivariate_Analysis/Linear_Algebra.thy --- a/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue Sep 06 07:45:18 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue Sep 06 07:48:59 2011 -0700 @@ -420,7 +420,7 @@ assumes x: "0 \ x" and y: "0 \ y" shows "sqrt (x + y) \ sqrt x + sqrt y" apply (rule power2_le_imp_le) -apply (simp add: real_sum_squared_expand x y) +apply (simp add: power2_sum x y) apply (simp add: mult_nonneg_nonneg x y) apply (simp add: x y) done