# HG changeset patch # User nipkow # Date 1356288855 -3600 # Node ID 5b6cf0fbc329efb9558634d00c84d7f6d035546f # Parent 965d4c108584ee55cf2dfea43f449ab5e80c8a84 renamed and added lemmas diff -r 965d4c108584 -r 5b6cf0fbc329 NEWS --- a/NEWS Sat Dec 22 00:04:50 2012 +0100 +++ b/NEWS Sun Dec 23 19:54:15 2012 +0100 @@ -217,6 +217,10 @@ - Removed real_tendsto_inf, it is superseded by "LIM x F. f x :> at_top". INCOMPATIBILITY +* HOL/Transitive_Closure: renamed lemmas + reflcl_tranclp -> reflclp_tranclp + rtranclp_reflcl -> rtranclp_reflclp + * HOL/Rings: renamed lemmas left_distrib ~> distrib_right diff -r 965d4c108584 -r 5b6cf0fbc329 src/HOL/Transitive_Closure.thy --- a/src/HOL/Transitive_Closure.thy Sat Dec 22 00:04:50 2012 +0100 +++ b/src/HOL/Transitive_Closure.thy Sun Dec 23 19:54:15 2012 +0100 @@ -79,6 +79,8 @@ lemma trans_reflclI[simp]: "trans r \ trans(r^=)" unfolding trans_def by blast +lemma reflclp_idemp [simp]: "(P^==)^== = P^==" +by blast subsection {* Reflexive-transitive closure *} @@ -206,14 +208,14 @@ lemmas rtrancl_subset = rtranclp_subset [to_set] lemma rtranclp_sup_rtranclp: "(sup (R^**) (S^**))^** = (sup R S)^**" - by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) +by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set] -lemma rtranclp_reflcl [simp]: "(R^==)^** = R^**" - by (blast intro!: rtranclp_subset) +lemma rtranclp_reflclp [simp]: "(R^==)^** = R^**" +by (blast intro!: rtranclp_subset) -lemmas rtrancl_reflcl [simp] = rtranclp_reflcl [to_set] +lemmas rtrancl_reflcl [simp] = rtranclp_reflclp [to_set] lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*" apply (rule sym) @@ -560,13 +562,13 @@ apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ done -lemma reflcl_tranclp [simp]: "(r^++)^== = r^**" +lemma reflclp_tranclp [simp]: "(r^++)^== = r^**" apply (safe intro!: order_antisym) apply (erule tranclp_into_rtranclp) apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1) done -lemmas reflcl_trancl [simp] = reflcl_tranclp [to_set] +lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set] lemma trancl_reflcl [simp]: "(r^=)^+ = r^*" apply safe @@ -587,7 +589,7 @@ by (rule subst [OF reflcl_trancl]) simp lemma rtranclpD: "R^** a b ==> a = b \ a \ b \ R^++ a b" - by (force simp add: reflcl_tranclp [symmetric] simp del: reflcl_tranclp) +by (force simp add: reflclp_tranclp [symmetric] simp del: reflclp_tranclp) lemmas rtranclD = rtranclpD [to_set]