# HG changeset patch # User haftmann # Date 1387880656 -3600 # Node ID 5c05f7c5f8aebd3ea38aa1fdefb0849dca529ad0 # Parent 356b4c0a2061de1f4fba51679dea15a036714575 tuning and augmentation of min/max lemmas; more lemmas and simp rules for abstract lattices with order; tuned proofs diff -r 356b4c0a2061 -r 5c05f7c5f8ae src/HOL/Lattices.thy --- a/src/HOL/Lattices.thy Tue Dec 24 11:24:14 2013 +0100 +++ b/src/HOL/Lattices.thy Tue Dec 24 11:24:16 2013 +0100 @@ -190,7 +190,7 @@ by (rule order_trans) auto lemma le_infI: "x \ a \ x \ b \ x \ a \ b" - by (rule inf_greatest) (* FIXME: duplicate lemma *) + by (fact inf_greatest) (* FIXME: duplicate lemma *) lemma le_infE: "x \ a \ b \ (x \ a \ x \ b \ P) \ P" by (blast intro: order_trans inf_le1 inf_le2) @@ -226,7 +226,7 @@ lemma le_supI: "a \ x \ b \ x \ a \ b \ x" - by (rule sup_least) (* FIXME: duplicate lemma *) + by (fact sup_least) (* FIXME: duplicate lemma *) lemma le_supE: "a \ b \ x \ (a \ x \ b \ x \ P) \ P" @@ -856,16 +856,16 @@ by (simp add: inf_fun_def) lemma inf1D1: "(A \ B) x \ A x" - by (simp add: inf_fun_def) + by (rule inf1E) lemma inf2D1: "(A \ B) x y \ A x y" - by (simp add: inf_fun_def) + by (rule inf2E) lemma inf1D2: "(A \ B) x \ B x" - by (simp add: inf_fun_def) + by (rule inf1E) lemma inf2D2: "(A \ B) x y \ B x y" - by (simp add: inf_fun_def) + by (rule inf2E) lemma sup1I1: "A x \ (A \ B) x" by (simp add: sup_fun_def) diff -r 356b4c0a2061 -r 5c05f7c5f8ae src/HOL/Lattices_Big.thy --- a/src/HOL/Lattices_Big.thy Tue Dec 24 11:24:14 2013 +0100 +++ b/src/HOL/Lattices_Big.thy Tue Dec 24 11:24:16 2013 +0100 @@ -373,12 +373,8 @@ lemmas le_maxI1 = min_max.sup_ge1 lemmas le_maxI2 = min_max.sup_ge2 - -lemmas min_ac = min_max.inf_assoc min_max.inf_commute - min.left_commute - -lemmas max_ac = min_max.sup_assoc min_max.sup_commute - max.left_commute +lemmas min_ac = min.assoc min_max.inf_commute min.left_commute +lemmas max_ac = min_max.sup_assoc min_max.sup_commute max.left_commute end diff -r 356b4c0a2061 -r 5c05f7c5f8ae src/HOL/Orderings.thy --- a/src/HOL/Orderings.thy Tue Dec 24 11:24:14 2013 +0100 +++ b/src/HOL/Orderings.thy Tue Dec 24 11:24:16 2013 +0100 @@ -1155,7 +1155,7 @@ lemma min_absorb1: "x \ y \ min x y = x" by (simp add: min_def) -lemma max_absorb2: "x \ y ==> max x y = y" +lemma max_absorb2: "x \ y \ max x y = y" by (simp add: max_def) lemma min_absorb2: "(y\'a\order) \ x \ min x y = y"