# HG changeset patch # User blanchet # Date 1428512757 -7200 # Node ID 5c95c94952df3b2b5a490c0f719cf6eef358c436 # Parent 4c51341245a1013f465d4dcc65a713612020f374 updated certificates to latest Z3 (and took out one problem that no longer works) diff -r 4c51341245a1 -r 5c95c94952df src/HOL/SMT_Examples/Boogie_Dijkstra.certs --- a/src/HOL/SMT_Examples/Boogie_Dijkstra.certs Wed Apr 08 18:58:28 2015 +0200 +++ b/src/HOL/SMT_Examples/Boogie_Dijkstra.certs Wed Apr 08 19:05:57 2015 +0200 @@ -1,4 +1,4 @@ -9d6b81d96fb21c8c08e3f1fd649ce37bdafb5f92 3044 0 +9d6b81d96fb21c8c08e3f1fd649ce37bdafb5f92 3015 0 unsat ((set-logic AUFLIA) (declare-fun ?v0!19 () B_Vertex$) @@ -34,26 +34,24 @@ (let (($x2791 (not $x1883))) (let (($x2806 (or $x2791 $x1888 $x1896))) (let (($x2811 (not $x2806))) -(let (($x3729 (forall ((?v1 B_Vertex$) )(!(let ((?x1911 (v_b_SP_G_2$ ?v0!20))) +(let (($x3729 (forall ((?v1 B_Vertex$) )(! (let ((?x1911 (v_b_SP_G_2$ ?v0!20))) (let ((?x1912 (* (- 1) ?x1911))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x300 (not $x291))) -(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) ))) +(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) ) :qid k!42)) )) (let (($x3734 (not $x3729))) (let (($x1914 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0))) (let (($x1909 (= ?v0!20 b_Source$))) -(let (($x3720 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x303 (v_b_SP_G_2$ ?v0))) -(let ((?x1263 (* (- 1) ?x303))) -(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x3720 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0))) +(let (($x1282 (>= (+ ?x155 ?x273 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x300 (not $x291))) -(or $x300 $x922 $x1282))))))))) :pattern ( (pair$ ?v1 ?v0) ))) +(or $x300 $x922 $x1282))))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!42)) )) (let (($x3725 (not $x3720))) (let (($x3737 (or $x3725 $x1909 $x1914 $x3734))) @@ -71,19 +69,18 @@ (let ((?x4546 (+ ?x1911 ?x3105 ?x4436))) (let (($x4569 (<= ?x4546 0))) (let (($x3740 (not $x3737))) -(let ((@x8092 (hypothesis $x3740))) +(let ((@x4391 (hypothesis $x3740))) (let ((@x3222 (def-axiom (or $x3737 $x3720)))) (let (($x4161 (>= ?x3104 0))) -(let (($x3703 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0))) -(>= ?x273 0)) :pattern ( (v_b_SP_G_2$ ?v0) ))) +(let (($x3703 (forall ((?v0 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v0))) +(>= ?x273 0)) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!42)) )) (let (($x3743 (or $x2811 $x3740))) (let (($x3746 (not $x3743))) -(let (($x3712 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0))) -(let (($x2768 (not $x301))) +(let (($x3712 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x2768 (not (fun_app$ v_b_Visited_G_2$ ?v0)))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) -(or $x291 $x2768 $x1262))))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) ))) +(or $x291 $x2768 $x1262)))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) ) :qid k!42)) )) (let (($x3717 (not $x3712))) (let (($x3749 (or $x3717 $x3746))) @@ -103,8 +100,8 @@ (let (($x1847 (>= ?x1846 0))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let (($x3904 (>= ?x257 0))) -(let (($x3556 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) -(>= ?x174 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +(let (($x3556 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(>= ?x174 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :qid k!42)) )) (let (($x1848 (not $x1847))) (let (($x3767 (or $x1848 $x3764))) @@ -116,12 +113,12 @@ (let (($x3776 (not $x3773))) (let (($x3779 (or $x773 $x3776))) (let (($x3782 (not $x3779))) -(let (($x3695 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x3695 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0))) (let (($x300 (not $x291))) -(or $x300 $x278)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +(or $x300 $x278)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :qid k!42)) )) (let (($x3700 (not $x3695))) (let (($x3785 (or $x3700 $x3782))) @@ -133,7 +130,7 @@ (let (($x1830 (not $x1829))) (let (($x3791 (or $x1830 $x3788))) (let (($x3794 (not $x3791))) -(let (($x3686 (forall ((?v0 B_Vertex$) )(!(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ))) +(let (($x3686 (forall ((?v0 B_Vertex$) )(! (>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!42)) )) (let (($x3691 (not $x3686))) (let (($x3797 (or $x3691 $x3794))) @@ -146,7 +143,7 @@ (let (($x1813 (not $x1812))) (let (($x3803 (or $x1813 $x3800))) (let (($x3806 (not $x3803))) -(let (($x3678 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x3678 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) @@ -155,17 +152,17 @@ (let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) (let (($x2717 (or $x1169 $x1175))) (let (($x2718 (not $x2717))) -(or $x2718 $x278)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ))) +(or $x2718 $x278)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!42)) )) (let (($x3683 (not $x3678))) -(let (($x3670 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0))) +(let (($x3670 (forall ((?v0 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v0))) (let ((?x1186 (* (- 1) ?x273))) (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0))) (let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0))) (let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0))) -(or $x1169 $x1175 $x1185)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ))) +(or $x1169 $x1175 $x1185)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!42)) )) (let (($x3675 (not $x3670))) (let ((?x263 (fun_upd$ v_b_Visited_G_1$))) @@ -173,11 +170,11 @@ (let ((?x265 (fun_app$a ?x264 true))) (let (($x266 (= v_b_Visited_G_2$ ?x265))) (let (($x2935 (not $x266))) -(let (($x3660 (forall ((?v0 B_Vertex$) )(!(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let (($x3660 (forall ((?v0 B_Vertex$) )(! (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let ((?x1173 (* (- 1) ?x257))) (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) -(or $x178 (>= (+ ?x174 ?x1173) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +(or $x178 (>= (+ ?x174 ?x1173) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :qid k!42)) )) (let (($x3665 (not $x3660))) (let ((?x1173 (* (- 1) ?x257))) @@ -193,12 +190,12 @@ (let (($x3812 (not $x3809))) (let ((?x245 (fun_app$c v_b_SP_G_3$ b_Source$))) (let (($x246 (= ?x245 0))) -(let (($x3622 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x3622 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0))) -(or $x1099 $x922 $x1140)))))) :pattern ( (pair$ ?v1 ?v0) ))) +(or $x1099 $x922 $x1140)))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!42)) )) (let (($x3627 (not $x3622))) (let (($x3630 (or $x3627 $x246))) @@ -216,23 +213,23 @@ (let (($x2650 (not $x2645))) (let (($x3636 (or $x2650 $x3633))) (let (($x3639 (not $x3636))) -(let (($x3614 (forall ((?v0 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x3614 (forall ((?v0 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) (let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0)))))) (let (($x2192 (= ?x2191 0))) (let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0))) (let (($x2617 (not (or $x2176 (not $x2192))))) (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0))) (let (($x127 (= ?v0 b_Source$))) -(or $x127 $x1099 $x2617)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) ))) +(or $x127 $x1099 $x2617)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) ) :qid k!42)) )) (let (($x3619 (not $x3614))) (let (($x3642 (or $x3619 $x3639))) (let (($x3645 (not $x3642))) -(let (($x3600 (forall ((?v1 B_Vertex$) )(!(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let (($x3600 (forall ((?v1 B_Vertex$) )(! (let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) (let ((?x1662 (* (- 1) ?x1661))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0))) -(or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) ))) +(or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) ) :qid k!42)) )) (let (($x3605 (not $x3600))) (let (($x1664 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!8))) 0))) @@ -249,62 +246,68 @@ (let (($x2707 (not $x215))) (let (($x212 (= v_b_Visited_G_3$ v_b_Visited_G_1$))) (let (($x2706 (not $x212))) -(let (($x3590 (forall ((?v0 B_Vertex$) )(!(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x3590 (forall ((?v0 B_Vertex$) )(! (let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) -(or $x178 $x1002))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +(or $x178 $x1002))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :qid k!42)) )) (let (($x3595 (not $x3590))) (let (($x3654 (or $x3595 $x2706 $x2707 $x2708 $x2709 $x3651))) (let (($x3657 (not $x3654))) (let (($x3815 (or $x3657 $x3812))) (let (($x3818 (not $x3815))) -(let (($x3581 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x3581 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0)))))) (let (($x2129 (= ?x2128 0))) (let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0))) (let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129))))) (let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0))) (let (($x127 (= ?v0 b_Source$))) -(or $x127 $x1002 $x2551)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +(or $x127 $x1002 $x2551)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :qid k!42)) )) (let (($x3586 (not $x3581))) -(let (($x3573 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x3573 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x990 (>= (+ ?x155 ?x174 ?x991) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x179 (not $x178))) -(or $x179 $x922 $x990))))))) :pattern ( (pair$ ?v1 ?v0) ))) +(or $x179 $x922 $x990))))))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!42)) )) (let (($x3578 (not $x3573))) -(let (($x3565 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x3565 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1015 (>= (+ ?x174 ?x991) 0))) +(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x2492 (not $x180))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) -(or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) ))) +(or $x178 $x2492 $x1015)))))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) ) :qid k!42)) )) (let (($x3570 (not $x3565))) (let (($x3561 (not $x3556))) (let ((?x172 (fun_app$c v_b_SP_G_1$ b_Source$))) (let (($x173 (= ?x172 0))) (let (($x2952 (not $x173))) -(let (($x3547 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0))) +(let (($x3547 (forall ((?v0 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v0))) (let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0)))))) (let (($x2091 (= ?x2090 0))) (let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0))) (let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091))))) (let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0))) (let (($x127 (= ?v0 b_Source$))) -(or $x127 $x947 $x2478)))))))) :pattern ( (v_b_SP_G_0$ ?v0) ))) +(or $x127 $x947 $x2478)))))))) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!42)) )) (let (($x3552 (not $x3547))) (let (($x3821 (or $x3552 $x2952 $x3561 $x3570 $x3578 $x3586 $x3818))) (let (($x3824 (not $x3821))) -(let (($x3533 (forall ((?v1 B_Vertex$) )(!(let ((?x1540 (v_b_SP_G_0$ ?v0!5))) +(let (($x3533 (forall ((?v1 B_Vertex$) )(! (let ((?x1540 (v_b_SP_G_0$ ?v0!5))) (let ((?x1541 (* (- 1) ?x1540))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x137 (not $x136))) -(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) ))) +(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) ) :qid k!42)) )) (let (($x3538 (not $x3533))) (let ((?x1540 (v_b_SP_G_0$ ?v0!5))) @@ -321,87 +324,82 @@ (let ((@x6514 (unit-resolution (def-axiom (or $x3541 $x1544)) (hypothesis (not $x3541)) $x1544))) (let ((@x5778 (symm (commutativity (= $x5625 (= ?x1540 b_Infinity$))) (= (= ?x1540 b_Infinity$) $x5625)))) (let (($x5616 (= ?x1540 b_Infinity$))) -(let (($x3493 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$))) -(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) ))) +(let (($x3493 (forall ((?v0 B_Vertex$) )(! (let (($x127 (= ?v0 b_Source$))) +(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!42)) )) -(let (($x360 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$))) -(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))) +(let (($x360 (forall ((?v0 B_Vertex$) )(! (let (($x127 (= ?v0 b_Source$))) +(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :qid k!42)) )) (let (($x127 (= ?0 b_Source$))) (let (($x357 (or $x127 (= (v_b_SP_G_0$ ?0) b_Infinity$)))) -(let (($x138 (forall ((?v0 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v0))) -(not $x136))) +(let (($x138 (forall ((?v0 B_Vertex$) )(! (let (($x136 (v_b_Visited_G_0$ ?v0))) +(not $x136)) :qid k!42)) )) -(let (($x354 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$))) +(let (($x354 (forall ((?v0 B_Vertex$) )(! (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) -(or $x132 (= (v_b_SP_G_0$ ?v0) 0))))) +(or $x132 (= (v_b_SP_G_0$ ?v0) 0)))) :qid k!42)) )) (let (($x890 (and $x354 $x360 $x138))) -(let (($x1329 (forall ((?v0 B_Vertex$) )(let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0))) -(let ((?x1263 (* (- 1) ?x303))) -(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x1329 (forall ((?v0 B_Vertex$) )(! (let (($x1323 (exists ((?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0))) +(let (($x1306 (= (+ ?x155 ?x273 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) -(let (($x1262 (>= (+ ?x273 ?x1263) 0))) +(let (($x1262 (>= (+ ?x273 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) (let (($x1309 (not $x1262))) -(and $x1309 $x291 $x1306)))))))))) +(and $x1309 $x291 $x1306))))))) :qid k!42)) )) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0))) 0))))) -(or (not $x1300) $x1323)))))) +(or (not $x1300) $x1323))))) :qid k!42)) )) -(let (($x1289 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0))) -(let ((?x1263 (* (- 1) ?x303))) -(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x1289 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0))) +(let (($x1282 (>= (+ ?x155 ?x273 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x923 (not $x922))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x1276 (and $x291 $x923))) (let (($x1279 (not $x1276))) -(or $x1279 $x1282)))))))))))) +(or $x1279 $x1282))))))))) :qid k!42)) )) (let (($x1292 (not $x1289))) (let (($x1332 (or $x1292 $x1329))) (let (($x1335 (and $x1289 $x1332))) -(let (($x1270 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0))) +(let (($x1270 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x300 (not $x291))) -(let (($x302 (and $x300 $x301))) +(let (($x302 (and $x300 (fun_app$ v_b_Visited_G_2$ ?v0)))) (let (($x664 (not $x302))) -(or $x664 $x1262)))))))) +(or $x664 $x1262)))))) :qid k!42)) )) (let (($x1273 (not $x1270))) (let (($x1338 (or $x1273 $x1335))) (let (($x1341 (and $x1270 $x1338))) -(let (($x1256 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0))) -(>= ?x273 0))) +(let (($x1256 (forall ((?v0 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v0))) +(>= ?x273 0)) :qid k!42)) )) (let (($x1259 (not $x1256))) (let (($x1344 (or $x1259 $x1341))) (let (($x1347 (and $x1256 $x1344))) (let (($x1350 (or $x773 $x1347))) (let (($x1353 (and $x297 $x1350))) -(let (($x652 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x652 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0))) (let (($x300 (not $x291))) -(or $x300 $x278))))))) +(or $x300 $x278)))))) :qid k!42)) )) (let (($x785 (not $x652))) (let (($x1356 (or $x785 $x1353))) (let (($x1359 (and $x652 $x1356))) -(let (($x1247 (forall ((?v0 B_Vertex$) )(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)) +(let (($x1247 (forall ((?v0 B_Vertex$) )(! (>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :qid k!42)) )) (let (($x1250 (not $x1247))) (let (($x1362 (or $x1250 $x1359))) (let (($x1365 (and $x1247 $x1362))) -(let (($x1199 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x1199 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) @@ -409,9 +407,9 @@ (let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) (let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) (let (($x1179 (and (not $x1169) (not $x1175)))) -(or $x1179 $x278)))))))))) +(or $x1179 $x278))))))))) :qid k!42)) )) -(let (($x1193 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0))) +(let (($x1193 (forall ((?v0 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v0))) (let ((?x1186 (* (- 1) ?x273))) (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) @@ -419,26 +417,26 @@ (let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0))) (let (($x1179 (and (not (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)) (not $x1175)))) (let (($x1182 (not $x1179))) -(or $x1182 $x1185)))))))))) +(or $x1182 $x1185))))))))) :qid k!42)) )) -(let (($x1209 (forall ((?v0 B_Vertex$) )(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let (($x1209 (forall ((?v0 B_Vertex$) )(! (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let ((?x1173 (* (- 1) ?x257))) (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) -(or $x178 (>= (+ ?x174 ?x1173) 0))))))) +(or $x178 (>= (+ ?x174 ?x1173) 0)))))) :qid k!42)) )) (let (($x1214 (not $x1213))) (let (($x256 (not $x255))) -(let (($x1080 (exists ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1080 (exists ((?v0 B_Vertex$) )(! (let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) (let (($x1003 (not $x1002))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) (let (($x179 (not $x178))) -(and $x179 $x1003)))))) +(and $x179 $x1003))))) :qid k!42)) )) (let (($x1235 (and $x1080 $x256 $x1214 $x1209 $x266 $x1193 $x1199))) (let (($x1240 (not $x1235))) (let (($x1368 (or $x1240 $x1365))) -(let (($x1146 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x1146 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) @@ -447,14 +445,14 @@ (let (($x1100 (not $x1099))) (let (($x1134 (and $x1100 $x923))) (let (($x1137 (not $x1134))) -(or $x1137 $x1140))))))))))) +(or $x1137 $x1140)))))))))) :qid k!42)) )) (let (($x1149 (not $x1146))) (let (($x1152 (or $x1149 $x246))) (let (($x1155 (and $x1146 $x1152))) -(let (($x1128 (forall ((?v0 B_Vertex$) )(let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x1128 (forall ((?v0 B_Vertex$) )(! (let (($x1122 (exists ((?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))))) +(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))) :qid k!42)) )) (let (($x1099 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) (let (($x1100 (not $x1099))) @@ -462,7 +460,7 @@ (let (($x132 (not $x127))) (let (($x1103 (and $x132 $x1100))) (let (($x1106 (not $x1103))) -(or $x1106 $x1122))))))))) +(or $x1106 $x1122)))))))) :qid k!42)) )) (let (($x1131 (not $x1128))) (let (($x1158 (or $x1131 $x1155))) @@ -472,13 +470,15 @@ (let (($x1094 (not $x1089))) (let (($x1164 (or $x1094 $x1161))) (let (($x1371 (and $x1164 $x1368))) -(let (($x1037 (forall ((?v0 B_Vertex$) )(let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1037 (forall ((?v0 B_Vertex$) )(! (let (($x1031 (exists ((?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1012 (= (+ ?x155 ?x174 ?x991) 0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1015 (>= (+ ?x174 ?x991) 0))) (let (($x1017 (not $x1015))) -(and $x1017 $x178 $x1012)))))))) +(and $x1017 $x178 $x1012))))))))) :qid k!42)) )) (let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) (let (($x1003 (not $x1002))) @@ -486,49 +486,53 @@ (let (($x132 (not $x127))) (let (($x1006 (and $x132 $x1003))) (let (($x1009 (not $x1006))) -(or $x1009 $x1031))))))))) +(or $x1009 $x1031)))))))) :qid k!42)) )) -(let (($x997 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x997 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x990 (>= (+ ?x155 ?x174 ?x991) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x923 (not $x922))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x983 (and $x178 $x923))) (let (($x986 (not $x983))) -(or $x986 $x990)))))))))) +(or $x986 $x990))))))))))) :qid k!42)) )) -(let (($x1045 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1045 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1015 (>= (+ ?x174 ?x991) 0))) (let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x179 (not $x178))) (let (($x181 (and $x179 $x180))) (let (($x403 (not $x181))) -(or $x403 $x1015))))))))) +(or $x403 $x1015)))))))))) :qid k!42)) )) -(let (($x1051 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) -(>= ?x174 0))) +(let (($x1051 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(>= ?x174 0)) :qid k!42)) )) -(let (($x980 (forall ((?v0 B_Vertex$) )(let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x980 (forall ((?v0 B_Vertex$) )(! (let (($x974 (exists ((?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) (let (($x960 (not $x907))) -(and $x960 $x136 $x957)))))))) +(and $x960 $x136 $x957))))))) :qid k!42)) )) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0))) 0))))) (let (($x954 (not $x951))) -(or $x954 $x974))))))) +(or $x954 $x974)))))) :qid k!42)) )) (let (($x1069 (and $x980 $x173 $x1051 $x1045 $x997 $x1037))) (let (($x1074 (not $x1069))) (let (($x1374 (or $x1074 $x1371))) (let (($x1377 (and $x980 $x1374))) -(let (($x939 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x939 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) @@ -536,24 +540,24 @@ (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x926 (and $x136 $x923))) (let (($x929 (not $x926))) -(or $x929 $x933)))))))))) +(or $x929 $x933))))))))) :qid k!42)) )) (let (($x942 (not $x939))) (let (($x1380 (or $x942 $x1377))) (let (($x1383 (and $x939 $x1380))) -(let (($x914 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) +(let (($x914 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) (let (($x148 (v_b_Visited_G_0$ ?v0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x137 (not $x136))) (let (($x149 (and $x137 $x148))) (let (($x382 (not $x149))) -(or $x382 $x907)))))))) +(or $x382 $x907))))))) :qid k!42)) )) (let (($x917 (not $x914))) (let (($x1386 (or $x917 $x1383))) (let (($x1389 (and $x914 $x1386))) -(let (($x899 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0))) -(>= ?x128 0))) +(let (($x899 (forall ((?v0 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v0))) +(>= ?x128 0)) :qid k!42)) )) (let (($x902 (not $x899))) (let (($x1392 (or $x902 $x1389))) @@ -564,60 +568,59 @@ (let (($x1398 (or $x869 $x1395))) (let (($x1401 (and $x145 $x1398))) (let (($x1407 (not (or (not $x890) $x1401)))) -(let (($x320 (forall ((?v0 B_Vertex$) )(let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x320 (forall ((?v0 B_Vertex$) )(! (let (($x318 (exists ((?v1 B_Vertex$) )(! (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x316 (and $x291 (= (v_b_SP_G_2$ ?v0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))) (let ((?x303 (v_b_SP_G_2$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let (($x314 (< ?x273 ?x303))) -(and $x314 $x316))))))) +(and $x314 $x316)))))) :qid k!42)) )) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$)))) -(=> $x313 $x318)))))) +(=> $x313 $x318))))) :qid k!42)) )) (let (($x321 (and $x320 false))) (let (($x322 (=> $x321 true))) (let (($x323 (and $x320 $x322))) -(let (($x311 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x311 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x308 (+ ?x273 ?x155))) (let ((?x303 (v_b_SP_G_2$ ?v0))) (let (($x156 (< ?x155 b_Infinity$))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x307 (and $x291 $x156))) -(=> $x307 (<= ?x303 ?x308)))))))))) +(=> $x307 (<= ?x303 ?x308))))))))) :qid k!42)) )) (let (($x324 (=> $x311 $x323))) -(let (($x306 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x306 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x303 (v_b_SP_G_2$ ?v0))) (let (($x304 (<= ?x303 ?x273))) -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x300 (not $x291))) -(let (($x302 (and $x300 $x301))) -(=> $x302 $x304))))))))) +(let (($x302 (and $x300 (fun_app$ v_b_Visited_G_2$ ?v0)))) +(=> $x302 $x304))))))) :qid k!42)) )) (let (($x326 (=> $x306 (and $x311 $x324)))) -(let (($x299 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0))) -(<= 0 ?x273))) +(let (($x299 (forall ((?v0 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v0))) +(<= 0 ?x273)) :qid k!42)) )) (let (($x328 (=> $x299 (and $x306 $x326)))) (let (($x330 (=> $x297 (and $x299 $x328)))) -(let (($x293 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x293 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0))) -(=> $x291 $x278)))))) +(=> $x291 $x278))))) :qid k!42)) )) (let (($x295 (and $x293 (and true true)))) (let (($x332 (=> $x295 (and $x297 $x330)))) -(let (($x290 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x290 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) -(<= ?x273 ?x174)))) +(<= ?x273 ?x174))) :qid k!42)) )) (let (($x334 (=> $x290 (and $x293 $x332)))) -(let (($x280 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x280 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) @@ -625,58 +628,58 @@ (let ((?x270 (+ ?x257 ?x268))) (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174)))) (let (($x277 (not $x272))) -(=> $x277 $x278)))))))))) +(=> $x277 $x278))))))))) :qid k!42)) )) -(let (($x276 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let (($x276 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let ((?x270 (+ ?x257 ?x268))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x274 (= ?x273 ?x270))) (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0))))) -(=> $x272 $x274)))))))) +(=> $x272 $x274))))))) :qid k!42)) )) -(let (($x261 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x261 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let (($x259 (<= ?x257 ?x174))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) (let (($x179 (not $x178))) -(=> $x179 $x259))))))) +(=> $x179 $x259)))))) :qid k!42)) )) (let (($x258 (< ?x257 b_Infinity$))) -(let (($x209 (exists ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x209 (exists ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x191 (< ?x174 b_Infinity$))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) (let (($x179 (not $x178))) -(and $x179 $x191)))))) +(and $x179 $x191))))) :qid k!42)) )) (let (($x286 (and $x209 (and $x256 (and $x258 (and $x261 (and $x266 (and $x276 $x280)))))))) (let (($x287 (and true $x286))) (let (($x288 (and true $x287))) (let (($x336 (=> $x288 (and $x290 $x334)))) (let (($x248 (and $x246 (=> $x246 true)))) -(let (($x244 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x244 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x235 (+ ?x230 ?x155))) (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0))) (let (($x156 (< ?x155 b_Infinity$))) (let (($x231 (< ?x230 b_Infinity$))) (let (($x241 (and $x231 $x156))) -(=> $x241 (<= ?x233 ?x235)))))))))) +(=> $x241 (<= ?x233 ?x235))))))))) :qid k!42)) )) (let (($x249 (=> $x244 $x248))) -(let (($x240 (forall ((?v0 B_Vertex$) )(let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x240 (forall ((?v0 B_Vertex$) )(! (let (($x238 (exists ((?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x235 (+ ?x230 ?x155))) (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0))) (let (($x234 (< ?x230 ?x233))) -(and $x234 (= ?x233 ?x235)))))))) +(and $x234 (= ?x233 ?x235))))))) :qid k!42)) )) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) (let (($x231 (< ?x230 b_Infinity$))) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x232 (and $x132 $x231))) -(=> $x232 $x238)))))))) +(=> $x232 $x238))))))) :qid k!42)) )) (let (($x251 (=> $x240 (and $x244 $x249)))) (let (($x225 (and true (and $x212 (and $x215 (and $x217 (and $x220 true))))))) @@ -685,91 +688,91 @@ (let (($x228 (and true (and $x210 $x226)))) (let (($x229 (and true $x228))) (let (($x253 (=> $x229 (and $x240 $x251)))) -(let (($x199 (forall ((?v0 B_Vertex$) )(let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x199 (forall ((?v0 B_Vertex$) )(! (let (($x197 (exists ((?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x187 (+ ?x174 ?x155))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x193 (< ?x174 ?x182))) -(and $x193 (and $x178 (= ?x182 ?x187)))))))))) +(and $x193 (and $x178 (= ?x182 ?x187))))))))) :qid k!42)) )) (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x191 (< ?x174 b_Infinity$))) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x192 (and $x132 $x191))) -(=> $x192 $x197)))))))) +(=> $x192 $x197))))))) :qid k!42)) )) (let (($x200 (and $x199 true))) -(let (($x190 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x190 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x187 (+ ?x174 ?x155))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x156 (< ?x155 b_Infinity$))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x186 (and $x178 $x156))) -(=> $x186 (<= ?x182 ?x187)))))))))) +(=> $x186 (<= ?x182 ?x187))))))))) :qid k!42)) )) -(let (($x185 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x185 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x183 (<= ?x182 ?x174))) (let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x179 (not $x178))) (let (($x181 (and $x179 $x180))) -(=> $x181 $x183))))))))) +(=> $x181 $x183)))))))) :qid k!42)) )) -(let (($x176 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) -(<= 0 ?x174))) +(let (($x176 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(<= 0 ?x174)) :qid k!42)) )) (let (($x205 (and true (and $x173 (and $x176 (and $x185 (and $x190 $x200))))))) (let (($x206 (and true $x205))) -(let (($x170 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1))) +(let (($x170 (forall ((?v0 B_Vertex$) )(! (let (($x168 (exists ((?v1 B_Vertex$) )(! (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))) -(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166)))) +(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))) :qid k!42)) )) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$)))) -(=> $x163 $x168)))))) +(=> $x163 $x168))))) :qid k!42)) )) (let (($x338 (=> (and $x170 $x206) (and $x253 $x336)))) -(let (($x161 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0))) +(let (($x161 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x150 (v_b_SP_G_0$ ?v0))) (let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let (($x156 (< ?x155 b_Infinity$))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x157 (and $x136 $x156))) -(=> $x157 $x159)))))))) +(=> $x157 $x159))))))) :qid k!42)) )) (let (($x340 (=> $x161 (and $x170 $x338)))) -(let (($x153 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1))) +(let (($x153 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v1))) (let ((?x150 (v_b_SP_G_0$ ?v0))) (let (($x151 (<= ?x150 ?x128))) (let (($x148 (v_b_Visited_G_0$ ?v0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x137 (not $x136))) (let (($x149 (and $x137 $x148))) -(=> $x149 $x151))))))))) +(=> $x149 $x151)))))))) :qid k!42)) )) (let (($x342 (=> $x153 (and $x161 $x340)))) -(let (($x147 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0))) -(<= 0 ?x128))) +(let (($x147 (forall ((?v0 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v0))) +(<= 0 ?x128)) :qid k!42)) )) (let (($x344 (=> $x147 (and $x153 $x342)))) (let (($x346 (=> $x145 (and $x147 $x344)))) -(let (($x135 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$))) +(let (($x135 (forall ((?v0 B_Vertex$) )(! (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) -(=> $x132 (= (v_b_SP_G_0$ ?v0) b_Infinity$))))) +(=> $x132 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))) :qid k!42)) )) -(let (($x131 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$))) -(=> $x127 (= (v_b_SP_G_0$ ?v0) 0)))) +(let (($x131 (forall ((?v0 B_Vertex$) )(! (let (($x127 (= ?v0 b_Source$))) +(=> $x127 (= (v_b_SP_G_0$ ?v0) 0))) :qid k!42)) )) (let (($x142 (and true (and $x131 (and $x135 (and $x138 true)))))) (let (($x143 (and true $x142))) (let (($x348 (=> $x143 (and $x145 $x346)))) (let (($x349 (not $x348))) -(let (($x710 (forall ((?v0 B_Vertex$) )(let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x710 (forall ((?v0 B_Vertex$) )(! (let (($x698 (exists ((?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x671 (+ ?x155 ?x273))) (let ((?x303 (v_b_SP_G_2$ ?v0))) @@ -777,31 +780,30 @@ (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x692 (and $x291 $x689))) (let (($x314 (< ?x273 ?x303))) -(and $x314 $x692)))))))))) +(and $x314 $x692))))))))) :qid k!42)) )) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$)))) -(or (not $x313) $x698)))))) +(or (not $x313) $x698))))) :qid k!42)) )) -(let (($x686 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x686 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x671 (+ ?x155 ?x273))) (let ((?x303 (v_b_SP_G_2$ ?v0))) (let (($x674 (<= ?x303 ?x671))) -(or (not (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x155 b_Infinity$))) $x674))))))) +(or (not (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x155 b_Infinity$))) $x674)))))) :qid k!42)) )) (let (($x738 (or (not $x686) $x710))) (let (($x743 (and $x686 $x738))) -(let (($x668 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x668 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x303 (v_b_SP_G_2$ ?v0))) (let (($x304 (<= ?x303 ?x273))) -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x300 (not $x291))) -(let (($x302 (and $x300 $x301))) +(let (($x302 (and $x300 (fun_app$ v_b_Visited_G_2$ ?v0)))) (let (($x664 (not $x302))) -(or $x664 $x304)))))))))) +(or $x664 $x304)))))))) :qid k!42)) )) (let (($x750 (or (not $x668) $x743))) (let (($x755 (and $x668 $x750))) @@ -813,66 +815,66 @@ (let (($x791 (and $x652 $x786))) (let (($x798 (or (not $x290) $x791))) (let (($x803 (and $x290 $x798))) -(let (($x617 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x617 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let ((?x270 (+ ?x257 ?x268))) (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174)))) -(or $x272 $x278))))))))) +(or $x272 $x278)))))))) :qid k!42)) )) -(let (($x611 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let (($x611 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let ((?x270 (+ ?x257 ?x268))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x274 (= ?x273 ?x270))) (let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0))))) (let (($x277 (not $x272))) -(or $x277 $x274))))))))) +(or $x277 $x274)))))))) :qid k!42)) )) (let (($x620 (and $x611 $x617))) (let (($x623 (and $x266 $x620))) -(let (($x605 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x605 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let (($x259 (<= ?x257 ?x174))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) -(or $x178 $x259)))))) +(or $x178 $x259))))) :qid k!42)) )) (let (($x626 (and $x605 $x623))) (let (($x629 (and $x258 $x626))) (let (($x632 (and $x256 $x629))) (let (($x635 (and $x209 $x632))) (let (($x810 (or (not $x635) $x803))) -(let (($x557 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x557 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x521 (+ ?x155 ?x230))) (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0))) (let (($x545 (<= ?x233 ?x521))) -(or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545))))))) +(or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545)))))) :qid k!42)) )) (let (($x573 (or (not $x557) $x246))) (let (($x578 (and $x557 $x573))) -(let (($x542 (forall ((?v0 B_Vertex$) )(let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x542 (forall ((?v0 B_Vertex$) )(! (let (($x530 (exists ((?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x521 (+ ?x155 ?x230))) (let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0))) (let (($x524 (= ?x233 ?x521))) (let (($x234 (< ?x230 ?x233))) -(and $x234 $x524)))))))) +(and $x234 $x524))))))) :qid k!42)) )) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) (let (($x231 (< ?x230 b_Infinity$))) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x232 (and $x132 $x231))) -(or (not $x232) $x530)))))))) +(or (not $x232) $x530))))))) :qid k!42)) )) (let (($x585 (or (not $x542) $x578))) (let (($x590 (and $x542 $x585))) (let (($x597 (or (not (and $x210 (and $x212 (and $x215 (and $x217 $x220))))) $x590))) (let (($x815 (and $x597 $x810))) -(let (($x449 (forall ((?v0 B_Vertex$) )(let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x449 (forall ((?v0 B_Vertex$) )(! (let (($x437 (exists ((?v1 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x410 (+ ?x155 ?x174))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) @@ -880,24 +882,24 @@ (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x431 (and $x178 $x428))) (let (($x193 (< ?x174 ?x182))) -(and $x193 $x431)))))))))) +(and $x193 $x431))))))))) :qid k!42)) )) (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x191 (< ?x174 b_Infinity$))) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x192 (and $x132 $x191))) -(or (not $x192) $x437)))))))) +(or (not $x192) $x437))))))) :qid k!42)) )) -(let (($x425 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x425 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x410 (+ ?x155 ?x174))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x413 (<= ?x182 ?x410))) -(or (not (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x155 b_Infinity$))) $x413))))))) +(or (not (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x155 b_Infinity$))) $x413)))))) :qid k!42)) )) (let (($x459 (and $x425 $x449))) -(let (($x407 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x407 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) (let (($x183 (<= ?x182 ?x174))) (let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0))) @@ -905,34 +907,34 @@ (let (($x179 (not $x178))) (let (($x181 (and $x179 $x180))) (let (($x403 (not $x181))) -(or $x403 $x183)))))))))) +(or $x403 $x183))))))))) :qid k!42)) )) (let (($x462 (and $x407 $x459))) (let (($x465 (and $x176 $x462))) (let (($x468 (and $x173 $x465))) -(let (($x400 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1))) +(let (($x400 (forall ((?v0 B_Vertex$) )(! (let (($x168 (exists ((?v1 B_Vertex$) )(! (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))) -(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166)))) +(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))) :qid k!42)) )) (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) (let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$)))) -(or (not $x163) $x168)))))) +(or (not $x163) $x168))))) :qid k!42)) )) (let (($x482 (and $x400 $x468))) (let (($x822 (or (not $x482) $x815))) (let (($x827 (and $x400 $x822))) -(let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0))) +(let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x150 (v_b_SP_G_0$ ?v0))) (let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let (($x156 (< ?x155 b_Infinity$))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x157 (and $x136 $x156))) -(or (not $x157) $x159)))))))) +(or (not $x157) $x159))))))) :qid k!42)) )) (let (($x834 (or (not $x393) $x827))) (let (($x839 (and $x393 $x834))) -(let (($x386 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1))) +(let (($x386 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v1))) (let ((?x150 (v_b_SP_G_0$ ?v0))) (let (($x151 (<= ?x150 ?x128))) (let (($x148 (v_b_Visited_G_0$ ?v0))) @@ -940,7 +942,7 @@ (let (($x137 (not $x136))) (let (($x149 (and $x137 $x148))) (let (($x382 (not $x149))) -(or $x382 $x151)))))))))) +(or $x382 $x151))))))))) :qid k!42)) )) (let (($x846 (or (not $x386) $x839))) (let (($x851 (and $x386 $x846))) @@ -949,19 +951,17 @@ (let (($x870 (or $x869 $x863))) (let (($x875 (and $x145 $x870))) (let (($x882 (or (not (and $x354 (and $x360 $x138))) $x875))) -(let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?0))) -(let ((?x1263 (* (- 1) ?x303))) -(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x1323 (exists ((?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) -(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0))) +(let (($x1306 (= (+ ?x155 ?x273 (* (- 1) (v_b_SP_G_2$ ?0))) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) -(let (($x1262 (>= (+ ?x273 ?x1263) 0))) +(let (($x1262 (>= (+ ?x273 (* (- 1) (v_b_SP_G_2$ ?0))) 0))) (let (($x1309 (not $x1262))) -(and $x1309 $x291 $x1306)))))))))) +(and $x1309 $x291 $x1306))))))) :qid k!42)) )) (let (($x132 (not $x127))) (let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?0))) 0))))) -(let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x698 (exists ((?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) (let ((?x671 (+ ?x155 ?x273))) (let ((?x303 (v_b_SP_G_2$ ?0))) @@ -969,19 +969,18 @@ (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x692 (and $x291 $x689))) (let (($x314 (< ?x273 ?x303))) -(and $x314 $x692)))))))))) +(and $x314 $x692))))))))) :qid k!42)) )) (let (($x705 (or (not (and $x132 (< (v_b_SP_G_2$ ?0) b_Infinity$))) $x698))) -(let ((?x303 (v_b_SP_G_2$ ?1))) -(let ((?x1263 (* (- 1) ?x303))) (let ((?x273 (v_b_SP_G_2$ ?0))) (let ((?x155 (b_G$ (pair$ ?0 ?1)))) -(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0))) +(let (($x1306 (= (+ ?x155 ?x273 (* (- 1) (v_b_SP_G_2$ ?1))) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?0))) -(let (($x1262 (>= (+ ?x273 ?x1263) 0))) +(let (($x1262 (>= (+ ?x273 (* (- 1) (v_b_SP_G_2$ ?1))) 0))) (let (($x1309 (not $x1262))) (let (($x1318 (and $x1309 $x291 $x1306))) (let ((?x671 (+ ?x155 ?x273))) +(let ((?x303 (v_b_SP_G_2$ ?1))) (let (($x689 (= ?x303 ?x671))) (let (($x692 (and $x291 $x689))) (let (($x314 (< ?x273 ?x303))) @@ -992,7 +991,7 @@ (let ((@x1302 (monotonicity (rewrite $x1298) (= (and $x132 (< ?x273 b_Infinity$)) $x1300)))) (let ((@x1305 (monotonicity @x1302 (= (not (and $x132 (< ?x273 b_Infinity$))) (not $x1300))))) (let ((@x1328 (monotonicity @x1305 (quant-intro @x1322 (= $x698 $x1323)) (= $x705 (or (not $x1300) $x1323))))) -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0))) +(let (($x1282 (>= (+ ?x155 ?x273 (* (- 1) ?x303)) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x923 (not $x922))) (let (($x1276 (and $x291 $x923))) @@ -1004,9 +1003,8 @@ (let ((@x1281 (monotonicity (monotonicity @x925 (= (and $x291 (< ?x155 b_Infinity$)) $x1276)) (= (not (and $x291 (< ?x155 b_Infinity$))) $x1279)))) (let ((@x1291 (quant-intro (monotonicity @x1281 (rewrite (= $x674 $x1282)) (= $x681 $x1286)) (= $x686 $x1289)))) (let ((@x1334 (monotonicity (monotonicity @x1291 (= (not $x686) $x1292)) (quant-intro @x1328 (= $x710 $x1329)) (= $x738 $x1332)))) -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?1))) (let (($x300 (not $x291))) -(let (($x302 (and $x300 $x301))) +(let (($x302 (and $x300 (fun_app$ v_b_Visited_G_2$ ?1)))) (let (($x664 (not $x302))) (let (($x1267 (or $x664 $x1262))) (let (($x304 (<= ?x303 ?x273))) @@ -1074,20 +1072,20 @@ (let ((@x1139 (monotonicity @x1136 (= (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x1137)))) (let ((@x1148 (quant-intro (monotonicity @x1139 (rewrite (= $x545 $x1140)) (= $x552 $x1143)) (= $x557 $x1146)))) (let ((@x1154 (monotonicity (monotonicity @x1148 (= (not $x557) $x1149)) (= $x573 $x1152)))) -(let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x1122 (exists ((?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) -(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0))))) +(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)))) :qid k!42)) )) (let (($x1103 (and $x132 $x1100))) (let (($x1106 (not $x1103))) (let (($x1125 (or $x1106 $x1122))) -(let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x530 (exists ((?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) (let ((?x521 (+ ?x155 ?x230))) (let ((?x233 (fun_app$c v_b_SP_G_3$ ?0))) (let (($x524 (= ?x233 ?x521))) (let (($x234 (< ?x230 ?x233))) -(and $x234 $x524)))))))) +(and $x234 $x524))))))) :qid k!42)) )) (let (($x537 (or (not (and $x132 (< ?x230 b_Infinity$))) $x530))) (let (($x1119 (and (not (>= (+ ?x230 (* (- 1) ?x233)) 0)) (= (+ ?x155 ?x230 (* (- 1) ?x233)) 0)))) @@ -1107,18 +1105,20 @@ (let ((@x1166 (monotonicity @x1096 (monotonicity (quant-intro @x1127 (= $x542 $x1128)) @x1160 (= $x590 $x1161)) (= $x597 $x1164)))) (let (($x1070 (= (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))) $x1069))) (let (($x1067 (= $x482 (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037)))))))) -(let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1031 (exists ((?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) -(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0))) +(let (($x1012 (= (+ ?x155 ?x174 ?x991) 0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0))) +(let (($x1015 (>= (+ ?x174 ?x991) 0))) (let (($x1017 (not $x1015))) -(and $x1017 $x178 $x1012)))))))) +(and $x1017 $x178 $x1012))))))))) :qid k!42)) )) (let (($x1006 (and $x132 $x1003))) (let (($x1009 (not $x1006))) (let (($x1034 (or $x1009 $x1031))) -(let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x437 (exists ((?v1 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) (let ((?x410 (+ ?x155 ?x174))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?0))) @@ -1126,7 +1126,7 @@ (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x431 (and $x178 $x428))) (let (($x193 (< ?x174 ?x182))) -(and $x193 $x431)))))))))) +(and $x193 $x431))))))))) :qid k!42)) )) (let (($x444 (or (not (and $x132 (< ?x174 b_Infinity$))) $x437))) (let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?1))) 0))) @@ -1162,20 +1162,20 @@ (let ((@x1053 (quant-intro (rewrite (= (<= 0 ?x174) (>= ?x174 0))) (= $x176 $x1051)))) (let ((@x1062 (monotonicity @x1053 (monotonicity @x1047 @x1056 (= $x462 (and $x1045 (and $x997 $x1037)))) (= $x465 (and $x1051 (and $x1045 (and $x997 $x1037))))))) (let ((@x1065 (monotonicity @x1062 (= $x468 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037)))))))) -(let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0)))) +(let (($x974 (exists ((?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0)) ?x155) 0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0))) 0))) (let (($x960 (not $x907))) -(and $x960 $x136 $x957)))))))) +(and $x960 $x136 $x957))))))) :qid k!42)) )) (let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0))))) (let (($x954 (not $x951))) (let (($x977 (or $x954 $x974))) -(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1))) +(let (($x168 (exists ((?v1 B_Vertex$) )(! (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x166 (and $x136 (= (v_b_SP_G_0$ ?0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0))))))) -(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?0)) $x166)))) +(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?0)) $x166))) :qid k!42)) )) (let (($x397 (or (not (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x168))) (let (($x957 (= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x155) 0))) @@ -1219,12 +1219,12 @@ (let ((@x1400 (monotonicity (monotonicity @x901 @x1394 (= $x863 $x1395)) (= $x870 $x1398)))) (let ((@x895 (monotonicity (rewrite (= (and $x354 (and $x360 $x138)) $x890)) (= (not (and $x354 (and $x360 $x138))) (not $x890))))) (let ((@x1406 (monotonicity @x895 (monotonicity @x1400 (= $x875 $x1401)) (= $x882 (or (not $x890) $x1401))))) -(let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x318 (exists ((?v1 B_Vertex$) )(! (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x316 (and $x291 (= (v_b_SP_G_2$ ?0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?0))))))) (let ((?x303 (v_b_SP_G_2$ ?0))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let (($x314 (< ?x273 ?x303))) -(and $x314 $x316))))))) +(and $x314 $x316)))))) :qid k!42)) )) (let (($x313 (and $x132 (< ?x273 b_Infinity$)))) (let (($x319 (=> $x313 $x318))) @@ -1267,12 +1267,12 @@ (let ((@x556 (trans (monotonicity @x547 (= $x243 (=> $x241 $x545))) (rewrite (= (=> $x241 $x545) $x552)) (= $x243 $x552)))) (let ((@x571 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x564 (rewrite (= (and $x246 true) $x246)) (= $x248 $x246)) (= $x249 (=> $x557 $x246))))) (let ((@x580 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x571 (rewrite (= (=> $x557 $x246) $x573)) (= $x249 $x573)) (= (and $x244 $x249) $x578)))) -(let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0)))) +(let (($x238 (exists ((?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x235 (+ ?x230 ?x155))) (let ((?x233 (fun_app$c v_b_SP_G_3$ ?0))) (let (($x234 (< ?x230 ?x233))) -(and $x234 (= ?x233 ?x235)))))))) +(and $x234 (= ?x233 ?x235))))))) :qid k!42)) )) (let (($x232 (and $x132 $x231))) (let (($x239 (=> $x232 $x238))) @@ -1290,13 +1290,13 @@ (let ((@x518 (monotonicity (trans @x512 (rewrite (= (and true $x507) $x507)) (= $x228 $x507)) (= $x229 (and true $x507))))) (let ((@x595 (monotonicity (trans @x518 (rewrite (= (and true $x507) $x507)) (= $x229 $x507)) @x592 (= $x253 (=> $x507 $x590))))) (let ((@x817 (monotonicity (trans @x595 (rewrite (= (=> $x507 $x590) $x597)) (= $x253 $x597)) (trans @x808 (rewrite (= (=> $x635 $x803) $x810)) (= $x336 $x810)) (= (and $x253 $x336) $x815)))) -(let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0)))) +(let (($x197 (exists ((?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?0)))) (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x187 (+ ?x174 ?x155))) (let ((?x182 (fun_app$c v_b_SP_G_1$ ?0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x193 (< ?x174 ?x182))) -(and $x193 (and $x178 (= ?x182 ?x187)))))))))) +(and $x193 (and $x178 (= ?x182 ?x187))))))))) :qid k!42)) )) (let (($x191 (< ?x174 b_Infinity$))) (let (($x192 (and $x132 $x191))) @@ -1345,13 +1345,13 @@ (let (($x3544 (not $x3541))) (let (($x3827 (or $x3544 $x3824))) (let (($x3830 (not $x3827))) -(let (($x3524 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x3524 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x137 (not $x136))) -(or $x137 $x922 $x933))))))) :pattern ( (pair$ ?v1 ?v0) ))) +(or $x137 $x922 $x933))))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!42)) )) (let (($x3529 (not $x3524))) (let (($x3833 (or $x3529 $x3830))) @@ -1367,8 +1367,8 @@ (let (($x1512 (v_b_Visited_G_0$ ?v1!3))) (let (($x2394 (not $x1512))) (let (($x2409 (or $x2394 $x1517 $x2048))) -(let (($x3500 (forall ((?v0 B_Vertex$) )(!(let (($x136 (v_b_Visited_G_0$ ?v0))) -(not $x136)) :pattern ( (v_b_Visited_G_0$ ?v0) ))) +(let (($x3500 (forall ((?v0 B_Vertex$) )(! (let (($x136 (v_b_Visited_G_0$ ?v0))) +(not $x136)) :pattern ( (v_b_Visited_G_0$ ?v0) ) :qid k!42)) )) (let ((@x1468 (mp~ (and-elim @x1413 $x138) (nnf-pos (refl (~ $x137 $x137)) (~ $x138 $x138)) $x138))) (let ((@x3505 (mp @x1468 (quant-intro (refl (= $x137 $x137)) (= $x138 $x3500)) $x3500))) @@ -1376,9 +1376,9 @@ (let (($x2414 (not $x2409))) (let (($x3839 (or $x2414 $x3836))) (let (($x3842 (not $x3839))) -(let (($x3515 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) +(let (($x3515 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) -(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) ))) +(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) ) :qid k!42)) )) (let (($x3520 (not $x3515))) (let (($x3845 (or $x3520 $x3842))) @@ -1391,8 +1391,8 @@ (let (($x2368 (not $x2363))) (let (($x3851 (or $x2368 $x3848))) (let (($x3854 (not $x3851))) -(let (($x3506 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0))) -(>= ?x128 0)) :pattern ( (v_b_SP_G_0$ ?v0) ))) +(let (($x3506 (forall ((?v0 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v0))) +(>= ?x128 0)) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!42)) )) (let (($x3511 (not $x3506))) (let (($x3857 (or $x3511 $x3854))) @@ -1411,9 +1411,9 @@ (let (($x5589 (= ?v0!0 b_Source$))) (let (($x4695 (not $x5589))) (let ((@x5096 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1475 0)) $x1476)) @x5848 (not (= ?x1475 0))))) -(let (($x3487 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$))) +(let (($x3487 (forall ((?v0 B_Vertex$) )(! (let (($x127 (= ?v0 b_Source$))) (let (($x132 (not $x127))) -(or $x132 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) ))) +(or $x132 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!42)) )) (let ((@x3491 (quant-intro (refl (= (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (= $x354 $x3487)))) (let ((@x1457 (nnf-pos (refl (~ (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (~ $x354 $x354)))) @@ -1441,31 +1441,28 @@ (let ((@x5431 (trans @x5373 (rewrite (= $x3194 $x3194)) (= (or $x5983 (or (not (= b_Source$ b_Source$)) $x145)) $x3194)))) (let ((@x5763 (mp ((_ quant-inst b_Source$) (or $x5983 (or (not (= b_Source$ b_Source$)) $x145))) @x5431 $x3194))) (let (($x3875 (or $x869 $x3872))) -(let (($x2848 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20))) +(let (($x2848 (forall ((?v1 B_Vertex$) )(! (let ((?x1911 (v_b_SP_G_2$ ?v0!20))) (let ((?x1912 (* (- 1) ?x1911))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x300 (not $x291))) -(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242))))))))) +(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))) :qid k!42)) )) -(let (($x2833 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0))) -(let ((?x1263 (* (- 1) ?x303))) -(let ((?x273 (v_b_SP_G_2$ ?v1))) +(let (($x2833 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0))) +(let (($x1282 (>= (+ ?x155 ?x273 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x300 (not $x291))) -(or $x300 $x922 $x1282)))))))))) +(or $x300 $x922 $x1282))))))) :qid k!42)) )) (let (($x2857 (not (or (not $x2833) $x1909 $x1914 (not $x2848))))) (let (($x2862 (or $x2811 $x2857))) -(let (($x2788 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0))) -(let (($x2768 (not $x301))) +(let (($x2788 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x2768 (not (fun_app$ v_b_Visited_G_2$ ?v0)))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) -(or $x291 $x2768 $x1262)))))) +(or $x291 $x2768 $x1262)))) :qid k!42)) )) (let (($x2871 (not (or (not $x2788) (not $x2862))))) (let (($x2876 (or $x2765 $x2871))) @@ -1477,7 +1474,7 @@ (let (($x2915 (or $x1830 $x2910))) (let (($x2923 (not (or $x1250 (not $x2915))))) (let (($x2928 (or $x1813 $x2923))) -(let (($x2742 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x2742 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x273 (v_b_SP_G_2$ ?v0))) (let (($x278 (= ?x273 ?x174))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) @@ -1486,107 +1483,113 @@ (let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) (let (($x2717 (or $x1169 $x1175))) (let (($x2718 (not $x2717))) -(or $x2718 $x278))))))))))) +(or $x2718 $x278)))))))))) :qid k!42)) )) -(let (($x2736 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0))) +(let (($x2736 (forall ((?v0 B_Vertex$) )(! (let ((?x273 (v_b_SP_G_2$ ?v0))) (let ((?x1186 (* (- 1) ?x273))) (let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) (let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) (let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0))) (let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0))) (let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0))) -(or $x1169 $x1175 $x1185))))))))) +(or $x1169 $x1175 $x1185)))))))) :qid k!42)) )) (let (($x2939 (or $x1773 $x1778 $x255 $x1213 (not $x1209) $x2935 (not $x2736) (not $x2742) (not $x2928)))) (let (($x2940 (not $x2939))) -(let (($x2672 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x2672 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0))) -(or $x1099 $x922 $x1140))))))) +(or $x1099 $x922 $x1140)))))) :qid k!42)) )) (let (($x2680 (not (or (not $x2672) $x246)))) (let (($x2685 (or $x2650 $x2680))) -(let (($x2628 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x2628 (forall ((?v0 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) (let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0)))))) (let (($x2192 (= ?x2191 0))) (let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0))) (let (($x2617 (not (or $x2176 (not $x2192))))) (let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0))) (let (($x127 (= ?v0 b_Source$))) -(or $x127 $x1099 $x2617))))))))) +(or $x127 $x1099 $x2617)))))))) :qid k!42)) )) (let (($x2694 (not (or (not $x2628) (not $x2685))))) -(let (($x2591 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let (($x2591 (forall ((?v1 B_Vertex$) )(! (let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) (let ((?x1662 (* (- 1) ?x1661))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0))) -(or (>= (+ ?x230 ?x1662) 0) (not $x2148))))))) +(or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))) :qid k!42)) )) (let (($x2599 (not (or $x1659 $x1664 (not $x2591))))) (let (($x2699 (or $x2599 $x2694))) -(let (($x2576 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x2576 (forall ((?v0 B_Vertex$) )(! (let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) -(or $x178 $x1002)))) +(or $x178 $x1002))) :qid k!42)) )) (let (($x2712 (not (or (not $x2576) $x2706 $x2707 $x2708 $x2709 (not $x2699))))) (let (($x2945 (or $x2712 $x2940))) -(let (($x2562 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x2562 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0)))))) (let (($x2129 (= ?x2128 0))) (let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0))) (let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129))))) (let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0))) (let (($x127 (= ?v0 b_Source$))) -(or $x127 $x1002 $x2551))))))))) +(or $x127 $x1002 $x2551)))))))) :qid k!42)) )) -(let (($x2534 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x2534 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) -(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x990 (>= (+ ?x155 ?x174 ?x991) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) (let (($x179 (not $x178))) -(or $x179 $x922 $x990)))))))) +(or $x179 $x922 $x990))))))))) :qid k!42)) )) -(let (($x2512 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x2512 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x991 (* (- 1) ?x182))) +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1015 (>= (+ ?x174 ?x991) 0))) +(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x2492 (not $x180))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1))) -(or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015))))) +(or $x178 $x2492 $x1015)))))))) :qid k!42)) )) -(let (($x2489 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0))) +(let (($x2489 (forall ((?v0 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v0))) (let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0)))))) (let (($x2091 (= ?x2090 0))) (let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0))) (let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091))))) (let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0))) (let (($x127 (= ?v0 b_Source$))) -(or $x127 $x947 $x2478))))))))) +(or $x127 $x947 $x2478)))))))) :qid k!42)) )) (let (($x2958 (or (not $x2489) $x2952 (not $x1051) (not $x2512) (not $x2534) (not $x2562) (not $x2945)))) (let (($x2959 (not $x2958))) -(let (($x2451 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5))) +(let (($x2451 (forall ((?v1 B_Vertex$) )(! (let ((?x1540 (v_b_SP_G_0$ ?v0!5))) (let ((?x1541 (* (- 1) ?x1540))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x137 (not $x136))) -(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0))))))))) +(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :qid k!42)) )) (let (($x2459 (not (or $x1538 $x1543 (not $x2451))))) (let (($x2964 (or $x2459 $x2959))) -(let (($x2436 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x2436 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x155 (b_G$ (pair$ ?v1 ?v0)))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0))) (let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x137 (not $x136))) -(or $x137 $x922 $x933)))))))) +(or $x137 $x922 $x933))))))) :qid k!42)) )) (let (($x2973 (not (or (not $x2436) (not $x2964))))) (let (($x2978 (or $x2414 $x2973))) -(let (($x2391 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) +(let (($x2391 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) (let (($x136 (v_b_Visited_G_0$ ?v1))) -(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907)))) +(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))) :qid k!42)) )) (let (($x2987 (not (or (not $x2391) (not $x2978))))) (let (($x2992 (or $x2368 $x2987))) @@ -1599,9 +1602,11 @@ (let ((@x3724 (quant-intro (refl (= (or $x300 $x922 $x1282) (or $x300 $x922 $x1282))) (= $x2833 $x3720)))) (let ((@x3739 (monotonicity (monotonicity @x3724 (= (not $x2833) $x3725)) @x3736 (= (or (not $x2833) $x1909 $x1914 (not $x2848)) $x3737)))) (let ((@x3748 (monotonicity (monotonicity (monotonicity @x3739 (= $x2857 $x3740)) (= $x2862 $x3743)) (= (not $x2862) $x3746)))) -(let ((@x3716 (quant-intro (refl (= (or $x291 (not $x301) $x1262) (or $x291 (not $x301) $x1262))) (= $x2788 $x3712)))) -(let ((@x3751 (monotonicity (monotonicity @x3716 (= (not $x2788) $x3717)) @x3748 (= (or (not $x2788) (not $x2862)) $x3749)))) -(let ((@x3760 (monotonicity (monotonicity (monotonicity @x3751 (= $x2871 $x3752)) (= $x2876 $x3755)) (= (not $x2876) $x3758)))) +(let (($x2768 (not (fun_app$ v_b_Visited_G_2$ ?1)))) +(let (($x2783 (or $x291 $x2768 $x1262))) +(let ((@x3719 (monotonicity (quant-intro (refl (= $x2783 $x2783)) (= $x2788 $x3712)) (= (not $x2788) $x3717)))) +(let ((@x3754 (monotonicity (monotonicity @x3719 @x3748 (= (or (not $x2788) (not $x2862)) $x3749)) (= $x2871 $x3752)))) +(let ((@x3760 (monotonicity (monotonicity @x3754 (= $x2876 $x3755)) (= (not $x2876) $x3758)))) (let ((@x3707 (quant-intro (refl (= (>= ?x273 0) (>= ?x273 0))) (= $x1256 $x3703)))) (let ((@x3763 (monotonicity (monotonicity @x3707 (= $x1259 $x3708)) @x3760 (= (or $x1259 (not $x2876)) $x3761)))) (let ((@x3772 (monotonicity (monotonicity (monotonicity @x3763 (= $x2884 $x3764)) (= $x2889 $x3767)) (= (not $x2889) $x3770)))) @@ -1669,13 +1674,13 @@ (let ((@x3859 (monotonicity (monotonicity @x3510 (= $x902 $x3511)) @x3856 (= (or $x902 (not $x2992)) $x3857)))) (let ((@x3868 (monotonicity (monotonicity (monotonicity @x3859 (= $x3000 $x3860)) (= $x3005 $x3863)) (= (not $x3005) $x3866)))) (let ((@x3874 (monotonicity (monotonicity @x3868 (= (or $x869 (not $x3005)) $x3869)) (= $x3013 $x3872)))) -(let (($x2251 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20))) +(let (($x2251 (forall ((?v1 B_Vertex$) )(! (let ((?x1911 (v_b_SP_G_2$ ?v0!20))) (let ((?x1912 (* (- 1) ?x1911))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x2245 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 $x2242))) -(not $x2245)))))))) +(not $x2245))))))) :qid k!42)) )) (let (($x1915 (not $x1914))) (let (($x1910 (not $x1909))) @@ -1706,7 +1711,7 @@ (let (($x2212 (or $x1733 $x2209))) (let (($x2215 (not $x2212))) (let (($x2218 (or $x2215 $x1752))) -(let (($x2203 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x2203 (forall ((?v0 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) (let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0)))))) (let (($x2192 (= ?x2191 0))) (let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0))) @@ -1717,30 +1722,30 @@ (let (($x132 (not $x127))) (let (($x1103 (and $x132 $x1100))) (let (($x1106 (not $x1103))) -(or $x1106 $x2197))))))))))))) +(or $x1106 $x2197)))))))))))) :qid k!42)) )) (let (($x2221 (and $x2203 $x2218))) -(let (($x2157 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let (($x2157 (forall ((?v1 B_Vertex$) )(! (let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) (let ((?x1662 (* (- 1) ?x1661))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0))) (let (($x2151 (and (not (>= (+ ?x230 ?x1662) 0)) $x2148))) -(not $x2151))))))) +(not $x2151)))))) :qid k!42)) )) (let (($x1665 (not $x1664))) (let (($x1660 (not $x1659))) (let (($x2163 (and $x1660 $x1665 $x2157))) (let (($x2224 (or $x2163 $x2221))) -(let (($x1641 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1641 (forall ((?v0 B_Vertex$) )(! (let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) (let (($x1003 (not $x1002))) (let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0))) (let (($x179 (not $x178))) (let (($x1077 (and $x179 $x1003))) -(not $x1077))))))) +(not $x1077)))))) :qid k!42)) )) (let (($x2230 (and $x1641 $x212 $x215 $x217 $x220 $x2224))) (let (($x2306 (or $x2230 $x2301))) -(let (($x2140 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x2140 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0)))))) (let (($x2129 (= ?x2128 0))) (let ((?x1613 (?v1!7 ?v0))) @@ -1752,9 +1757,9 @@ (let (($x132 (not $x127))) (let (($x1006 (and $x132 $x1003))) (let (($x1009 (not $x1006))) -(or $x1009 $x2134)))))))))))))) +(or $x1009 $x2134))))))))))))) :qid k!42)) )) -(let (($x2102 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0))) +(let (($x2102 (forall ((?v0 B_Vertex$) )(! (let ((?x128 (v_b_SP_G_0$ ?v0))) (let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0)))))) (let (($x2091 (= ?x2090 0))) (let ((?x1578 (?v1!6 ?v0))) @@ -1764,15 +1769,15 @@ (let (($x132 (not $x127))) (let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) ?x128)) 0))))) (let (($x954 (not $x951))) -(or $x954 $x2096)))))))))))) +(or $x954 $x2096))))))))))) :qid k!42)) )) (let (($x2315 (and $x2102 $x173 $x1051 $x1045 $x997 $x2140 $x2306))) -(let (($x1567 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5))) +(let (($x1567 (forall ((?v1 B_Vertex$) )(! (let ((?x1540 (v_b_SP_G_0$ ?v0!5))) (let ((?x1541 (* (- 1) ?x1540))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x136 (v_b_Visited_G_0$ ?v1))) (let (($x1554 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))) -(not $x1554))))))) +(not $x1554)))))) :qid k!42)) )) (let (($x2062 (and $x1539 $x1544 $x1567))) (let (($x2320 (or $x2062 $x2315))) @@ -1805,16 +1810,14 @@ (let ((@x2802 (trans @x2798 (rewrite (= (not (not (or $x2791 $x1888))) (or $x2791 $x1888))) (= $x1891 (or $x2791 $x1888))))) (let ((@x2810 (trans (monotonicity @x2802 (= $x1897 (or (or $x2791 $x1888) $x1896))) (rewrite (= (or (or $x2791 $x1888) $x1896) $x2806)) (= $x1897 $x2806)))) (let ((@x2864 (monotonicity (monotonicity @x2810 (= $x1898 $x2811)) @x2861 (= $x2265 $x2862)))) -(let ((@x2785 (rewrite (= (or (or $x291 (not $x301)) $x1262) (or $x291 (not $x301) $x1262))))) -(let ((@x2777 (rewrite (= (not (not (or $x291 (not $x301)))) (or $x291 (not $x301)))))) -(let ((@x2775 (monotonicity (rewrite (= $x302 (not (or $x291 (not $x301))))) (= $x664 (not (not (or $x291 (not $x301)))))))) -(let ((@x2782 (monotonicity (trans @x2775 @x2777 (= $x664 (or $x291 (not $x301)))) (= $x1267 (or (or $x291 (not $x301)) $x1262))))) -(let ((@x2790 (quant-intro (trans @x2782 @x2785 (= $x1267 (or $x291 (not $x301) $x1262))) (= $x1270 $x2788)))) -(let ((@x2875 (trans (monotonicity @x2790 @x2864 (= $x2268 (and $x2788 $x2862))) (rewrite (= (and $x2788 $x2862) $x2871)) (= $x2268 $x2871)))) +(let ((@x2775 (monotonicity (rewrite (= $x302 (not (or $x291 $x2768)))) (= $x664 (not (not (or $x291 $x2768))))))) +(let ((@x2779 (trans @x2775 (rewrite (= (not (not (or $x291 $x2768))) (or $x291 $x2768))) (= $x664 (or $x291 $x2768))))) +(let ((@x2787 (trans (monotonicity @x2779 (= $x1267 (or (or $x291 $x2768) $x1262))) (rewrite (= (or (or $x291 $x2768) $x1262) $x2783)) (= $x1267 $x2783)))) +(let ((@x2867 (monotonicity (quant-intro @x2787 (= $x1270 $x2788)) @x2864 (= $x2268 (and $x2788 $x2862))))) (let ((@x2752 (monotonicity (rewrite (= (and (not $x1860) $x1862) (not (or $x1860 $x2745)))) (= $x1864 (not (not (or $x1860 $x2745))))))) (let ((@x2756 (trans @x2752 (rewrite (= (not (not (or $x1860 $x2745))) (or $x1860 $x2745))) (= $x1864 (or $x1860 $x2745))))) (let ((@x2764 (trans (monotonicity @x2756 (= $x1870 (or (or $x1860 $x2745) $x1869))) (rewrite (= (or (or $x1860 $x2745) $x1869) $x2760)) (= $x1870 $x2760)))) -(let ((@x2878 (monotonicity (monotonicity @x2764 (= $x1871 $x2765)) @x2875 (= $x2271 $x2876)))) +(let ((@x2878 (monotonicity (monotonicity @x2764 (= $x1871 $x2765)) (trans @x2867 (rewrite (= (and $x2788 $x2862) $x2871)) (= $x2268 $x2871)) (= $x2271 $x2876)))) (let ((@x2888 (trans (monotonicity @x2878 (= $x2274 (and $x1256 $x2876))) (rewrite (= (and $x1256 $x2876) $x2884)) (= $x2274 $x2884)))) (let ((@x2894 (monotonicity (monotonicity @x2888 (= $x2277 $x2889)) (= $x2280 (and $x297 $x2889))))) (let ((@x2904 (monotonicity (trans @x2894 (rewrite (= (and $x297 $x2889) $x2897)) (= $x2280 $x2897)) (= $x2283 $x2902)))) @@ -1901,12 +1904,12 @@ (let ((@x3004 (trans (monotonicity @x2994 (= $x2335 (and $x899 $x2992))) (rewrite (= (and $x899 $x2992) $x3000)) (= $x2335 $x3000)))) (let ((@x3010 (monotonicity (monotonicity @x3004 (= $x2338 $x3005)) (= $x2341 (and $x145 $x3005))))) (let ((@x3020 (monotonicity (trans @x3010 (rewrite (= (and $x145 $x3005) $x3013)) (= $x2341 $x3013)) (= $x2344 $x3018)))) -(let (($x1938 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20))) +(let (($x1938 (forall ((?v1 B_Vertex$) )(! (let ((?x1911 (v_b_SP_G_2$ ?v0!20))) (let ((?x1912 (* (- 1) ?x1911))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) (let (($x1925 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0)))) -(not $x1925))))))) +(not $x1925)))))) :qid k!42)) )) (let (($x1932 (not (not (and $x1910 $x1915))))) (let (($x1942 (and $x1932 $x1938))) @@ -1927,7 +1930,7 @@ (let (($x1995 (and $x1801 $x1991))) (let (($x1739 (not (or $x1733 (>= (+ ?x1727 ?x1721 ?x1735) 0))))) (let (($x1756 (or $x1739 $x1752))) -(let (($x1713 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x1713 (forall ((?v0 B_Vertex$) )(! (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0))) (let ((?x1097 (* (- 1) ?x230))) (let ((?x1699 (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) (let ((?x1704 (b_G$ (pair$ (?v1!9 ?v0) ?v0)))) @@ -1939,14 +1942,14 @@ (let (($x132 (not $x127))) (let (($x1103 (and $x132 $x1100))) (let (($x1106 (not $x1103))) -(or $x1106 $x1707)))))))))))))) +(or $x1106 $x1707))))))))))))) :qid k!42)) )) (let (($x1760 (and $x1713 $x1756))) -(let (($x1687 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let (($x1687 (forall ((?v1 B_Vertex$) )(! (let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) (let ((?x1662 (* (- 1) ?x1661))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) (let (($x1675 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0)))) -(not $x1675)))))) +(not $x1675))))) :qid k!42)) )) (let (($x1681 (not (not (and $x1660 $x1665))))) (let (($x1691 (and $x1681 $x1687))) @@ -1954,7 +1957,7 @@ (let (($x1652 (and $x1641 $x212 $x215 $x217 $x220))) (let (($x1768 (and $x1652 $x1764))) (let (($x1999 (or $x1768 $x1995))) -(let (($x1629 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x1629 (forall ((?v0 B_Vertex$) )(! (let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0))) (let ((?x1000 (* (- 1) ?x174))) (let ((?x1613 (?v1!7 ?v0))) (let ((?x1614 (fun_app$c v_b_SP_G_1$ ?x1613))) @@ -1968,9 +1971,9 @@ (let (($x132 (not $x127))) (let (($x1006 (and $x132 $x1003))) (let (($x1009 (not $x1006))) -(or $x1009 $x1623)))))))))))))))) +(or $x1009 $x1623))))))))))))))) :qid k!42)) )) -(let (($x1594 (forall ((?v0 B_Vertex$) )(let ((?x1585 (b_G$ (pair$ (?v1!6 ?v0) ?v0)))) +(let (($x1594 (forall ((?v0 B_Vertex$) )(! (let ((?x1585 (b_G$ (pair$ (?v1!6 ?v0) ?v0)))) (let ((?x128 (v_b_SP_G_0$ ?v0))) (let ((?x945 (* (- 1) ?x128))) (let ((?x1578 (?v1!6 ?v0))) @@ -1982,7 +1985,7 @@ (let (($x132 (not $x127))) (let (($x951 (and $x132 (not (<= (+ b_Infinity$ ?x945) 0))))) (let (($x954 (not $x951))) -(or $x954 $x1588)))))))))))))) +(or $x954 $x1588))))))))))))) :qid k!42)) )) (let (($x1632 (and $x1594 $x173 $x1051 $x1045 $x997 $x1629))) (let (($x2003 (and $x1632 $x1999))) @@ -2069,11 +2072,11 @@ (let ((@x2328 (monotonicity (monotonicity @x2053 (= $x1527 $x2054)) @x2325 (= $x2015 $x2326)))) (let ((@x2337 (monotonicity (monotonicity (monotonicity @x2328 (= $x2019 $x2329)) (= $x2023 $x2332)) (= $x2027 $x2335)))) (let ((@x2343 (monotonicity (rewrite (= $x1471 $x145)) (monotonicity @x2337 (= $x2031 $x2338)) (= $x2035 $x2341)))) -(let (($x1926 (exists ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20))) +(let (($x1926 (exists ((?v1 B_Vertex$) )(! (let ((?x1911 (v_b_SP_G_2$ ?v0!20))) (let ((?x1912 (* (- 1) ?x1911))) (let ((?x273 (v_b_SP_G_2$ ?v1))) (let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1))) -(and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0))))))) +(and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0)))))) :qid k!42)) )) (let ((@x1944 (nnf-neg (refl (~ $x1932 $x1932)) (nnf-neg (refl (~ $x1935 $x1935)) (~ (not $x1926) $x1938)) (~ (not (or (not (and $x1910 $x1915)) $x1926)) $x1942)))) (let ((@x1946 (trans (sk (~ (not $x1329) (not (or (not (and $x1910 $x1915)) $x1926)))) @x1944 (~ (not $x1329) $x1942)))) @@ -2094,10 +2097,10 @@ (let ((@x1759 (nnf-neg (sk (~ $x1149 $x1739)) (nnf-neg @x1748 (refl (~ $x1749 $x1749)) (~ (not $x1152) $x1752)) (~ (not $x1155) $x1756)))) (let ((@x1715 (nnf-pos (monotonicity (refl (~ $x1106 $x1106)) (sk (~ $x1122 $x1707)) (~ $x1125 $x1710)) (~ $x1128 $x1713)))) (let ((@x1763 (nnf-neg (nnf-neg @x1715 (~ (not $x1131) $x1713)) @x1759 (~ (not $x1158) $x1760)))) -(let (($x1676 (exists ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let (($x1676 (exists ((?v1 B_Vertex$) )(! (let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8))) (let ((?x1662 (* (- 1) ?x1661))) (let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1))) -(and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0)))))) +(and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0))))) :qid k!42)) )) (let ((@x1693 (nnf-neg (refl (~ $x1681 $x1681)) (nnf-neg (refl (~ $x1684 $x1684)) (~ (not $x1676) $x1687)) (~ (not (or (not (and $x1660 $x1665)) $x1676)) $x1691)))) (let ((@x1695 (trans (sk (~ $x1131 (not (or (not (and $x1660 $x1665)) $x1676)))) @x1693 (~ $x1131 $x1691)))) @@ -2107,11 +2110,11 @@ (let ((@x1596 (nnf-pos (monotonicity (refl (~ $x954 $x954)) (sk (~ $x974 $x1588)) (~ $x977 $x1591)) (~ $x980 $x1594)))) (let ((@x1634 (monotonicity @x1596 (refl (~ $x173 $x173)) (nnf-pos (refl (~ (>= ?x174 0) (>= ?x174 0))) (~ $x1051 $x1051)) (nnf-pos (refl (~ $x1042 $x1042)) (~ $x1045 $x1045)) (nnf-pos (refl (~ $x994 $x994)) (~ $x997 $x997)) @x1631 (~ $x1069 $x1632)))) (let ((@x2006 (nnf-neg (nnf-neg @x1634 (~ (not $x1074) $x1632)) (nnf-neg @x1771 @x1998 (~ (not $x1371) $x1999)) (~ (not $x1374) $x2003)))) -(let (($x1555 (exists ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5))) +(let (($x1555 (exists ((?v1 B_Vertex$) )(! (let ((?x1540 (v_b_SP_G_0$ ?v0!5))) (let ((?x1541 (* (- 1) ?x1540))) (let ((?x128 (v_b_SP_G_0$ ?v1))) (let (($x136 (v_b_Visited_G_0$ ?v1))) -(and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0))))))) +(and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))) :qid k!42)) )) (let ((@x1573 (nnf-neg (refl (~ $x1561 $x1561)) (nnf-neg (refl (~ $x1564 $x1564)) (~ (not $x1555) $x1567)) (~ (not (or (not (and $x1539 $x1544)) $x1555)) $x1571)))) (let ((@x1575 (trans (sk (~ (not $x980) (not (or (not (and $x1539 $x1544)) $x1555)))) @x1573 (~ (not $x980) $x1571)))) @@ -2292,21 +2295,21 @@ (let (($x5538 (not $x6156))) (let ((@x7337 (symm (commutativity (= $x6156 (= ?v0!15 v_b_v_G_1$))) (= (= ?v0!15 v_b_v_G_1$) $x6156)))) (let (($x6631 (= ?v0!15 v_b_v_G_1$))) -(let (($x7483 (not $x6631))) +(let (($x7452 (not $x6631))) (let (($x6269 (fun_app$ v_b_Visited_G_1$ ?v0!15))) (let (($x7698 (or $x6631 $x6269))) (let (($x6630 (fun_app$ ?x265 ?v0!15))) (let (($x7702 (= $x6630 $x7698))) -(let (($x3468 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(!(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) -(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) ))) +(let (($x3468 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(! (let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) +(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) ) :qid k!38)) )) -(let (($x77 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) -(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3))))) +(let (($x77 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(! (let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) +(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :qid k!38)) )) (let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0))) (let (($x74 (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))))) -(let (($x72 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) -(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3))))) +(let (($x72 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(! (let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) +(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :qid k!38)) )) (let ((@x76 (rewrite (= (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))) $x74)))) (let ((@x1443 (mp~ (mp (asserted $x72) (quant-intro @x76 (= $x72 $x77)) $x77) (nnf-pos (refl (~ $x74 $x74)) (~ $x77 $x77)) $x77))) @@ -2315,8 +2318,8 @@ (let (($x6435 (or $x4114 $x7702))) (let ((@x5925 (monotonicity (rewrite (= (ite $x6631 true $x6269) $x7698)) (= (= $x6630 (ite $x6631 true $x6269)) $x7702)))) (let ((@x6213 (monotonicity @x5925 (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435)))) -(let ((@x7487 (trans @x6213 (rewrite (= $x6435 $x6435)) (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435)))) -(let ((@x7488 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!15) (or $x4114 (= $x6630 (ite $x6631 true $x6269)))) @x7487 $x6435))) +(let ((@x7485 (trans @x6213 (rewrite (= $x6435 $x6435)) (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435)))) +(let ((@x7486 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!15) (or $x4114 (= $x6630 (ite $x6631 true $x6269)))) @x7485 $x6435))) (let ((@x5875 (symm (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (= ?x265 v_b_Visited_G_2$)))) (let ((@x7321 (symm (monotonicity @x5875 (= $x6630 (fun_app$ v_b_Visited_G_2$ ?v0!15))) (= (fun_app$ v_b_Visited_G_2$ ?v0!15) $x6630)))) (let ((@x7322 (monotonicity @x7321 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!15)) (not $x6630))))) @@ -2403,24 +2406,24 @@ (let (($x5751 (<= ?x6491 0))) (let ((@x6302 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5826 $x5751)) (hypothesis (not $x5826)) $x5751))) (let (($x5738 (or $x5742 (not $x5751)))) -(let (($x3480 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x84 (= ?v0 ?v1))) -(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) ))) +(let (($x3480 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x84 (= ?v0 ?v1))) +(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) ) :qid k!41)) )) -(let (($x120 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1))) -(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0))))) +(let (($x120 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x84 (= ?v0 ?v1))) +(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :qid k!41)) )) (let (($x84 (= ?1 ?0))) (let (($x117 (or $x84 (not (<= (b_G$ (pair$ ?1 ?0)) 0))))) -(let (($x105 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1))) +(let (($x105 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x29 (pair$ ?v0 ?v1))) (let ((?x85 (b_G$ ?x29))) (let (($x102 (< 0 ?x85))) -(=> (not (= ?v0 ?v1)) $x102))))) +(=> (not (= ?v0 ?v1)) $x102)))) :qid k!41)) )) -(let (($x110 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1))) +(let (($x110 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x29 (pair$ ?v0 ?v1))) (let ((?x85 (b_G$ ?x29))) (let (($x102 (< 0 ?x85))) (let (($x84 (= ?v0 ?v1))) -(or $x84 $x102)))))) +(or $x84 $x102))))) :qid k!41)) )) (let ((?x29 (pair$ ?1 ?0))) (let ((?x85 (b_G$ ?x29))) @@ -2432,14 +2435,14 @@ (let ((@x5780 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3480) $x5738)) (rewrite (= (or (not $x3480) $x5738) (or (not $x3480) $x5742 (not $x5751)))) (or (not $x3480) $x5742 (not $x5751))))) (let (($x5739 (= ?x6491 0))) (let (($x5781 (or (not $x5742) $x5739))) -(let (($x3474 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :pattern ( (pair$ ?v0 ?v1) ))) +(let (($x3474 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :pattern ( (pair$ ?v0 ?v1) ) :qid k!40)) )) -(let (($x99 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0))) +(let (($x99 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :qid k!40)) )) (let ((@x3476 (refl (= (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0)))))) (let ((@x1447 (refl (~ (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0)))))) -(let (($x93 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1))) -(=> $x84 (= (b_G$ (pair$ ?v0 ?v1)) 0)))) +(let (($x93 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x84 (= ?v0 ?v1))) +(=> $x84 (= (b_G$ (pair$ ?v0 ?v1)) 0))) :qid k!40)) )) (let ((@x98 (rewrite (= (=> $x84 (= ?x85 0)) (or (not $x84) (= ?x85 0)))))) (let ((@x1448 (mp~ (mp (asserted $x93) (quant-intro @x98 (= $x93 $x99)) $x99) (nnf-pos @x1447 (~ $x99 $x99)) $x99))) @@ -2487,12 +2490,12 @@ (let ((@x6268 (monotonicity (unit-resolution (def-axiom (or (not $x4963) $x6050 $x5678)) @x5057 @x5037 $x6050) (= ?x1826 ?x3104)))) (let ((@x6107 (trans @x6268 (unit-resolution @x4259 @x5944 (unit-resolution @x4316 @x6019 $x4242) $x3052) (= ?x1826 ?x257)))) (let ((@x6162 (unit-resolution @x5065 (trans @x6107 (symm @x6293 (= ?x257 ?x1827)) $x1828) false))) -(let ((@x7615 (unit-resolution (def-axiom (or $x3794 $x1830 $x3788)) (lemma @x6162 $x1829) (unit-resolution (def-axiom (or $x3797 $x3791)) @x6891 $x3791) $x3788))) -(let ((@x7616 (unit-resolution (def-axiom (or $x3785 $x3695)) @x7615 $x3695))) -(let ((@x7443 (mp ((_ quant-inst ?v0!15) (or $x3700 (or $x4479 $x4481))) (rewrite (= (or $x3700 (or $x4479 $x4481)) (or $x3700 $x4479 $x4481))) (or $x3700 $x4479 $x4481)))) -(let ((@x7323 (mp (unit-resolution @x7443 @x7616 (unit-resolution @x6242 @x6183 (not $x4481)) $x4479) @x7322 (not $x6630)))) -(let ((@x7334 (unit-resolution (def-axiom (or (not $x7702) $x6630 (not $x7698))) @x7323 (unit-resolution @x7488 @x3473 $x7702) (not $x7698)))) -(let ((@x7344 (mp (unit-resolution (def-axiom (or $x7698 $x7483)) @x7334 $x7483) (monotonicity @x7337 (= $x7483 $x5538)) $x5538))) +(let ((@x7617 (unit-resolution (def-axiom (or $x3794 $x1830 $x3788)) (lemma @x6162 $x1829) (unit-resolution (def-axiom (or $x3797 $x3791)) @x6891 $x3791) $x3788))) +(let ((@x7618 (unit-resolution (def-axiom (or $x3785 $x3695)) @x7617 $x3695))) +(let ((@x7447 (mp ((_ quant-inst ?v0!15) (or $x3700 (or $x4479 $x4481))) (rewrite (= (or $x3700 (or $x4479 $x4481)) (or $x3700 $x4479 $x4481))) (or $x3700 $x4479 $x4481)))) +(let ((@x7323 (mp (unit-resolution @x7447 @x7618 (unit-resolution @x6242 @x6183 (not $x4481)) $x4479) @x7322 (not $x6630)))) +(let ((@x7334 (unit-resolution (def-axiom (or (not $x7702) $x6630 (not $x7698))) @x7323 (unit-resolution @x7486 @x3473 $x7702) (not $x7698)))) +(let ((@x7344 (mp (unit-resolution (def-axiom (or $x7698 $x7452)) @x7334 $x7452) (monotonicity @x7337 (= $x7452 $x5538)) $x5538))) (let (($x5470 (or $x6156 $x6583))) (let ((@x6577 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or (not $x3480) $x5470)) (rewrite (= (or (not $x3480) $x5470) (or (not $x3480) $x6156 $x6583))) (or (not $x3480) $x6156 $x6583)))) (let ((@x7345 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x6603 $x6582)) (unit-resolution (unit-resolution @x6577 @x3485 $x5470) @x7344 $x6583) $x6603))) @@ -2568,21 +2571,21 @@ (let ((@x5952 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or (not $x3480) (or $x3887 (not $x5310)))) (rewrite $x5886) (or (not $x3480) $x3887 (not $x5310))))) (let ((@x5597 (unit-resolution @x5952 @x3485 @x5596 (unit-resolution (lemma @x5283 (or $x5313 $x3683 $x297)) @x5202 @x4739 $x5313) false))) (let ((@x6788 (unit-resolution (lemma @x5597 (or $x297 (not $x4153) $x3675 $x3683)) @x6900 @x6588 @x5944 $x297))) -(let ((@x7810 (unit-resolution (def-axiom (or $x3782 $x773 $x3776)) (unit-resolution (def-axiom (or $x3785 $x3779)) @x7615 $x3779) @x6788 $x3776))) +(let ((@x7810 (unit-resolution (def-axiom (or $x3782 $x773 $x3776)) (unit-resolution (def-axiom (or $x3785 $x3779)) @x7617 $x3779) @x6788 $x3776))) (let ((@x3347 (def-axiom (or $x3770 $x1848 $x3764)))) -(let ((@x9293 (unit-resolution @x3347 (unit-resolution (def-axiom (or $x3773 $x3767)) @x7810 $x3767) $x3767))) -(let ((@x9294 (unit-resolution @x9293 (lemma ((_ th-lemma arith farkas 1 1 -1 1) @x5703 @x7345 @x6959 @x5049 false) $x1847) $x3764))) +(let ((@x9303 (unit-resolution @x3347 (unit-resolution (def-axiom (or $x3773 $x3767)) @x7810 $x3767) $x3767))) +(let ((@x9304 (unit-resolution @x9303 (lemma ((_ th-lemma arith farkas 1 1 -1 1) @x5703 @x7345 @x6959 @x5049 false) $x1847) $x3764))) (let ((@x3367 (def-axiom (or $x3761 $x3703)))) (let (($x4335 (or $x3708 $x4161))) (let ((@x4337 ((_ quant-inst v_b_v_G_1$) $x4335))) (let (($x4126 (fun_app$ v_b_Visited_G_2$ v_b_v_G_1$))) (let (($x3136 (fun_app$ ?x265 v_b_v_G_1$))) -(let (($x3461 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(!(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :pattern ( (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ))) +(let (($x3461 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(! (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :pattern ( (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ) :qid k!37)) )) -(let (($x57 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2)) +(let (($x57 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(! (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :qid k!37)) )) (let (($x54 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0))) -(let (($x52 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2)) +(let (($x52 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(! (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :qid k!37)) )) (let (($x51 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0))) (let ((@x62 (mp (asserted $x52) (quant-intro (rewrite (= $x51 $x54)) (= $x52 $x57)) $x57))) @@ -2591,7 +2594,7 @@ (let ((@x6106 (monotonicity (rewrite (= (= $x3136 true) $x3136)) (= (or (not $x3461) (= $x3136 true)) $x6140)))) (let ((@x5837 (trans @x6106 (rewrite (= $x6140 $x6140)) (= (or (not $x3461) (= $x3136 true)) $x6140)))) (let ((@x5928 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true) (or (not $x3461) (= $x3136 true))) @x5837 $x6140))) -(let ((@x7482 (mp (unit-resolution @x5928 @x3466 $x3136) (monotonicity @x5875 (= $x3136 $x4126)) $x4126))) +(let ((@x7413 (mp (unit-resolution @x5928 @x3466 $x3136) (monotonicity @x5875 (= $x3136 $x4126)) $x4126))) (let (($x4570 (>= ?x4546 0))) (let ((@x5420 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x4570 $x4569)) (hypothesis (not $x4569)) $x4570))) (let (($x4438 (<= (+ b_Infinity$ ?x4436) 0))) @@ -2607,31 +2610,31 @@ (let ((@x5361 (trans @x5357 (rewrite (= (or $x3725 (or $x4127 $x4438 $x4569)) $x5352)) (= $x5353 $x5352)))) (let ((@x5424 (unit-resolution (mp ((_ quant-inst ?v0!20 v_b_v_G_1$) $x5353) @x5361 $x5352) (hypothesis $x3720) (hypothesis $x4126) (hypothesis (not $x4569)) $x4438))) (let ((@x5428 (lemma ((_ th-lemma arith farkas 1 1 1 1) @x5424 (hypothesis $x4161) @x5420 (hypothesis $x1915) false) (or $x4569 (not $x4161) $x1914 $x3725 $x4127)))) -(let ((@x7692 (unit-resolution (unit-resolution @x5428 @x7482 (or $x4569 (not $x4161) $x1914 $x3725)) (unit-resolution @x4337 (unit-resolution @x3367 @x9294 $x3703) $x4161) (or $x4569 $x1914 $x3725)))) -(let ((@x7751 (unit-resolution @x7692 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) (unit-resolution @x3222 @x8092 $x3720) $x4569))) +(let ((@x7705 (unit-resolution (unit-resolution @x5428 @x7413 (or $x4569 (not $x4161) $x1914 $x3725)) (unit-resolution @x4337 (unit-resolution @x3367 @x9304 $x3703) $x4161) (or $x4569 $x1914 $x3725)))) +(let ((@x4467 (unit-resolution @x7705 (unit-resolution (def-axiom (or $x3737 $x1915)) @x4391 $x1915) (unit-resolution @x3222 @x4391 $x3720) $x4569))) (let (($x5386 (= v_b_v_G_1$ ?v0!20))) (let (($x5390 (not $x5386))) -(let ((@x9325 (symm (commutativity (= $x5386 (= ?v0!20 v_b_v_G_1$))) (= (= ?v0!20 v_b_v_G_1$) $x5386)))) +(let ((@x9335 (symm (commutativity (= $x5386 (= ?v0!20 v_b_v_G_1$))) (= (= ?v0!20 v_b_v_G_1$) $x5386)))) (let (($x5240 (= ?v0!20 v_b_v_G_1$))) -(let (($x9145 (not $x5240))) +(let (($x9098 (not $x5240))) (let (($x4609 (fun_app$ v_b_Visited_G_1$ ?v0!20))) -(let (($x9130 (or $x5240 $x4609))) +(let (($x9110 (or $x5240 $x4609))) (let (($x5237 (fun_app$ ?x265 ?v0!20))) -(let (($x9133 (= $x5237 $x9130))) -(let (($x9136 (or $x4114 $x9133))) -(let ((@x9135 (monotonicity (rewrite (= (ite $x5240 true $x4609) $x9130)) (= (= $x5237 (ite $x5240 true $x4609)) $x9133)))) -(let ((@x9140 (monotonicity @x9135 (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136)))) -(let ((@x9143 (trans @x9140 (rewrite (= $x9136 $x9136)) (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136)))) -(let ((@x9144 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) (or $x4114 (= $x5237 (ite $x5240 true $x4609)))) @x9143 $x9136))) -(let ((@x9316 (symm (monotonicity @x5875 (= $x5237 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x5237)))) -(let ((@x9318 (monotonicity @x9316 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) (not $x5237))))) +(let (($x9115 (= $x5237 $x9110))) +(let (($x9118 (or $x4114 $x9115))) +(let ((@x9117 (monotonicity (rewrite (= (ite $x5240 true $x4609) $x9110)) (= (= $x5237 (ite $x5240 true $x4609)) $x9115)))) +(let ((@x9122 (monotonicity @x9117 (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9118)))) +(let ((@x9099 (trans @x9122 (rewrite (= $x9118 $x9118)) (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9118)))) +(let ((@x9100 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) (or $x4114 (= $x5237 (ite $x5240 true $x4609)))) @x9099 $x9118))) +(let ((@x9326 (symm (monotonicity @x5875 (= $x5237 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x5237)))) +(let ((@x9328 (monotonicity @x9326 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) (not $x5237))))) (let (($x4278 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (let (($x4279 (not $x4278))) (let (($x4403 (or $x4279 $x4400))) -(let ((@x8012 (mp ((_ quant-inst ?v0!20) (or $x3700 $x4403)) (rewrite (= (or $x3700 $x4403) (or $x3700 $x4279 $x4400))) (or $x3700 $x4279 $x4400)))) -(let ((@x9292 (unit-resolution (unit-resolution @x8012 @x7616 $x4403) (hypothesis (not $x4400)) $x4279))) -(let ((@x9320 (unit-resolution (def-axiom (or (not $x9133) $x5237 (not $x9130))) (mp @x9292 @x9318 (not $x5237)) (unit-resolution @x9144 @x3473 $x9133) (not $x9130)))) -(let ((@x9328 (mp (unit-resolution (def-axiom (or $x9130 $x9145)) @x9320 $x9145) (monotonicity @x9325 (= $x9145 $x5390)) $x5390))) +(let ((@x7926 (mp ((_ quant-inst ?v0!20) (or $x3700 $x4403)) (rewrite (= (or $x3700 $x4403) (or $x3700 $x4279 $x4400))) (or $x3700 $x4279 $x4400)))) +(let ((@x9302 (unit-resolution (unit-resolution @x7926 @x7618 $x4403) (hypothesis (not $x4400)) $x4279))) +(let ((@x9330 (unit-resolution (def-axiom (or (not $x9115) $x5237 (not $x9110))) (mp @x9302 @x9328 (not $x5237)) (unit-resolution @x9100 @x3473 $x9115) (not $x9110)))) +(let ((@x9338 (mp (unit-resolution (def-axiom (or $x9110 $x9098)) @x9330 $x9098) (monotonicity @x9335 (= $x9098 $x5390)) $x5390))) (let (($x5387 (<= ?x4435 0))) (let (($x5391 (= ?x4435 0))) (let ((?x3106 (+ ?x257 ?x3096 ?x3105))) @@ -2671,9 +2674,9 @@ (let ((@x6830 (monotonicity @x6730 (= (not (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0))) $x6684)))) (let ((@x6829 (monotonicity (monotonicity @x6830 (= $x4443 $x6831)) (= $x6790 (or $x3683 $x6831))))) (let ((@x6824 (mp ((_ quant-inst ?v0!20) $x6790) (trans @x6829 (rewrite (= (or $x3683 $x6831) $x6789)) (= $x6790 $x6789)) $x6789))) -(let ((@x9281 (unit-resolution (unit-resolution @x6824 @x5944 $x6831) (hypothesis (not $x4400)) $x6684))) -(let ((@x7436 (unit-resolution (def-axiom (or $x6723 (not $x4438))) (hypothesis $x6684) (not $x4438)))) -(let ((@x7494 (unit-resolution (def-axiom (or $x6723 (not $x6827))) (hypothesis $x6684) (not $x6827)))) +(let ((@x9291 (unit-resolution (unit-resolution @x6824 @x5944 $x6831) (hypothesis (not $x4400)) $x6684))) +(let ((@x7434 (unit-resolution (def-axiom (or $x6723 (not $x4438))) (hypothesis $x6684) (not $x4438)))) +(let ((@x7480 (unit-resolution (def-axiom (or $x6723 (not $x6827))) (hypothesis $x6684) (not $x6827)))) (let (($x6621 (or $x4438 $x6827 $x5673))) (let (($x6987 (or $x3675 $x4438 $x6827 $x5673))) (let (($x4440 (<= (+ ?x4393 ?x1173 ?x4436) 0))) @@ -2682,11 +2685,11 @@ (let ((@x5324 (monotonicity (rewrite (= (+ ?x257 ?x4435 ?x1912) ?x4487)) (= (= (+ ?x257 ?x4435 ?x1912) 0) $x5673)))) (let ((@x6996 (monotonicity (monotonicity @x6725 @x5324 (= $x4486 $x6621)) (= $x6624 (or $x3675 $x6621))))) (let ((@x7057 (mp ((_ quant-inst ?v0!20) $x6624) (trans @x6996 (rewrite (= (or $x3675 $x6621) $x6987)) (= $x6624 $x6987)) $x6987))) -(let ((@x7649 (unit-resolution (unit-resolution @x7057 @x6588 $x6621) @x7494 @x7436 (hypothesis (not $x5673)) false))) +(let ((@x7649 (unit-resolution (unit-resolution @x7057 @x6588 $x6621) @x7480 @x7434 (hypothesis (not $x5673)) false))) (let ((@x7699 (lemma @x7649 (or $x6723 $x5673)))) -(let ((@x9285 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5673) $x4507)) (unit-resolution @x7699 @x9281 $x5673) $x4507))) -(let ((@x9287 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x4507) $x4570 (not $x3886))) @x6925 (or (not $x4507) $x4570)))) -(let ((@x7251 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7135 (not $x4569) (not $x4570))) (hypothesis $x4569) (or $x7135 (not $x4570))))) +(let ((@x9295 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5673) $x4507)) (unit-resolution @x7699 @x9291 $x5673) $x4507))) +(let ((@x9297 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x4507) $x4570 (not $x3886))) @x6925 (or (not $x4507) $x4570)))) +(let ((@x7017 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7135 (not $x4569) (not $x4570))) (hypothesis $x4569) (or $x7135 (not $x4570))))) (let (($x7151 (not $x7135))) (let (($x7157 (or $x3734 $x7049 $x4127 $x7151))) (let (($x4516 (>= (+ ?x3104 ?x1912) 0))) @@ -2698,21 +2701,64 @@ (let ((@x7144 (trans @x7063 (rewrite (= (>= (+ ?x1912 ?x3104) 0) $x7049)) (= $x4516 $x7049)))) (let ((@x7156 (monotonicity @x7144 (monotonicity @x7149 (= (not (= (+ ?x3104 ?x1912 ?x4435) 0)) $x7151)) (= $x4528 (or $x7049 $x4127 $x7151))))) (let ((@x7313 (trans (monotonicity @x7156 (= $x7317 (or $x3734 (or $x7049 $x4127 $x7151)))) (rewrite (= (or $x3734 (or $x7049 $x4127 $x7151)) $x7157)) (= $x7317 $x7157)))) -(let ((@x7502 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x7317) @x7313 $x7157) (hypothesis $x3729) @x7482 (or $x7049 $x7151)))) -(let ((@x9290 (unit-resolution @x7502 (unit-resolution @x7251 (unit-resolution @x9287 @x9285 $x4570) $x7135) $x7049))) +(let ((@x7506 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x7317) @x7313 $x7157) (hypothesis $x3729) @x7413 (or $x7049 $x7151)))) +(let ((@x9300 (unit-resolution @x7506 (unit-resolution @x7017 (unit-resolution @x9297 @x9295 $x4570) $x7135) $x7049))) (let (($x4382 (>= ?x4381 0))) -(let (($x6813 (= ?v1!16 v_b_v_G_1$))) -(let (($x7202 (= v_b_v_G_1$ ?v1!16))) (let ((?x6481 (pair$ v_b_v_G_1$ ?v1!16))) (let ((?x6374 (b_G$ ?x6481))) (let (($x7203 (<= ?x6374 0))) +(let (($x7206 (not $x7203))) +(let (($x7202 (= v_b_v_G_1$ ?v1!16))) +(let (($x7265 (not $x7202))) +(let (($x6813 (= ?v1!16 v_b_v_G_1$))) +(let (($x6712 (not $x6813))) +(let (($x6814 (fun_app$ v_b_Visited_G_1$ ?v1!16))) +(let (($x8313 (or $x6813 $x6814))) +(let (($x6812 (fun_app$ ?x265 ?v1!16))) +(let (($x4356 (= $x6812 $x8313))) +(let (($x6492 (or $x4114 $x4356))) +(let ((@x6175 (monotonicity (rewrite (= (ite $x6813 true $x6814) $x8313)) (= (= $x6812 (ite $x6813 true $x6814)) $x4356)))) +(let ((@x7654 (monotonicity @x6175 (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6492)))) +(let ((@x7598 (trans @x7654 (rewrite (= $x6492 $x6492)) (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6492)))) +(let ((@x7600 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x4114 (= $x6812 (ite $x6813 true $x6814)))) @x7598 $x6492))) +(let ((@x8661 (monotonicity (symm (monotonicity @x5875 (= $x6812 $x1860)) (= $x1860 $x6812)) (= (not $x1860) (not $x6812))))) +(let (($x1861 (not $x1860))) +(let ((@x8145 (hypothesis $x2765))) +(let ((@x8181 (mp (unit-resolution (def-axiom (or $x2760 $x1861)) @x8145 $x1861) @x8661 (not $x6812)))) +(let ((@x8616 (unit-resolution (def-axiom (or (not $x4356) $x6812 (not $x8313))) @x8181 (unit-resolution @x7600 @x3473 $x4356) (not $x8313)))) +(let ((@x8179 (unit-resolution (hypothesis $x6712) (symm (hypothesis $x7202) $x6813) false))) +(let ((@x8586 (unit-resolution (lemma @x8179 (or $x7265 $x6813)) (unit-resolution (def-axiom (or $x8313 $x6712)) @x8616 $x6712) $x7265))) +(let ((@x7214 (rewrite (= (or (not $x3480) (or $x7202 $x7206)) (or (not $x3480) $x7202 $x7206))))) +(let ((@x7215 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3480) (or $x7202 $x7206))) @x7214 (or (not $x3480) $x7202 $x7206)))) +(let ((@x8872 (lemma (unit-resolution @x7215 @x3485 (hypothesis $x7203) (hypothesis $x7265) false) (or $x7206 $x7202)))) +(let ((?x1865 (v_b_SP_G_2$ ?v1!16))) +(let ((?x6126 (* (- 1) ?x1865))) +(let ((?x6400 (+ ?x257 ?x6126 ?x6374))) +(let (($x6319 (<= ?x6400 0))) +(let (($x7408 (= ?x6400 0))) +(let (($x6238 (<= (+ b_Infinity$ (* (- 1) ?x6374)) 0))) +(let (($x7360 (not $x6238))) +(let (($x7540 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16)) ?x6374) 0))) +(let (($x4492 (or $x6238 $x7540))) +(let (($x4445 (not $x4492))) +(let ((?x6234 (fun_app$c v_b_SP_G_1$ ?v1!16))) +(let (($x6378 (= ?x1865 ?x6234))) +(let (($x8060 (not $x6378))) +(let (($x7372 (>= (+ ?x1865 (* (- 1) ?x6234)) 0))) +(let (($x8588 (not $x7372))) +(let (($x8639 (<= (+ ?x257 (* (- 1) ?x6234)) 0))) +(let (($x7946 (or $x6814 $x8639))) +(let (($x8076 (or $x3665 $x6814 $x8639))) +(let ((@x8377 (monotonicity (rewrite (= (+ ?x6234 ?x1173) (+ ?x1173 ?x6234))) (= (>= (+ ?x6234 ?x1173) 0) (>= (+ ?x1173 ?x6234) 0))))) +(let ((@x8401 (trans @x8377 (rewrite (= (>= (+ ?x1173 ?x6234) 0) $x8639)) (= (>= (+ ?x6234 ?x1173) 0) $x8639)))) +(let ((@x8438 (monotonicity (monotonicity @x8401 (= (or $x6814 (>= (+ ?x6234 ?x1173) 0)) $x7946)) (= (or $x3665 (or $x6814 (>= (+ ?x6234 ?x1173) 0))) (or $x3665 $x7946))))) +(let ((@x8439 (trans @x8438 (rewrite (= (or $x3665 $x7946) $x8076)) (= (or $x3665 (or $x6814 (>= (+ ?x6234 ?x1173) 0))) $x8076)))) +(let ((@x8127 (mp ((_ quant-inst ?v1!16) (or $x3665 (or $x6814 (>= (+ ?x6234 ?x1173) 0)))) @x8439 $x8076))) +(let ((@x8777 (unit-resolution @x8127 (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) $x7946))) +(let ((@x8778 (unit-resolution @x8777 (unit-resolution (def-axiom (or $x8313 (not $x6814))) @x8616 (not $x6814)) $x8639))) (let ((?x1866 (v_b_SP_G_2$ ?v0!17))) (let ((?x6890 (+ ?x1866 ?x3105))) (let (($x6886 (<= ?x6890 0))) -(let ((?x4496 (fun_app$c v_b_SP_G_1$ ?v0!17))) -(let ((?x6307 (* (- 1) ?x4496))) -(let ((?x5972 (+ ?x257 ?x6307))) -(let (($x7220 (>= ?x5972 0))) (let (($x3187 (fun_app$ v_b_Visited_G_1$ ?v0!17))) (let (($x4478 (= ?v0!17 v_b_v_G_1$))) (let (($x4499 (or $x4478 $x3187))) @@ -2723,149 +2769,71 @@ (let ((@x5371 (monotonicity @x4495 (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712)))) (let ((@x5958 (trans @x5371 (rewrite (= $x4712 $x4712)) (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712)))) (let ((@x6125 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!17) (or $x4114 (= $x4471 (ite $x4478 true $x3187)))) @x5958 $x4712))) -(let ((@x8166 (mp (unit-resolution (def-axiom (or $x2760 $x1862)) (hypothesis $x2765) $x1862) (symm (monotonicity @x5875 (= $x4471 $x1862)) (= $x1862 $x4471)) $x4471))) -(let ((@x8237 (unit-resolution (def-axiom (or (not $x4593) (not $x4471) $x4499)) @x8166 (unit-resolution @x6125 @x3473 $x4593) $x4499))) +(let ((@x8749 (mp (unit-resolution (def-axiom (or $x2760 $x1862)) @x8145 $x1862) (symm (monotonicity @x5875 (= $x4471 $x1862)) (= $x1862 $x4471)) $x4471))) +(let ((@x8750 (unit-resolution (def-axiom (or (not $x4593) (not $x4471) $x4499)) @x8749 (unit-resolution @x6125 @x3473 $x4593) $x4499))) +(let ((?x4496 (fun_app$c v_b_SP_G_1$ ?v0!17))) +(let ((?x6307 (* (- 1) ?x4496))) +(let ((?x5972 (+ ?x257 ?x6307))) +(let (($x7220 (>= ?x5972 0))) +(let (($x7299 (not $x7220))) +(let ((?x5902 (+ ?x1866 ?x6307))) +(let (($x6327 (<= ?x5902 0))) +(let (($x6088 (or $x3691 $x6327))) +(let (($x6436 (>= (+ ?x4496 (* (- 1) ?x1866)) 0))) +(let ((@x6464 (monotonicity (rewrite (= (+ ?x4496 (* (- 1) ?x1866)) (+ (* (- 1) ?x1866) ?x4496))) (= $x6436 (>= (+ (* (- 1) ?x1866) ?x4496) 0))))) +(let ((@x5905 (trans @x6464 (rewrite (= (>= (+ (* (- 1) ?x1866) ?x4496) 0) $x6327)) (= $x6436 $x6327)))) +(let ((@x5843 (trans (monotonicity @x5905 (= (or $x3691 $x6436) $x6088)) (rewrite (= $x6088 $x6088)) (= (or $x3691 $x6436) $x6088)))) +(let ((@x7292 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3691 $x6436)) @x5843 $x6088) @x6892 $x6327))) +(let (($x6936 (not $x6886))) +(let ((@x6513 (hypothesis $x6936))) +(let ((@x8452 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 1 -1) (or $x7299 (not $x6327) $x6886 $x4315 (not $x4239))) @x6513 @x7292 @x6019 @x7839 $x7299))) (let (($x6485 (not $x4478))) -(let (($x8046 (<= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0))) -(let (($x6814 (fun_app$ v_b_Visited_G_1$ ?v1!16))) -(let (($x8334 (or $x6813 $x6814))) -(let (($x6812 (fun_app$ ?x265 ?v1!16))) -(let (($x7683 (= $x6812 $x8334))) -(let (($x6622 (or $x4114 $x7683))) -(let ((@x6719 (monotonicity (rewrite (= (ite $x6813 true $x6814) $x8334)) (= (= $x6812 (ite $x6813 true $x6814)) $x7683)))) -(let ((@x8777 (monotonicity @x6719 (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622)))) -(let ((@x8650 (trans @x8777 (rewrite (= $x6622 $x6622)) (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622)))) -(let ((@x8651 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x4114 (= $x6812 (ite $x6813 true $x6814)))) @x8650 $x6622))) -(let ((@x8121 (monotonicity (symm (monotonicity @x5875 (= $x6812 $x1860)) (= $x1860 $x6812)) (= (not $x1860) (not $x6812))))) -(let (($x1861 (not $x1860))) -(let ((@x7803 (hypothesis $x2765))) -(let ((@x8141 (mp (unit-resolution (def-axiom (or $x2760 $x1861)) @x7803 $x1861) @x8121 (not $x6812)))) -(let ((@x8147 (unit-resolution (def-axiom (or (not $x7683) $x6812 (not $x8334))) @x8141 (unit-resolution @x8651 @x3473 $x7683) (not $x8334)))) -(let (($x8156 (or $x6814 $x8046))) -(let (($x8160 (or $x3665 $x6814 $x8046))) -(let (($x6666 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) 0))) -(let (($x6673 (or $x6814 $x6666))) -(let (($x8163 (or $x3665 $x6673))) -(let ((@x7990 (rewrite (= (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0) $x8046)))) -(let (($x8213 (= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16))))) -(let ((@x8047 (monotonicity (rewrite $x8213) (= $x6666 (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0))))) -(let ((@x8089 (monotonicity (monotonicity (trans @x8047 @x7990 (= $x6666 $x8046)) (= $x6673 $x8156)) (= $x8163 (or $x3665 $x8156))))) -(let ((@x8093 (mp ((_ quant-inst ?v1!16) $x8163) (trans @x8089 (rewrite (= (or $x3665 $x8156) $x8160)) (= $x8163 $x8160)) $x8160))) -(let ((@x8217 (unit-resolution @x8093 (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) $x8156))) -(let ((@x8239 (unit-resolution @x8217 (unit-resolution (def-axiom (or $x8334 (not $x6814))) @x8147 (not $x6814)) $x8046))) -(let (($x3386 (not $x1869))) -(let ((@x3390 (def-axiom (or $x2760 $x3386)))) -(let ((@x8240 (unit-resolution @x3390 @x7803 $x3386))) -(let ((?x6009 (pair$ v_b_v_G_1$ ?v0!17))) -(let ((?x6010 (b_G$ ?x6009))) -(let ((?x1867 (* (- 1) ?x1866))) -(let ((?x6187 (+ ?x257 ?x1867 ?x6010))) -(let ((@x8743 (monotonicity (monotonicity (hypothesis $x4478) (= ?x6009 ?x3130)) (= ?x6010 ?x3096)))) (let (($x6889 (= ?x1866 ?x3104))) -(let ((@x6922 (hypothesis $x4478))) -(let ((@x6921 (unit-resolution (hypothesis (not $x6889)) (monotonicity @x6922 $x6889) false))) +(let (($x6250 (not $x6889))) +(let ((@x6214 ((_ th-lemma arith triangle-eq) (or $x6250 $x6886)))) +(let ((@x6921 (unit-resolution (hypothesis $x6250) (monotonicity (hypothesis $x4478) $x6889) false))) (let ((@x6939 (lemma @x6921 (or $x6485 $x6889)))) -(let ((@x6214 ((_ th-lemma arith triangle-eq) (or (not $x6889) $x6886)))) -(let (($x7675 (>= ?x6890 0))) -(let ((@x8362 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6889) $x7675)) (unit-resolution @x6939 @x6922 $x6889) $x7675))) -(let ((@x7970 ((_ th-lemma arith eq-propagate 1 1 1 1 -1 -1) @x8362 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6019 @x6933 @x6930 @x7839 (= ?x6010 ?x6187)))) -(let ((@x8765 (trans (trans (symm @x7970 (= ?x6187 ?x6010)) @x8743 (= ?x6187 ?x3096)) @x4849 (= ?x6187 0)))) -(let (($x6564 (>= ?x6187 0))) -(let (($x7274 (not $x6564))) -(let ((@x7271 (hypothesis $x3386))) -(let ((?x1865 (v_b_SP_G_2$ ?v1!16))) -(let ((?x6126 (* (- 1) ?x1865))) -(let ((?x6400 (+ ?x257 ?x6126 ?x6374))) -(let (($x6319 (<= ?x6400 0))) -(let (($x8008 (= ?x6400 0))) -(let (($x6238 (<= (+ b_Infinity$ (* (- 1) ?x6374)) 0))) -(let (($x8646 (not $x6238))) -(let (($x7241 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16)) ?x6374) 0))) -(let (($x7239 (or $x6238 $x7241))) -(let (($x4416 (not $x7239))) -(let ((?x6234 (fun_app$c v_b_SP_G_1$ ?v1!16))) -(let (($x6378 (= ?x1865 ?x6234))) -(let (($x8565 (not $x6378))) -(let (($x8664 (>= (+ ?x1865 (* (- 1) ?x6234)) 0))) -(let (($x8549 (not $x8664))) -(let ((@x8517 ((_ th-lemma arith assign-bounds -1 -1 -1 -1 1) (or $x8549 (not $x8046) $x1869 (not $x6886) (not $x4177) (not $x3044))))) -(let ((@x8321 (unit-resolution @x8517 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6933 @x6930 @x7271 (hypothesis $x8046) $x8549))) -(let (($x8358 (or $x4416 $x6378))) -(let (($x8640 (or $x3683 $x4416 $x6378))) -(let (($x6219 (or (not (or $x6238 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0))) $x6378))) -(let (($x8252 (or $x3683 $x6219))) -(let (($x6539 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0))) -(let ((@x7664 (rewrite (= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) (+ ?x1173 ?x6234 (* (- 1) ?x6374)))))) -(let ((@x7697 (monotonicity @x7664 (= $x6539 (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0))))) -(let ((@x4371 (trans @x7697 (rewrite (= (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0) $x7241)) (= $x6539 $x7241)))) -(let ((@x8352 (monotonicity (monotonicity @x4371 (= (or $x6238 $x6539) $x7239)) (= (not (or $x6238 $x6539)) $x4416)))) -(let ((@x8173 (monotonicity (monotonicity @x8352 (= $x6219 $x8358)) (= $x8252 (or $x3683 $x8358))))) -(let ((@x8649 (mp ((_ quant-inst ?v1!16) $x8252) (trans @x8173 (rewrite (= (or $x3683 $x8358) $x8640)) (= $x8252 $x8640)) $x8640))) -(let ((@x8632 (unit-resolution (unit-resolution @x8649 @x5944 $x8358) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) @x8321 $x8565) $x4416))) -(let (($x8029 (or $x6238 $x7241 $x8008))) -(let (($x8118 (or $x3675 $x6238 $x7241 $x8008))) -(let (($x6399 (or $x6238 $x6539 (= (+ ?x257 ?x6374 ?x6126) 0)))) -(let (($x8113 (or $x3675 $x6399))) -(let ((@x8010 (monotonicity (rewrite (= (+ ?x257 ?x6374 ?x6126) ?x6400)) (= (= (+ ?x257 ?x6374 ?x6126) 0) $x8008)))) -(let ((@x5909 (monotonicity (monotonicity @x4371 @x8010 (= $x6399 $x8029)) (= $x8113 (or $x3675 $x8029))))) -(let ((@x7712 (mp ((_ quant-inst ?v1!16) $x8113) (trans @x5909 (rewrite (= (or $x3675 $x8029) $x8118)) (= $x8113 $x8118)) $x8118))) -(let ((@x8635 (unit-resolution (unit-resolution @x7712 @x6588 $x8029) (unit-resolution (def-axiom (or $x7239 (not $x7241))) @x8632 (not $x7241)) (unit-resolution (def-axiom (or $x7239 $x8646)) @x8632 $x8646) $x8008))) -(let ((@x7288 (monotonicity (commutativity (= (= v_b_v_G_1$ ?v0!17) $x4478)) (= (not (= v_b_v_G_1$ ?v0!17)) $x6485)))) -(let (($x7176 (= v_b_v_G_1$ ?v0!17))) -(let (($x7180 (not $x7176))) -(let (($x7177 (<= ?x6010 0))) -(let (($x7178 (not $x7177))) -(let (($x7206 (not $x7203))) -(let ((@x7267 (monotonicity (symm (commutativity (= $x7202 $x6813)) (= $x6813 $x7202)) (= (not $x6813) (not $x7202))))) -(let (($x7207 (or $x7202 $x7206))) -(let ((@x7215 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3480) $x7207)) (rewrite (= (or (not $x3480) $x7207) (or (not $x3480) $x7202 $x7206))) (or (not $x3480) $x7202 $x7206)))) -(let ((@x7270 (unit-resolution (unit-resolution @x7215 @x3485 $x7207) (mp (hypothesis (not $x6813)) @x7267 (not $x7202)) $x7206))) -(let ((@x7278 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x7178 $x7274 $x1869 $x7203 (not $x6319))) (hypothesis $x6319) (hypothesis $x6564) @x7271 @x7270 $x7178))) -(let ((@x7282 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6010 0)) $x7177)) @x7278 (not (= ?x6010 0))))) -(let (($x7181 (= ?x6010 0))) -(let (($x7188 (or $x7180 $x7181))) -(let ((@x7196 (mp ((_ quant-inst v_b_v_G_1$ ?v0!17) (or $x3151 $x7188)) (rewrite (= (or $x3151 $x7188) (or $x3151 $x7180 $x7181))) (or $x3151 $x7180 $x7181)))) -(let ((@x7289 (mp (unit-resolution (unit-resolution @x7196 @x3479 $x7188) @x7282 $x7180) @x7288 $x6485))) (let ((@x5812 (def-axiom (or (not $x4499) $x4478 $x3187)))) +(let ((@x8341 (unit-resolution @x5812 (unit-resolution @x6939 (unit-resolution @x6214 @x6513 $x6250) $x6485) (hypothesis $x4499) $x3187))) (let (($x7229 (= (or $x3570 (or $x255 (not $x3187) $x7220)) (or $x3570 $x255 (not $x3187) $x7220)))) (let ((@x7231 (mp ((_ quant-inst ?v0!17 v_b_v_G_1$) (or $x3570 (or $x255 (not $x3187) $x7220))) (rewrite $x7229) (or $x3570 $x255 (not $x3187) $x7220)))) -(let ((@x7291 (unit-resolution @x7231 @x5748 @x6225 (unit-resolution @x5812 @x7289 (hypothesis $x4499) $x3187) $x7220))) -(let (($x6327 (<= (+ ?x1866 ?x6307) 0))) -(let (($x6088 (or $x3691 $x6327))) -(let ((@x6464 (monotonicity (rewrite (= (+ ?x4496 ?x1867) (+ ?x1867 ?x4496))) (= (>= (+ ?x4496 ?x1867) 0) (>= (+ ?x1867 ?x4496) 0))))) -(let ((@x5905 (trans @x6464 (rewrite (= (>= (+ ?x1867 ?x4496) 0) $x6327)) (= (>= (+ ?x4496 ?x1867) 0) $x6327)))) -(let ((@x5843 (trans (monotonicity @x5905 (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088)) (rewrite (= $x6088 $x6088)) (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088)))) -(let ((@x7292 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3691 (>= (+ ?x4496 ?x1867) 0))) @x5843 $x6088) @x6892 $x6327))) -(let ((@x7295 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x7292 @x7271 @x7270 (hypothesis $x6319) @x7291 false) (or (not $x6319) $x1869 (not $x4499) $x7274 $x6813)))) -(let ((@x8734 (unit-resolution @x7295 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) @x8635 $x6319) (hypothesis $x4499) (hypothesis (not $x6813)) @x7271 $x7274))) -(let ((@x8324 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6187 0)) $x6564)) @x8734 (not (= ?x6187 0))))) -(let ((@x8494 (lemma (unit-resolution @x8324 @x8765 false) (or $x6485 (not $x4499) $x6813 $x1869 (not $x8046))))) -(let ((@x8211 (unit-resolution @x8494 @x8237 (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) @x8240 @x8239 $x6485))) -(let ((@x8909 (unit-resolution @x7231 @x5748 @x6225 (hypothesis $x3187) (hypothesis (not $x7220)) false))) -(let ((@x8256 (unit-resolution (lemma @x8909 (or (not $x3187) $x7220)) (unit-resolution @x5812 @x8211 @x8237 $x3187) $x7220))) -(let ((@x8314 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1) (or $x6886 (not $x7220) (not $x6327) $x4315 (not $x4239))) @x7292 @x7839 @x8256 @x6019 $x6886))) -(let ((@x8385 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) (unit-resolution @x8517 @x8314 @x6933 @x6930 @x8240 @x8239 $x8549) $x8565))) -(let ((@x8386 (unit-resolution (def-axiom (or $x7239 $x8646)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8646))) -(let (($x8654 (not $x7241))) -(let ((@x8390 (unit-resolution (def-axiom (or $x7239 $x8654)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8654))) -(let ((@x8410 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) (unit-resolution (unit-resolution @x7712 @x6588 $x8029) @x8390 @x8386 $x8008) $x6319))) -(let ((@x8411 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7203 (not $x6319) $x1869 (not $x6886) (not $x4177) (not $x3044))))) -(let ((@x8413 (unit-resolution @x7215 @x3485 (unit-resolution @x8411 @x8410 @x6933 @x6930 @x8240 @x8314 $x7203) $x7202))) -(let ((@x8417 (unit-resolution (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) (symm @x8413 $x6813) false))) +(let ((@x8111 (lemma (unit-resolution @x7231 @x5748 @x6225 @x8341 @x8452 false) (or $x6886 (not $x4499))))) +(let ((@x8747 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 -1 1) (or $x8588 (not $x8639) $x1869 $x6936 (not $x4177) (not $x3044))) (unit-resolution @x8111 @x8750 $x6886) @x6933 @x6930 (unit-resolution (def-axiom (or $x2760 (not $x1869))) @x8145 (not $x1869)) @x8778 $x8588))) +(let (($x6079 (or $x4445 $x6378))) +(let (($x6188 (or $x3683 $x4445 $x6378))) +(let (($x6219 (or (not (or $x6238 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0))) $x6378))) +(let (($x6365 (or $x3683 $x6219))) +(let (($x6539 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0))) +(let ((@x6817 (rewrite (= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) (+ ?x1173 ?x6234 (* (- 1) ?x6374)))))) +(let ((@x7239 (monotonicity @x6817 (= $x6539 (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0))))) +(let ((@x4408 (trans @x7239 (rewrite (= (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0) $x7540)) (= $x6539 $x7540)))) +(let ((@x6718 (monotonicity (monotonicity @x4408 (= (or $x6238 $x6539) $x4492)) (= (not (or $x6238 $x6539)) $x4445)))) +(let ((@x7376 (monotonicity (monotonicity @x6718 (= $x6219 $x6079)) (= $x6365 (or $x3683 $x6079))))) +(let ((@x7375 (mp ((_ quant-inst ?v1!16) $x6365) (trans @x7376 (rewrite (= (or $x3683 $x6079) $x6188)) (= $x6365 $x6188)) $x6188))) +(let ((@x8141 (unit-resolution (unit-resolution @x7375 @x5944 $x6079) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8060 $x7372)) @x8747 $x8060) $x4445))) +(let (($x7378 (or $x6238 $x7540 $x7408))) +(let (($x7022 (or $x3675 $x6238 $x7540 $x7408))) +(let (($x6399 (or $x6238 $x6539 (= (+ ?x257 ?x6374 ?x6126) 0)))) +(let (($x6139 (or $x3675 $x6399))) +(let ((@x7409 (monotonicity (rewrite (= (+ ?x257 ?x6374 ?x6126) ?x6400)) (= (= (+ ?x257 ?x6374 ?x6126) 0) $x7408)))) +(let ((@x6535 (monotonicity (monotonicity @x4408 @x7409 (= $x6399 $x7378)) (= $x6139 (or $x3675 $x7378))))) +(let ((@x7425 (mp ((_ quant-inst ?v1!16) $x6139) (trans @x6535 (rewrite (= (or $x3675 $x7378) $x7022)) (= $x6139 $x7022)) $x7022))) +(let ((@x8177 (unit-resolution (unit-resolution @x7425 @x6588 $x7378) (unit-resolution (def-axiom (or $x4492 (not $x7540))) @x8141 (not $x7540)) (unit-resolution (def-axiom (or $x4492 $x7360)) @x8141 $x7360) $x7408))) +(let ((@x8386 ((_ th-lemma arith farkas 1 1 1 1 1 1) (unit-resolution (def-axiom (or $x2760 (not $x1869))) @x8145 (not $x1869)) (unit-resolution @x8111 @x8750 $x6886) @x6933 @x6930 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x7408) $x6319)) @x8177 $x6319) (unit-resolution @x8872 @x8586 $x7206) false))) (let ((@x3365 (def-axiom (or $x3758 $x2765 $x3752)))) -(let ((@x9296 (unit-resolution @x3365 (lemma @x8417 $x2760) (unit-resolution (def-axiom (or $x3761 $x3755)) @x9294 $x3755) $x3752))) -(let ((@x8225 (rewrite (= (or $x3717 (or $x4278 $x4127 $x4382)) (or $x3717 $x4278 $x4127 $x4382))))) -(let ((@x8229 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or $x3717 (or $x4278 $x4127 $x4382))) @x8225 (or $x3717 $x4278 $x4127 $x4382)))) -(let ((@x9299 (unit-resolution @x8229 (unit-resolution (def-axiom (or $x3749 $x3712)) @x9296 $x3712) @x7482 (or $x4278 $x4382)))) +(let ((@x9306 (unit-resolution @x3365 (lemma @x8386 $x2760) (unit-resolution (def-axiom (or $x3761 $x3755)) @x9304 $x3755) $x3752))) +(let ((@x8028 (rewrite (= (or $x3717 (or $x4278 $x4127 $x4382)) (or $x3717 $x4278 $x4127 $x4382))))) +(let ((@x7980 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or $x3717 (or $x4278 $x4127 $x4382))) @x8028 (or $x3717 $x4278 $x4127 $x4382)))) +(let ((@x9309 (unit-resolution @x7980 (unit-resolution (def-axiom (or $x3749 $x3712)) @x9306 $x3712) @x7413 (or $x4278 $x4382)))) (let (($x4508 (>= ?x4487 0))) -(let ((@x9304 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x4508 (not $x4569) (not $x3886))) @x6925 (or $x4508 (not $x4569))))) -(let ((@x9306 ((_ th-lemma arith eq-propagate -1 -1 -1 -1 -1 -1 1 1) (unit-resolution @x9304 (hypothesis $x4569) $x4508) @x9285 (unit-resolution @x9299 @x9292 $x4382) @x9290 @x6019 @x6933 @x6930 @x7839 $x5391))) +(let ((@x9314 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x4508 (not $x4569) (not $x3886))) @x6925 (or $x4508 (not $x4569))))) +(let ((@x9316 ((_ th-lemma arith eq-propagate -1 -1 -1 -1 -1 -1 1 1) (unit-resolution @x9314 (hypothesis $x4569) $x4508) @x9295 (unit-resolution @x9309 @x9302 $x4382) @x9300 @x6019 @x6933 @x6930 @x7839 $x5391))) (let (($x5388 (not $x5387))) (let (($x5389 (or $x5386 $x5388))) -(let ((@x7598 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or (not $x3480) $x5389)) (rewrite (= (or (not $x3480) $x5389) (or (not $x3480) $x5386 $x5388))) (or (not $x3480) $x5386 $x5388)))) -(let ((@x9311 (unit-resolution (unit-resolution @x7598 @x3485 $x5389) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5391) $x5387)) @x9306 $x5387) $x5386))) -(let ((@x8045 (unit-resolution (lemma (unit-resolution @x9311 @x9328 false) (or $x4400 $x3734 (not $x4569))) (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x7751 $x4400))) -(let ((@x8812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4400) $x5977)) @x8045 $x5977))) +(let ((@x7596 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or (not $x3480) $x5389)) (rewrite (= (or (not $x3480) $x5389) (or (not $x3480) $x5386 $x5388))) (or (not $x3480) $x5386 $x5388)))) +(let ((@x9321 (unit-resolution (unit-resolution @x7596 @x3485 $x5389) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5391) $x5387)) @x9316 $x5387) $x5386))) +(let ((@x8870 (unit-resolution (lemma (unit-resolution @x9321 @x9338 false) (or $x4400 $x3734 (not $x4569))) (unit-resolution (def-axiom (or $x3737 $x3729)) @x4391 $x3729) @x4467 $x4400))) +(let ((@x8892 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4400) $x5977)) @x8870 $x5977))) (let ((?x4641 (?v1!7 ?v0!20))) (let ((?x4648 (pair$ ?x4641 ?v0!20))) (let ((?x4649 (b_G$ ?x4648))) @@ -2873,7 +2841,7 @@ (let ((?x4642 (fun_app$c v_b_SP_G_1$ ?x4641))) (let ((?x4643 (* (- 1) ?x4642))) (let ((?x4651 (+ ?x4393 ?x4643 ?x4650))) -(let (($x4391 (>= ?x4651 0))) +(let (($x8653 (>= ?x4651 0))) (let (($x4652 (= ?x4651 0))) (let (($x4653 (not $x4652))) (let (($x4646 (fun_app$ v_b_Visited_G_1$ ?x4641))) @@ -2884,14 +2852,14 @@ (let (($x4655 (not $x4654))) (let (($x4640 (<= (+ b_Infinity$ ?x4418) 0))) (let (($x7886 (not $x4640))) -(let ((@x8816 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x5977) $x1914 $x7886)) @x8812 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) $x7886))) +(let ((@x8893 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x5977) $x1914 $x7886)) @x8892 (unit-resolution (def-axiom (or $x3737 $x1915)) @x4391 $x1915) $x7886))) (let ((@x7414 (rewrite (= (or $x3586 (or $x1909 $x4640 $x4655)) (or $x3586 $x1909 $x4640 $x4655))))) (let ((@x7415 (mp ((_ quant-inst ?v0!20) (or $x3586 (or $x1909 $x4640 $x4655))) @x7414 (or $x3586 $x1909 $x4640 $x4655)))) -(let ((@x8817 (unit-resolution @x7415 @x4545 (unit-resolution (def-axiom (or $x3737 $x1910)) @x8092 $x1910) (or $x4640 $x4655)))) -(let ((@x8826 (unit-resolution @x8817 @x8816 $x4655))) -(let ((@x6085 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x4391)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x4391))) -(let (($x7707 (<= ?x4651 0))) -(let ((@x8177 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x7707)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x7707))) +(let ((@x8894 (unit-resolution @x7415 @x4545 (unit-resolution (def-axiom (or $x3737 $x1910)) @x4391 $x1910) (or $x4640 $x4655)))) +(let ((@x8897 (unit-resolution @x8894 @x8893 $x4655))) +(let ((@x8280 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x8653)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8897 $x4652) $x8653))) +(let (($x8584 (<= ?x4651 0))) +(let ((@x7677 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x8584)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8897 $x4652) $x8584))) (let (($x4689 (fun_app$ v_b_Visited_G_2$ ?x4641))) (let ((@x6032 (monotonicity (symm (hypothesis $x266) (= ?x265 v_b_Visited_G_2$)) (= (fun_app$ ?x265 ?x4641) $x4689)))) (let ((@x6036 (monotonicity (symm @x6032 (= $x4689 (fun_app$ ?x265 ?x4641))) (= (not $x4689) (not (fun_app$ ?x265 ?x4641)))))) @@ -2906,63 +2874,67 @@ (let ((@x6002 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true (?v1!7 ?v0!20)) (or $x4114 (= $x5978 (ite $x5985 true $x4646)))) @x6001 $x5994))) (let ((@x6025 (unit-resolution (def-axiom (or (not $x5991) $x5978 (not $x5988))) (unit-resolution (def-axiom (or $x5988 $x4647)) (hypothesis $x4646) $x5988) (or (not $x5991) $x5978)))) (let ((@x6038 (unit-resolution (unit-resolution @x6025 (unit-resolution @x6002 @x3473 $x5991) $x5978) (mp (hypothesis (not $x4689)) @x6036 (not $x5978)) false))) -(let ((@x8986 (unit-resolution (lemma @x6038 (or $x4689 $x2935 $x4647)) (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (or $x4689 $x4647)))) -(let ((@x8987 (unit-resolution @x8986 (unit-resolution (def-axiom (or $x4654 $x4646)) @x8826 $x4646) $x4689))) +(let ((@x8188 (unit-resolution (lemma @x6038 (or $x4689 $x2935 $x4647)) (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (or $x4689 $x4647)))) +(let ((@x8763 (unit-resolution @x8188 (unit-resolution (def-axiom (or $x4654 $x4646)) @x8897 $x4646) $x4689))) (let ((?x4697 (v_b_SP_G_2$ ?x4641))) (let ((?x4700 (* (- 1) ?x4697))) (let ((?x4868 (+ ?x1911 ?x4700))) -(let (($x9248 (<= ?x4868 0))) -(let (($x8507 (not $x9248))) +(let (($x7732 (<= ?x4868 0))) +(let (($x9853 (not $x7732))) (let ((?x4701 (+ ?x4642 ?x4700))) (let (($x4708 (>= ?x4701 0))) -(let ((@x8348 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8507 (not $x4708) $x4645 (not $x5977))) @x8812 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (unit-resolution (def-axiom (or $x4654 (not $x4645))) @x8826 (not $x4645)) $x8507))) -(let ((?x8311 (+ ?x1911 ?x4650 ?x4700))) -(let (($x8266 (>= ?x8311 0))) -(let ((@x10143 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8266 (not $x4391) (not $x4708) (not $x5977))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (hypothesis $x4391) (hypothesis $x5977) $x8266))) -(let (($x8534 (<= ?x8311 0))) +(let ((@x8509 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x9853 $x4645 (not $x5977) (not $x4708))) @x8892 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (unit-resolution (def-axiom (or $x4654 (not $x4645))) @x8897 (not $x4645)) $x9853))) +(let ((?x7938 (+ ?x1911 ?x4650 ?x4700))) +(let (($x8292 (<= ?x7938 0))) (let (($x5038 (<= ?x4701 0))) -(let (($x5863 (= ?x4642 ?x4697))) -(let ((@x10149 (symm (commutativity (= $x5863 (= ?x4697 ?x4642))) (= (= ?x4697 ?x4642) $x5863)))) +(let (($x8272 (= ?x4642 ?x4697))) +(let ((@x9865 (symm (commutativity (= $x8272 (= ?x4697 ?x4642))) (= (= ?x4697 ?x4642) $x8272)))) (let (($x4698 (= ?x4697 ?x4642))) -(let ((@x7939 (rewrite (= (or $x3700 (or (not $x4689) $x4698)) (or $x3700 (not $x4689) $x4698))))) -(let ((@x7943 (mp ((_ quant-inst (?v1!7 ?v0!20)) (or $x3700 (or (not $x4689) $x4698))) @x7939 (or $x3700 (not $x4689) $x4698)))) -(let ((@x7980 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5863) $x5038)) (mp (unit-resolution @x7943 @x7616 (hypothesis $x4689) $x4698) @x10149 $x5863) $x5038))) -(let (($x8014 (<= ?x4419 0))) -(let (($x8221 (or $x3691 $x8014))) -(let ((@x8001 (monotonicity (rewrite (= (+ ?x4393 ?x1912) (+ ?x1912 ?x4393))) (= (>= (+ ?x4393 ?x1912) 0) (>= (+ ?x1912 ?x4393) 0))))) -(let ((@x8035 (trans @x8001 (rewrite (= (>= (+ ?x1912 ?x4393) 0) $x8014)) (= (>= (+ ?x4393 ?x1912) 0) $x8014)))) -(let ((@x8178 (trans (monotonicity @x8035 (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221)) (rewrite (= $x8221 $x8221)) (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221)))) -(let ((@x8659 (unit-resolution (mp ((_ quant-inst ?v0!20) (or $x3691 (>= (+ ?x4393 ?x1912) 0))) @x8178 $x8221) @x6892 $x8014))) -(let ((@x8083 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8534 (not $x7707) (not $x5038) (not $x8014))) @x8659 (hypothesis $x7707) @x7980 $x8534))) -(let (($x9251 (= ?x8311 0))) -(let (($x8749 (not $x9251))) +(let ((@x8267 (rewrite (= (or $x3700 (or (not $x4689) $x4698)) (or $x3700 (not $x4689) $x4698))))) +(let ((@x8268 (mp ((_ quant-inst (?v1!7 ?v0!20)) (or $x3700 (or (not $x4689) $x4698))) @x8267 (or $x3700 (not $x4689) $x4698)))) +(let ((@x9794 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8272) $x5038)) (mp (unit-resolution @x8268 @x7618 (hypothesis $x4689) $x4698) @x9865 $x8272) $x5038))) +(let (($x7927 (<= ?x4419 0))) +(let (($x8009 (or $x3691 $x7927))) +(let ((@x8030 (monotonicity (rewrite (= (+ ?x4393 ?x1912) (+ ?x1912 ?x4393))) (= (>= (+ ?x4393 ?x1912) 0) (>= (+ ?x1912 ?x4393) 0))))) +(let ((@x8091 (trans @x8030 (rewrite (= (>= (+ ?x1912 ?x4393) 0) $x7927)) (= (>= (+ ?x4393 ?x1912) 0) $x7927)))) +(let ((@x8854 (trans (monotonicity @x8091 (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8009)) (rewrite (= $x8009 $x8009)) (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8009)))) +(let ((@x9860 (unit-resolution (mp ((_ quant-inst ?v0!20) (or $x3691 (>= (+ ?x4393 ?x1912) 0))) @x8854 $x8009) @x6892 $x7927))) +(let ((@x10107 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8292 (not $x8584) (not $x7927) (not $x5038))) @x9860 (hypothesis $x8584) @x9794 $x8292))) +(let (($x8954 (>= ?x7938 0))) +(let ((@x10056 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8954 (not $x8653) (not $x5977) (not $x4708))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (hypothesis $x8653) (hypothesis $x5977) $x8954))) +(let (($x8665 (= ?x7938 0))) +(let (($x9226 (not $x8665))) (let (($x4690 (not $x4689))) -(let (($x8567 (or $x3734 $x9248 $x4690 $x8749))) +(let (($x6495 (or $x3734 $x7732 $x4690 $x9226))) (let (($x4857 (>= (+ ?x4697 ?x1912) 0))) (let (($x4861 (or $x4857 $x4690 (not (= (+ ?x4697 ?x1912 ?x4649) 0))))) -(let (($x8927 (or $x3734 $x4861))) -(let ((@x8955 (monotonicity (rewrite (= (+ ?x4697 ?x1912 ?x4649) (+ ?x1912 ?x4649 ?x4697))) (= (= (+ ?x4697 ?x1912 ?x4649) 0) (= (+ ?x1912 ?x4649 ?x4697) 0))))) -(let ((@x8627 (trans @x8955 (rewrite (= (= (+ ?x1912 ?x4649 ?x4697) 0) $x9251)) (= (= (+ ?x4697 ?x1912 ?x4649) 0) $x9251)))) -(let ((@x8965 (monotonicity (rewrite (= (+ ?x4697 ?x1912) (+ ?x1912 ?x4697))) (= $x4857 (>= (+ ?x1912 ?x4697) 0))))) -(let ((@x8985 (trans @x8965 (rewrite (= (>= (+ ?x1912 ?x4697) 0) $x9248)) (= $x4857 $x9248)))) -(let ((@x9087 (monotonicity @x8985 (monotonicity @x8627 (= (not (= (+ ?x4697 ?x1912 ?x4649) 0)) $x8749)) (= $x4861 (or $x9248 $x4690 $x8749))))) -(let ((@x8874 (trans (monotonicity @x9087 (= $x8927 (or $x3734 (or $x9248 $x4690 $x8749)))) (rewrite (= (or $x3734 (or $x9248 $x4690 $x8749)) $x8567)) (= $x8927 $x8567)))) -(let ((@x8397 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x8927) @x8874 $x8567) (hypothesis $x3729) (hypothesis $x4689) (or $x9248 $x8749)))) -(let ((@x5592 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x9251 (not $x8534) (not $x8266))) (unit-resolution @x8397 (hypothesis $x8507) $x8749) @x8083 @x10143 false))) -(let ((@x8013 (unit-resolution (lemma @x5592 (or $x9248 $x3734 $x4690 (not $x7707) (not $x4391) (not $x5977))) @x8348 (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x8987 @x8177 @x6085 @x8812 false))) +(let (($x9201 (or $x3734 $x4861))) +(let ((@x8630 (monotonicity (rewrite (= (+ ?x4697 ?x1912 ?x4649) (+ ?x1912 ?x4649 ?x4697))) (= (= (+ ?x4697 ?x1912 ?x4649) 0) (= (+ ?x1912 ?x4649 ?x4697) 0))))) +(let ((@x8460 (trans @x8630 (rewrite (= (= (+ ?x1912 ?x4649 ?x4697) 0) $x8665)) (= (= (+ ?x4697 ?x1912 ?x4649) 0) $x8665)))) +(let ((@x7449 (monotonicity (rewrite (= (+ ?x4697 ?x1912) (+ ?x1912 ?x4697))) (= $x4857 (>= (+ ?x1912 ?x4697) 0))))) +(let ((@x7972 (trans @x7449 (rewrite (= (>= (+ ?x1912 ?x4697) 0) $x7732)) (= $x4857 $x7732)))) +(let ((@x4476 (monotonicity @x7972 (monotonicity @x8460 (= (not (= (+ ?x4697 ?x1912 ?x4649) 0)) $x9226)) (= $x4861 (or $x7732 $x4690 $x9226))))) +(let ((@x8430 (trans (monotonicity @x4476 (= $x9201 (or $x3734 (or $x7732 $x4690 $x9226)))) (rewrite (= (or $x3734 (or $x7732 $x4690 $x9226)) $x6495)) (= $x9201 $x6495)))) +(let ((@x10015 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x9201) @x8430 $x6495) (hypothesis $x3729) (hypothesis $x4689) (or $x7732 $x9226)))) +(let ((@x10016 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8665 (not $x8292) (not $x8954))) (unit-resolution @x10015 (hypothesis $x9853) $x9226) @x10056 @x10107 false))) +(let ((@x8164 (unit-resolution (lemma @x10016 (or $x7732 $x3734 $x4690 (not $x8584) (not $x8653) (not $x5977))) @x8509 (unit-resolution (def-axiom (or $x3737 $x3729)) @x4391 $x3729) @x8763 @x7677 @x8280 @x8892 false))) (let ((@x3278 (def-axiom (or $x3746 $x2811 $x3740)))) -(let ((@x8433 (unit-resolution @x3278 (unit-resolution (def-axiom (or $x3749 $x3743)) @x9296 $x3743) $x3743))) +(let ((@x8072 (unit-resolution @x3278 (unit-resolution (def-axiom (or $x3749 $x3743)) @x9306 $x3743) $x3743))) (let (($x3378 (not $x1896))) (let ((@x3380 (def-axiom (or $x2806 $x3378)))) -(let ((@x8434 (unit-resolution @x3380 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) $x3378))) +(let ((@x8073 (unit-resolution @x3380 (unit-resolution @x8072 (lemma @x8164 $x3737) $x2811) $x3378))) (let ((?x6619 (fun_app$c v_b_SP_G_1$ ?v1!18))) (let (($x6615 (= ?x1892 ?x6619))) -(let (($x7618 (not $x6615))) -(let ((@x7591 (hypothesis $x2811))) -(let ((@x7607 (unit-resolution (def-axiom (or $x2806 $x1883)) @x7591 $x1883))) -(let ((@x7571 (hypothesis $x3378))) +(let (($x7620 (not $x6615))) +(let ((@x7607 (hypothesis $x2811))) +(let ((@x7608 (unit-resolution (def-axiom (or $x2806 $x1883)) @x7607 $x1883))) +(let ((@x7570 (hypothesis $x3378))) (let (($x1889 (not $x1888))) -(let ((@x7592 (unit-resolution (def-axiom (or $x2806 $x1889)) @x7591 $x1889))) +(let ((@x7615 (unit-resolution (def-axiom (or $x2806 $x1889)) @x7607 $x1889))) +(let ((?x6721 (* (- 1) ?x6619))) +(let ((?x5600 (+ ?x1892 ?x6721))) +(let (($x7353 (>= ?x5600 0))) +(let ((@x9059 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7620 $x7353)) (hypothesis $x6615) $x7353))) (let ((?x7110 (pair$ v_b_v_G_1$ ?v0!19))) (let ((?x7111 (b_G$ ?x7110))) (let ((?x7100 (* (- 1) ?x7111))) @@ -2974,23 +2946,20 @@ (let (($x6211 (not $x7246))) (let (($x7248 (>= (+ ?x1885 ?x6619 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0))) (let (($x7499 (not $x7248))) -(let ((?x6721 (* (- 1) ?x6619))) -(let ((?x5600 (+ ?x1892 ?x6721))) -(let (($x7353 (>= ?x5600 0))) -(let ((@x8658 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7618 $x7353)) (hypothesis $x6615) $x7353))) -(let (($x7076 (<= (+ ?x1893 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0))) +(let ((@x7004 (hypothesis $x7353))) +(let ((?x7053 (fun_app$c v_b_SP_G_1$ ?v0!19))) +(let ((?x7074 (* (- 1) ?x7053))) +(let ((?x7075 (+ ?x1893 ?x7074))) +(let (($x7076 (<= ?x7075 0))) (let (($x7084 (or $x3691 $x7076))) -(let (($x7081 (= (or $x3691 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0)) $x7084))) -(let ((@x7078 (rewrite (= (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0) $x7076)))) -(let (($x7048 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0))) -(let (($x7069 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19))))) -(let ((@x7073 (monotonicity (rewrite $x7069) (= $x7048 (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0))))) -(let ((@x7090 (trans (monotonicity (trans @x7073 @x7078 (= $x7048 $x7076)) $x7081) (rewrite (= $x7084 $x7084)) $x7081))) -(let ((@x7496 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3691 $x7048)) @x7090 $x7084) @x6892 $x7076))) -(let ((@x7501 (lemma ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x7248) @x7571 @x7496 (hypothesis $x7353) false) (or $x7499 $x1896 (not $x7353))))) +(let ((@x7073 (monotonicity (rewrite (= (+ ?x7053 ?x1894) (+ ?x1894 ?x7053))) (= (>= (+ ?x7053 ?x1894) 0) (>= (+ ?x1894 ?x7053) 0))))) +(let ((@x7080 (trans @x7073 (rewrite (= (>= (+ ?x1894 ?x7053) 0) $x7076)) (= (>= (+ ?x7053 ?x1894) 0) $x7076)))) +(let ((@x7090 (trans (monotonicity @x7080 (= (or $x3691 (>= (+ ?x7053 ?x1894) 0)) $x7084)) (rewrite (= $x7084 $x7084)) (= (or $x3691 (>= (+ ?x7053 ?x1894) 0)) $x7084)))) +(let ((@x7496 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3691 (>= (+ ?x7053 ?x1894) 0))) @x7090 $x7084) @x6892 $x7076))) +(let ((@x7501 (lemma ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x7248) @x7570 @x7496 @x7004 false) (or $x7499 $x1896 (not $x7353))))) (let ((@x6992 (rewrite (= (or $x3578 (or $x6211 $x1888 $x7248)) (or $x3578 $x6211 $x1888 $x7248))))) (let ((@x7051 (mp ((_ quant-inst ?v0!19 ?v1!18) (or $x3578 (or $x6211 $x1888 $x7248))) @x6992 (or $x3578 $x6211 $x1888 $x7248)))) -(let ((@x8673 (unit-resolution (unit-resolution @x7051 @x4223 (hypothesis $x1889) (or $x6211 $x7248)) (unit-resolution @x7501 @x8658 @x7571 $x7499) $x6211))) +(let ((@x9076 (unit-resolution (unit-resolution @x7051 @x4223 (hypothesis $x1889) (or $x6211 $x7248)) (unit-resolution @x7501 @x9059 @x7570 $x7499) $x6211))) (let (($x7222 (or $x7243 $x7246))) (let (($x6667 (fun_app$ ?x265 ?v1!18))) (let (($x6740 (= $x6667 $x7222))) @@ -2999,47 +2968,49 @@ (let ((@x6845 (monotonicity @x6743 (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746)))) (let ((@x4954 (trans @x6845 (rewrite (= $x6746 $x6746)) (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746)))) (let ((@x6537 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!18) (or $x4114 (= $x6667 (ite $x7243 true $x7246)))) @x4954 $x6746))) -(let ((@x8675 (mp (hypothesis $x1883) (symm (monotonicity @x5875 (= $x6667 $x1883)) (= $x1883 $x6667)) $x6667))) -(let ((@x8676 (unit-resolution (def-axiom (or (not $x6740) (not $x6667) $x7222)) @x8675 (unit-resolution @x6537 @x3473 $x6740) $x7222))) +(let ((@x9160 (mp (hypothesis $x1883) (symm (monotonicity @x5875 (= $x6667 $x1883)) (= $x1883 $x6667)) $x6667))) +(let ((@x9163 (unit-resolution (def-axiom (or (not $x6740) (not $x6667) $x7222)) @x9160 (unit-resolution @x6537 @x3473 $x6740) $x7222))) (let ((@x4955 (def-axiom (or (not $x7222) $x7243 $x7246)))) (let ((@x7000 (unit-resolution (hypothesis (not $x7003)) (monotonicity (monotonicity (hypothesis $x7243) (= ?x1884 ?x7110)) $x7003) false))) (let ((@x7002 (lemma @x7000 (or (not $x7243) $x7003)))) (let ((@x7011 ((_ th-lemma arith triangle-eq) (or (not $x7003) $x7556)))) -(let ((@x8679 (unit-resolution @x7011 (unit-resolution @x7002 (unit-resolution @x4955 @x8676 @x8673 $x7243) $x7003) $x7556))) -(let (($x7102 (<= (+ b_Infinity$ ?x7100) 0))) -(let ((?x7171 (+ ?x257 ?x1894 ?x7111))) -(let (($x7252 (>= ?x7171 0))) -(let (($x7576 (not $x7252))) +(let ((@x9060 (unit-resolution @x7011 (unit-resolution @x7002 (unit-resolution @x4955 @x9163 @x9076 $x7243) $x7003) $x7556))) (let (($x7366 (<= (+ ?x257 ?x6721) 0))) -(let (($x8449 (or $x3665 $x7246 $x7366))) +(let (($x8813 (or $x3665 $x7246 $x7366))) (let (($x7357 (>= (+ ?x6619 ?x1173) 0))) (let (($x7358 (or $x7246 $x7357))) -(let (($x8450 (or $x3665 $x7358))) -(let ((@x8441 (monotonicity (rewrite (= (+ ?x6619 ?x1173) (+ ?x1173 ?x6619))) (= $x7357 (>= (+ ?x1173 ?x6619) 0))))) -(let ((@x8445 (trans @x8441 (rewrite (= (>= (+ ?x1173 ?x6619) 0) $x7366)) (= $x7357 $x7366)))) -(let ((@x8454 (monotonicity (monotonicity @x8445 (= $x7358 (or $x7246 $x7366))) (= $x8450 (or $x3665 (or $x7246 $x7366)))))) -(let ((@x8458 (trans @x8454 (rewrite (= (or $x3665 (or $x7246 $x7366)) $x8449)) (= $x8450 $x8449)))) -(let ((@x8681 (unit-resolution (mp ((_ quant-inst ?v1!18) $x8450) @x8458 $x8449) (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) @x8673 $x7366))) -(let ((@x8685 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1) (or $x7576 $x1896 (not $x7353) (not $x7366) (not $x7556))) @x8681 @x8679 @x7571 @x8658 $x7576))) -(let ((@x8686 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x7171 0)) $x7252)) @x8685 (not (= ?x7171 0))))) -(let (($x7117 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19)) ?x7111) 0))) +(let (($x8814 (or $x3665 $x7358))) +(let ((@x8805 (monotonicity (rewrite (= (+ ?x6619 ?x1173) (+ ?x1173 ?x6619))) (= $x7357 (>= (+ ?x1173 ?x6619) 0))))) +(let ((@x8809 (trans @x8805 (rewrite (= (>= (+ ?x1173 ?x6619) 0) $x7366)) (= $x7357 $x7366)))) +(let ((@x8818 (monotonicity (monotonicity @x8809 (= $x7358 (or $x7246 $x7366))) (= $x8814 (or $x3665 (or $x7246 $x7366)))))) +(let ((@x8822 (trans @x8818 (rewrite (= (or $x3665 (or $x7246 $x7366)) $x8813)) (= $x8814 $x8813)))) +(let ((@x8620 (unit-resolution (mp ((_ quant-inst ?v1!18) $x8814) @x8822 $x8813) (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) @x9076 $x7366))) +(let (($x7102 (<= (+ b_Infinity$ ?x7100) 0))) +(let (($x7158 (not $x7102))) +(let ((@x8621 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x7158 $x1888 (not $x7556))) @x9060 (hypothesis $x1889) $x7158))) +(let ((?x7171 (+ ?x257 ?x1894 ?x7111))) +(let (($x7252 (>= ?x7171 0))) +(let (($x7575 (not $x7252))) +(let ((@x8781 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1) (or $x7575 $x1896 (not $x7353) (not $x7366) (not $x7556))) @x8620 @x9060 @x7570 @x9059 $x7575))) +(let (($x7117 (>= (+ ?x257 ?x7074 ?x7111) 0))) (let (($x7161 (not $x7117))) -(let ((@x8688 ((_ th-lemma arith assign-bounds -1 -1 1 -1 1) (or $x7161 (not $x7076) $x1896 (not $x7353) (not $x7366) (not $x7556))))) +(let ((@x9234 ((_ th-lemma arith assign-bounds -1 -1 1 -1 1) (or $x7161 (not $x7076) $x1896 (not $x7353) (not $x7366) (not $x7556))))) +(let ((@x9235 (unit-resolution @x9234 (hypothesis $x7366) (hypothesis $x7556) @x7570 @x7004 @x7496 $x7161))) +(let ((@x9237 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x7171 0)) $x7252)) (hypothesis $x7575) (not (= ?x7171 0))))) (let (($x7174 (= ?x7171 0))) (let (($x7184 (or $x7102 $x7117 $x7174))) (let (($x7186 (or $x3675 $x7102 $x7117 $x7174))) -(let (($x7104 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) 0))) +(let (($x7104 (<= (+ ?x7053 ?x1173 ?x7100) 0))) (let (($x7165 (or $x7102 $x7104 (= (+ ?x257 ?x7111 ?x1894) 0)))) (let (($x7187 (or $x3675 $x7165))) (let ((@x7183 (monotonicity (rewrite (= (+ ?x257 ?x7111 ?x1894) ?x7171)) (= (= (+ ?x257 ?x7111 ?x1894) 0) $x7174)))) -(let ((@x7119 (rewrite (= (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0) $x7117)))) -(let (($x7112 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100)))) -(let ((@x7115 (monotonicity (rewrite $x7112) (= $x7104 (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0))))) -(let ((@x7205 (monotonicity (monotonicity (trans @x7115 @x7119 (= $x7104 $x7117)) @x7183 (= $x7165 $x7184)) (= $x7187 (or $x3675 $x7184))))) +(let ((@x7115 (monotonicity (rewrite (= (+ ?x7053 ?x1173 ?x7100) (+ ?x1173 ?x7053 ?x7100))) (= $x7104 (<= (+ ?x1173 ?x7053 ?x7100) 0))))) +(let ((@x7128 (trans @x7115 (rewrite (= (<= (+ ?x1173 ?x7053 ?x7100) 0) $x7117)) (= $x7104 $x7117)))) +(let ((@x7205 (monotonicity (monotonicity @x7128 @x7183 (= $x7165 $x7184)) (= $x7187 (or $x3675 $x7184))))) (let ((@x7250 (mp ((_ quant-inst ?v0!19) $x7187) (trans @x7205 (rewrite (= (or $x3675 $x7184) $x7186)) (= $x7187 $x7186)) $x7186))) -(let ((@x8690 (unit-resolution (unit-resolution @x7250 @x6588 $x7184) (unit-resolution @x8688 @x8681 @x8679 @x7571 @x8658 @x7496 $x7161) @x8686 $x7102))) -(let ((@x8693 (lemma ((_ th-lemma arith farkas -1 1 1) @x8690 @x8679 (hypothesis $x1889) false) (or $x7618 $x1888 $x1896 $x2791)))) +(let ((@x9238 (unit-resolution (unit-resolution @x7250 @x6588 $x7184) @x9237 @x9235 (hypothesis $x7158) false))) +(let ((@x8782 (unit-resolution (lemma @x9238 (or $x7252 $x7102 (not $x7366) (not $x7556) $x1896 (not $x7353))) @x8781 @x8621 @x8620 @x9060 @x7570 @x9059 false))) +(let ((@x8908 (unit-resolution (lemma @x8782 (or $x7620 $x1896 $x1888 $x2791)) @x7615 @x7570 @x7608 $x7620))) (let ((@x7245 (mp ((_ quant-inst ?v1!18) (or $x3700 (or $x2791 $x6615))) (rewrite (= (or $x3700 (or $x2791 $x6615)) (or $x3700 $x2791 $x6615))) (or $x3700 $x2791 $x6615)))) -(let ((@x8285 (unit-resolution @x7245 @x7616 @x7607 (unit-resolution @x8693 @x7592 @x7571 @x7607 $x7618) false))) -(unit-resolution (lemma @x8285 (or $x2806 $x1896)) @x8434 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +(unit-resolution (lemma (unit-resolution @x7245 @x7618 @x7608 @x8908 false) (or $x2806 $x1896)) @x8073 (unit-resolution @x8072 (lemma @x8164 $x3737) $x2811) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) diff -r 4c51341245a1 -r 5c95c94952df src/HOL/SMT_Examples/Boogie_Max.certs --- a/src/HOL/SMT_Examples/Boogie_Max.certs Wed Apr 08 18:58:28 2015 +0200 +++ b/src/HOL/SMT_Examples/Boogie_Max.certs Wed Apr 08 19:05:57 2015 +0200 @@ -1,4 +1,4 @@ -9c420ec314a920506e90cf4b4e40b4ee3ab35dec 779 0 +9c420ec314a920506e90cf4b4e40b4ee3ab35dec 778 0 unsat ((set-logic AUFLIA) (declare-fun ?v0!3 () Int) @@ -9,11 +9,11 @@ (let (($x109 (= v_b_max_G_3$ v_b_max_G_2$))) (let ((?x135 (v_b_array$ v_b_k_G_1$))) (let (($x136 (= ?x135 v_b_max_G_3$))) -(let (($x1878 (forall ((?v0 Int) )(!(let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) +(let (($x1878 (forall ((?v0 Int) )(! (let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) (let (($x733 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) -(or $x1157 $x733 $x746))))) :pattern ( (v_b_array$ ?v0) ))) +(or $x1157 $x733 $x746))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17)) )) (let (($x1883 (not $x1878))) (let (($x1886 (or $x1883 $x136))) @@ -61,12 +61,12 @@ (let (($x1445 (>= ?x1461 0))) (let (($x1453 (not $x1445))) (let (($x1907 (not $x1904))) -(let ((@x2149 (hypothesis $x1907))) +(let ((@x2130 (hypothesis $x1907))) (let ((?x744 (* (- 1) v_b_max_G_3$))) (let ((?x1781 (+ v_b_max_G_1$ ?x744))) (let (($x1782 (<= ?x1781 0))) (let (($x1780 (= v_b_max_G_1$ v_b_max_G_3$))) -(let ((@x2162 (mp (unit-resolution (def-axiom (or $x1904 $x145)) @x2149 $x145) (symm (commutativity (= $x1780 $x145)) (= $x145 $x1780)) $x1780))) +(let ((@x2143 (mp (unit-resolution (def-axiom (or $x1904 $x145)) @x2130 $x145) (symm (commutativity (= $x1780 $x145)) (= $x145 $x1780)) $x1780))) (let (($x1436 (not $x1070))) (let ((?x62 (v_b_array$ v_b_k_G_0$))) (let (($x63 (= ?x62 v_b_max_G_1$))) @@ -89,13 +89,13 @@ (let (($x1273 (not $x1242))) (let (($x1274 (or $x1273 $x1247 $x900 $x1011))) (let (($x1275 (not $x1274))) -(let (($x1861 (forall ((?v0 Int) )(!(let ((?x46 (v_b_array$ ?v0))) +(let (($x1861 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x86 (= ?x46 v_b_max_G_4$))) (let (($x622 (<= (+ v_b_length$ (* (- 1) ?v0)) 0))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) (let (($x1216 (or $x1157 $x622 $x86))) -(not $x1216))))))) :pattern ( (v_b_array$ ?v0) ))) +(not $x1216))))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17)) )) (let (($x1866 (or $x1861 $x1275))) (let (($x1869 (not $x1866))) @@ -111,11 +111,11 @@ (let (($x1922 (or $x1875 $x1919))) (let (($x1925 (not $x1922))) (let (($x1403 (not $x63))) -(let (($x1853 (forall ((?v0 Int) )(!(let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x1853 (forall ((?v0 Int) )(! (let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) (let (($x548 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) -(or $x1157 $x548 $x561))))) :pattern ( (v_b_array$ ?v0) ))) +(or $x1157 $x548 $x561))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17)) )) (let (($x1858 (not $x1853))) (let ((?x30 (v_b_array$ 0))) @@ -125,11 +125,11 @@ (let (($x1931 (not $x1928))) (let (($x1934 (or $x851 $x1931))) (let (($x1937 (not $x1934))) -(let (($x1845 (forall ((?v0 Int) )(!(let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) +(let (($x1845 (forall ((?v0 Int) )(! (let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) (let (($x524 (>= ?v0 1))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) -(or $x1157 $x524 $x534))))) :pattern ( (v_b_array$ ?v0) ))) +(or $x1157 $x524 $x534))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17)) )) (let (($x1850 (not $x1845))) (let (($x1940 (or $x1850 $x1937))) @@ -148,11 +148,11 @@ (let (($x495 (<= v_b_length$ 0))) (let (($x496 (not $x495))) (let (($x511 (and $x496 $x31))) -(let (($x752 (forall ((?v0 Int) )(let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) +(let (($x752 (forall ((?v0 Int) )(! (let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) (let (($x521 (>= ?v0 0))) (let (($x738 (and $x521 (not (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0))))) (let (($x741 (not $x738))) -(or $x741 $x746)))))) +(or $x741 $x746))))) :qid k!17)) )) (let (($x755 (not $x752))) (let (($x758 (or $x755 $x136))) @@ -167,17 +167,17 @@ (let (($x670 (and $x661 $x571 $x573))) (let (($x675 (not $x670))) (let (($x798 (or $x675 $x795))) -(let (($x649 (forall ((?v0 Int) )(let (($x521 (>= ?v0 0))) +(let (($x649 (forall ((?v0 Int) )(! (let (($x521 (>= ?v0 0))) (let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0))))) (let (($x629 (not $x626))) -(or $x629 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_4$)) 0)))))) +(or $x629 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_4$)) 0))))) :qid k!17)) )) -(let (($x635 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x635 (exists ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x86 (= ?x46 v_b_max_G_4$))) (let (($x521 (>= ?v0 0))) (let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0))))) (let (($x629 (not $x626))) -(or $x629 $x86))))))) +(or $x629 $x86)))))) :qid k!17)) )) (let (($x638 (not $x635))) (let (($x652 (or $x638 $x649))) @@ -186,21 +186,21 @@ (let (($x617 (not $x612))) (let (($x658 (or $x617 $x655))) (let (($x801 (and $x658 $x798))) -(let (($x567 (forall ((?v0 Int) )(let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x567 (forall ((?v0 Int) )(! (let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) (let (($x521 (>= ?v0 0))) (let (($x553 (and $x521 (not (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0))))) (let (($x556 (not $x553))) -(or $x556 $x561)))))) +(or $x556 $x561))))) :qid k!17)) )) (let (($x591 (and $x50 $x567 $x63 $x571 $x573))) (let (($x596 (not $x591))) (let (($x804 (or $x596 $x801))) (let (($x807 (and $x50 $x804))) -(let (($x541 (forall ((?v0 Int) )(let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) +(let (($x541 (forall ((?v0 Int) )(! (let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) (let (($x521 (>= ?v0 0))) (let (($x526 (and $x521 (not (>= ?v0 1))))) (let (($x529 (not $x526))) -(or $x529 $x534)))))) +(or $x529 $x534))))) :qid k!17)) )) (let (($x544 (not $x541))) (let (($x810 (or $x544 $x807))) @@ -208,11 +208,11 @@ (let (($x819 (not (or (not $x511) $x813)))) (let (($x138 (=> (and $x136 false) true))) (let (($x139 (and $x136 $x138))) -(let (($x134 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x134 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x132 (<= ?x46 v_b_max_G_3$))) (let (($x43 (<= 0 ?v0))) (let (($x131 (and $x43 (< ?v0 v_b_p_G_1$)))) -(=> $x131 $x132)))))) +(=> $x131 $x132))))) :qid k!17)) )) (let (($x140 (=> $x134 $x139))) (let (($x141 (and $x134 $x140))) @@ -231,19 +231,19 @@ (let (($x129 (and true (and $x55 (and $x102 $x126))))) (let (($x142 (=> $x129 $x141))) (let (($x155 (=> (and true (and $x55 (and (< v_b_p_G_0$ v_b_length$) $x55))) (and $x142 $x153)))) -(let (($x91 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x91 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x89 (<= ?x46 v_b_max_G_4$))) (let (($x43 (<= 0 ?v0))) (let (($x85 (and $x43 (< ?v0 v_b_length$)))) -(=> $x85 $x89)))))) +(=> $x85 $x89))))) :qid k!17)) )) (let (($x92 (=> $x91 true))) (let (($x93 (and $x91 $x92))) -(let (($x88 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x88 (exists ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x86 (= ?x46 v_b_max_G_4$))) (let (($x43 (<= 0 ?v0))) (let (($x85 (and $x43 (< ?v0 v_b_length$)))) -(=> $x85 $x86)))))) +(=> $x85 $x86))))) :qid k!17)) )) (let (($x94 (=> $x88 $x93))) (let (($x69 (<= v_b_length$ v_b_p_G_0$))) @@ -251,19 +251,19 @@ (let (($x83 (and true (and $x55 $x81)))) (let (($x96 (=> $x83 (and $x88 $x94)))) (let (($x64 (and $x63 $x55))) -(let (($x61 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x61 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x59 (<= ?x46 v_b_max_G_1$))) (let (($x43 (<= 0 ?v0))) (let (($x57 (and $x43 (< ?v0 v_b_p_G_0$)))) -(=> $x57 $x59)))))) +(=> $x57 $x59))))) :qid k!17)) )) (let (($x67 (and true (and $x55 (and $x61 $x64))))) (let (($x157 (=> (and $x50 $x67) (and $x96 $x155)))) -(let (($x49 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x49 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x47 (<= ?x46 v_b_max_G_0$))) (let (($x43 (<= 0 ?v0))) (let (($x45 (and $x43 (< ?v0 1)))) -(=> $x45 $x47)))))) +(=> $x45 $x47))))) :qid k!17)) )) (let (($x159 (=> $x49 (and $x50 $x157)))) (let (($x32 (<= 0 0))) @@ -273,9 +273,9 @@ (let (($x41 (and true (and $x28 $x39)))) (let (($x161 (=> $x41 (and $x49 $x159)))) (let (($x162 (not $x161))) -(let (($x362 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x362 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x132 (<= ?x46 v_b_max_G_3$))) -(or (not (and (<= 0 ?v0) (< ?v0 v_b_p_G_1$))) $x132)))) +(or (not (and (<= 0 ?v0) (< ?v0 v_b_p_G_1$))) $x132))) :qid k!17)) )) (let (($x385 (or (not $x362) $x136))) (let (($x390 (and $x362 $x385))) @@ -298,36 +298,36 @@ (let (($x397 (or (not $x348) $x390))) (let (($x440 (and $x397 $x435))) (let (($x447 (or (not (and $x55 (and (< v_b_p_G_0$ v_b_length$) $x55))) $x440))) -(let (($x263 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x263 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x89 (<= ?x46 v_b_max_G_4$))) (let (($x43 (<= 0 ?v0))) (let (($x85 (and $x43 (< ?v0 v_b_length$)))) (let (($x253 (not $x85))) -(or $x253 $x89))))))) +(or $x253 $x89)))))) :qid k!17)) )) -(let (($x257 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x257 (exists ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x86 (= ?x46 v_b_max_G_4$))) (let (($x43 (<= 0 ?v0))) (let (($x85 (and $x43 (< ?v0 v_b_length$)))) (let (($x253 (not $x85))) -(or $x253 $x86))))))) +(or $x253 $x86)))))) :qid k!17)) )) (let (($x284 (or (not $x257) $x263))) (let (($x289 (and $x257 $x284))) (let (($x296 (or (not (and $x55 (and $x69 (and $x55 (and $x71 (and $x73 $x75)))))) $x289))) (let (($x452 (and $x296 $x447))) -(let (($x203 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x203 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x59 (<= ?x46 v_b_max_G_1$))) -(or (not (and (<= 0 ?v0) (< ?v0 v_b_p_G_0$))) $x59)))) +(or (not (and (<= 0 ?v0) (< ?v0 v_b_p_G_0$))) $x59))) :qid k!17)) )) (let (($x206 (and $x203 $x64))) (let (($x209 (and $x55 $x206))) (let (($x219 (and $x50 $x209))) (let (($x459 (or (not $x219) $x452))) (let (($x464 (and $x50 $x459))) -(let (($x196 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x196 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x47 (<= ?x46 v_b_max_G_0$))) -(or (not (and (<= 0 ?v0) (< ?v0 1))) $x47)))) +(or (not (and (<= 0 ?v0) (< ?v0 1))) $x47))) :qid k!17)) )) (let (($x471 (or (not $x196) $x464))) (let (($x476 (and $x196 $x471))) @@ -486,11 +486,11 @@ (let ((@x827 (and-elim (not-or-elim (mp (asserted $x162) @x823 $x819) $x511) $x31))) (let ((@x1690 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_max_G_0$ (v_b_array$ ?v0!0))) $x839)) (unit-resolution (def-axiom (or $x1149 (not $x839))) @x1726 (not $x839)) (trans @x827 @x1715 (= v_b_max_G_0$ (v_b_array$ ?v0!0))) false))) (let (($x1946 (or $x1154 $x1943))) -(let (($x1340 (forall ((?v0 Int) )(let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) +(let (($x1340 (forall ((?v0 Int) )(! (let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) (let (($x733 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) -(or $x1157 $x733 $x746)))))) +(or $x1157 $x733 $x746))))) :qid k!17)) )) (let (($x1348 (not (or (not $x1340) $x136)))) (let (($x1353 (or $x1318 $x1348))) @@ -499,30 +499,30 @@ (let (($x1367 (not (or $x1286 $x689 $x1359 $x1360 $x1361 $x1287 $x1362 $x1363 $x1364 $x1365)))) (let (($x1383 (or $x1367 $x1378))) (let (($x1391 (not (or $x600 $x1286 $x1287 (not $x1383))))) -(let (($x1224 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x1224 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x86 (= ?x46 v_b_max_G_4$))) (let (($x622 (<= (+ v_b_length$ (* (- 1) ?v0)) 0))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) (let (($x1216 (or $x1157 $x622 $x86))) -(not $x1216)))))))) +(not $x1216))))))) :qid k!17)) )) (let (($x1280 (or $x1224 $x1275))) (let (($x1293 (not (or $x661 $x1286 $x1287 $x1288 $x1289 $x1290 (not $x1280))))) (let (($x1396 (or $x1293 $x1391))) -(let (($x1199 (forall ((?v0 Int) )(let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x1199 (forall ((?v0 Int) )(! (let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) (let (($x548 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) -(or $x1157 $x548 $x561)))))) +(or $x1157 $x548 $x561))))) :qid k!17)) )) (let (($x1406 (not (or $x851 (not $x1199) $x1403 $x1286 $x1287 (not $x1396))))) (let (($x1411 (or $x851 $x1406))) -(let (($x1177 (forall ((?v0 Int) )(let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) +(let (($x1177 (forall ((?v0 Int) )(! (let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) (let (($x524 (>= ?v0 1))) (let (($x521 (>= ?v0 0))) (let (($x1157 (not $x521))) -(or $x1157 $x524 $x534)))))) +(or $x1157 $x524 $x534))))) :qid k!17)) )) (let (($x1420 (not (or (not $x1177) (not $x1411))))) (let (($x1425 (or $x1154 $x1420))) @@ -567,13 +567,13 @@ (let (($x887 (not (and $x881 (not $x884))))) (let (($x890 (or $x887 $x889))) (let (($x1022 (and $x890 $x1019))) -(let (($x877 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x877 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0))) (let (($x86 (= ?x46 v_b_max_G_4$))) (let (($x521 (>= ?v0 0))) (let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0))))) (let (($x629 (not $x626))) (let (($x632 (or $x629 $x86))) -(not $x632)))))))) +(not $x632))))))) :qid k!17)) )) (let (($x1025 (or $x877 $x1022))) (let (($x1031 (and $x600 $x571 $x573 $x71 $x73 $x75 $x1025))) @@ -683,30 +683,30 @@ (let ((@x996 (nnf-neg @x850 (nnf-neg (refl (~ $x851 $x851)) @x988 (~ (not $x807) $x989)) (~ (not $x810) $x993)))) (let ((@x1000 (mp~ (not-or-elim (mp (asserted $x162) @x823 $x819) (not $x813)) (nnf-neg (sk (~ $x544 $x841)) @x996 (~ (not $x813) $x997)) $x997))) (let ((@x1949 (mp (mp (mp @x1000 @x1132 $x1130) @x1427 $x1425) (monotonicity @x1945 (= $x1425 $x1946)) $x1946))) -(let ((@x2062 (unit-resolution (def-axiom (or $x1940 $x1934)) (unit-resolution @x1949 (lemma @x1690 $x1149) $x1943) $x1934))) -(let ((@x2069 (unit-resolution (def-axiom (or $x1937 $x851 $x1931)) (mp @x827 (symm (commutativity (= $x50 $x31)) (= $x31 $x50)) $x50) (or $x1937 $x1931)))) -(let ((@x2070 (unit-resolution @x2069 @x2062 $x1931))) -(let ((@x2170 (monotonicity (unit-resolution (def-axiom (or $x1904 $x144)) @x2149 $x144) (= ?x135 ?x62)))) -(let ((@x2173 (trans @x2170 (unit-resolution (def-axiom (or $x1928 $x63)) @x2070 $x63) (= ?x135 v_b_max_G_1$)))) -(let ((@x2174 (trans @x2173 (symm (unit-resolution (def-axiom (or $x1904 $x145)) @x2149 $x145) $x1780) $x136))) +(let ((@x2086 (unit-resolution (def-axiom (or $x1940 $x1934)) (unit-resolution @x1949 (lemma @x1690 $x1149) $x1943) $x1934))) +(let ((@x2093 (unit-resolution (def-axiom (or $x1937 $x851 $x1931)) (mp @x827 (symm (commutativity (= $x50 $x31)) (= $x31 $x50)) $x50) (or $x1937 $x1931)))) +(let ((@x2094 (unit-resolution @x2093 @x2086 $x1931))) +(let ((@x2151 (monotonicity (unit-resolution (def-axiom (or $x1904 $x144)) @x2130 $x144) (= ?x135 ?x62)))) +(let ((@x2154 (trans @x2151 (unit-resolution (def-axiom (or $x1928 $x63)) @x2094 $x63) (= ?x135 v_b_max_G_1$)))) +(let ((@x2155 (trans @x2154 (symm (unit-resolution (def-axiom (or $x1904 $x145)) @x2130 $x145) $x1780) $x136))) (let ((@x1523 (def-axiom (or $x1886 $x951)))) (let ((@x1808 (def-axiom (or $x1895 $x1318 $x1889)))) -(let ((@x2176 (unit-resolution @x1808 (unit-resolution @x1523 @x2174 $x1886) (unit-resolution (def-axiom (or $x1904 $x1892)) @x2149 $x1892) $x1318))) +(let ((@x2157 (unit-resolution @x1808 (unit-resolution @x1523 @x2155 $x1886) (unit-resolution (def-axiom (or $x1904 $x1892)) @x2130 $x1892) $x1318))) (let ((@x1812 (def-axiom (or $x1313 $x1436)))) -(let ((@x2181 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) (or $x1453 $x692 $x1070 (not $x1782))) (unit-resolution @x1812 @x2176 $x1436) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x1780) $x1782)) @x2162 $x1782) (unit-resolution (def-axiom (or $x1904 $x689)) @x2149 $x689) $x1453))) +(let ((@x2162 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) (or $x1453 $x692 $x1070 (not $x1782))) (unit-resolution @x1812 @x2157 $x1436) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x1780) $x1782)) @x2143 $x1782) (unit-resolution (def-axiom (or $x1904 $x689)) @x2130 $x689) $x1453))) (let ((@x1565 ((_ th-lemma arith triangle-eq) (or $x1563 $x1445)))) (let (($x1558 (= v_b_p_G_0$ ?v0!3))) (let ((?x1046 (* (- 1) ?v0!3))) (let ((?x1510 (+ v_b_p_G_0$ ?x1046))) (let (($x1560 (>= ?x1510 0))) (let (($x1522 (>= ?x686 (- 1)))) -(let ((@x2186 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1362 $x1522)) (unit-resolution (def-axiom (or $x1904 $x684)) @x2149 $x684) $x1522))) -(let ((@x2190 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1560 $x1048 (not $x1522))) (unit-resolution (def-axiom (or $x1313 $x1053)) @x2176 $x1053) @x2186 $x1560))) +(let ((@x2167 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1362 $x1522)) (unit-resolution (def-axiom (or $x1904 $x684)) @x2130 $x684) $x1522))) +(let ((@x2171 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1560 $x1048 (not $x1522))) (unit-resolution (def-axiom (or $x1313 $x1053)) @x2157 $x1053) @x2167 $x1560))) (let (($x1511 (<= ?x1510 0))) (let (($x1488 (>= (+ v_b_max_G_1$ ?x1068) 0))) (let (($x1955 (not $x1488))) -(let ((@x2193 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1955 $x1070 (not $x1782))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x1780) $x1782)) @x2162 $x1782) (unit-resolution @x1812 @x2176 $x1436) $x1955))) -(let ((@x2093 (unit-resolution (def-axiom (or $x1928 $x1853)) @x2070 $x1853))) +(let ((@x2174 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1955 $x1070 (not $x1782))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x1780) $x1782)) @x2143 $x1782) (unit-resolution @x1812 @x2157 $x1436) $x1955))) +(let ((@x2102 (unit-resolution (def-axiom (or $x1928 $x1853)) @x2094 $x1853))) (let (($x1476 (or $x1858 $x1298 $x1511 $x1488))) (let (($x1535 (<= (+ ?x937 (* (- 1) v_b_max_G_1$)) 0))) (let (($x1549 (>= (+ ?v0!3 ?x549) 0))) @@ -719,50 +719,49 @@ (let ((@x1497 (trans @x1509 (rewrite (= (>= (+ ?x549 ?v0!3) 0) $x1511)) (= $x1549 $x1511)))) (let ((@x1470 (monotonicity (monotonicity @x1497 @x1472 (= $x1501 (or $x1298 $x1511 $x1488))) (= $x1464 (or $x1858 (or $x1298 $x1511 $x1488)))))) (let ((@x1450 (trans @x1470 (rewrite (= (or $x1858 (or $x1298 $x1511 $x1488)) $x1476)) (= $x1464 $x1476)))) -(let ((@x2195 (unit-resolution (mp ((_ quant-inst ?v0!3) $x1464) @x1450 $x1476) @x2093 (unit-resolution (def-axiom (or $x1313 $x931)) @x2176 $x931) @x2193 $x1511))) -(let ((@x2196 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1558 (not $x1511) (not $x1560))) @x2195 @x2190 $x1558))) +(let ((@x2176 (unit-resolution (mp ((_ quant-inst ?v0!3) $x1464) @x1450 $x1476) @x2102 (unit-resolution (def-axiom (or $x1313 $x931)) @x2157 $x931) @x2174 $x1511))) +(let ((@x2177 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1558 (not $x1511) (not $x1560))) @x2176 @x2171 $x1558))) (let ((@x1551 (monotonicity (symm (hypothesis $x1558) (= ?v0!3 v_b_p_G_0$)) (= ?x937 ?x101)))) (let ((@x1540 (lemma (unit-resolution (hypothesis $x1563) (symm @x1551 $x1559) false) (or (not $x1558) $x1559)))) -(let ((@x2198 (lemma (unit-resolution @x1540 @x2196 (unit-resolution @x1565 @x2181 $x1563) false) $x1904))) -(let (($x1990 (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0))) -(let (($x1988 (= v_b_max_G_1$ v_b_max_G_4$))) -(let ((@x2109 (symm (unit-resolution (def-axiom (or $x1872 $x73)) (hypothesis $x1875) $x73) $x1988))) -(let (($x2025 (>= (+ v_b_max_G_1$ (* (- 1) (v_b_array$ ?v0!2))) 0))) -(let (($x901 (not $x900))) -(let (($x1835 (not $x1861))) -(let (($x2042 (= ?x62 v_b_max_G_4$))) -(let (($x2043 (or $x1286 (<= (+ v_b_length$ (* (- 1) v_b_k_G_0$)) 0) $x2042))) -(let ((@x2073 (trans (unit-resolution (def-axiom (or $x1928 $x63)) @x2070 $x63) (symm (hypothesis $x73) $x1988) $x2042))) -(let ((@x2076 (unit-resolution ((_ quant-inst v_b_k_G_0$) (or $x1835 (not $x2043))) (hypothesis $x1861) (unit-resolution (def-axiom (or $x2043 (not $x2042))) @x2073 $x2043) false))) -(let ((@x2115 (unit-resolution (lemma @x2076 (or $x1835 $x1289)) (unit-resolution (def-axiom (or $x1872 $x73)) (hypothesis $x1875) $x73) $x1835))) -(let ((@x2116 (unit-resolution (def-axiom (or $x1869 $x1861 $x1275)) @x2115 (unit-resolution (def-axiom (or $x1872 $x1866)) (hypothesis $x1875) $x1866) $x1275))) -(let ((@x2103 ((_ th-lemma arith farkas -1 -1 1) (hypothesis (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)) (hypothesis $x600) (hypothesis $x901) false))) -(let ((@x2106 (lemma @x2103 (or (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)) $x661 $x900)))) -(let ((@x2119 (unit-resolution @x2106 (unit-resolution (def-axiom (or $x1872 $x600)) (hypothesis $x1875) $x600) (unit-resolution (def-axiom (or $x1274 $x901)) @x2116 $x901) (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0))))) -(let (($x2032 (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0))) -(let (($x2056 (or $x1858 $x1247 $x2032 $x2025))) -(let (($x2009 (<= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_1$)) 0))) -(let (($x2001 (>= (+ ?v0!2 ?x549) 0))) -(let (($x2010 (or $x1247 $x2001 $x2009))) -(let (($x2060 (or $x1858 $x2010))) -(let (($x2026 (= (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2)) 0) $x2025))) -(let (($x2020 (= $x2009 (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2)) 0)))) -(let (($x2038 (= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2))))) -(let ((@x2052 (trans (monotonicity (rewrite $x2038) $x2020) (rewrite $x2026) (= $x2009 $x2025)))) -(let ((@x2018 (monotonicity (rewrite (= (+ ?v0!2 ?x549) (+ ?x549 ?v0!2))) (= $x2001 (>= (+ ?x549 ?v0!2) 0))))) -(let ((@x2036 (trans @x2018 (rewrite (= (>= (+ ?x549 ?v0!2) 0) $x2032)) (= $x2001 $x2032)))) -(let ((@x2031 (monotonicity (monotonicity @x2036 @x2052 (= $x2010 (or $x1247 $x2032 $x2025))) (= $x2060 (or $x1858 (or $x1247 $x2032 $x2025)))))) -(let ((@x2079 (trans @x2031 (rewrite (= (or $x1858 (or $x1247 $x2032 $x2025)) $x2056)) (= $x2060 $x2056)))) -(let ((@x2122 (unit-resolution (mp ((_ quant-inst ?v0!2) $x2060) @x2079 $x2056) @x2093 (unit-resolution (def-axiom (or $x1274 $x897)) @x2116 $x897) (or $x2032 $x2025)))) -(let ((@x2125 ((_ th-lemma arith farkas 1 -1 1) (unit-resolution (def-axiom (or $x1274 (not $x1011))) @x2116 (not $x1011)) (unit-resolution @x2122 @x2119 $x2025) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x1988) $x1990)) @x2109 $x1990) false))) -(let ((@x2133 (unit-resolution (def-axiom (or $x1925 $x1875 $x1919)) (lemma @x2125 $x1872) (unit-resolution (def-axiom (or $x1928 $x1922)) @x2070 $x1922) $x1919))) -(let ((@x2003 (unit-resolution (def-axiom (or $x1913 $x1901 $x1907)) (unit-resolution (def-axiom (or $x1916 $x1910)) @x2133 $x1910) $x1910))) -(let ((@x2004 (unit-resolution @x2003 @x2198 $x1901))) -(let ((@x1528 (trans (monotonicity (hypothesis $x107) (= ?x135 ?x101)) (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (= ?x135 v_b_max_G_2$)))) -(let ((@x1529 (trans @x1528 (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) $x136))) -(let ((@x1532 (lemma (unit-resolution (hypothesis $x951) @x1529 false) (or $x136 $x1361 $x1359 $x1360)))) -(let ((@x2140 (unit-resolution @x1532 (unit-resolution (def-axiom (or $x1898 $x109)) @x2004 $x109) (unit-resolution (def-axiom (or $x1898 $x104)) @x2004 $x104) (unit-resolution (def-axiom (or $x1898 $x107)) @x2004 $x107) $x136))) -(let ((@x2128 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1362 $x1522)) (unit-resolution (def-axiom (or $x1898 $x684)) @x2004 $x684) $x1522))) +(let ((@x2179 (lemma (unit-resolution @x1540 @x2177 (unit-resolution @x1565 @x2162 $x1563) false) $x1904))) +(let ((@x2036 (symm (unit-resolution (def-axiom (or $x1872 $x73)) (hypothesis $x1875) $x73) (= v_b_max_G_1$ v_b_max_G_4$)))) +(let (($x2082 (or (not (= v_b_max_G_1$ v_b_max_G_4$)) (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0)))) +(let ((@x2084 (unit-resolution ((_ th-lemma arith triangle-eq) $x2082) @x2036 (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0)))) +(let ((@x2018 (hypothesis $x1875))) +(let (($x2015 (= ?x62 v_b_max_G_4$))) +(let (($x2016 (or $x1286 (<= (+ v_b_length$ (* (- 1) v_b_k_G_0$)) 0) $x2015))) +(let ((@x2038 (unit-resolution (def-axiom (or $x2016 (not $x2015))) (trans (hypothesis $x63) @x2036 $x2015) $x2016))) +(let ((@x2041 (unit-resolution (def-axiom (or $x1869 $x1861 $x1275)) (unit-resolution (def-axiom (or $x1872 $x1866)) @x2018 $x1866) (hypothesis $x1274) $x1861))) +(let ((@x2042 (unit-resolution ((_ quant-inst v_b_k_G_0$) (or (not $x1861) (not $x2016))) @x2041 @x2038 false))) +(let ((@x2096 (unit-resolution (lemma @x2042 (or $x1872 $x1403 $x1275)) @x2018 (unit-resolution (def-axiom (or $x1928 $x63)) @x2094 $x63) $x1275))) +(let (($x2055 (>= (+ v_b_max_G_1$ (* (- 1) (v_b_array$ ?v0!2))) 0))) +(let ((@x2077 ((_ th-lemma arith farkas -1 -1 1) (hypothesis (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)) (hypothesis $x600) (hypothesis (not $x900)) false))) +(let ((@x2080 (lemma @x2077 (or (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)) $x661 $x900)))) +(let ((@x2100 (unit-resolution @x2080 (unit-resolution (def-axiom (or $x1872 $x600)) @x2018 $x600) (unit-resolution (def-axiom (or $x1274 (not $x900))) @x2096 (not $x900)) (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0))))) +(let (($x2023 (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0))) +(let (($x2063 (or $x1858 $x1247 $x2023 $x2055))) +(let (($x2033 (<= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x1999 (>= (+ ?v0!2 ?x549) 0))) +(let (($x2034 (or $x1247 $x1999 $x2033))) +(let (($x2064 (or $x1858 $x2034))) +(let (($x2056 (= (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2)) 0) $x2055))) +(let (($x2052 (= $x2033 (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2)) 0)))) +(let (($x2049 (= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2))))) +(let ((@x2059 (trans (monotonicity (rewrite $x2049) $x2052) (rewrite $x2056) (= $x2033 $x2055)))) +(let ((@x2004 (monotonicity (rewrite (= (+ ?v0!2 ?x549) (+ ?x549 ?v0!2))) (= $x1999 (>= (+ ?x549 ?v0!2) 0))))) +(let ((@x2047 (trans @x2004 (rewrite (= (>= (+ ?x549 ?v0!2) 0) $x2023)) (= $x1999 $x2023)))) +(let ((@x2068 (monotonicity (monotonicity @x2047 @x2059 (= $x2034 (or $x1247 $x2023 $x2055))) (= $x2064 (or $x1858 (or $x1247 $x2023 $x2055)))))) +(let ((@x2072 (trans @x2068 (rewrite (= (or $x1858 (or $x1247 $x2023 $x2055)) $x2063)) (= $x2064 $x2063)))) +(let ((@x2104 (unit-resolution (mp ((_ quant-inst ?v0!2) $x2064) @x2072 $x2063) @x2102 (unit-resolution (def-axiom (or $x1274 $x897)) @x2096 $x897) (or $x2023 $x2055)))) +(let ((@x2106 ((_ th-lemma arith farkas -1 1 1) (unit-resolution @x2104 @x2100 $x2055) (unit-resolution (def-axiom (or $x1274 (not $x1011))) @x2096 (not $x1011)) @x2084 false))) +(let ((@x2114 (unit-resolution (def-axiom (or $x1925 $x1875 $x1919)) (lemma @x2106 $x1872) (unit-resolution (def-axiom (or $x1928 $x1922)) @x2094 $x1922) $x1919))) +(let ((@x2001 (unit-resolution (def-axiom (or $x1913 $x1901 $x1907)) (unit-resolution (def-axiom (or $x1916 $x1910)) @x2114 $x1910) $x1910))) +(let ((@x2025 (unit-resolution @x2001 @x2179 $x1901))) +(let ((@x1557 (trans (monotonicity (hypothesis $x107) (= ?x135 ?x101)) (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (= ?x135 v_b_max_G_2$)))) +(let ((@x1975 (trans @x1557 (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) $x136))) +(let ((@x1978 (lemma (unit-resolution (hypothesis $x951) @x1975 false) (or $x136 $x1361 $x1359 $x1360)))) +(let ((@x2121 (unit-resolution @x1978 (unit-resolution (def-axiom (or $x1898 $x109)) @x2025 $x109) (unit-resolution (def-axiom (or $x1898 $x104)) @x2025 $x104) (unit-resolution (def-axiom (or $x1898 $x107)) @x2025 $x107) $x136))) +(let ((@x2109 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1362 $x1522)) (unit-resolution (def-axiom (or $x1898 $x684)) @x2025 $x684) $x1522))) (let ((@x1460 (unit-resolution @x1808 (unit-resolution @x1523 (hypothesis $x136) $x1886) (hypothesis $x1892) $x1318))) (let ((@x1539 (def-axiom (or $x1313 $x1053)))) (let (($x1965 (not $x1560))) @@ -775,6 +774,6 @@ (let ((@x1962 (unit-resolution (mp ((_ quant-inst ?v0!3) $x1464) @x1450 $x1476) (hypothesis $x1853) (unit-resolution (def-axiom (or $x1313 $x931)) @x1460 $x931) (or $x1511 $x1488)))) (let ((@x1969 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1558 (not $x1511) $x1965)) (unit-resolution @x1962 @x1958 $x1511) (or $x1558 $x1965)))) (let ((@x1971 ((_ th-lemma arith farkas -1 1 1) (unit-resolution @x1969 (unit-resolution @x1540 @x1952 (not $x1558)) $x1965) (hypothesis $x1522) (unit-resolution @x1539 @x1460 $x1053) false))) -(let ((@x2130 (unit-resolution (lemma @x1971 (or $x951 (not $x1522) $x1858 $x689 $x1895 $x1359 $x1361)) @x2093 (or $x951 (not $x1522) $x689 $x1895 $x1359 $x1361)))) -(unit-resolution @x2130 @x2128 @x2140 (unit-resolution (def-axiom (or $x1898 $x692)) @x2004 $x692) (unit-resolution (def-axiom (or $x1898 $x1892)) @x2004 $x1892) (unit-resolution (def-axiom (or $x1898 $x104)) @x2004 $x104) (unit-resolution (def-axiom (or $x1898 $x109)) @x2004 $x109) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +(let ((@x2111 (unit-resolution (lemma @x1971 (or $x951 (not $x1522) $x1858 $x689 $x1895 $x1359 $x1361)) @x2102 (or $x951 (not $x1522) $x689 $x1895 $x1359 $x1361)))) +(unit-resolution @x2111 @x2109 @x2121 (unit-resolution (def-axiom (or $x1898 $x692)) @x2025 $x692) (unit-resolution (def-axiom (or $x1898 $x1892)) @x2025 $x1892) (unit-resolution (def-axiom (or $x1898 $x104)) @x2025 $x104) (unit-resolution (def-axiom (or $x1898 $x109)) @x2025 $x109) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) diff -r 4c51341245a1 -r 5c95c94952df src/HOL/SMT_Examples/SMT_Examples.certs --- a/src/HOL/SMT_Examples/SMT_Examples.certs Wed Apr 08 18:58:28 2015 +0200 +++ b/src/HOL/SMT_Examples/SMT_Examples.certs Wed Apr 08 19:05:57 2015 +0200 @@ -149,13 +149,13 @@ (let ((@x47 (monotonicity (rewrite (= (= a$ a$) true)) (= (and (= a$ a$) $x39) (and true $x39))))) (let ((@x51 (trans @x47 (rewrite (= (and true $x39) $x39)) (= (and (= a$ a$) $x39) $x39)))) (let ((@x57 (mp (asserted (not (and (= a$ a$) $x39))) (monotonicity @x51 (= (not (and (= a$ a$) $x39)) $x52)) $x52))) -(let (($x480 (forall ((?v0 A$) (?v1 A$) )(!(let ((?x30 (symm_f$ ?v1 ?v0))) +(let (($x480 (forall ((?v0 A$) (?v1 A$) )(! (let ((?x30 (symm_f$ ?v1 ?v0))) (let ((?x29 (symm_f$ ?v0 ?v1))) -(= ?x29 ?x30))) :pattern ( (symm_f$ ?v0 ?v1) ) :pattern ( (symm_f$ ?v1 ?v0) ))) +(= ?x29 ?x30))) :pattern ( (symm_f$ ?v0 ?v1) ) :pattern ( (symm_f$ ?v1 ?v0) ) :qid k!8)) )) -(let (($x32 (forall ((?v0 A$) (?v1 A$) )(let ((?x30 (symm_f$ ?v1 ?v0))) +(let (($x32 (forall ((?v0 A$) (?v1 A$) )(! (let ((?x30 (symm_f$ ?v1 ?v0))) (let ((?x29 (symm_f$ ?v0 ?v1))) -(= ?x29 ?x30)))) +(= ?x29 ?x30))) :qid k!8)) )) (let ((?x30 (symm_f$ ?0 ?1))) (let ((?x29 (symm_f$ ?1 ?0))) @@ -816,26 +816,26 @@ (let ((@x77 (monotonicity (rewrite (= (not $x50) $x48)) (= (and (not $x50) $x63) (and $x48 $x63))))) (let (($x57 (not $x50))) (let (($x67 (and $x57 $x63))) -(let (($x41 (forall ((?v0 Int) )(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1))) -(or (p$ ?v0) $x28))) +(let (($x41 (forall ((?v0 Int) )(! (let (($x32 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1))) +(or (p$ ?v0) $x28)) :qid k!5)) )) -(or (not (p$ ?v0)) $x32))) +(or (not (p$ ?v0)) $x32)) :qid k!5)) )) (let (($x44 (not $x41))) -(let (($x52 (forall ((?v1 Int) )(let (($x28 (p$ ?v1))) +(let (($x52 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1))) (let (($x48 (p$ ?v0!0))) -(or $x48 $x28)))) +(or $x48 $x28))) :qid k!5)) )) (let ((@x69 (nnf-neg (refl (~ $x57 $x57)) (sk (~ (not $x52) $x63)) (~ (not (or $x50 $x52)) $x67)))) -(let (($x34 (forall ((?v0 Int) )(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1))) -(or (p$ ?v0) $x28))) +(let (($x34 (forall ((?v0 Int) )(! (let (($x32 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1))) +(or (p$ ?v0) $x28)) :qid k!5)) )) (let (($x28 (p$ ?v0))) -(=> $x28 $x32)))) +(=> $x28 $x32))) :qid k!5)) )) (let (($x35 (not $x34))) -(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1))) -(or (p$ ?0) $x28))) +(let (($x32 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1))) +(or (p$ ?0) $x28)) :qid k!5)) )) (let ((@x43 (quant-intro (rewrite (= (=> (p$ ?0) $x32) (or (not (p$ ?0)) $x32))) (= $x34 $x41)))) (let ((@x72 (mp~ (mp (asserted $x35) (monotonicity @x43 (= $x35 $x44)) $x44) (trans (sk (~ $x44 (not (or $x50 $x52)))) @x69 (~ $x44 $x67)) $x67))) @@ -848,21 +848,21 @@ ((set-logic AUFLIA) (declare-fun ?v0!0 () A$) (proof -(let (($x517 (forall ((?v0 A$) )(!(let (($x40 (p$ x$ ?v0))) -(not $x40)) :pattern ( (p$ x$ ?v0) ))) +(let (($x517 (forall ((?v0 A$) )(! (let (($x40 (p$ x$ ?v0))) +(not $x40)) :pattern ( (p$ x$ ?v0) ) :qid k!9)) )) (let (($x44 (p$ x$ c$))) (let (($x91 (= $x44 x$))) -(let (($x510 (forall ((?v0 Bool) (?v1 A$) )(!(let (($x29 (p$ ?v0 ?v1))) -(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) ))) +(let (($x510 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1))) +(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) ) :qid k!8)) )) -(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1))) -(= $x29 ?v0))) +(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1))) +(= $x29 ?v0)) :qid k!8)) )) (let ((@x514 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x510)))) (let ((@x64 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36)))) -(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1))) -(= $x29 ?v0))) +(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1))) +(= $x29 ?v0)) :qid k!8)) )) (let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36)))) (let ((@x515 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x64 $x36) @x514 $x510))) @@ -872,11 +872,11 @@ (let (($x179 (= $x73 x$))) (let (($x85 (or $x73 $x44))) (let (($x81 (not $x44))) -(let (($x69 (forall ((?v0 A$) )(let (($x40 (p$ x$ ?v0))) -(not $x40))) +(let (($x69 (forall ((?v0 A$) )(! (let (($x40 (p$ x$ ?v0))) +(not $x40)) :qid k!9)) )) (let (($x84 (or $x69 $x81))) -(let (($x42 (exists ((?v0 A$) )(p$ x$ ?v0)) +(let (($x42 (exists ((?v0 A$) )(! (p$ x$ ?v0) :qid k!9)) )) (let (($x54 (not $x42))) (let (($x55 (= $x54 $x44))) @@ -902,21 +902,21 @@ ((set-logic AUFLIA) (declare-fun ?v0!3 () A$) (proof -(let (($x584 (forall ((?v0 A$) )(!(let (($x52 (p$ x$ ?v0))) -(not $x52)) :pattern ( (p$ x$ ?v0) ))) +(let (($x584 (forall ((?v0 A$) )(! (let (($x52 (p$ x$ ?v0))) +(not $x52)) :pattern ( (p$ x$ ?v0) ) :qid k!10)) )) (let (($x55 (p$ x$ c$))) (let (($x230 (= $x55 x$))) -(let (($x561 (forall ((?v0 Bool) (?v1 A$) )(!(let (($x29 (p$ ?v0 ?v1))) -(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) ))) +(let (($x561 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1))) +(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) ) :qid k!8)) )) -(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1))) -(= $x29 ?v0))) +(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1))) +(= $x29 ?v0)) :qid k!8)) )) (let ((@x565 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x561)))) (let ((@x75 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36)))) -(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1))) -(= $x29 ?v0))) +(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1))) +(= $x29 ?v0)) :qid k!8)) )) (let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36)))) (let ((@x566 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x75 $x36) @x565 $x561))) @@ -926,11 +926,11 @@ (let (($x141 (= $x124 x$))) (let (($x136 (or $x124 $x55))) (let (($x132 (not $x55))) -(let (($x120 (forall ((?v0 A$) )(let (($x52 (p$ x$ ?v0))) -(not $x52))) +(let (($x120 (forall ((?v0 A$) )(! (let (($x52 (p$ x$ ?v0))) +(not $x52)) :qid k!10)) )) (let (($x135 (or $x120 $x132))) -(let (($x54 (exists ((?v0 A$) )(p$ x$ ?v0)) +(let (($x54 (exists ((?v0 A$) )(! (p$ x$ ?v0) :qid k!10)) )) (let (($x65 (not $x54))) (let (($x66 (= $x65 $x55))) @@ -951,14 +951,6 @@ (let ((@x211 ((_ quant-inst c$) $x549))) (unit-resolution @x211 @x199 (unit-resolution @x592 @x199 $x584) false))))))))))))))))))))))))))))))))))))))) -1b3bdde0d609ebf7ad7472d1510134c9c367d283 7 0 -unsat -((set-logic AUFLIA) -(proof -(let ((@x35 (monotonicity (rewrite (= (= 3 3) true)) (= (not (= 3 3)) (not true))))) -(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3 3)) false)))) -(mp (asserted (not (= 3 3))) @x39 false))))) - ee1b9a27124d1797593a214fc9b1585b73aca864 26 0 unsat ((set-logic AUFLIA) @@ -967,14 +959,14 @@ (let ((@x48 (monotonicity (rewrite (= (=> $x28 (p$ y$)) (or (not $x28) (p$ y$)))) (= (not (=> $x28 (p$ y$))) (not (or (not $x28) (p$ y$))))))) (let ((@x51 (mp (asserted (not (=> $x28 (p$ y$)))) @x48 (not (or (not $x28) (p$ y$)))))) (let ((@x49 (not-or-elim @x51 $x28))) -(let (($x486 (forall ((?v0 A$) )(!(let (($x30 (p$ ?v0))) -(not $x30)) :pattern ( (p$ ?v0) ))) +(let (($x486 (forall ((?v0 A$) )(! (let (($x30 (p$ ?v0))) +(not $x30)) :pattern ( (p$ ?v0) ) :qid k!8)) )) -(let (($x34 (forall ((?v0 A$) )(let (($x30 (p$ ?v0))) -(not $x30))) +(let (($x34 (forall ((?v0 A$) )(! (let (($x30 (p$ ?v0))) +(not $x30)) :qid k!8)) )) (let ((@x490 (quant-intro (refl (= (not (p$ ?0)) (not (p$ ?0)))) (= $x34 $x486)))) -(let (($x31 (exists ((?v0 A$) )(p$ ?v0)) +(let (($x31 (exists ((?v0 A$) )(! (p$ ?v0) :qid k!8)) )) (let (($x32 (not $x31))) (let ((@x59 (monotonicity (iff-true @x49 (= $x28 true)) (= (ite $x28 $x32 $x34) (ite true $x32 $x34))))) @@ -986,6 +978,14 @@ (let ((@x70 ((_ quant-inst x$) $x156))) (unit-resolution @x70 @x491 @x49 false))))))))))))))))))) +1b3bdde0d609ebf7ad7472d1510134c9c367d283 7 0 +unsat +((set-logic AUFLIA) +(proof +(let ((@x35 (monotonicity (rewrite (= (= 3 3) true)) (= (not (= 3 3)) (not true))))) +(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3 3)) false)))) +(mp (asserted (not (= 3 3))) @x39 false))))) + a90c5a0ce94c691b0e4756f87e5d5fdbfd876893 7 0 unsat ((set-logic AUFLIRA) @@ -1059,7 +1059,7 @@ (let (($x154 (>= (+ ?x29 ?x151) 0.0))) (let (($x129 (= ?x29 ?x78))) (let (($x190 (not $x181))) -(let ((@x155 (hypothesis $x95))) +(let ((@x161 (hypothesis $x95))) (let ((?x102 (ite $x95 y$ ?x45))) (let ((?x114 (* (- 1.0) ?x102))) (let ((?x115 (+ ?x78 ?x113 ?x114))) @@ -1088,39 +1088,39 @@ (let ((@x125 (trans (monotonicity @x67 (= $x41 (not $x65))) (monotonicity @x120 (= (not $x65) $x121)) (= $x41 $x121)))) (let ((@x126 (mp (asserted $x41) @x125 $x121))) (let (($x139 (= y$ ?x102))) -(let ((@x169 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x139) (<= (+ y$ ?x114) 0.0))) (unit-resolution (def-axiom (or $x96 $x139)) @x155 $x139) (<= (+ y$ ?x114) 0.0)))) +(let ((@x174 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x139) (<= (+ y$ ?x114) 0.0))) (unit-resolution (def-axiom (or $x96 $x139)) @x161 $x139) (<= (+ y$ ?x114) 0.0)))) (let ((?x150 (+ ?x44 ?x113))) (let (($x153 (<= ?x150 0.0))) (let (($x134 (= ?x44 ?x90))) (let (($x84 (not $x83))) -(let ((@x159 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x71 $x84 $x96)) (hypothesis $x83) @x155 $x71))) +(let ((@x159 ((_ th-lemma arith triangle-eq) (or (not $x133) $x149)))) +(let ((@x160 (unit-resolution @x159 (unit-resolution (def-axiom (or $x84 $x133)) (hypothesis $x83) $x133) $x149))) +(let ((@x164 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x71 $x84 $x96)) (hypothesis $x83) @x161 $x71))) (let ((@x128 (def-axiom (or $x72 $x129)))) -(let ((@x163 ((_ th-lemma arith triangle-eq) (or (not $x129) $x154)))) -(let ((@x173 ((_ th-lemma arith triangle-eq) (or (not $x133) $x149)))) -(let ((@x174 (unit-resolution @x173 (unit-resolution (def-axiom (or $x84 $x133)) (hypothesis $x83) $x133) $x149))) -(let ((@x175 ((_ th-lemma arith farkas -1 -1 1 1) @x174 @x169 @x126 (unit-resolution @x163 (unit-resolution @x128 @x159 $x129) $x154) false))) +(let ((@x168 ((_ th-lemma arith triangle-eq) (or (not $x129) $x154)))) +(let ((@x175 ((_ th-lemma arith farkas 1 -1 -1 1) @x174 (unit-resolution @x168 (unit-resolution @x128 @x164 $x129) $x154) @x126 @x160 false))) (let ((@x138 (def-axiom (or $x83 $x134)))) -(let ((@x184 (unit-resolution @x138 (unit-resolution (lemma @x175 (or $x84 $x96)) @x155 $x84) $x134))) -(let ((@x189 ((_ th-lemma arith farkas 2 -1 -1 1 1) @x155 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x169 @x126 (hypothesis $x181) false))) +(let ((@x184 (unit-resolution @x138 (unit-resolution (lemma @x175 (or $x84 $x96)) @x161 $x84) $x134))) +(let ((@x189 ((_ th-lemma arith farkas 2 -1 -1 1 1) @x161 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x174 @x126 (hypothesis $x181) false))) (let ((@x198 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x130) $x181)) (hypothesis $x130) (hypothesis $x190) false))) (let ((@x199 (lemma @x198 (or (not $x130) $x181)))) -(let ((@x201 (unit-resolution @x199 (unit-resolution (lemma @x189 (or $x190 $x96)) @x155 $x190) (not $x130)))) +(let ((@x201 (unit-resolution @x199 (unit-resolution (lemma @x189 (or $x190 $x96)) @x161 $x190) (not $x130)))) (let ((@x132 (def-axiom (or $x71 $x130)))) -(let ((@x204 (unit-resolution @x163 (unit-resolution @x128 (unit-resolution @x132 @x201 $x71) $x129) $x154))) -(let ((@x205 ((_ th-lemma arith farkas 2 1 1 1 1) (unit-resolution (lemma @x175 (or $x84 $x96)) @x155 $x84) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x169 @x126 @x204 false))) +(let ((@x204 (unit-resolution @x168 (unit-resolution @x128 (unit-resolution @x132 @x201 $x71) $x129) $x154))) +(let ((@x205 ((_ th-lemma arith farkas 2 1 1 1 1) (unit-resolution (lemma @x175 (or $x84 $x96)) @x161 $x84) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x174 @x126 @x204 false))) (let ((@x206 (lemma @x205 $x96))) (let ((@x212 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x83 $x95 $x72)) (hypothesis $x71) @x206 $x83))) (let ((@x136 (def-axiom (or $x84 $x133)))) -(let ((@x216 (unit-resolution @x163 (unit-resolution @x128 (hypothesis $x71) $x129) $x154))) +(let ((@x216 (unit-resolution @x168 (unit-resolution @x128 (hypothesis $x71) $x129) $x154))) (let ((?x147 (+ ?x45 ?x114))) (let (($x178 (<= ?x147 0.0))) (let (($x140 (= ?x45 ?x102))) (let ((@x221 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x140) $x178)) (unit-resolution (def-axiom (or $x95 $x140)) @x206 $x140) $x178))) -(let ((@x222 ((_ th-lemma arith farkas 2 1 1 1 1) @x206 @x221 @x126 @x216 (unit-resolution @x173 (unit-resolution @x136 @x212 $x133) $x149) false))) +(let ((@x222 ((_ th-lemma arith farkas 2 1 1 1 1) @x206 @x221 @x126 @x216 (unit-resolution @x159 (unit-resolution @x136 @x212 $x133) $x149) false))) (let ((@x226 (unit-resolution @x199 (unit-resolution @x132 (lemma @x222 $x72) $x130) $x181))) (let ((@x231 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) (hypothesis $x134) (lemma ((_ th-lemma arith farkas 1 -1 -1 1) @x221 @x126 @x226 (hypothesis $x153) false) (not $x153)) false))) (let ((@x234 (unit-resolution @x136 (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) $x133))) -((_ th-lemma arith farkas -2 1 -1 -1 1) (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) @x221 @x126 @x226 (unit-resolution @x173 @x234 $x149) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +((_ th-lemma arith farkas -2 1 -1 -1 1) (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) @x221 @x126 @x226 (unit-resolution @x159 @x234 $x149) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) bc11d479eb44aa63c2efc812af856ec331477415 16 0 unsat @@ -1390,114 +1390,33 @@ (let ((@x433 (mp (not-or-elim @x205 (not $x57)) @x432 $x422))) (unit-resolution @x433 @x488 (mp @x478 @x480 $x44) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -5c29815a1036cbd6b831d4adbe102069cf0d830f 20 0 -unsat -((set-logic AUFLIRA) -(proof -(let ((?x30 (* 2.0 x$))) -(let ((?x32 (+ ?x30 1.0))) -(let ((?x28 (+ x$ x$))) -(let (($x33 (< ?x28 ?x32))) -(let (($x34 (or false $x33))) -(let (($x35 (or $x33 $x34))) -(let (($x36 (not $x35))) -(let ((@x67 (monotonicity (rewrite (= (< ?x30 (+ 1.0 ?x30)) true)) (= (not (< ?x30 (+ 1.0 ?x30))) (not true))))) -(let ((@x71 (trans @x67 (rewrite (= (not true) false)) (= (not (< ?x30 (+ 1.0 ?x30))) false)))) -(let ((?x40 (+ 1.0 ?x30))) -(let (($x43 (< ?x30 ?x40))) -(let ((@x45 (monotonicity (rewrite (= ?x28 ?x30)) (rewrite (= ?x32 ?x40)) (= $x33 $x43)))) -(let ((@x52 (trans (monotonicity @x45 (= $x34 (or false $x43))) (rewrite (= (or false $x43) $x43)) (= $x34 $x43)))) -(let ((@x59 (trans (monotonicity @x45 @x52 (= $x35 (or $x43 $x43))) (rewrite (= (or $x43 $x43) $x43)) (= $x35 $x43)))) -(let ((@x62 (monotonicity @x59 (= $x36 (not $x43))))) -(mp (asserted $x36) (trans @x62 @x71 (= $x36 false)) false)))))))))))))))))) - -32286f9c5e71eb2b15c18f86f04c80931e2e307b 933 0 +32286f9c5e71eb2b15c18f86f04c80931e2e307b 878 0 unsat ((set-logic AUFLIA) (proof -(let (($x91 (= x1$ x10$))) -(let (($x582 (not $x91))) -(let (($x92 (= x2$ x11$))) +(let ((?x184 (* (- 1) x7$))) +(let (($x363 (>= x7$ 0))) +(let ((?x370 (ite $x363 x7$ ?x184))) +(let ((?x381 (* (- 1) ?x370))) +(let ((?x668 (+ x7$ ?x381))) +(let (($x670 (>= ?x668 0))) +(let (($x707 (not $x670))) (let ((?x655 (* (- 1) x11$))) (let ((?x656 (+ x2$ ?x655))) (let (($x657 (<= ?x656 0))) +(let (($x766 (not $x657))) +(let (($x92 (= x2$ x11$))) +(let (($x583 (not $x92))) +(let (($x91 (= x1$ x10$))) (let ((?x235 (* (- 1) x10$))) -(let (($x313 (>= x10$ 0))) -(let ((?x320 (ite $x313 x10$ ?x235))) -(let ((?x331 (* (- 1) ?x320))) -(let ((?x662 (+ x10$ ?x331))) -(let (($x1382 (<= ?x662 0))) -(let (($x1530 (not $x1382))) -(let ((?x116 (* (- 1) x3$))) -(let (($x463 (>= x3$ 0))) -(let ((?x470 (ite $x463 x3$ ?x116))) -(let ((?x481 (* (- 1) ?x470))) -(let ((?x680 (+ x3$ ?x481))) -(let (($x672 (>= ?x680 0))) -(let (($x588 (= x3$ ?x470))) -(let (($x766 (not $x657))) -(let ((@x1256 (hypothesis $x766))) -(let ((?x676 (+ ?x116 ?x481))) -(let (($x1697 (>= ?x676 0))) -(let (($x589 (= ?x116 ?x470))) -(let (($x464 (not $x463))) -(let ((@x688 (hypothesis $x464))) -(let ((@x593 (def-axiom (or $x463 $x589)))) -(let ((@x1779 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x1697)) (hypothesis $x589) (hypothesis (not $x1697)) false))) -(let ((@x1780 (lemma @x1779 (or (not $x589) $x1697)))) +(let ((?x652 (+ x1$ ?x235))) +(let (($x653 (<= ?x652 0))) (let ((?x133 (* (- 1) x4$))) (let (($x438 (>= x4$ 0))) (let ((?x445 (ite $x438 x4$ ?x133))) (let ((?x456 (* (- 1) ?x445))) -(let ((?x674 (+ ?x133 ?x456))) -(let (($x675 (<= ?x674 0))) (let ((?x677 (+ x4$ ?x456))) (let (($x678 (<= ?x677 0))) -(let (($x784 (not $x678))) -(let (($x745 (not $x675))) -(let ((@x1834 (hypothesis $x745))) -(let (($x597 (= ?x133 ?x445))) -(let (($x738 (not $x597))) -(let ((@x740 ((_ th-lemma arith triangle-eq) (or $x738 $x675)))) -(let ((@x1837 (lemma (unit-resolution @x740 (hypothesis $x597) @x1834 false) (or $x738 $x675)))) -(let ((@x601 (def-axiom (or $x438 $x597)))) -(let ((@x1840 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 (not $x438) $x784)) (unit-resolution @x601 (unit-resolution @x1837 @x1834 $x738) $x438) @x1834 $x784))) -(let (($x596 (= x4$ ?x445))) -(let ((@x599 (def-axiom (or (not $x438) $x596)))) -(let ((@x1841 (unit-resolution @x599 (unit-resolution @x601 (unit-resolution @x1837 @x1834 $x738) $x438) $x596))) -(let ((@x693 ((_ th-lemma arith triangle-eq) (or (not $x596) $x678)))) -(let ((@x1843 (lemma (unit-resolution @x693 @x1841 @x1840 false) $x675))) -(let ((?x218 (* (- 1) x9$))) -(let (($x288 (>= x9$ 0))) -(let ((?x295 (ite $x288 x9$ ?x218))) -(let ((?x306 (* (- 1) ?x295))) -(let ((?x659 (+ x9$ ?x306))) -(let (($x660 (<= ?x659 0))) -(let (($x636 (= x9$ ?x295))) -(let (($x338 (>= x8$ 0))) -(let (($x339 (not $x338))) -(let (($x661 (>= ?x659 0))) -(let (($x733 (not $x661))) -(let ((?x201 (* (- 1) x8$))) -(let ((?x345 (ite $x338 x8$ ?x201))) -(let ((?x356 (* (- 1) ?x345))) -(let ((?x665 (+ x8$ ?x356))) -(let (($x667 (>= ?x665 0))) -(let (($x628 (= x8$ ?x345))) -(let (($x439 (not $x438))) -(let ((@x763 (hypothesis $x439))) -(let ((@x1701 (hypothesis $x339))) -(let (($x289 (not $x288))) -(let ((@x1371 (hypothesis $x289))) -(let ((?x666 (+ ?x201 ?x356))) -(let (($x875 (<= ?x666 0))) -(let (($x629 (= ?x201 ?x345))) -(let ((@x633 (def-axiom (or $x338 $x629)))) -(let (($x1626 (not $x875))) -(let ((@x1635 (hypothesis $x1626))) -(let ((@x1640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x629) $x875)) (hypothesis $x629) @x1635 false))) -(let ((@x1641 (lemma @x1640 (or (not $x629) $x875)))) -(let ((@x1738 (unit-resolution @x1641 (unit-resolution @x633 @x1701 $x629) $x875))) (let ((?x150 (* (- 1) x5$))) (let (($x413 (>= x5$ 0))) (let ((?x420 (ite $x413 x5$ ?x150))) @@ -1505,30 +1424,39 @@ (let ((?x757 (+ x5$ ?x431))) (let (($x776 (>= ?x757 0))) (let (($x604 (= x5$ ?x420))) +(let (($x313 (>= x10$ 0))) +(let ((?x320 (ite $x313 x10$ ?x235))) +(let ((?x331 (* (- 1) ?x320))) +(let ((?x662 (+ x10$ ?x331))) +(let (($x1381 (<= ?x662 0))) (let (($x644 (= x10$ ?x320))) (let (($x645 (= ?x235 ?x320))) -(let (($x1136 (not $x645))) -(let ((?x1104 (+ ?x235 ?x331))) -(let (($x1250 (<= ?x1104 0))) -(let (($x1262 (not $x1250))) -(let ((?x1357 (+ ?x218 ?x306))) -(let (($x1370 (>= ?x1357 0))) +(let (($x1121 (not $x645))) +(let ((?x1103 (+ ?x235 ?x331))) +(let (($x1249 (<= ?x1103 0))) +(let (($x1261 (not $x1249))) +(let ((?x218 (* (- 1) x9$))) +(let (($x288 (>= x9$ 0))) +(let ((?x295 (ite $x288 x9$ ?x218))) +(let ((?x306 (* (- 1) ?x295))) +(let ((?x1356 (+ ?x218 ?x306))) +(let (($x1369 (>= ?x1356 0))) (let (($x637 (= ?x218 ?x295))) +(let (($x289 (not $x288))) (let (($x414 (not $x413))) (let ((@x844 (hypothesis $x414))) -(let ((?x167 (* (- 1) x6$))) (let (($x388 (>= x6$ 0))) -(let ((?x395 (ite $x388 x6$ ?x167))) -(let ((?x406 (* (- 1) ?x395))) -(let ((?x671 (+ x6$ ?x406))) -(let (($x673 (>= ?x671 0))) -(let (($x612 (= x6$ ?x395))) -(let ((@x1079 (hypothesis $x288))) +(let (($x596 (= x4$ ?x445))) +(let ((@x1078 (hypothesis $x288))) +(let ((?x201 (* (- 1) x8$))) +(let (($x338 (>= x8$ 0))) +(let ((?x345 (ite $x338 x8$ ?x201))) +(let ((?x356 (* (- 1) ?x345))) +(let ((?x665 (+ x8$ ?x356))) +(let (($x667 (>= ?x665 0))) (let (($x860 (not $x667))) -(let ((?x931 (+ ?x150 ?x431))) -(let (($x933 (<= ?x931 0))) -(let (($x605 (= ?x150 ?x420))) -(let ((@x1000 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x933)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x933))) +(let (($x439 (not $x438))) +(let ((@x763 (hypothesis $x439))) (let ((?x432 (+ x4$ x6$ ?x431))) (let (($x611 (>= ?x432 0))) (let (($x433 (= ?x432 0))) @@ -1538,16 +1466,19 @@ (let (($x308 (= ?x307 0))) (let ((?x357 (+ x7$ x9$ ?x356))) (let (($x358 (= ?x357 0))) -(let ((?x184 (* (- 1) x7$))) -(let (($x363 (>= x7$ 0))) -(let ((?x370 (ite $x363 x7$ ?x184))) -(let ((?x381 (* (- 1) ?x370))) (let ((?x382 (+ x6$ x8$ ?x381))) (let (($x383 (= ?x382 0))) +(let ((?x167 (* (- 1) x6$))) +(let ((?x395 (ite $x388 x6$ ?x167))) +(let ((?x406 (* (- 1) ?x395))) (let ((?x407 (+ x5$ x7$ ?x406))) (let (($x408 (= ?x407 0))) (let ((?x457 (+ x3$ x5$ ?x456))) (let (($x458 (= ?x457 0))) +(let ((?x116 (* (- 1) x3$))) +(let (($x463 (>= x3$ 0))) +(let ((?x470 (ite $x463 x3$ ?x116))) +(let ((?x481 (* (- 1) ?x470))) (let ((?x482 (+ x2$ x4$ ?x481))) (let (($x483 (= ?x482 0))) (let ((?x98 (* (- 1) x2$))) @@ -1619,9 +1550,10 @@ (let ((@x294 (monotonicity (rewrite (= $x72 $x289)) (= ?x221 (ite $x289 ?x218 x9$))))) (let ((@x302 (monotonicity (trans @x294 (rewrite (= (ite $x289 ?x218 x9$) ?x295)) (= ?x221 ?x295)) (= ?x227 (+ ?x201 ?x295))))) (let ((@x312 (trans (monotonicity @x302 (= $x232 (= x10$ (+ ?x201 ?x295)))) (rewrite (= (= x10$ (+ ?x201 ?x295)) $x308)) (= $x232 $x308)))) -(let ((@x344 (monotonicity (rewrite (= $x66 $x339)) (= ?x204 (ite $x339 ?x201 x8$))))) -(let ((@x352 (monotonicity (trans @x344 (rewrite (= (ite $x339 ?x201 x8$) ?x345)) (= ?x204 ?x345)) (= ?x210 (+ ?x184 ?x345))))) -(let ((@x362 (trans (monotonicity @x352 (= $x215 (= x9$ (+ ?x184 ?x345)))) (rewrite (= (= x9$ (+ ?x184 ?x345)) $x358)) (= $x215 $x358)))) +(let ((@x344 (monotonicity (rewrite (= $x66 (not $x338))) (= ?x204 (ite (not $x338) ?x201 x8$))))) +(let ((@x349 (trans @x344 (rewrite (= (ite (not $x338) ?x201 x8$) ?x345)) (= ?x204 ?x345)))) +(let ((@x355 (monotonicity (monotonicity @x349 (= ?x210 (+ ?x184 ?x345))) (= $x215 (= x9$ (+ ?x184 ?x345)))))) +(let ((@x362 (trans @x355 (rewrite (= (= x9$ (+ ?x184 ?x345)) $x358)) (= $x215 $x358)))) (let ((@x518 (monotonicity @x362 (monotonicity @x312 @x337 (= $x252 (and $x308 $x333))) (= $x255 (and $x358 (and $x308 $x333)))))) (let ((@x369 (monotonicity (rewrite (= $x60 (not $x363))) (= ?x187 (ite (not $x363) ?x184 x7$))))) (let ((@x374 (trans @x369 (rewrite (= (ite (not $x363) ?x184 x7$) ?x370)) (= ?x187 ?x370)))) @@ -1639,9 +1571,10 @@ (let ((@x444 (monotonicity (rewrite (= $x42 $x439)) (= ?x136 (ite $x439 ?x133 x4$))))) (let ((@x452 (monotonicity (trans @x444 (rewrite (= (ite $x439 ?x133 x4$) ?x445)) (= ?x136 ?x445)) (= ?x142 (+ ?x116 ?x445))))) (let ((@x462 (trans (monotonicity @x452 (= $x147 (= x5$ (+ ?x116 ?x445)))) (rewrite (= (= x5$ (+ ?x116 ?x445)) $x458)) (= $x147 $x458)))) -(let ((@x469 (monotonicity (rewrite (= $x36 $x464)) (= ?x119 (ite $x464 ?x116 x3$))))) -(let ((@x477 (monotonicity (trans @x469 (rewrite (= (ite $x464 ?x116 x3$) ?x470)) (= ?x119 ?x470)) (= ?x125 (+ ?x98 ?x470))))) -(let ((@x487 (trans (monotonicity @x477 (= $x130 (= x4$ (+ ?x98 ?x470)))) (rewrite (= (= x4$ (+ ?x98 ?x470)) $x483)) (= $x130 $x483)))) +(let ((@x469 (monotonicity (rewrite (= $x36 (not $x463))) (= ?x119 (ite (not $x463) ?x116 x3$))))) +(let ((@x474 (trans @x469 (rewrite (= (ite (not $x463) ?x116 x3$) ?x470)) (= ?x119 ?x470)))) +(let ((@x480 (monotonicity (monotonicity @x474 (= ?x125 (+ ?x98 ?x470))) (= $x130 (= x4$ (+ ?x98 ?x470)))))) +(let ((@x487 (trans @x480 (rewrite (= (= x4$ (+ ?x98 ?x470)) $x483)) (= $x130 $x483)))) (let ((@x533 (monotonicity @x487 (monotonicity @x462 (monotonicity @x437 @x524 $x526) (= $x267 $x528)) (= $x270 (and $x483 $x528))))) (let ((@x494 (monotonicity (rewrite (= $x29 (not $x488))) (= ?x101 (ite (not $x488) ?x98 x2$))))) (let ((@x499 (trans @x494 (rewrite (= (ite (not $x488) ?x98 x2$) ?x495)) (= ?x101 ?x495)))) @@ -1694,11 +1627,13 @@ (let ((@x554 (not-or-elim (mp (asserted $x95) @x552 $x548) $x537))) (let ((@x558 (and-elim @x554 $x433))) (let ((@x799 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x611)) @x558 $x611))) -(let (($x626 (<= ?x382 0))) -(let ((@x560 (and-elim @x554 $x383))) -(let ((@x703 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x626)) @x560 $x626))) -(let ((?x668 (+ x7$ ?x381))) -(let (($x670 (>= ?x668 0))) +(let ((?x931 (+ ?x150 ?x431))) +(let (($x933 (<= ?x931 0))) +(let (($x605 (= ?x150 ?x420))) +(let ((@x1000 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x933)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x933))) +(let (($x634 (<= ?x357 0))) +(let ((@x561 (and-elim @x554 $x358))) +(let ((@x857 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x634)) @x561 $x634))) (let (($x620 (= x7$ ?x370))) (let ((?x777 (+ ?x167 ?x406))) (let (($x780 (<= ?x777 0))) @@ -1710,66 +1645,88 @@ (let (($x619 (>= ?x407 0))) (let ((@x559 (and-elim @x554 $x408))) (let ((@x853 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x408) $x619)) @x559 $x619))) +(let ((?x671 (+ x6$ ?x406))) (let (($x936 (<= ?x671 0))) +(let (($x612 (= x6$ ?x395))) +(let ((@x615 (def-axiom (or $x389 $x612)))) (let ((@x950 ((_ th-lemma arith triangle-eq) (or (not $x612) $x936)))) -(let ((@x1029 (unit-resolution @x950 (unit-resolution (def-axiom (or $x389 $x612)) @x1026 $x612) $x936))) +(let ((@x1029 (unit-resolution @x950 (unit-resolution @x615 @x1026 $x612) $x936))) (let ((@x1032 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1029 @x853 @x1027 @x844 @x1026 false) (or $x363 $x413 $x389)))) (let ((@x617 (def-axiom (or $x388 $x613)))) -(let ((@x1064 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x613) $x780)) (unit-resolution @x617 (unit-resolution @x1032 @x1027 @x844 $x389) $x613) $x780))) -(let ((@x1065 ((_ th-lemma arith farkas 1 1 1 1 1) (unit-resolution @x1032 @x1027 @x844 $x389) @x853 @x1027 @x844 @x1064 false))) +(let ((@x1063 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x613) $x780)) (unit-resolution @x617 (unit-resolution @x1032 @x1027 @x844 $x389) $x613) $x780))) +(let ((@x1064 ((_ th-lemma arith farkas 1 1 1 1 1) (unit-resolution @x1032 @x1027 @x844 $x389) @x1027 @x853 @x844 @x1063 false))) (let ((@x623 (def-axiom (or $x364 $x620)))) -(let ((@x1088 (unit-resolution @x623 (unit-resolution (lemma @x1065 (or $x363 $x413)) @x844 $x363) $x620))) +(let ((@x1087 (unit-resolution @x623 (unit-resolution (lemma @x1064 (or $x363 $x413)) @x844 $x363) $x620))) (let ((@x926 ((_ th-lemma arith triangle-eq) (or (not $x620) $x670)))) -(let ((@x1089 (unit-resolution @x926 @x1088 $x670))) +(let ((@x1088 (unit-resolution @x926 @x1087 $x670))) +(let (($x626 (<= ?x382 0))) +(let ((@x560 (and-elim @x554 $x383))) +(let ((@x703 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x626)) @x560 $x626))) (let ((@x858 (hypothesis $x667))) -(let (($x634 (<= ?x357 0))) -(let ((@x561 (and-elim @x554 $x358))) -(let ((@x857 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x634)) @x561 $x634))) -(let ((@x1105 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x857 @x858 @x1089 @x703 @x763 @x799 @x1000 @x844 @x1079 false) (or $x438 $x860 $x413 $x289)))) +(let ((@x1104 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x858 @x703 @x1088 @x857 @x763 @x1000 @x844 @x799 @x1078 false) (or $x438 $x860 $x413 $x289)))) +(let (($x628 (= x8$ ?x345))) (let (($x840 (<= ?x668 0))) (let ((@x865 ((_ th-lemma arith triangle-eq) (or (not $x620) $x840)))) -(let ((@x1090 (unit-resolution @x865 @x1088 $x840))) +(let ((@x1089 (unit-resolution @x865 @x1087 $x840))) (let (($x627 (>= ?x382 0))) (let ((@x835 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x627)) @x560 $x627))) -(let ((@x1242 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x611) $x388 (not $x933) $x413)) @x763 @x799 @x1000 @x844 $x388))) -(let ((@x615 (def-axiom (or $x389 $x612)))) -(let ((@x1095 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x338 (not $x840) (not $x627) (not $x936) (not $x619) $x413)))) -(let ((@x1245 (unit-resolution @x1095 (unit-resolution @x950 (unit-resolution @x615 @x1242 $x612) $x936) @x835 @x844 @x1090 @x853 $x338))) -(let ((@x631 (def-axiom (or $x339 $x628)))) -(let ((@x1132 ((_ th-lemma arith triangle-eq) (or (not $x628) $x667)))) -(let ((@x1247 (unit-resolution @x1132 (unit-resolution @x631 @x1245 $x628) (unit-resolution @x1105 @x763 @x844 @x1079 $x860) false))) -(let ((@x1328 (unit-resolution @x599 (unit-resolution (lemma @x1247 (or $x438 $x413 $x289)) @x844 @x1079 $x438) $x596))) -(let ((@x1147 ((_ th-lemma arith triangle-eq) (or (not $x636) $x661)))) -(let ((@x1148 (unit-resolution @x1147 (unit-resolution (def-axiom (or $x289 $x636)) @x1079 $x636) $x661))) -(let ((@x1152 ((_ th-lemma arith triangle-eq) (or (not $x636) $x660)))) -(let ((@x1153 (unit-resolution @x1152 (unit-resolution (def-axiom (or $x289 $x636)) @x1079 $x636) $x660))) +(let ((@x1241 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x933) $x413 (not $x611) $x388)) @x763 @x799 @x1000 @x844 $x388))) +(let ((@x1094 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x338 (not $x627) (not $x840) (not $x936) (not $x619) $x413)))) +(let ((@x1244 (unit-resolution @x1094 (unit-resolution @x950 (unit-resolution @x615 @x1241 $x612) $x936) @x835 @x844 @x1089 @x853 $x338))) +(let ((@x631 (def-axiom (or (not $x338) $x628)))) +(let ((@x1117 ((_ th-lemma arith triangle-eq) (or (not $x628) $x667)))) +(let ((@x1246 (unit-resolution @x1117 (unit-resolution @x631 @x1244 $x628) (unit-resolution @x1104 @x763 @x844 @x1078 $x860) false))) +(let ((@x599 (def-axiom (or $x439 $x596)))) +(let ((@x1327 (unit-resolution @x599 (unit-resolution (lemma @x1246 (or $x438 $x413 $x289)) @x844 @x1078 $x438) $x596))) +(let ((@x693 ((_ th-lemma arith triangle-eq) (or (not $x596) $x678)))) +(let ((?x659 (+ x9$ ?x306))) +(let (($x661 (>= ?x659 0))) +(let (($x636 (= x9$ ?x295))) +(let ((@x639 (def-axiom (or $x289 $x636)))) +(let ((@x1146 ((_ th-lemma arith triangle-eq) (or (not $x636) $x661)))) +(let ((@x1147 (unit-resolution @x1146 (unit-resolution @x639 @x1078 $x636) $x661))) +(let (($x660 (<= ?x659 0))) +(let ((@x1151 ((_ th-lemma arith triangle-eq) (or (not $x636) $x660)))) +(let ((@x1152 (unit-resolution @x1151 (unit-resolution @x639 @x1078 $x636) $x660))) (let (($x658 (>= ?x656 0))) +(let (($x673 (>= ?x671 0))) (let (($x706 (not $x673))) (let (($x663 (<= ?x665 0))) (let (($x643 (>= ?x307 0))) (let ((@x562 (and-elim @x554 $x308))) -(let ((@x1126 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x643)) @x562 $x643))) +(let ((@x1138 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x643)) @x562 $x643))) (let (($x314 (not $x313))) -(let (($x1165 (not $x644))) +(let (($x1164 (not $x644))) (let (($x664 (>= ?x662 0))) (let (($x734 (not $x664))) (let (($x710 (not $x658))) (let ((@x711 (hypothesis $x710))) (let ((@x731 (hypothesis $x661))) (let ((@x716 (hypothesis $x664))) -(let (($x847 (not $x613))) -(let (($x839 (>= ?x777 0))) -(let (($x872 (not $x839))) -(let (($x681 (<= ?x680 0))) (let (($x621 (= ?x184 ?x370))) (let (($x823 (not $x621))) (let ((?x778 (+ ?x184 ?x381))) (let (($x779 (<= ?x778 0))) (let (($x902 (not $x779))) (let (($x669 (>= ?x677 0))) +(let (($x464 (not $x463))) +(let ((@x688 (hypothesis $x464))) +(let (($x847 (not $x613))) +(let (($x839 (>= ?x777 0))) +(let (($x872 (not $x839))) +(let ((?x680 (+ x3$ ?x481))) +(let (($x681 (<= ?x680 0))) +(let ((?x676 (+ ?x116 ?x481))) (let (($x679 (<= ?x676 0))) -(let ((@x762 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x679)) (unit-resolution @x593 @x688 $x589) $x679))) -(let ((@x941 (unit-resolution @x740 (unit-resolution @x601 @x763 $x597) $x675))) +(let (($x589 (= ?x116 ?x470))) +(let ((@x758 (unit-resolution (def-axiom (or $x463 $x589)) @x688 $x589))) +(let ((@x762 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x679)) @x758 $x679))) +(let ((?x674 (+ ?x133 ?x456))) +(let (($x675 (<= ?x674 0))) +(let (($x597 (= ?x133 ?x445))) +(let ((@x601 (def-axiom (or $x438 $x597)))) +(let ((@x941 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x597) $x675)) (unit-resolution @x601 @x763 $x597) $x675))) +(let ((@x944 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 (not $x675))) @x941 @x763 $x678))) (let ((@x869 (hypothesis $x681))) (let ((@x868 (hypothesis $x678))) (let ((@x867 (hypothesis $x839))) @@ -1789,17 +1746,17 @@ (let (($x642 (<= ?x307 0))) (let ((@x730 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x642)) @x562 $x642))) (let ((@x870 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -2 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 @x841 @x866 false))) -(let ((@x879 (unit-resolution (lemma @x870 (or $x364 (not $x681) $x733 $x734 $x658 $x784 $x872)) @x867 @x731 @x716 @x711 @x868 @x869 $x364))) +(let ((@x874 (lemma @x870 (or $x364 (not $x681) (not $x661) $x734 $x658 (not $x678) $x872)))) (let ((@x625 (def-axiom (or $x363 $x621)))) -(let ((@x825 ((_ th-lemma arith triangle-eq) (or $x823 $x779)))) -(let ((@x882 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 (unit-resolution @x825 (unit-resolution @x625 @x879 $x621) $x779) false))) -(let ((@x884 (lemma @x882 (or $x872 (not $x681) $x733 $x734 $x658 $x784)))) -(let ((@x945 (unit-resolution @x884 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 $x745)) @x941 @x763 $x678) @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872))) +(let ((@x880 (unit-resolution @x625 (unit-resolution @x874 @x867 @x731 @x716 @x711 @x868 @x869 $x364) $x621))) +(let ((@x882 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x779)) @x880 $x779) false))) +(let ((@x884 (lemma @x882 (or $x872 (not $x681) (not $x661) $x734 $x658 (not $x678))))) +(let ((@x945 (unit-resolution @x884 @x944 @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872))) (let ((@x892 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x839)) (hypothesis $x613) (hypothesis $x872) false))) (let ((@x893 (lemma @x892 (or $x847 $x839)))) (let ((@x948 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x945 $x847) $x388) $x612))) (let (($x775 (<= ?x757 0))) -(let ((@x954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 $x745 (not $x603) $x463 $x438)) @x763 @x687 @x688 @x941 $x413))) +(let ((@x954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x675) (not $x603) $x463 $x438)) @x763 @x687 @x688 @x941 $x413))) (let ((@x607 (def-axiom (or $x414 $x604)))) (let ((@x794 ((_ th-lemma arith triangle-eq) (or (not $x604) $x775)))) (let ((@x960 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 (not $x936) (not $x619) $x438 (not $x775) (not $x611))))) @@ -1807,39 +1764,44 @@ (let (($x602 (<= ?x457 0))) (let ((@x832 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x458) $x602)) @x557 $x602))) (let (($x932 (>= ?x674 0))) -(let ((@x966 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x738 $x932)) (unit-resolution @x601 @x763 $x597) $x932))) +(let ((@x966 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x597) $x932)) (unit-resolution @x601 @x763 $x597) $x932))) (let ((@x967 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x950 @x948 $x936) @x853 @x966 @x832 (unit-resolution @x865 (unit-resolution @x623 @x961 $x620) $x840) false))) -(let ((@x974 (unit-resolution (lemma @x967 (or $x438 $x733 $x734 $x658 $x463)) @x688 @x716 @x711 @x731 $x438))) +(let ((@x974 (unit-resolution (lemma @x967 (or $x438 (not $x661) $x734 $x658 $x463)) @x688 @x716 @x711 @x731 $x438))) (let ((@x828 ((_ th-lemma arith triangle-eq) (or (not $x596) $x669)))) -(let ((@x978 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x687 @x688 @x974 $x413))) +(let ((@x978 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 (not $x678))) (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x687 @x688 @x974 $x413))) (let ((@x791 ((_ th-lemma arith triangle-eq) (or (not $x604) $x776)))) (let ((@x981 (unit-resolution @x884 (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872))) (let ((@x984 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x981 $x847) $x388) $x612))) (let ((@x808 ((_ th-lemma arith triangle-eq) (or (not $x612) $x673)))) +(let (($x903 (not $x669))) +(let (($x817 (not $x776))) +(let (($x813 (not $x679))) +(let (($x733 (not $x661))) (let ((@x900 (hypothesis $x669))) (let (($x610 (<= ?x432 0))) (let ((@x812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x610)) @x558 $x610))) (let ((@x699 (hypothesis $x673))) -(let ((@x935 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -1 1 1) @x835 @x731 @x730 (hypothesis $x679) @x720 @x716 @x715 @x711 @x699 @x698 (hypothesis $x776) @x812 @x900 @x832 (hypothesis $x779) false))) -(let ((@x971 (lemma @x935 (or $x902 $x733 (not $x679) $x734 $x658 $x706 (not $x776) (not $x669))))) -(let ((@x986 (unit-resolution @x971 @x762 @x731 @x716 @x711 (unit-resolution @x808 @x984 $x673) (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) $x902))) -(let ((@x909 (lemma (unit-resolution @x825 (hypothesis $x621) (hypothesis $x902) false) (or $x823 $x779)))) +(let ((@x934 (hypothesis $x679))) +(let ((@x935 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -1 1 1) @x835 @x731 @x730 @x934 @x720 @x716 @x715 @x711 @x699 @x698 (hypothesis $x776) @x812 @x900 @x832 (hypothesis $x779) false))) +(let ((@x986 (unit-resolution (lemma @x935 (or $x902 $x733 $x813 $x734 $x658 $x706 $x817 $x903)) @x762 @x731 @x716 @x711 (unit-resolution @x808 @x984 $x673) (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) $x902))) +(let ((@x906 (hypothesis $x902))) +(let ((@x908 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x779)) (hypothesis $x621) @x906 false))) +(let ((@x909 (lemma @x908 (or $x823 $x779)))) (let ((@x989 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) $x620))) (let ((@x991 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -2 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x808 @x984 $x673) @x698 (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) @x812 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) @x832 (unit-resolution @x865 @x989 $x840) false))) (let ((@x972 (unit-resolution (lemma @x991 (or $x463 $x733 $x734 $x658)) @x716 @x731 @x711 $x463))) +(let (($x588 (= x3$ ?x470))) (let ((@x591 (def-axiom (or $x464 $x588)))) (let ((@x725 ((_ th-lemma arith triangle-eq) (or (not $x588) $x681)))) (let ((@x994 (unit-resolution @x725 (unit-resolution @x591 @x972 $x588) $x681))) -(let ((@x995 (unit-resolution @x884 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 $x745)) @x941 @x763 $x678) @x731 @x716 @x711 @x994 $x872))) -(let ((@x1013 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x995 $x847) $x388) $x612))) -(let ((@x1014 (unit-resolution @x950 @x1013 $x936))) -(let ((@x753 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x658 $x657)) @x711 $x657))) +(let ((@x1011 (unit-resolution @x893 (unit-resolution @x884 @x944 @x731 @x716 @x711 @x994 $x872) $x847))) +(let ((@x1014 (unit-resolution @x950 (unit-resolution @x615 (unit-resolution @x617 @x1011 $x388) $x612) $x936))) (let ((@x1001 (hypothesis $x936))) (let ((@x1004 ((_ th-lemma arith assign-bounds 1 1 1 1 1 2) (or $x363 (not $x936) (not $x619) $x438 (not $x611) (not $x933) $x413)))) (let ((@x1006 (unit-resolution @x623 (unit-resolution @x1004 @x844 @x799 @x853 @x763 @x1001 @x1000 $x363) $x620))) (let ((@x764 (hypothesis $x657))) (let ((@x1008 ((_ th-lemma arith farkas 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1) @x835 @x1001 @x853 @x844 @x731 @x730 @x720 @x716 @x715 @x764 @x687 @x941 @x869 @x763 (unit-resolution @x865 @x1006 $x840) false))) -(let ((@x1015 (unit-resolution (lemma @x1008 (or $x413 (not $x936) $x733 $x734 $x766 (not $x681) $x438)) @x1014 @x731 @x716 @x753 @x994 @x763 $x413))) +(let ((@x1015 (unit-resolution (lemma @x1008 (or $x413 (not $x936) $x733 $x734 $x766 (not $x681) $x438)) @x1014 @x731 @x716 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x658 $x657)) @x711 $x657) @x994 @x763 $x413))) (let ((@x1018 (unit-resolution @x960 (unit-resolution @x794 (unit-resolution @x607 @x1015 $x604) $x775) @x853 @x763 @x1014 @x799 $x363))) (let ((@x1021 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) @x832 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1018 $x620) $x840) @x835 @x1014 @x853 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x972 false))) (let ((@x1025 (unit-resolution (lemma @x1021 (or $x438 $x733 $x734 $x658)) @x716 @x731 @x711 $x438))) @@ -1849,501 +1811,484 @@ (let ((@x1040 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x1024)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x1024))) (let ((@x1043 (unit-resolution @x865 (unit-resolution @x623 (unit-resolution @x1032 @x844 @x1037 $x363) $x620) $x840))) (let ((@x1046 ((_ th-lemma arith farkas -1 1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1) (unit-resolution @x950 (unit-resolution @x615 @x1037 $x612) $x936) @x853 @x1043 @x835 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x1040 @x812 @x972 @x1037 false))) -(let ((@x1049 (unit-resolution (lemma @x1046 (or $x413 $x733 $x734 $x658)) @x716 @x731 @x711 $x413))) -(let ((@x895 (hypothesis $x463))) -(let ((@x897 (unit-resolution @x725 (unit-resolution @x591 @x895 $x588) $x681))) -(let ((@x901 ((_ th-lemma arith farkas -1/2 1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1) @x832 @x900 (hypothesis $x776) @x812 (hypothesis $x779) @x835 @x897 @x731 @x730 @x720 @x716 @x715 @x711 @x698 @x699 @x895 false))) -(let ((@x905 (lemma @x901 (or $x902 (not $x669) (not $x776) $x733 $x734 $x658 $x706 $x464)))) -(let ((@x1054 (unit-resolution @x905 (unit-resolution @x791 (unit-resolution @x607 @x1049 $x604) $x776) @x972 @x731 @x716 @x711 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) (unit-resolution @x808 (unit-resolution @x615 @x1037 $x612) $x673) $x902))) +(let ((@x1051 (unit-resolution (lemma @x1046 (or $x413 $x733 $x734 $x658)) @x716 @x731 @x711 $x413))) +(let ((@x897 (unit-resolution @x725 (unit-resolution @x591 (hypothesis $x463) $x588) $x681))) +(let ((@x901 ((_ th-lemma arith farkas -1/2 1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1) @x832 @x900 (hypothesis $x776) @x812 (hypothesis $x779) @x835 @x897 @x731 @x730 @x720 @x716 @x715 @x711 @x698 @x699 (hypothesis $x463) false))) +(let ((@x1054 (unit-resolution (lemma @x901 (or $x902 $x903 $x817 $x733 $x734 $x658 $x706 $x464)) (unit-resolution @x791 (unit-resolution @x607 @x1051 $x604) $x776) @x972 @x731 @x716 @x711 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) (unit-resolution @x808 (unit-resolution @x615 @x1037 $x612) $x673) $x902))) (let ((@x1057 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) $x620))) -(let (($x707 (not $x670))) -(let ((@x704 (hypothesis $x338))) -(let ((@x768 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1) @x731 @x704 @x730 @x720 @x716 @x715 @x764 @x763 @x688 @x762 false) (or $x463 $x733 $x339 $x734 $x766 $x438)))) -(let ((@x770 (unit-resolution @x591 (unit-resolution @x768 @x763 @x704 @x716 @x764 @x731 $x463) $x588))) -(let ((@x772 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1) (unit-resolution @x768 @x763 @x704 @x716 @x764 @x731 $x463) @x731 @x704 @x730 @x720 @x716 @x715 @x764 @x763 (unit-resolution @x725 @x770 $x681) false))) -(let ((@x774 (lemma @x772 (or $x438 $x733 $x339 $x734 $x766)))) -(let ((@x782 (unit-resolution @x599 (unit-resolution @x774 @x704 @x731 @x716 @x753 $x438) $x596))) -(let ((@x783 (unit-resolution @x693 @x782 $x678))) -(let ((@x787 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 $x784)) @x688 @x687 (unit-resolution @x774 @x704 @x731 @x716 @x753 $x438) @x783 $x413))) -(let ((@x803 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x388 (not $x775) (not $x603) $x463 $x784 (not $x611))))) -(let ((@x804 (unit-resolution @x803 @x688 @x799 @x687 @x783 (unit-resolution @x794 (unit-resolution @x607 @x787 $x604) $x775) $x388))) -(let (($x818 (not $x610))) -(let (($x817 (not $x776))) -(let (($x816 (not $x650))) -(let (($x815 (not $x595))) -(let (($x814 (not $x642))) -(let (($x813 (not $x679))) -(let (($x743 (not $x618))) -(let (($x819 (or $x364 $x706 $x743 $x463 $x813 $x733 $x339 $x814 $x815 $x734 $x816 $x766 $x817 $x818))) -(let ((@x821 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1 1 1 1 -1) $x819) @x688 @x812 @x698 @x720 @x704 @x730 @x715 @x753 @x731 @x716 (unit-resolution @x808 (unit-resolution @x615 @x804 $x612) $x673) @x762 (unit-resolution @x791 (unit-resolution @x607 @x787 $x604) $x776) $x364))) -(let ((@x836 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 1 -2 2 -1 1 -1 1) (unit-resolution @x808 (unit-resolution @x615 @x804 $x612) $x673) @x698 @x762 @x731 @x730 @x720 @x716 @x715 @x711 (unit-resolution @x791 (unit-resolution @x607 @x787 $x604) $x776) @x812 @x835 @x832 (unit-resolution @x828 @x782 $x669) (unit-resolution @x825 (unit-resolution @x625 @x821 $x621) $x779) false))) -(let ((@x894 (unit-resolution (lemma @x836 (or $x463 $x733 $x734 $x658 $x339)) @x704 @x716 @x711 @x731 $x463))) -(let ((@x912 (unit-resolution @x884 (unit-resolution @x725 (unit-resolution @x591 @x894 $x588) $x681) @x731 @x716 @x711 @x783 $x872))) -(let ((@x915 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x912 $x847) $x388) $x612))) -(let ((@x683 (hypothesis $x670))) -(let ((@x689 (hypothesis $x438))) -(let ((@x694 (unit-resolution @x693 (unit-resolution @x599 @x689 $x596) $x678))) -(let ((@x709 (lemma ((_ th-lemma arith farkas 1 -1 1 -1 1 -1 -1 1 1) @x704 @x703 @x699 @x698 @x689 @x694 @x688 @x687 @x683 false) (or $x463 $x339 $x706 $x439 $x707)))) -(let ((@x722 (unit-resolution @x591 (unit-resolution @x709 @x689 @x699 @x704 @x683 $x463) $x588))) -(let ((@x732 ((_ th-lemma arith farkas 2 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1) @x704 @x703 @x699 @x698 @x694 @x687 @x731 @x730 (unit-resolution @x725 @x722 $x681) @x720 @x716 @x715 @x711 @x683 false))) -(let ((@x682 (unit-resolution (lemma @x732 (or $x439 $x339 $x706 $x733 $x734 $x658 $x707)) @x699 @x704 @x731 @x716 @x711 @x683 $x439))) -(let ((@x747 ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x463 $x707 $x339 (not $x626) $x706 $x743 (not $x603) $x745 $x438)))) -(let ((@x748 (unit-resolution @x747 @x682 @x687 @x698 @x703 @x704 @x683 @x699 (unit-resolution @x740 (unit-resolution @x601 @x682 $x597) $x675) $x463))) -(let ((@x754 ((_ th-lemma arith farkas 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1) @x683 @x704 @x703 @x699 @x698 @x687 (unit-resolution @x740 (unit-resolution @x601 @x682 $x597) $x675) @x682 @x731 @x730 @x720 @x716 @x715 @x753 (unit-resolution @x725 (unit-resolution @x591 @x748 $x588) $x681) false))) -(let ((@x917 (unit-resolution (lemma @x754 (or $x706 $x707 $x339 $x733 $x734 $x658)) (unit-resolution @x808 @x915 $x673) @x704 @x731 @x716 @x711 $x707))) -(let ((@x887 (unit-resolution @x599 (unit-resolution @x774 @x704 @x731 @x716 @x764 $x438) $x596))) -(let ((@x889 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 -1 1) @x844 @x869 @x731 @x730 @x720 @x716 @x715 @x764 @x687 (unit-resolution @x693 @x887 $x678) @x704 false))) -(let ((@x918 (unit-resolution (lemma @x889 (or $x413 (not $x681) $x733 $x734 $x766 $x339)) (unit-resolution @x725 (unit-resolution @x591 @x894 $x588) $x681) @x731 @x716 @x753 @x704 $x413))) -(let ((@x921 (unit-resolution @x905 (unit-resolution @x828 @x782 $x669) (unit-resolution @x791 (unit-resolution @x607 @x918 $x604) $x776) @x731 @x716 @x711 (unit-resolution @x808 @x915 $x673) @x894 $x902))) -(let ((@x924 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x921 $x823) $x363) $x620))) -(let ((@x929 (lemma (unit-resolution @x926 @x924 @x917 false) (or $x339 $x733 $x734 $x658)))) -(let ((@x1060 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 1) @x812 @x972 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) @x832 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) (unit-resolution @x929 @x716 @x731 @x711 $x339) (unit-resolution @x865 @x1057 $x840) @x835 (unit-resolution @x791 (unit-resolution @x607 @x1049 $x604) $x776) false))) -(let ((@x1164 (hypothesis $x644))) -(let ((@x1168 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1165 $x664)) @x1164 (hypothesis $x734) false))) -(let ((@x1169 (lemma @x1168 (or $x1165 $x664)))) -(let ((@x1171 (unit-resolution @x1169 (unit-resolution (lemma @x1060 (or $x734 $x733 $x658)) @x711 @x1148 $x734) $x1165))) +(let ((@x1059 ((_ th-lemma arith farkas 1 -1 1/2 -1/2 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) (unit-resolution @x791 (unit-resolution @x607 @x1051 $x604) $x776) @x812 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) @x832 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) (unit-resolution @x808 (unit-resolution @x615 @x1037 $x612) $x673) @x698 (unit-resolution @x865 @x1057 $x840) @x835 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x972 false))) +(let ((@x1167 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1164 $x664)) (hypothesis $x644) (hypothesis $x734) false))) +(let ((@x1168 (lemma @x1167 (or $x1164 $x664)))) +(let ((@x1170 (unit-resolution @x1168 (unit-resolution (lemma @x1059 (or $x734 $x733 $x658)) @x711 @x1147 $x734) $x1164))) (let ((@x647 (def-axiom (or $x314 $x644)))) -(let ((@x1172 (unit-resolution @x647 @x1171 $x314))) -(let ((@x1194 ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x313 (not $x660) (not $x643) $x289)))) -(let ((@x1219 (unit-resolution @x631 (unit-resolution @x1194 @x1172 @x1126 @x1079 @x1153 $x338) $x628))) -(let ((@x1118 ((_ th-lemma arith triangle-eq) (or (not $x628) $x663)))) -(let ((@x1220 (unit-resolution @x1118 @x1219 $x663))) +(let ((@x1171 (unit-resolution @x647 @x1170 $x314))) +(let ((@x1193 ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x313 (not $x660) (not $x643) $x289)))) +(let ((@x1218 (unit-resolution @x631 (unit-resolution @x1193 @x1171 @x1138 @x1078 @x1152 $x338) $x628))) +(let ((@x1129 ((_ th-lemma arith triangle-eq) (or (not $x628) $x663)))) +(let ((@x1219 (unit-resolution @x1129 @x1218 $x663))) +(let (($x784 (not $x678))) +(let (($x745 (not $x675))) (let ((@x845 (hypothesis $x389))) -(let ((@x1071 (unit-resolution @x803 @x845 @x799 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x775 (not $x933) $x413)) @x1000 @x844 $x775) @x688 @x687 $x784))) -(let ((@x1074 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x611) $x388 (not $x933) $x413)) @x845 @x799 @x844 @x1000 $x438))) -(let ((@x1078 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1074 $x596) @x1071 false) (or $x388 $x463 $x413)))) -(let ((@x1084 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1) (or $x745 $x818 $x389 $x463 (not $x603) (not $x1024))) (unit-resolution @x1078 @x688 @x844 $x388) @x812 @x687 @x688 @x1040 $x745))) -(let ((@x1086 (unit-resolution @x808 (unit-resolution @x615 (unit-resolution @x1078 @x688 @x844 $x388) $x612) $x673))) -(let ((@x1091 (unit-resolution @x950 (unit-resolution @x615 (unit-resolution @x1078 @x688 @x844 $x388) $x612) $x936))) -(let ((@x1097 (unit-resolution @x709 (unit-resolution @x1095 @x1091 @x835 @x844 @x853 @x1090 $x338) @x1089 @x688 @x1086 $x439))) -(let ((@x1101 (lemma (unit-resolution @x740 (unit-resolution @x601 @x1097 $x597) @x1084 false) (or $x463 $x413)))) -(let ((@x1122 (unit-resolution @x725 (unit-resolution @x591 (unit-resolution @x1101 @x844 $x463) $x588) $x681))) -(let (($x1106 (>= ?x1104 0))) -(let ((@x1161 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1106)) (hypothesis $x645) (hypothesis (not $x1106)) false))) -(let ((@x1162 (lemma @x1161 (or $x1136 $x1106)))) -(let ((@x1174 (unit-resolution @x1162 (unit-resolution (def-axiom (or $x313 $x645)) @x1172 $x645) $x1106))) +(let ((@x803 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x388 (not $x775) (not $x603) $x463 $x784 (not $x611))))) +(let ((@x1070 (unit-resolution @x803 @x845 @x799 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x775 (not $x933) $x413)) @x1000 @x844 $x775) @x688 @x687 $x784))) +(let ((@x1073 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x933) $x413 (not $x611) $x388)) @x845 @x799 @x844 @x1000 $x438))) +(let ((@x1077 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1073 $x596) @x1070 false) (or $x388 $x463 $x413)))) +(let ((@x1083 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1 -1) (or $x745 (not $x603) $x463 (not $x1024) (not $x610) $x389)) (unit-resolution @x1077 @x688 @x844 $x388) @x812 @x687 @x688 @x1040 $x745))) +(let ((@x1085 (unit-resolution @x808 (unit-resolution @x615 (unit-resolution @x1077 @x688 @x844 $x388) $x612) $x673))) +(let ((@x1090 (unit-resolution @x950 (unit-resolution @x615 (unit-resolution @x1077 @x688 @x844 $x388) $x612) $x936))) +(let ((@x683 (hypothesis $x670))) +(let ((@x694 (unit-resolution @x693 (unit-resolution @x599 (hypothesis $x438) $x596) $x678))) +(let ((@x689 (hypothesis $x438))) +(let ((@x704 (hypothesis $x338))) +(let ((@x709 (lemma ((_ th-lemma arith farkas 1 -1 1 -1 1 -1 -1 1 1) @x704 @x703 @x699 @x698 @x689 @x694 @x688 @x687 @x683 false) (or $x463 (not $x338) $x706 $x439 $x707)))) +(let ((@x1096 (unit-resolution @x709 (unit-resolution @x1094 @x1090 @x835 @x844 @x853 @x1089 $x338) @x1088 @x688 @x1085 $x439))) +(let ((@x1098 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x597) $x675)) (unit-resolution @x601 @x1096 $x597) @x1083 false))) +(let ((@x1132 (unit-resolution @x591 (unit-resolution (lemma @x1098 (or $x463 $x413)) @x844 $x463) $x588))) +(let ((@x1133 (unit-resolution @x725 @x1132 $x681))) +(let (($x1105 (>= ?x1103 0))) +(let ((@x1160 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1105)) (hypothesis $x645) (hypothesis (not $x1105)) false))) +(let ((@x1161 (lemma @x1160 (or $x1121 $x1105)))) +(let ((@x1173 (unit-resolution @x1161 (unit-resolution (def-axiom (or $x313 $x645)) @x1171 $x645) $x1105))) (let ((@x850 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x780)) (unit-resolution @x617 @x845 $x613) $x780))) -(let ((@x1113 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x936 $x673)) (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x706 (not $x780) $x388)) @x850 @x845 $x706) $x936))) -(let ((@x1115 (unit-resolution @x631 (unit-resolution @x1095 @x1113 @x835 @x853 @x844 @x1090 $x338) $x628))) -(let ((@x1127 (hypothesis $x660))) -(let (($x635 (>= ?x357 0))) -(let ((@x1130 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x635)) @x561 $x635))) +(let ((@x1112 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x936 $x673)) (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x706 (not $x780) $x388)) @x850 @x845 $x706) $x936))) +(let ((@x1114 (unit-resolution @x631 (unit-resolution @x1094 @x1112 @x835 @x853 @x844 @x1089 $x338) $x628))) (let ((@x859 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x858 @x857 @x853 @x845 @x731 @x730 @x850 @x844 (hypothesis $x313) false))) -(let ((@x1134 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1132 @x1115 $x667) @x844 @x731 @x845 $x314))) +(let ((@x1119 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1117 @x1114 $x667) @x844 @x731 @x845 $x314))) (let ((@x649 (def-axiom (or $x313 $x645)))) -(let ((@x1139 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1106)) (unit-resolution @x649 @x1134 $x645) $x1106))) -(let ((@x1140 (unit-resolution @x893 (unit-resolution @x617 @x845 $x613) $x839))) -(let ((@x1141 ((_ th-lemma arith farkas 1/2 -1/2 1/2 -1/2 -1/2 -1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2 1/2 1) @x1090 @x835 @x698 @x1140 @x1139 @x1130 @x1127 @x1126 @x720 @x715 @x711 (unit-resolution @x693 (unit-resolution @x599 @x1074 $x596) $x678) @x687 @x1122 (unit-resolution @x1118 @x1115 $x663) false))) -(let ((@x1175 (unit-resolution (lemma @x1141 (or $x388 (not $x660) $x658 $x413 $x733)) @x844 @x711 @x1153 @x1148 $x388))) -(let ((@x1154 (hypothesis $x1106))) -(let ((@x1155 ((_ th-lemma arith farkas 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 -1/2 1) @x683 @x703 @x699 @x698 @x1154 @x1153 @x1126 @x720 @x715 @x711 @x868 @x687 @x869 @x1079 false))) -(let ((@x1178 (unit-resolution (lemma @x1155 (or (not $x1106) $x707 $x706 $x658 $x784 (not $x681) $x289)) (unit-resolution @x808 (unit-resolution @x615 @x1175 $x612) $x673) @x1174 @x711 @x1122 @x1089 @x1079 $x784))) -(let ((@x1180 (unit-resolution @x1095 @x1090 @x835 @x844 (unit-resolution @x950 (unit-resolution @x615 @x1175 $x612) $x936) @x853 $x338))) -(let ((@x1183 (unit-resolution @x1105 (unit-resolution @x1132 (unit-resolution @x631 @x1180 $x628) $x667) @x844 @x1079 $x438))) -(let ((@x1187 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1183 $x596) @x1178 false) (or $x413 $x289 $x658)))) -(let ((@x1223 (unit-resolution @x791 (unit-resolution @x607 (unit-resolution @x1187 @x711 @x1079 $x413) $x604) $x776))) -(let ((@x1190 (unit-resolution @x794 (unit-resolution @x607 (hypothesis $x413) $x604) $x775))) -(let ((@x1196 (unit-resolution @x631 (unit-resolution @x1194 (hypothesis $x314) @x1126 @x1079 @x1153 $x338) $x628))) -(let ((@x1191 (hypothesis $x314))) -(let ((@x1202 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 $x313 (not $x635) (not $x663) (not $x660) (not $x643))))) -(let ((@x1203 (unit-resolution @x1202 (unit-resolution @x1118 @x1196 $x663) @x1126 @x1191 @x1153 @x1130 $x363))) -(let ((@x1188 (hypothesis $x413))) -(let ((@x1206 ((_ th-lemma arith farkas -1 -1 -1 1 1 -1 1 -1 1) @x1188 @x1079 (unit-resolution @x926 (unit-resolution @x623 @x1203 $x620) $x670) @x703 @x857 (unit-resolution @x1132 @x1196 $x667) @x763 @x799 @x1190 false))) -(let ((@x1208 (lemma @x1206 (or $x438 $x414 $x289 $x313)))) -(let ((@x1224 (unit-resolution @x1208 (unit-resolution @x1187 @x711 @x1079 $x413) @x1079 @x1172 $x438))) -(let (($x1200 (not $x663))) +(let ((@x1124 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1105)) (unit-resolution @x649 @x1119 $x645) $x1105))) +(let (($x635 (>= ?x357 0))) +(let ((@x1127 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x635)) @x561 $x635))) +(let ((@x1135 (unit-resolution @x893 (unit-resolution @x617 @x845 $x613) $x839))) +(let ((@x1139 (hypothesis $x660))) +(let ((@x1140 ((_ th-lemma arith farkas 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 -2 2 1) @x835 @x1139 @x1138 @x1089 @x698 @x1135 @x715 @x711 @x720 (unit-resolution @x693 (unit-resolution @x599 @x1073 $x596) $x678) @x687 @x1133 (unit-resolution @x1129 @x1114 $x663) @x1127 @x1124 false))) +(let ((@x1174 (unit-resolution (lemma @x1140 (or $x388 (not $x660) $x658 $x413 $x733)) @x844 @x711 @x1152 @x1147 $x388))) +(let ((@x1154 ((_ th-lemma arith farkas -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x703 @x683 @x699 @x698 (hypothesis $x1105) @x1152 @x1138 @x715 @x711 @x720 @x868 @x687 @x869 @x1078 false))) +(let ((@x1177 (unit-resolution (lemma @x1154 (or (not $x1105) $x707 $x706 $x658 $x784 (not $x681) $x289)) (unit-resolution @x808 (unit-resolution @x615 @x1174 $x612) $x673) @x1173 @x711 @x1133 @x1088 @x1078 $x784))) +(let ((@x1179 (unit-resolution @x1094 @x1089 @x835 @x844 (unit-resolution @x950 (unit-resolution @x615 @x1174 $x612) $x936) @x853 $x338))) +(let ((@x1182 (unit-resolution @x1104 (unit-resolution @x1117 (unit-resolution @x631 @x1179 $x628) $x667) @x844 @x1078 $x438))) +(let ((@x1186 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1182 $x596) @x1177 false) (or $x413 $x289 $x658)))) +(let ((@x1222 (unit-resolution @x791 (unit-resolution @x607 (unit-resolution @x1186 @x711 @x1078 $x413) $x604) $x776))) +(let ((@x1189 (unit-resolution @x794 (unit-resolution @x607 (hypothesis $x413) $x604) $x775))) +(let ((@x1195 (unit-resolution @x631 (unit-resolution @x1193 (hypothesis $x314) @x1138 @x1078 @x1152 $x338) $x628))) +(let ((@x1190 (hypothesis $x314))) +(let ((@x1201 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 $x313 (not $x663) (not $x635) (not $x660) (not $x643))))) +(let ((@x1202 (unit-resolution @x1201 (unit-resolution @x1129 @x1195 $x663) @x1138 @x1190 @x1152 @x1127 $x363))) +(let ((@x1187 (hypothesis $x413))) +(let ((@x1205 ((_ th-lemma arith farkas -1 1 -1 -1 -1 1 1 -1 1) @x1187 @x703 (unit-resolution @x926 (unit-resolution @x623 @x1202 $x620) $x670) @x1078 (unit-resolution @x1117 @x1195 $x667) @x857 @x763 @x799 @x1189 false))) +(let ((@x1207 (lemma @x1205 (or $x438 $x414 $x289 $x313)))) +(let ((@x1223 (unit-resolution @x1207 (unit-resolution @x1186 @x711 @x1078 $x413) @x1078 @x1171 $x438))) +(let (($x818 (not $x610))) (let (($x1199 (not $x635))) -(let (($x1192 (not $x643))) -(let (($x1142 (not $x660))) -(let ((@x1227 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 1 -1 1 -1) (or $x706 $x743 $x313 $x1142 $x1192 $x817 $x1199 $x1200 $x439 $x818)) @x1172 @x698 @x1130 @x1126 @x812 @x1153 @x1224 @x1223 @x1220 $x706))) -(let ((@x1228 (unit-resolution @x794 (unit-resolution @x607 (unit-resolution @x1187 @x711 @x1079 $x413) $x604) $x775))) -(let ((@x1232 (unit-resolution @x623 (unit-resolution @x1202 @x1220 @x1126 @x1172 @x1153 @x1130 $x363) $x620))) -(let ((@x1209 (hypothesis $x840))) -(let ((@x1212 (unit-resolution @x591 (unit-resolution @x803 @x845 @x799 (hypothesis $x775) @x868 @x687 $x463) $x588))) -(let ((@x1214 (hypothesis $x663))) -(let ((@x1215 ((_ th-lemma arith farkas -1 2 -2 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1) @x698 @x1130 @x1214 @x1127 @x1126 @x1154 @x720 @x715 @x711 (unit-resolution @x725 @x1212 $x681) @x1209 @x835 @x868 @x687 @x1140 false))) -(let ((@x1217 (lemma @x1215 (or $x388 $x1200 $x1142 (not $x1106) $x658 (not $x840) $x784 (not $x775))))) -(let ((@x1234 (unit-resolution @x1217 @x1220 @x1153 @x1174 @x711 (unit-resolution @x865 @x1232 $x840) (unit-resolution @x693 (unit-resolution @x599 @x1224 $x596) $x678) @x1228 $x388))) -(let ((@x1238 (lemma (unit-resolution @x808 (unit-resolution @x615 @x1234 $x612) @x1227 false) (or $x658 $x289)))) -(let ((@x1268 (unit-resolution @x631 (unit-resolution @x1095 @x1113 @x835 @x844 @x1090 @x853 $x338) $x628))) -(let ((@x1271 ((_ th-lemma arith triangle-eq) (or (not $x588) $x672)))) -(let ((@x1272 (unit-resolution @x1271 (unit-resolution @x591 (unit-resolution @x1101 @x844 $x463) $x588) $x672))) -(let ((@x1273 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1132 @x1268 $x667) @x844 @x731 @x845 $x314))) -(let ((@x1277 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1250)) (unit-resolution @x649 @x1273 $x645) $x1250))) -(let ((@x1251 (hypothesis $x780))) -(let ((@x1252 (hypothesis $x672))) +(let (($x1198 (not $x663))) +(let (($x1191 (not $x643))) +(let (($x1141 (not $x660))) +(let (($x743 (not $x618))) +(let ((@x1226 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x706 $x743 $x313 $x1141 $x1191 $x817 $x1198 $x1199 $x439 $x818)) @x1171 @x698 @x1127 @x1138 @x812 @x1152 @x1223 @x1222 @x1219 $x706))) +(let ((@x1227 (unit-resolution @x794 (unit-resolution @x607 (unit-resolution @x1186 @x711 @x1078 $x413) $x604) $x775))) +(let ((@x1231 (unit-resolution @x623 (unit-resolution @x1201 @x1219 @x1138 @x1171 @x1152 @x1127 $x363) $x620))) +(let ((@x1208 (hypothesis $x840))) +(let ((@x1211 (unit-resolution @x591 (unit-resolution @x803 @x845 @x799 (hypothesis $x775) @x868 @x687 $x463) $x588))) +(let ((@x1213 (hypothesis $x663))) +(let ((@x1214 ((_ th-lemma arith farkas -1 -2 2 -1 1 1 -1 -1 1 -1 1 -1 -1 1 1) @x698 @x1213 @x1127 @x1139 @x1138 (hypothesis $x1105) @x715 @x711 @x720 (unit-resolution @x725 @x1211 $x681) @x835 @x1208 @x868 @x687 @x1135 false))) +(let ((@x1216 (lemma @x1214 (or $x388 $x1198 $x1141 (not $x1105) $x658 (not $x840) $x784 (not $x775))))) +(let ((@x1233 (unit-resolution @x1216 @x1219 @x1152 @x1173 @x711 (unit-resolution @x865 @x1231 $x840) (unit-resolution @x693 (unit-resolution @x599 @x1223 $x596) $x678) @x1227 $x388))) +(let ((@x1237 (lemma (unit-resolution @x808 (unit-resolution @x615 @x1233 $x612) @x1226 false) (or $x658 $x289)))) +(let (($x582 (not $x91))) +(let ((@x1267 (unit-resolution @x631 (unit-resolution @x1094 @x1112 @x835 @x844 @x1089 @x853 $x338) $x628))) +(let (($x672 (>= ?x680 0))) +(let ((@x1270 ((_ th-lemma arith triangle-eq) (or (not $x588) $x672)))) +(let ((@x1271 (unit-resolution @x1270 @x1132 $x672))) +(let ((@x1272 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1117 @x1267 $x667) @x844 @x731 @x845 $x314))) +(let ((@x1276 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1249)) (unit-resolution @x649 @x1272 $x645) $x1249))) +(let ((@x1250 (hypothesis $x780))) +(let ((@x1251 (hypothesis $x672))) (let (($x594 (<= ?x482 0))) -(let ((@x1255 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x594)) @x556 $x594))) +(let ((@x1254 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x594)) @x556 $x594))) +(let ((@x1255 (hypothesis $x766))) (let (($x651 (>= ?x332 0))) -(let ((@x1259 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x651)) @x563 $x651))) -(let ((@x1261 ((_ th-lemma arith farkas 1/2 -1 -1/2 -1/2 1/2 1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 1) @x683 @x857 @x703 (hypothesis $x1250) @x1259 @x1256 @x731 @x730 @x900 @x832 @x1255 @x1252 @x1251 @x853 @x858 false))) -(let ((@x1265 (lemma @x1261 (or $x657 $x707 $x1262 $x733 (not $x669) (not $x672) (not $x780) $x860)))) -(let ((@x1278 (unit-resolution @x1265 @x1277 @x1089 @x731 @x900 @x1272 @x850 (unit-resolution @x1132 @x1268 $x667) $x657))) -(let ((@x1280 ((_ th-lemma arith triangle-eq) (or $x92 $x766 $x710)))) -(let (($x583 (not $x92))) +(let ((@x1258 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x651)) @x563 $x651))) +(let ((@x1260 ((_ th-lemma arith farkas 1/2 -1 -1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x683 @x857 @x703 (hypothesis $x1249) @x1258 @x1255 @x1254 @x1251 @x832 @x731 @x730 @x900 @x1250 @x853 @x858 false))) +(let ((@x1264 (lemma @x1260 (or $x657 $x707 $x1261 (not $x672) $x733 $x903 (not $x780) $x860)))) +(let ((@x1277 (unit-resolution @x1264 @x1276 @x1088 @x1271 @x731 @x900 @x850 (unit-resolution @x1117 @x1267 $x667) $x657))) +(let ((@x1279 ((_ th-lemma arith triangle-eq) (or $x92 $x766 $x710)))) (let (($x570 (or $x582 $x583))) (let ((@x578 (monotonicity (rewrite (= $x93 (not $x570))) (= (not $x93) (not (not $x570)))))) (let ((@x568 (trans @x578 (rewrite (= (not (not $x570)) $x570)) (= (not $x93) $x570)))) (let ((@x569 (mp (not-or-elim (mp (asserted $x95) @x552 $x548) (not $x93)) @x568 $x570))) -(let ((@x1282 (unit-resolution @x569 (unit-resolution @x1280 @x1278 (hypothesis $x658) $x92) $x582))) -(let ((?x652 (+ x1$ ?x235))) +(let ((@x1281 (unit-resolution @x569 (unit-resolution @x1279 @x1277 (hypothesis $x658) $x92) $x582))) (let (($x654 (>= ?x652 0))) (let (($x587 (>= ?x507 0))) (let ((@x555 (and-elim @x554 $x508))) -(let ((@x1287 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x587)) @x555 $x587))) -(let ((?x1145 (+ x2$ ?x506))) -(let (($x1239 (<= ?x1145 0))) +(let ((@x1286 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x587)) @x555 $x587))) +(let ((?x1144 (+ x2$ ?x506))) +(let (($x1238 (<= ?x1144 0))) (let (($x584 (= x2$ ?x495))) -(let ((@x1289 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x488 $x815 $x413 $x784 (not $x603) (not $x681))))) +(let ((@x1288 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x488 (not $x595) $x413 $x784 (not $x603) (not $x681))))) (let ((@x573 (def-axiom (or (not $x488) $x584)))) -(let ((@x1291 (unit-resolution @x573 (unit-resolution @x1289 @x868 @x687 @x844 @x1122 @x720 $x488) $x584))) -(let ((@x1294 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1239)))) -(let ((@x1296 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2) (unit-resolution @x1294 @x1291 $x1239) @x720 @x1122 @x1287 @x1090 @x731 @x730 @x835 @x1040 @x812 @x850 @x853 (unit-resolution @x1162 (unit-resolution @x649 @x1273 $x645) $x1106) @x715 @x1278 @x868 @x687 $x654))) -(let (($x653 (<= ?x652 0))) +(let ((@x1290 (unit-resolution @x573 (unit-resolution @x1288 @x868 @x687 @x844 @x1133 @x720 $x488) $x584))) +(let ((@x1293 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1238)))) +(let ((@x1295 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (unit-resolution @x1293 @x1290 $x1238) @x720 @x1133 @x1286 @x1089 @x731 @x730 @x835 @x1040 @x812 @x850 @x853 (unit-resolution @x1161 (unit-resolution @x649 @x1272 $x645) $x1105) @x715 @x1277 @x687 @x868 $x654))) (let (($x586 (<= ?x507 0))) -(let ((@x1299 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x586)) @x555 $x586))) -(let (($x1240 (>= ?x1145 0))) -(let ((@x1301 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1240)))) -(let ((@x1303 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2) (unit-resolution @x1301 @x1291 $x1240) @x1255 @x1272 @x1299 @x1089 @x1127 @x1126 @x703 @x1000 @x799 @x1140 @x698 @x1277 @x1259 (hypothesis $x658) @x900 @x832 $x653))) -(let ((@x1307 ((_ th-lemma arith triangle-eq) (or $x91 (not $x653) (not $x654))))) -(let ((@x1310 (lemma (unit-resolution @x1307 @x1303 @x1296 @x1282 false) (or $x388 $x1142 $x710 (not $x669) $x733 $x784 $x413)))) -(let ((@x1332 (unit-resolution @x1310 (unit-resolution @x828 @x1328 $x669) (unit-resolution @x1238 @x1079 $x658) @x1153 @x1148 (unit-resolution @x693 @x1328 $x678) @x844 $x388))) -(let (($x1304 (not $x653))) -(let ((@x1338 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 (not $x936))) (unit-resolution @x950 (unit-resolution @x615 @x1332 $x612) $x936) @x1332 $x780))) -(let ((@x1339 (unit-resolution @x1095 (unit-resolution @x950 (unit-resolution @x615 @x1332 $x612) $x936) @x835 @x844 @x1090 @x853 $x338))) -(let ((@x1341 (unit-resolution @x1132 (unit-resolution @x631 @x1339 $x628) $x667))) -(let ((@x1316 (unit-resolution @x631 (unit-resolution @x1095 @x1029 @x835 @x844 @x1090 @x853 $x338) $x628))) -(let ((@x1318 ((_ th-lemma arith farkas -1 -1 -1 1 -1 1 -1 1 1) @x1026 (hypothesis $x313) @x731 @x730 @x853 @x844 (unit-resolution @x1132 @x1316 $x667) @x857 @x1029 false))) -(let ((@x1342 (unit-resolution (lemma @x1318 (or $x314 $x389 $x733 $x413)) @x1332 @x1148 @x844 $x314))) -(let ((@x1312 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1250)) (hypothesis $x645) (hypothesis $x1262) false))) -(let ((@x1313 (lemma @x1312 (or $x1136 $x1250)))) -(let ((@x1345 (unit-resolution @x1265 (unit-resolution @x1313 (unit-resolution @x649 @x1342 $x645) $x1250) @x1341 @x1148 (unit-resolution @x828 @x1328 $x669) @x1272 @x1338 @x1089 $x657))) -(let ((@x1347 (unit-resolution @x569 (unit-resolution @x1280 @x1345 (unit-resolution @x1238 @x1079 $x658) $x92) $x582))) -(let ((@x1348 (unit-resolution @x1289 (unit-resolution @x693 @x1328 $x678) @x687 @x844 @x1122 @x720 $x488))) -(let ((@x1314 (hypothesis $x1024))) -(let (($x1305 (not $x654))) -(let ((@x1321 (hypothesis $x1305))) -(let ((@x1322 (hypothesis $x1239))) -(let ((@x1323 ((_ th-lemma arith farkas -2 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1) @x1026 @x731 @x730 @x853 @x858 @x857 @x1322 @x720 @x869 @x1287 @x1321 @x1314 @x812 @x1029 false))) -(let ((@x1326 (lemma @x1323 (or $x654 $x389 $x733 $x860 (not $x1239) (not $x681) (not $x1024))))) -(let ((@x1351 (unit-resolution @x1326 @x1332 @x1148 @x1341 (unit-resolution @x1294 (unit-resolution @x573 @x1348 $x584) $x1239) @x1122 @x1040 $x654))) -(let ((@x1354 ((_ th-lemma arith farkas -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 2 2 -2 1) @x1153 @x1126 @x698 @x1341 @x857 (unit-resolution @x1301 (unit-resolution @x573 @x1348 $x584) $x1240) @x1255 @x1272 @x1299 (unit-resolution @x1307 @x1351 @x1347 $x1304) @x1000 @x799 @x1079 @x1089 @x703 (unit-resolution @x808 (unit-resolution @x615 @x1332 $x612) $x673) false))) +(let ((@x1298 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x586)) @x555 $x586))) +(let (($x1239 (>= ?x1144 0))) +(let ((@x1300 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1239)))) +(let ((@x1302 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (unit-resolution @x1300 @x1290 $x1239) @x1254 @x1271 @x1298 @x1088 @x1139 @x1138 @x703 @x1000 @x799 @x1135 @x698 @x1276 @x1258 (hypothesis $x658) @x832 @x900 $x653))) +(let ((@x1306 ((_ th-lemma arith triangle-eq) (or $x91 (not $x653) (not $x654))))) +(let ((@x1309 (lemma (unit-resolution @x1306 @x1302 @x1295 @x1281 false) (or $x388 $x1141 $x710 $x903 $x733 $x784 $x413)))) +(let ((@x1331 (unit-resolution @x1309 (unit-resolution @x828 @x1327 $x669) (unit-resolution @x1237 @x1078 $x658) @x1152 @x1147 (unit-resolution @x693 @x1327 $x678) @x844 $x388))) +(let (($x1304 (not $x654))) +(let ((@x1333 (unit-resolution @x950 (unit-resolution @x615 @x1331 $x612) $x936))) +(let ((@x1338 (unit-resolution @x631 (unit-resolution @x1094 @x1333 @x835 @x844 @x1089 @x853 $x338) $x628))) +(let ((@x1339 (unit-resolution @x1117 @x1338 $x667))) +(let ((@x1315 (unit-resolution @x631 (unit-resolution @x1094 @x1029 @x835 @x844 @x1089 @x853 $x338) $x628))) +(let ((@x1317 ((_ th-lemma arith farkas -1 -1 -1 1 -1 1 -1 1 1) @x1026 (hypothesis $x313) @x731 @x730 @x853 @x844 (unit-resolution @x1117 @x1315 $x667) @x857 @x1029 false))) +(let ((@x1340 (unit-resolution (lemma @x1317 (or $x314 $x389 $x733 $x413)) @x1331 @x1147 @x844 $x314))) +(let ((@x1311 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1249)) (hypothesis $x645) (hypothesis $x1261) false))) +(let ((@x1312 (lemma @x1311 (or $x1121 $x1249)))) +(let ((@x1343 (unit-resolution @x1264 (unit-resolution @x1312 (unit-resolution @x649 @x1340 $x645) $x1249) @x1339 @x1271 @x1147 (unit-resolution @x828 @x1327 $x669) (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 (not $x936))) @x1333 @x1331 $x780) @x1088 $x657))) +(let ((@x1345 (unit-resolution @x569 (unit-resolution @x1279 @x1343 (unit-resolution @x1237 @x1078 $x658) $x92) $x582))) +(let ((@x1346 (unit-resolution @x1288 (unit-resolution @x693 @x1327 $x678) @x687 @x844 @x1133 @x720 $x488))) +(let ((@x1320 (hypothesis (not $x653)))) +(let ((@x1322 ((_ th-lemma arith farkas 1 -1 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x683 @x703 @x858 @x857 @x699 @x1152 @x1138 @x698 (hypothesis $x1239) @x1254 @x1251 @x1298 @x1320 (hypothesis $x933) @x799 @x1078 false))) +(let ((@x1325 (lemma @x1322 (or $x653 $x707 $x860 $x706 (not $x1239) (not $x672) (not $x933) $x289)))) +(let ((@x1350 (unit-resolution @x1325 @x1088 @x1339 (unit-resolution @x808 (unit-resolution @x615 @x1331 $x612) $x673) (unit-resolution @x1300 (unit-resolution @x573 @x1346 $x584) $x1239) @x1271 @x1000 @x1078 $x653))) +(let ((@x1353 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1333 @x1147 @x730 @x853 @x1339 @x857 (unit-resolution @x1293 (unit-resolution @x573 @x1346 $x584) $x1238) @x720 @x1133 @x1286 (unit-resolution @x1306 @x1350 @x1345 $x1304) @x1040 @x812 @x1331 false))) (let ((@x641 (def-axiom (or $x288 $x637)))) -(let ((@x1435 (unit-resolution @x641 (unit-resolution (lemma @x1354 (or $x413 $x289)) @x844 $x289) $x637))) -(let ((@x1438 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1370)))) -(let ((@x1439 (unit-resolution @x1438 @x1435 $x1370))) -(let ((@x1374 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x1200 $x1199 $x288 (not $x840) $x388 (not $x627))) @x845 @x1130 @x1371 @x866 @x835 $x1200))) -(let ((@x1377 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x364 (not $x840) $x388 (not $x627))) @x845 @x835 @x841 @x866 $x338))) -(let ((@x1381 (lemma (unit-resolution @x1118 (unit-resolution @x631 @x1377 $x628) @x1374 false) (or $x388 $x288 $x364)))) -(let ((@x1440 (unit-resolution @x1381 (unit-resolution (lemma @x1354 (or $x413 $x289)) @x844 $x289) (unit-resolution (lemma @x1065 (or $x363 $x413)) @x844 $x363) $x388))) -(let ((@x1442 (unit-resolution @x950 (unit-resolution @x615 @x1440 $x612) $x936))) -(let ((@x1445 (unit-resolution (unit-resolution @x1095 @x835 @x853 (or $x338 (not $x840) (not $x936) $x413)) @x1442 @x844 @x1090 $x338))) -(let ((@x1448 (unit-resolution @x808 (unit-resolution @x615 @x1440 $x612) $x673))) -(let (($x1361 (<= ?x1357 0))) -(let ((@x1450 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1361)))) -(let ((@x1451 (unit-resolution @x1450 @x1435 $x1361))) -(let ((@x1452 (unit-resolution @x1118 (unit-resolution @x631 @x1445 $x628) $x663))) -(let (($x1403 (not $x1361))) -(let (($x1002 (not $x933))) +(let ((@x1399 (unit-resolution @x641 (unit-resolution (lemma @x1353 (or $x413 $x289)) @x844 $x289) $x637))) +(let ((@x1405 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1369)))) +(let ((@x1406 (unit-resolution @x1405 @x1399 $x1369))) +(let ((@x1370 (hypothesis $x289))) +(let ((@x1373 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x1198 (not $x840) $x1199 $x288 (not $x627) $x388)) @x845 @x1127 @x1370 @x866 @x835 $x1198))) +(let ((@x1376 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x364 (not $x840) (not $x627) $x388)) @x845 @x835 @x841 @x866 $x338))) +(let ((@x1380 (lemma (unit-resolution @x1129 (unit-resolution @x631 @x1376 $x628) @x1373 false) (or $x388 $x364 $x288)))) +(let ((@x1390 (unit-resolution @x1380 (unit-resolution (lemma @x1064 (or $x363 $x413)) @x844 $x363) (unit-resolution (lemma @x1353 (or $x413 $x289)) @x844 $x289) $x388))) +(let ((@x1392 (unit-resolution @x950 (unit-resolution @x615 @x1390 $x612) $x936))) +(let ((@x1395 (unit-resolution (unit-resolution @x1094 @x835 @x853 (or $x338 (not $x840) (not $x936) $x413)) @x1392 @x844 @x1089 $x338))) +(let ((@x1397 (unit-resolution @x1117 (unit-resolution @x631 @x1395 $x628) $x667))) +(let ((@x1398 (unit-resolution @x808 (unit-resolution @x615 @x1390 $x612) $x673))) +(let (($x1360 (<= ?x1356 0))) +(let ((@x1402 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1360)))) +(let ((@x1403 (unit-resolution @x1402 @x1399 $x1360))) +(let ((@x1407 (unit-resolution @x1129 (unit-resolution @x631 @x1395 $x628) $x663))) +(let ((@x1411 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 2) (or $x488 (not $x595) $x413 (not $x603) $x745 (not $x681) $x438)) @x687 @x720 (or $x488 $x413 $x745 (not $x681) $x438)))) +(let ((@x1413 (unit-resolution @x573 (unit-resolution @x1411 @x941 @x1133 @x844 @x763 $x488) $x584))) +(let (($x958 (not $x619))) (let (($x957 (not $x936))) +(let (($x1091 (not $x627))) (let (($x1092 (not $x840))) -(let (($x1392 (not $x1370))) -(let (($x1081 (not $x1024))) -(let ((@x1383 (hypothesis $x1370))) -(let ((@x1387 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x815 $x464 (not $x681) $x438)) @x720 (or $x488 $x464 (not $x681) $x438)))) -(let ((@x1390 (unit-resolution @x1294 (unit-resolution @x573 (unit-resolution @x1387 @x763 @x897 @x895 $x488) $x584) $x1239))) -(let (($x958 (not $x619))) -(let (($x1093 (not $x627))) +(let (($x814 (not $x642))) +(let (($x1386 (not $x1369))) +(let (($x1080 (not $x1024))) (let (($x871 (not $x681))) -(let (($x1391 (not $x587))) -(let (($x1324 (not $x1239))) -(let (($x1393 (or $x654 $x1324 $x1391 $x871 $x815 $x1081 $x818 $x1392 $x814 $x1092 $x1093 $x957 $x958 $x1200 $x1199))) -(let ((@x1395 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1393) @x1390 @x812 @x853 @x835 @x1130 @x730 @x1287 @x897 @x1001 @x1209 @x1314 @x1214 @x720 @x1383 $x654))) -(let ((@x1396 (hypothesis $x1361))) -(let ((@x1397 (hypothesis $x933))) -(let ((@x1399 (unit-resolution @x1301 (unit-resolution @x573 (unit-resolution @x1387 @x763 @x897 @x895 $x488) $x584) $x1240))) -(let (($x1404 (not $x634))) +(let (($x1416 (not $x587))) +(let (($x815 (not $x595))) +(let (($x1415 (not $x1238))) +(let (($x1417 (or $x654 $x1415 $x815 $x1416 $x871 $x1080 $x818 $x1386 $x814 $x1092 $x1091 $x957 $x958 $x1198 $x1199))) +(let ((@x1419 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1417) (unit-resolution @x1293 @x1413 $x1238) @x812 @x853 @x835 @x1127 @x730 @x1286 @x1133 @x1392 @x1089 @x1040 @x1407 @x1406 @x720 $x654))) +(let (($x1424 (not $x634))) (let (($x742 (not $x626))) +(let (($x1423 (not $x1360))) (let (($x801 (not $x611))) -(let (($x1402 (not $x594))) -(let (($x1263 (not $x672))) -(let (($x1401 (not $x586))) -(let (($x1400 (not $x1240))) -(let (($x1405 (or $x653 $x1400 $x1401 $x1263 $x1402 $x1002 $x801 $x1403 $x1192 $x707 $x742 $x706 $x743 $x860 $x1404))) -(let ((@x1407 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1405) @x1399 @x799 @x698 @x703 @x857 @x1126 @x1299 @x699 @x683 @x858 (unit-resolution @x1271 (unit-resolution @x591 @x895 $x588) $x672) @x1397 @x1396 @x1255 $x653))) -(let ((@x1411 ((_ th-lemma arith assign-bounds 1 1 2 2 1 1 1 1 1 1 1) (or $x313 $x1403 $x1192 $x707 $x742 $x706 $x743 $x1002 $x438 $x801 $x860 $x1404)))) -(let ((@x1412 (unit-resolution @x1411 @x763 @x698 @x703 @x857 @x1126 @x799 @x699 @x683 @x858 @x1397 @x1396 $x313))) -(let ((@x1415 ((_ th-lemma arith triangle-eq) (or $x1165 $x1382)))) -(let ((@x1417 ((_ th-lemma arith assign-bounds 1 -1 -1 1 2 -2 1 -1 -3 3 -1 1 -2 2 -1 1) (unit-resolution @x1415 (unit-resolution @x647 @x1412 $x644) $x1382) @x1259 (unit-resolution @x1271 (unit-resolution @x591 @x895 $x588) $x672) @x1255 @x1397 @x799 @x1396 @x1126 @x683 @x703 @x699 @x698 @x858 @x857 @x966 @x832 $x657))) -(let ((@x1419 ((_ th-lemma arith assign-bounds 1 -1 -1 1 2 -2 1 -1 -3 3 -1 1 -2 2 -1 1) (unit-resolution @x1169 (unit-resolution @x647 @x1412 $x644) $x664) @x715 @x897 @x720 @x1314 @x812 @x1383 @x730 @x1209 @x835 @x1001 @x853 @x1214 @x1130 @x941 @x687 $x658))) -(let ((@x1420 (unit-resolution @x1280 @x1419 @x1417 (unit-resolution @x569 (unit-resolution @x1307 @x1407 @x1395 $x91) $x583) false))) -(let ((@x1422 (lemma @x1420 (or $x438 $x1081 $x1392 $x1092 $x957 $x1200 $x1002 $x1403 $x707 $x706 $x860 $x464)))) -(let ((@x1453 (unit-resolution @x1422 @x1040 @x1439 @x1090 @x1442 @x1452 @x1000 @x1451 @x1089 @x1448 (unit-resolution @x1132 (unit-resolution @x631 @x1445 $x628) $x667) (unit-resolution @x1101 @x844 $x463) $x438))) -(let ((@x1459 (unit-resolution (unit-resolution @x1289 @x687 @x720 (or $x488 $x413 $x784 $x871)) (unit-resolution @x693 (unit-resolution @x599 @x1453 $x596) $x678) @x844 @x1122 $x488))) -(let ((@x1462 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1393) (unit-resolution @x1294 (unit-resolution @x573 @x1459 $x584) $x1239) @x812 @x853 @x835 @x1130 @x730 @x720 @x1122 @x1442 @x1090 @x1040 @x1452 @x1287 @x1439 $x654))) -(let ((@x1464 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1405) (unit-resolution @x1301 (unit-resolution @x573 @x1459 $x584) $x1240) @x799 @x698 @x703 @x857 @x1126 @x1255 @x1448 @x1089 (unit-resolution @x1132 (unit-resolution @x631 @x1445 $x628) $x667) @x1272 @x1000 @x1451 @x1299 $x653))) -(let (($x1156 (not $x1106))) -(let ((@x1423 ((_ th-lemma arith farkas -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 1) @x715 @x711 @x868 @x869 @x720 @x687 @x683 @x703 @x1396 @x1126 @x699 @x698 @x1154 false))) -(let ((@x1426 (unit-resolution (lemma @x1423 (or $x1156 $x658 $x784 $x871 $x707 $x1403 $x706)) @x711 @x694 @x869 @x683 @x1396 @x699 $x1156))) -(let ((@x1429 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1162 @x1426 $x1136) $x313) $x644))) -(let ((@x1431 ((_ th-lemma arith farkas 1/2 -1/2 -3/2 3/2 -1/2 1/2 1 -1 -1 1 1/2 -1/2 -1/2 -1/2 -1/2 1/2 1/2 1) @x1383 @x730 @x1209 @x835 @x1001 @x853 @x1314 @x812 @x1214 @x1130 (unit-resolution @x1169 @x1429 $x664) @x715 @x711 @x694 @x869 @x720 @x687 @x689 false))) -(let ((@x1433 (lemma @x1431 (or $x658 $x1392 $x1092 $x957 $x1081 $x1200 $x871 $x439 $x707 $x1403 $x706)))) -(let ((@x1467 (unit-resolution @x1433 @x1439 @x1090 @x1442 @x1040 @x1452 @x1122 @x1453 @x1089 @x1451 @x1448 $x658))) -(let ((@x1468 (unit-resolution @x1280 @x1467 (unit-resolution @x569 (unit-resolution @x1307 @x1464 @x1462 $x91) $x583) $x766))) -(let (($x1470 (not $x602))) -(let (($x903 (not $x669))) -(let (($x1469 (not $x651))) -(let (($x1471 (or $x1262 $x1469 $x657 $x903 $x1263 $x1402 $x1470 $x1092 $x1093 $x1392 $x814 $x957 $x958))) -(let ((@x1473 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1) $x1471) @x1468 @x853 @x835 @x730 @x1259 @x832 (unit-resolution @x828 (unit-resolution @x599 @x1453 $x596) $x669) @x1272 @x1442 @x1090 @x1255 @x1439 $x1262))) -(let ((@x1476 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1313 @x1473 $x1136) $x313) $x644))) -(let ((@x1478 ((_ th-lemma arith farkas -1 -1 -2 -1 -1 1 1 1 -1 -1 1 1 -1 1) @x1259 @x1468 (unit-resolution @x649 (unit-resolution @x1313 @x1473 $x1136) $x313) (unit-resolution @x828 (unit-resolution @x599 @x1453 $x596) $x669) @x1272 @x1255 @x832 @x1090 @x835 @x1439 @x730 @x1442 @x853 (unit-resolution @x1415 @x1476 $x1382) false))) -(let ((@x1479 (lemma @x1478 $x413))) -(let ((@x1536 (unit-resolution @x791 (unit-resolution @x607 @x1479 $x604) $x776))) -(let ((@x1515 (unit-resolution @x794 (unit-resolution @x607 @x1479 $x604) $x775))) -(let ((@x1360 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1188 @x763 @x799 @x845 @x1190 false) (or $x438 $x414 $x388)))) -(let ((@x1518 (unit-resolution @x693 (unit-resolution @x599 (unit-resolution @x1360 @x845 @x1479 $x438) $x596) $x678))) -(let ((@x1521 (unit-resolution (unit-resolution @x803 @x799 @x687 (or $x388 (not $x775) $x463 $x784)) @x1518 @x1515 @x845 $x463))) -(let ((@x1523 (unit-resolution @x1271 (unit-resolution @x591 @x1521 $x588) $x672))) -(let ((@x1524 (unit-resolution @x828 (unit-resolution @x599 (unit-resolution @x1360 @x845 @x1479 $x438) $x596) $x669))) -(let ((@x906 (hypothesis $x902))) -(let ((@x1366 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x779 $x364 $x1092)) (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) @x906 $x1092))) -(let ((@x1367 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) $x620))) -(let ((@x1369 (lemma (unit-resolution @x865 @x1367 @x1366 false) $x779))) -(let ((@x1483 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1) (or $x902 $x338 $x1093 $x872 $x743 $x414)) @x835 @x1369 @x698 (or $x338 $x872 $x414)))) -(let ((@x1486 (unit-resolution @x1118 (unit-resolution @x631 (unit-resolution @x1483 @x1140 @x1479 $x338) $x628) $x663))) -(let ((@x1489 (unit-resolution ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1200 $x1199 $x288 $x1092 $x1093)) @x1371 @x1130 @x835 @x1140 @x1113 @x1486 $x1092))) -(let ((@x1495 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1369 (or $x707 $x363)) (unit-resolution @x1381 @x1371 @x845 $x364) $x707))) -(let ((@x1500 (lemma (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) @x1495 @x1489 false) (or $x288 $x388)))) -(let ((@x639 (def-axiom (or $x289 $x636)))) -(let ((@x1508 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x1500 @x845 $x288) $x636) $x660))) -(let ((@x1535 (unit-resolution @x1132 (unit-resolution @x631 (unit-resolution @x1483 @x1140 @x1479 $x338) $x628) $x667))) -(let ((@x1537 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x1500 @x845 $x288) $x636) $x661))) +(let (($x1002 (not $x933))) +(let (($x1262 (not $x672))) +(let (($x1422 (not $x586))) +(let (($x1421 (not $x594))) +(let (($x1323 (not $x1239))) +(let (($x1425 (or $x653 $x1323 $x1421 $x1422 $x1262 $x1002 $x801 $x1423 $x1191 $x707 $x742 $x706 $x743 $x860 $x1424))) +(let ((@x1426 ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1425))) +(let ((@x1427 (unit-resolution @x1426 (unit-resolution @x1300 @x1413 $x1239) @x799 @x698 @x703 @x857 @x1138 @x1298 @x1398 @x1088 @x1397 @x1271 @x1000 @x1254 @x1403 $x653))) +(let ((@x1431 ((_ th-lemma arith assign-bounds 1 1 2 2 1 1 1 1 1 1 1) (or $x313 $x1423 $x1191 $x707 $x742 $x706 $x743 $x1002 $x801 $x438 $x860 $x1424)))) +(let ((@x1432 (unit-resolution @x1431 @x763 @x698 @x703 @x857 @x1138 @x799 @x1398 @x1088 @x1397 @x1000 @x1403 $x313))) +(let ((@x1382 (hypothesis $x675))) +(let ((@x1385 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -2 2 -1 1 3 -3 1 -1 2 -2 1) @x716 @x715 @x711 @x720 @x869 @x687 (hypothesis $x1024) @x812 (hypothesis $x1369) @x730 @x1208 @x835 @x1001 @x853 @x1213 @x1127 @x1382 false))) +(let ((@x1435 (unit-resolution (lemma @x1385 (or $x658 $x734 $x871 $x1080 $x1386 $x1092 $x957 $x1198 $x745)) (unit-resolution @x1168 (unit-resolution @x647 @x1432 $x644) $x664) @x1133 @x1040 @x1406 @x1089 @x1392 @x1407 @x941 $x658))) +(let ((@x1436 (unit-resolution @x1279 @x1435 (unit-resolution @x569 (unit-resolution @x1306 @x1427 @x1419 $x91) $x583) $x766))) +(let ((@x1438 ((_ th-lemma arith triangle-eq) (or $x1164 $x1381)))) +(let ((@x1440 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -2 2 -1 1 3 -3 1 -1 2 -2 1) (unit-resolution @x1438 (unit-resolution @x647 @x1432 $x644) $x1381) @x1258 @x1436 @x1254 @x1271 @x832 @x1000 @x799 @x1403 @x1138 @x1088 @x703 @x1398 @x698 @x1397 @x857 @x966 false))) +(let ((@x1453 (unit-resolution @x599 (unit-resolution (lemma @x1440 (or $x438 $x413)) @x844 $x438) $x596))) +(let ((@x1455 (unit-resolution @x693 @x1453 $x678))) +(let ((@x1458 (unit-resolution (unit-resolution @x1288 @x687 @x720 (or $x488 $x413 $x784 $x871)) @x1455 @x844 @x1133 $x488))) +(let ((@x1461 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1417) (unit-resolution @x1293 (unit-resolution @x573 @x1458 $x584) $x1238) @x812 @x853 @x835 @x1127 @x730 @x720 @x1133 @x1392 @x1089 @x1040 @x1407 @x1406 @x1286 $x654))) +(let ((@x1463 (unit-resolution @x1426 (unit-resolution @x1300 (unit-resolution @x573 @x1458 $x584) $x1239) @x799 @x698 @x703 @x857 @x1138 @x1254 @x1398 @x1088 @x1397 @x1271 @x1000 @x1298 @x1403 $x653))) +(let ((@x1468 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 $x439 $x784)) @x1455 (unit-resolution (lemma @x1440 (or $x438 $x413)) @x844 $x438) $x675))) +(let ((@x1443 (unit-resolution (lemma @x1385 (or $x658 $x734 $x871 $x1080 $x1386 $x1092 $x957 $x1198 $x745)) @x711 @x869 (hypothesis $x1024) (hypothesis $x1369) @x1208 @x1001 @x1213 @x1382 $x734))) +(let ((@x1446 (unit-resolution @x649 (unit-resolution @x647 (unit-resolution @x1168 @x1443 $x1164) $x314) $x645))) +(let ((@x1449 ((_ th-lemma arith farkas -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1) @x715 @x711 @x868 @x687 @x720 @x869 @x683 @x703 (hypothesis $x1360) @x1138 @x699 @x698 (unit-resolution @x1161 @x1446 $x1105) false))) +(let ((@x1451 (lemma @x1449 (or $x658 $x784 $x871 $x707 $x1423 $x706 $x1080 $x1386 $x1092 $x957 $x1198 $x745)))) +(let ((@x1469 (unit-resolution @x1451 @x1455 @x1133 @x1088 @x1403 @x1398 @x1040 @x1406 @x1089 @x1392 @x1407 @x1468 $x658))) +(let ((@x1470 (unit-resolution @x1279 @x1469 (unit-resolution @x569 (unit-resolution @x1306 @x1463 @x1461 $x91) $x583) $x766))) +(let (($x1472 (not $x602))) +(let (($x1471 (not $x651))) +(let (($x1473 (or $x1261 $x1471 $x657 $x903 $x1472 $x1421 $x1262 $x1092 $x1091 $x1386 $x814 $x957 $x958))) +(let ((@x1475 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1) $x1473) @x1470 @x853 @x835 @x730 @x1258 @x832 (unit-resolution @x828 @x1453 $x669) @x1271 @x1392 @x1089 @x1254 @x1406 $x1261))) +(let ((@x1478 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1312 @x1475 $x1121) $x313) $x644))) +(let ((@x1480 ((_ th-lemma arith farkas -1 -1 -2 -1 1 1 -1 1 -1 -1 1 1 -1 1) @x1258 @x1470 (unit-resolution @x649 (unit-resolution @x1312 @x1475 $x1121) $x313) (unit-resolution @x828 @x1453 $x669) @x832 @x1254 @x1271 @x1089 @x835 @x1406 @x730 @x1392 @x853 (unit-resolution @x1438 @x1478 $x1381) false))) +(let ((@x1481 (lemma @x1480 $x413))) +(let ((@x1538 (unit-resolution @x791 (unit-resolution @x607 @x1481 $x604) $x776))) +(let ((?x666 (+ ?x201 ?x356))) +(let (($x1699 (>= ?x666 0))) +(let (($x629 (= ?x201 ?x345))) +(let (($x339 (not $x338))) +(let ((@x1701 (hypothesis $x339))) +(let ((@x633 (def-axiom (or $x338 $x629)))) +(let ((@x1712 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x629) $x1699)) (unit-resolution @x633 @x1701 $x629) $x1699))) +(let (($x875 (<= ?x666 0))) +(let ((@x1635 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x629) $x875)) (hypothesis $x629) (hypothesis (not $x875)) false))) +(let ((@x1636 (lemma @x1635 (or (not $x629) $x875)))) +(let ((@x1703 (unit-resolution @x1636 (unit-resolution @x633 @x1701 $x629) $x875))) +(let (($x1632 (not $x629))) +(let (($x1629 (not $x875))) +(let ((@x1517 (unit-resolution @x794 (unit-resolution @x607 @x1481 $x604) $x775))) +(let ((@x1359 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1187 @x799 @x763 @x845 @x1189 false) (or $x438 $x414 $x388)))) +(let ((@x1520 (unit-resolution @x693 (unit-resolution @x599 (unit-resolution @x1359 @x845 @x1481 $x438) $x596) $x678))) +(let ((@x1523 (unit-resolution (unit-resolution @x803 @x799 @x687 (or $x388 (not $x775) $x463 $x784)) @x1520 @x1517 @x845 $x463))) +(let ((@x1525 (unit-resolution @x1270 (unit-resolution @x591 @x1523 $x588) $x672))) +(let ((@x1526 (unit-resolution @x828 (unit-resolution @x599 (unit-resolution @x1359 @x845 @x1481 $x438) $x596) $x669))) +(let ((@x1365 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x779 $x364 $x1092)) (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) @x906 $x1092))) +(let ((@x1366 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) $x620))) +(let ((@x1368 (lemma (unit-resolution @x865 @x1366 @x1365 false) $x779))) +(let ((@x1486 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1 -1) (or $x902 $x1091 $x338 $x872 $x743 $x414)) @x835 @x1368 @x698 (or $x338 $x872 $x414)))) +(let ((@x1489 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x1486 @x1135 @x1481 $x338) $x628) $x663))) +(let ((@x1491 ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1198 $x1092 $x1199 $x288 $x1091)))) +(let ((@x1495 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) (unit-resolution @x1491 @x1370 @x1127 @x835 @x1135 @x1112 @x1489 $x1092) $x670))) +(let ((@x1500 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1368 (or $x707 $x363)) @x1495 (unit-resolution @x1380 @x1370 @x845 $x364) false))) +(let ((@x1509 (unit-resolution @x639 (unit-resolution (lemma @x1500 (or $x288 $x388)) @x845 $x288) $x636))) +(let ((@x1510 (unit-resolution @x1151 @x1509 $x660))) +(let ((@x1508 (unit-resolution @x1237 (unit-resolution (lemma @x1500 (or $x288 $x388)) @x845 $x288) $x658))) (let (($x585 (= ?x98 ?x495))) -(let (($x1544 (not $x585))) -(let ((?x1502 (+ ?x98 ?x506))) -(let (($x1503 (<= ?x1502 0))) -(let (($x1548 (not $x1503))) -(let (($x1107 (not $x780))) -(let (($x1549 (or $x654 $x1548 $x903 $x1263 $x1402 $x1470 $x1391 $x817 $x818 $x733 $x814 $x1107 $x860 $x1404 $x958))) -(let ((@x1568 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1549) @x1321 @x832 @x812 @x853 @x857 @x730 @x1255 @x731 @x1536 @x858 @x1251 @x900 @x1252 @x1287 $x1548))) -(let ((@x1566 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1503)) (hypothesis $x585) (hypothesis $x1548) false))) -(let ((@x1567 (lemma @x1566 (or $x1544 $x1503)))) -(let ((@x575 (def-axiom (or $x488 $x585)))) -(let ((@x1571 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1567 @x1568 $x1544) $x488) $x584))) -(let ((@x1573 ((_ th-lemma arith farkas -1/2 1/2 1 1/2 -1/2 -1 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1251 @x853 @x900 @x1252 @x1255 @x832 @x731 @x730 @x858 @x857 (unit-resolution @x1294 @x1571 $x1239) @x1287 @x1321 @x1536 @x812 (unit-resolution @x575 (unit-resolution @x1567 @x1568 $x1544) $x488) false))) -(let ((@x1575 (lemma @x1573 (or $x654 $x1107 $x903 $x1263 $x733 $x860)))) -(let ((@x1581 (unit-resolution @x1118 (unit-resolution @x631 (unit-resolution @x1483 @x867 @x1479 $x338) $x628) $x663))) +(let (($x1546 (not $x585))) +(let ((?x1504 (+ ?x98 ?x506))) +(let (($x1506 (>= ?x1504 0))) +(let (($x1558 (not $x1506))) +(let ((@x1572 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x1486 @x867 @x1481 $x338) $x628) $x663))) (let (($x800 (not $x775))) -(let (($x1583 (or $x1400 $x414 $x872 $x743 $x1142 $x1192 $x1200 $x1199 $x1401 $x653 $x1263 $x1402 $x800 $x801))) -(let ((@x1585 (unit-resolution ((_ th-lemma arith assign-bounds 2 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1) $x1583) (hypothesis $x1304) @x1479 @x799 @x698 @x1130 @x1126 @x1255 @x1127 @x1515 @x867 @x1252 @x1581 @x1299 $x1400))) -(let (($x1504 (>= ?x1502 0))) -(let (($x1556 (not $x1504))) (let (($x744 (not $x603))) -(let (($x1557 (or $x653 $x1556 $x784 $x871 $x815 $x744 $x1401 $x800 $x801 $x1142 $x1192 $x872 $x1200 $x1199 $x743))) -(let ((@x1586 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1557) (hypothesis $x1304) @x687 @x799 @x698 @x1130 @x1126 @x720 @x1127 @x868 @x1515 @x869 @x867 @x1581 @x1299 $x1556))) -(let ((@x1577 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1504)) (hypothesis $x585) (hypothesis $x1556) false))) -(let ((@x1578 (lemma @x1577 (or $x1544 $x1504)))) -(let ((@x1589 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1578 @x1586 $x1544) $x488) $x584))) -(let ((@x1592 (lemma (unit-resolution @x1301 @x1589 @x1585 false) (or $x653 $x1142 $x872 $x1263 $x784 $x871)))) -(let ((@x1594 (unit-resolution @x1592 @x1508 @x1140 @x1523 @x1518 (unit-resolution @x725 (unit-resolution @x591 @x1521 $x588) $x681) $x653))) -(let ((@x1595 (unit-resolution @x1307 @x1594 (unit-resolution @x1575 @x850 @x1524 @x1523 @x1537 @x1535 $x654) $x91))) -(let ((@x1597 (unit-resolution @x1280 (unit-resolution @x569 @x1595 $x583) (unit-resolution @x1238 (unit-resolution @x1500 @x845 $x288) $x658) $x766))) -(let ((@x1511 (unit-resolution (unit-resolution @x1202 @x1126 @x1130 (or $x363 $x313 $x1200 $x1142)) @x1027 @x1486 @x1508 $x313))) -(let (($x1501 (>= ?x778 0))) -(let ((@x1528 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x1501)) (unit-resolution @x625 @x1027 $x621) $x1501))) -(let (($x1529 (not $x1501))) -(let (($x1531 (or $x657 $x1529 $x742 $x1530 $x1469 $x1142 $x1192 $x1107 $x958 $x903 $x1263 $x1402 $x1470))) -(let ((@x1532 ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 1 1 -1 -1) $x1531))) -(let ((@x1533 (unit-resolution @x1532 @x1528 @x853 @x703 @x1126 @x1259 @x1255 @x1508 @x850 @x1524 @x1523 @x832 (unit-resolution @x1415 (unit-resolution @x647 @x1511 $x644) $x1382) $x657))) -(let ((@x1534 (unit-resolution @x1280 @x1533 (unit-resolution @x1238 (unit-resolution @x1500 @x845 $x288) $x658) $x92))) +(let (($x1559 (or $x653 $x1558 $x784 $x744 $x815 $x871 $x1422 $x800 $x801 $x1141 $x1191 $x743 $x1198 $x1199 $x872))) +(let ((@x1573 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1559) @x1320 @x687 @x799 @x698 @x1127 @x1138 @x720 @x1139 @x868 @x1517 @x869 @x867 @x1572 @x1298 $x1558))) +(let ((@x1568 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1506)) (hypothesis $x585) (hypothesis $x1558) false))) +(let ((@x1569 (lemma @x1568 (or $x1546 $x1506)))) +(let ((@x575 (def-axiom (or $x488 $x585)))) +(let ((@x1576 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1569 @x1573 $x1546) $x488) $x584))) +(let ((@x1578 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x698 @x867 @x1139 @x1138 @x1572 @x1127 (unit-resolution @x1300 @x1576 $x1239) @x1298 @x1320 @x1517 @x799 @x1254 @x1251 @x1481 false))) +(let ((@x1580 (lemma @x1578 (or $x653 $x872 $x1141 $x1262 $x784 $x871)))) +(let ((@x1593 (unit-resolution @x1580 @x1135 @x1510 @x1525 @x1520 (unit-resolution @x725 (unit-resolution @x591 @x1523 $x588) $x681) $x653))) +(let ((@x1537 (unit-resolution @x1117 (unit-resolution @x631 (unit-resolution @x1486 @x1135 @x1481 $x338) $x628) $x667))) +(let ((@x1539 (unit-resolution @x1146 @x1509 $x661))) +(let (($x1505 (<= ?x1504 0))) +(let (($x1550 (not $x1505))) +(let (($x1106 (not $x780))) +(let (($x1551 (or $x654 $x1550 $x903 $x1472 $x1421 $x1262 $x1416 $x817 $x818 $x733 $x814 $x958 $x860 $x1424 $x1106))) +(let ((@x1585 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1551) (hypothesis $x1304) @x832 @x812 @x853 @x857 @x730 @x1254 @x731 @x1538 @x858 @x1250 @x900 @x1251 @x1286 $x1550))) +(let ((@x1582 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1505)) (hypothesis $x585) (hypothesis $x1550) false))) +(let ((@x1583 (lemma @x1582 (or $x1546 $x1505)))) +(let ((@x1588 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1583 @x1585 $x1546) $x488) $x584))) +(let ((@x1590 ((_ th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x853 @x1250 @x900 @x832 @x1254 @x1251 @x731 @x730 @x858 @x857 (unit-resolution @x1293 @x1588 $x1238) @x1286 (hypothesis $x1304) @x1538 @x812 (unit-resolution @x575 (unit-resolution @x1583 @x1585 $x1546) $x488) false))) +(let ((@x1592 (lemma @x1590 (or $x654 $x1106 $x903 $x1262 $x733 $x860)))) +(let ((@x1595 (unit-resolution @x1306 (unit-resolution @x1592 @x850 @x1526 @x1525 @x1539 @x1537 $x654) @x1593 $x91))) +(let ((@x1513 (unit-resolution (unit-resolution @x1201 @x1138 @x1127 (or $x363 $x313 $x1198 $x1141)) @x1027 @x1489 @x1510 $x313))) +(let (($x1503 (>= ?x778 0))) +(let ((@x1530 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x1503)) (unit-resolution @x625 @x1027 $x621) $x1503))) +(let (($x1532 (not $x1381))) +(let (($x1531 (not $x1503))) +(let (($x1533 (or $x657 $x1531 $x1532 $x1471 $x742 $x903 $x1472 $x1421 $x1262 $x1141 $x1191 $x958 $x1106))) +(let ((@x1534 ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1) $x1533))) +(let ((@x1535 (unit-resolution @x1534 @x1530 @x853 @x703 @x1138 @x1258 @x1254 @x1510 @x850 @x1526 @x1525 @x832 (unit-resolution @x1438 (unit-resolution @x647 @x1513 $x644) $x1381) $x657))) (let (($x489 (not $x488))) -(let ((@x1541 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x489 $x1263 $x1402 $x1470 $x903 $x363 $x958 $x388 $x1107)) @x832 @x853 @x1255 (or $x489 $x1263 $x903 $x363 $x388 $x1107)))) -(let ((@x1543 (unit-resolution @x575 (unit-resolution @x1541 @x1027 @x845 @x850 @x1524 @x1523 $x489) $x585))) -(let ((@x1551 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1549) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1503)) @x1543 $x1503) @x832 @x812 @x853 @x857 @x730 @x1287 @x1537 @x1536 @x1535 @x850 @x1524 @x1523 @x1255 $x654))) -(let ((@x1559 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1557) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1504)) @x1543 $x1504) @x687 @x799 @x698 @x1130 @x1126 @x1299 @x1508 @x1518 @x1515 (unit-resolution @x725 (unit-resolution @x591 @x1521 $x588) $x681) @x1140 @x1486 @x720 $x653))) -(let ((@x1561 (unit-resolution @x569 (unit-resolution @x1307 @x1559 @x1551 $x91) @x1534 false))) -(let ((@x1599 (unit-resolution @x623 (unit-resolution (lemma @x1561 (or $x363 $x388)) @x845 $x363) $x620))) -(let ((@x1601 (unit-resolution @x1265 @x1597 @x1535 @x1537 @x1524 @x1523 @x850 (unit-resolution @x926 @x1599 $x670) $x1262))) -(let ((@x1604 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1313 @x1601 $x1136) $x313) $x644))) -(let ((@x1608 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -2 -1) (or $x1501 $x733 $x814 $x860 $x1404 $x314 $x707)) (unit-resolution @x649 (unit-resolution @x1313 @x1601 $x1136) $x313) @x730 @x1537 (unit-resolution @x926 @x1599 $x670) @x1535 @x857 $x1501))) -(let ((@x1609 (unit-resolution @x1532 @x1608 (unit-resolution @x1415 @x1604 $x1382) @x853 @x703 @x1126 @x1259 @x1597 @x1508 @x850 @x1524 @x1523 @x832 @x1255 false))) +(let ((@x1543 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x489 $x1262 $x1421 $x1472 $x903 $x363 $x958 $x388 $x1106)) @x832 @x853 @x1254 (or $x489 $x1262 $x903 $x363 $x388 $x1106)))) +(let ((@x1545 (unit-resolution @x575 (unit-resolution @x1543 @x1027 @x845 @x850 @x1526 @x1525 $x489) $x585))) +(let ((@x1553 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1551) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1505)) @x1545 $x1505) @x832 @x812 @x853 @x857 @x730 @x1286 @x1539 @x1538 @x1537 @x850 @x1526 @x1525 @x1254 $x654))) +(let ((@x1561 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1559) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1506)) @x1545 $x1506) @x687 @x799 @x698 @x1127 @x1138 @x1298 @x1510 @x1520 @x1517 (unit-resolution @x725 (unit-resolution @x591 @x1523 $x588) $x681) @x1135 @x1489 @x720 $x653))) +(let ((@x1563 (unit-resolution @x569 (unit-resolution @x1306 @x1561 @x1553 $x91) (unit-resolution @x1279 @x1535 @x1508 $x92) false))) +(let ((@x1599 (unit-resolution @x623 (unit-resolution (lemma @x1563 (or $x363 $x388)) @x845 $x363) $x620))) +(let ((@x1601 (unit-resolution @x1264 (unit-resolution @x1279 (unit-resolution @x569 @x1595 $x583) @x1508 $x766) @x1537 @x1525 @x1539 @x1526 @x850 (unit-resolution @x926 @x1599 $x670) $x1261))) +(let ((@x1604 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1312 @x1601 $x1121) $x313) $x644))) +(let ((@x1608 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -1 -2) (or $x1503 $x733 $x814 $x860 $x1424 $x707 $x314)) (unit-resolution @x649 (unit-resolution @x1312 @x1601 $x1121) $x313) @x730 @x1539 (unit-resolution @x926 @x1599 $x670) @x1537 @x857 $x1503))) +(let ((@x1609 (unit-resolution @x1534 @x1608 (unit-resolution @x1438 @x1604 $x1381) @x853 @x703 @x1138 @x1258 (unit-resolution @x1279 (unit-resolution @x569 @x1595 $x583) @x1508 $x766) @x1510 @x850 @x1526 @x1525 @x832 @x1254 false))) (let ((@x1610 (lemma @x1609 $x388))) -(let ((@x1615 (unit-resolution @x808 (unit-resolution @x615 @x1610 $x612) $x673))) -(let ((@x1808 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x439 $x706 $x817 $x818 $x743 $x1199 $x288 $x1626 $x338)) @x1371 @x698 @x1701 @x1130 @x812 @x1615 @x1536 @x1738 $x439))) -(let ((@x1781 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1369 (or $x707 $x363)) @x1027 $x707))) -(let (($x1637 (not $x629))) -(let ((@x1667 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 -1 1) (or $x1626 $x1199 $x288 $x1529 $x389 $x742)) @x1528 @x1130 @x1371 @x1610 @x703 $x1626))) -(let ((@x1670 (unit-resolution @x631 (unit-resolution @x633 (unit-resolution @x1641 @x1667 $x1637) $x338) $x628))) -(let ((@x1672 ((_ th-lemma arith farkas 1 1 1 1 1) @x1027 (unit-resolution @x1118 @x1670 $x663) @x1130 @x1371 (unit-resolution @x633 (unit-resolution @x1641 @x1667 $x1637) $x338) false))) -(let ((@x1711 (unit-resolution @x639 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1027 $x288) $x636))) -(let ((@x1712 (unit-resolution @x1152 @x1711 $x660))) -(let ((@x1618 (unit-resolution @x1438 (unit-resolution @x641 (unit-resolution @x1238 @x711 $x289) $x637) $x1370))) -(let ((@x1619 (unit-resolution @x1450 (unit-resolution @x641 (unit-resolution @x1238 @x711 $x289) $x637) $x1361))) -(let ((@x1616 (unit-resolution @x1238 @x711 $x289))) -(let ((@x1676 (unit-resolution @x623 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1616 $x363) $x620))) -(let ((@x1677 (unit-resolution @x926 @x1676 $x670))) -(let ((@x1611 (unit-resolution @x950 (unit-resolution @x615 @x1610 $x612) $x936))) -(let ((@x1643 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x763 @x1611 @x1515 $x363))) -(let ((@x1645 (unit-resolution @x926 (unit-resolution @x623 @x1643 $x620) $x670))) -(let ((@x1612 (hypothesis $x875))) -(let ((@x1613 (hypothesis $x675))) -(let ((@x1622 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x707 $x742 $x288 $x1192 $x414 $x1403 $x706 $x743)) @x683 @x703 @x1616 @x1126 @x1479 @x1615 @x698 @x1619 $x313))) -(let ((@x1625 ((_ th-lemma arith assign-bounds -1 1 1 -1 -1 -1 1 1 -1 -3 3 1 2 -2 -2 2) (unit-resolution @x1169 (unit-resolution @x647 @x1622 $x644) $x664) @x715 @x711 @x720 @x687 @x683 @x703 @x730 @x1618 @x1615 @x698 @x1613 @x1612 @x1130 @x1536 @x812 $x871))) -(let ((@x1628 ((_ th-lemma arith assign-bounds 1 1 1 1 2 2 1 1 1 1 1) (or $x463 $x744 $x745 $x707 $x742 $x706 $x743 $x1626 $x1199 $x817 $x818 $x288)))) -(let ((@x1629 (unit-resolution @x1628 @x1612 @x812 @x698 @x703 @x1130 @x1616 @x1615 @x683 @x1613 @x1536 @x687 $x463))) -(let ((@x1633 (lemma (unit-resolution @x725 (unit-resolution @x591 @x1629 $x588) @x1625 false) (or $x1626 $x658 $x707 $x745)))) -(let ((@x1648 (unit-resolution @x633 (unit-resolution @x1641 (unit-resolution @x1633 @x1645 @x711 @x941 $x1626) $x1637) $x338))) -(let ((@x1650 ((_ th-lemma arith assign-bounds -1 -2 -2 2 -2 2) (or $x1024 $x817 $x339 $x707 $x742 $x706 $x743)))) -(let ((@x1653 (unit-resolution @x747 @x687 @x698 @x703 (or $x463 $x707 $x339 $x706 $x745 $x438)))) -(let ((@x1662 (unit-resolution @x1422 (unit-resolution @x1132 (unit-resolution @x631 @x1648 $x628) $x667) (unit-resolution @x1118 (unit-resolution @x631 @x1648 $x628) $x663) @x1618 @x763 @x1611 (unit-resolution @x865 (unit-resolution @x623 @x1643 $x620) $x840) (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1515 @x1479 $x933) @x1619 @x1645 @x1615 (unit-resolution @x1653 @x1648 @x941 @x1645 @x1615 @x763 $x463) (unit-resolution @x1650 @x1648 @x703 @x1615 @x1645 @x1536 @x698 $x1024) false))) -(let ((@x1678 (unit-resolution (lemma @x1662 (or $x438 $x658)) @x711 $x438))) -(let ((@x1683 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x1678 $x596) $x678) @x1678 $x675))) -(let ((@x1686 (unit-resolution @x633 (unit-resolution @x1641 (unit-resolution @x1633 @x1677 @x711 @x1683 $x1626) $x1637) $x338))) -(let ((@x1692 (unit-resolution @x591 (unit-resolution @x709 @x1686 @x1615 @x1678 @x1677 $x463) $x588))) -(let ((@x1694 (unit-resolution @x1433 (unit-resolution @x725 @x1692 $x681) (unit-resolution @x1118 (unit-resolution @x631 @x1686 $x628) $x663) @x1615 @x1611 @x711 @x1678 (unit-resolution @x865 @x1676 $x840) (unit-resolution @x1650 @x1686 @x703 @x1615 @x1677 @x1536 @x698 $x1024) @x1677 @x1619 @x1618 false))) -(let ((@x1695 (lemma @x1694 $x658))) -(let ((@x1698 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x1027 @x1611 @x1515 $x438))) -(let ((@x1700 (unit-resolution @x828 (unit-resolution @x599 @x1698 $x596) $x669))) -(let ((@x1704 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x464 $x1470 $x817 $x818 $x903 $x338 $x1093 $x363 $x902)) @x1701 @x812 @x1027 @x835 @x832 @x1536 @x1700 @x1369 $x464))) -(let ((@x1708 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x1697)) (unit-resolution @x593 @x1704 $x589) $x1697))) -(let ((@x1709 (unit-resolution @x693 (unit-resolution @x599 @x1698 $x596) $x678))) -(let ((@x1714 (unit-resolution @x1194 @x1126 (or $x338 $x313 $x1142 $x289)))) -(let ((@x1715 (unit-resolution @x1714 @x1701 @x1712 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1027 $x288) $x313))) -(let ((@x1717 (unit-resolution @x1415 (unit-resolution @x647 @x1715 $x644) $x1382))) -(let (($x1718 (not $x1697))) -(let (($x1719 (or $x657 $x1718 $x744 $x1530 $x1469 $x1402 $x957 $x958 $x784 $x800 $x801 $x742 $x1529 $x1142 $x1192))) -(let ((@x1721 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 -1 1 -1 -2 2 -1 1 -1 1) $x1719) @x1717 @x799 @x853 @x703 @x1126 @x1259 @x1255 @x1712 @x1709 @x1515 @x1611 @x1528 @x687 @x1708 $x657))) -(let (($x1696 (>= ?x666 0))) -(let ((@x1726 ((_ th-lemma arith triangle-eq) (or $x1637 $x1696)))) -(let ((@x1727 (unit-resolution @x1726 (unit-resolution @x633 @x1701 $x629) $x1696))) -(let ((@x1730 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x1530 $x1469 $x710 $x338 $x1142 $x1192)) @x1701 @x1126 @x1259 @x1695 @x1712 @x1717 $x488))) -(let (($x1733 (not $x1696))) -(let (($x1734 (or $x654 $x1324 $x1391 $x1530 $x1469 $x710 $x1470 $x817 $x818 $x903 $x1093 $x902 $x1733 $x1404))) -(let ((@x1736 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1734) (unit-resolution @x1294 (unit-resolution @x573 @x1730 $x584) $x1239) @x812 @x835 @x857 @x1259 @x1287 @x1695 @x1536 @x1700 @x1369 @x832 @x1717 @x1727 $x654))) -(let (($x1740 (or $x653 $x1400 $x1401 $x734 $x816 $x766 $x744 $x800 $x801 $x784 $x742 $x1529 $x1626 $x1199))) -(let ((@x1742 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1740) @x1721 @x799 @x703 @x1130 @x715 @x1299 @x687 (unit-resolution @x1169 (unit-resolution @x647 @x1715 $x644) $x664) @x1709 @x1515 @x1738 (unit-resolution @x1301 (unit-resolution @x573 @x1730 $x584) $x1240) @x1528 $x653))) -(let ((@x1743 (unit-resolution @x1307 @x1742 @x1736 (unit-resolution @x569 (unit-resolution @x1280 @x1721 @x1695 $x92) $x582) false))) -(let ((@x1784 (unit-resolution @x631 (unit-resolution (lemma @x1743 (or $x338 $x363)) @x1027 $x338) $x628))) -(let ((@x1785 (unit-resolution @x1118 @x1784 $x663))) -(let ((@x1788 (unit-resolution ((_ th-lemma arith assign-bounds 2 2 2 2 2 1) (or $x1529 $x1142 $x1192 $x1200 $x1199 $x313 $x1092)) @x1785 @x1528 @x1712 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) @x1781 $x840) @x1126 @x1130 $x313))) -(let ((@x1790 (unit-resolution @x1415 (unit-resolution @x647 @x1788 $x644) $x1382))) -(let ((@x1791 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 $x957)) @x1611 @x1610 $x780))) -(let ((@x1796 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1200 $x339)) (unit-resolution (lemma @x1743 (or $x338 $x363)) @x1027 $x338) @x1785 $x875))) -(let ((@x1750 (hypothesis $x1382))) -(let ((@x1747 ((_ th-lemma arith farkas 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -2 2 1) @x832 @x1287 @x1321 @x716 @x715 @x764 @x1536 @x812 @x900 @x835 @x1369 @x857 @x858 @x731 @x730 (hypothesis $x1503) false))) -(let ((@x1751 (unit-resolution (lemma @x1747 (or $x1548 $x654 $x734 $x766 $x903 $x860 $x733)) @x1321 @x716 @x764 @x900 @x858 @x731 $x1548))) -(let ((@x1754 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1567 @x1751 $x1544) $x488) $x584))) -(let ((@x1758 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2 2) (or $x1696 $x860 $x489 $x734 $x816 $x766 $x733 $x814)) (unit-resolution @x575 (unit-resolution @x1567 @x1751 $x1544) $x488) @x715 @x764 @x731 @x716 @x858 @x730 $x1696))) -(let ((@x1759 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1734) @x1758 (unit-resolution @x1294 @x1754 $x1239) @x812 @x835 @x857 @x1259 @x1750 @x1695 @x1536 @x900 @x1369 @x1321 @x832 @x1287 false))) -(let ((@x1765 (unit-resolution (lemma @x1759 (or $x654 $x1530 $x903 $x766 $x733 $x734 $x860)) @x764 @x900 @x1750 @x731 @x716 @x858 $x654))) -(let ((@x1766 (unit-resolution @x1307 @x1765 (unit-resolution @x569 (unit-resolution @x1280 @x764 @x1695 $x92) $x582) $x1304))) -(let ((@x1767 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1740) @x1766 @x799 @x703 @x1130 @x715 @x1299 @x687 @x716 @x868 @x1515 @x1612 @x764 (hypothesis $x1501) $x1400))) -(let (($x1768 (or $x1556 $x744 $x1401 $x653 $x1530 $x1469 $x710 $x800 $x801 $x784 $x742 $x1529 $x1199 $x1200 $x1142 $x1192))) -(let ((@x1770 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -2 2) $x1768) @x1766 @x799 @x703 @x1130 @x1126 @x1259 @x687 @x1695 @x1127 @x868 @x1515 @x1214 (hypothesis $x1501) @x1750 @x1299 $x1556))) -(let ((@x1773 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1578 @x1770 $x1544) $x488) $x584))) -(let ((@x1776 (lemma (unit-resolution @x1301 @x1773 @x1767 false) (or $x766 $x1142 $x784 $x1200 $x1529 $x1530 $x734 $x1626 $x903 $x733 $x860)))) -(let ((@x1798 (unit-resolution @x1776 @x1712 @x1709 @x1785 @x1528 @x1790 (unit-resolution @x1169 (unit-resolution @x647 @x1788 $x644) $x664) @x1796 @x1700 (unit-resolution @x1147 @x1711 $x661) (unit-resolution @x1132 @x1784 $x667) $x766))) -(let ((@x1799 (unit-resolution @x1532 @x1798 @x853 @x703 @x1126 @x1259 @x1528 @x1712 @x1791 @x1700 @x1790 @x832 @x1255 $x1263))) -(let (($x759 (not $x589))) -(let ((@x1800 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 -1 1 -1 -2 2 -1 1 -1 1) $x1719) @x1798 @x799 @x853 @x703 @x1126 @x1259 @x1790 @x1712 @x1709 @x1515 @x1611 @x1528 @x687 @x1255 $x1718))) -(let ((@x1803 (unit-resolution @x591 (unit-resolution @x593 (unit-resolution @x1780 @x1800 $x759) $x463) $x588))) -(let ((@x1805 (lemma (unit-resolution @x1271 @x1803 @x1799 false) $x363))) -(let ((@x1812 (unit-resolution @x926 (unit-resolution @x623 @x1805 $x620) $x670))) -(let ((@x1814 (unit-resolution @x1628 @x812 @x698 @x703 @x1130 @x1615 @x1812 @x1536 @x687 (or $x463 $x745 $x1626 $x288)))) -(let ((@x1815 (unit-resolution @x1814 (unit-resolution @x740 (unit-resolution @x601 @x1808 $x597) $x675) @x1738 @x1371 $x463))) -(let ((@x1818 (unit-resolution @x865 (unit-resolution @x623 @x1805 $x620) $x840))) -(let ((@x1819 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x738 $x932)) (unit-resolution @x601 @x1808 $x597) $x932))) -(let ((@x1823 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x707 $x742 $x288 $x1192 $x414 $x1403 $x706 $x743)) @x703 @x1812 @x1126 @x1479 @x1615 @x698 (or $x313 $x288 $x1403)))) -(let ((@x1824 (unit-resolution @x1823 (unit-resolution @x1450 (unit-resolution @x641 @x1371 $x637) $x1361) @x1371 $x313))) -(let ((@x1827 ((_ th-lemma arith farkas -1 -3 3 -2 2 -2 2 -1 1 1 1 -1 1 -1 -1 1 1) @x1255 @x1611 @x853 @x1515 @x799 @x857 @x1727 (unit-resolution @x1415 (unit-resolution @x647 @x1824 $x644) $x1382) @x1259 @x1256 @x1126 (unit-resolution @x1450 (unit-resolution @x641 @x1371 $x637) $x1361) @x1819 @x1818 @x832 @x835 (unit-resolution @x1271 (unit-resolution @x591 @x1815 $x588) $x672) false))) -(let ((@x1829 (lemma @x1827 (or $x288 $x657 $x338)))) -(let ((@x1844 (unit-resolution @x1829 @x1701 @x1256 $x288))) -(let ((@x1848 (unit-resolution @x1208 @x1479 (or $x438 $x289 $x313)))) -(let ((@x1851 (unit-resolution @x1415 (unit-resolution @x647 (unit-resolution @x1848 @x1844 @x763 $x313) $x644) $x1382))) -(let ((@x1831 ((_ th-lemma arith farkas -1 1 -1 -1 1 1 1 -1 1 1 -1 -1 1) @x1255 @x1615 @x698 @x1750 @x1259 @x1256 @x1126 @x1613 @x1812 @x687 @x703 @x1127 (hypothesis $x1697) false))) -(let ((@x1833 (lemma @x1831 (or $x745 $x1530 $x657 $x1142 $x1718)))) -(let ((@x1852 (unit-resolution @x1833 (unit-resolution @x1152 (unit-resolution @x639 @x1844 $x636) $x660) @x1843 @x1256 @x1851 $x1718))) -(let ((@x1855 (unit-resolution @x591 (unit-resolution @x593 (unit-resolution @x1780 @x1852 $x759) $x463) $x588))) -(let ((@x1857 ((_ th-lemma arith farkas 1/2 -3/2 -1 1 3/2 -1 -1/2 -1/2 1/2 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2 1) @x966 @x1611 @x1515 @x799 @x853 @x857 @x1818 @x832 @x835 @x1727 (unit-resolution @x1271 @x1855 $x672) @x1255 @x1851 @x1259 @x1256 @x1126 (unit-resolution @x1152 (unit-resolution @x639 @x1844 $x636) $x660) @x1844 false))) -(let ((@x1868 (unit-resolution (lemma @x1857 (or $x338 $x657 $x438)) @x763 @x1256 $x338))) -(let ((@x1874 (unit-resolution ((_ th-lemma arith assign-bounds 2 2 2 2 2 1) (or $x1529 $x438 $x800 $x801 $x957 $x958 $x1092)) @x853 @x1515 @x1611 @x799 @x1818 (or $x1529 $x438)))) -(let (($x1436 (not $x637))) -(let ((@x1878 (unit-resolution (unit-resolution @x1650 @x703 @x1615 @x1812 @x1536 @x698 (or $x1024 $x339)) @x1868 $x1024))) -(let ((@x1881 (unit-resolution (unit-resolution @x1653 @x1812 @x1615 (or $x463 $x339 $x745 $x438)) @x1868 @x1843 @x763 $x463))) -(let ((@x1864 (unit-resolution @x1422 @x1611 @x1818 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1515 @x1479 $x933) @x1812 @x1615 (or $x438 $x1081 $x1392 $x1200 $x1403 $x860 $x464)))) -(let ((@x1865 (unit-resolution @x1864 (unit-resolution @x1438 (hypothesis $x637) $x1370) (unit-resolution @x1450 (hypothesis $x637) $x1361) @x763 @x1214 @x858 @x895 @x1314 false))) -(let ((@x1883 (unit-resolution (lemma @x1865 (or $x1436 $x438 $x1200 $x860 $x464 $x1081)) @x763 (unit-resolution @x1118 (unit-resolution @x631 @x1868 $x628) $x663) (unit-resolution @x1132 (unit-resolution @x631 @x1868 $x628) $x667) @x1881 @x1878 $x1436))) -(let ((@x1887 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -2 -1) (or $x1501 $x733 $x814 $x860 $x1404 $x314 $x707)) @x1812 @x730 @x857 (or $x1501 $x733 $x860 $x314)))) -(let ((@x1888 (unit-resolution @x1887 (unit-resolution @x1848 (unit-resolution @x641 @x1883 $x288) @x763 $x313) (unit-resolution @x1874 @x763 $x1529) (unit-resolution @x1132 (unit-resolution @x631 @x1868 $x628) $x667) $x733))) -(let ((@x1890 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x641 @x1883 $x288) $x636) @x1888 false))) -(let ((@x1894 (unit-resolution (lemma @x1890 (or $x438 $x657)) @x1256 $x438))) -(let ((@x1897 (unit-resolution (unit-resolution @x709 @x1615 @x1812 (or $x463 $x339 $x439)) @x688 @x1894 $x339))) -(let ((@x1900 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x1829 @x1897 @x1256 $x288) $x636) $x660))) -(let ((@x1901 (unit-resolution @x1833 @x1900 @x1843 @x1256 (unit-resolution @x1780 (unit-resolution @x593 @x688 $x589) $x1697) $x1530))) -(let ((@x1902 (unit-resolution @x1714 @x1900 @x1897 (unit-resolution @x1829 @x1897 @x1256 $x288) $x313))) -(let ((@x1906 (lemma (unit-resolution @x1415 (unit-resolution @x647 @x1902 $x644) @x1901 false) (or $x463 $x657)))) -(let ((@x1909 (unit-resolution @x1271 (unit-resolution @x591 (unit-resolution @x1906 @x1256 $x463) $x588) $x672))) -(let ((@x1914 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2) (or $x1501 $x707 $x706 $x817 $x818 $x743 $x439)) @x1894 @x698 @x1615 @x1812 @x1536 @x812 $x1501))) -(let ((@x1917 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 2 -2) (or $x839 $x706 $x817 $x818 $x903 $x1470 $x464)) (unit-resolution @x1906 @x1256 $x463) @x812 @x1615 @x1536 @x832 (unit-resolution @x828 (unit-resolution @x599 @x1894 $x596) $x669) $x839))) -(let ((@x1921 (unit-resolution @x631 (unit-resolution (unit-resolution @x1483 @x1479 (or $x338 $x872)) @x1917 $x338) $x628))) -(let ((@x1924 (unit-resolution ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1200 $x1199 $x288 $x1092 $x1093)) @x1130 @x835 @x1611 @x1818 (or $x872 $x1200 $x288)))) -(let ((@x1926 (unit-resolution @x639 (unit-resolution @x1924 (unit-resolution @x1118 @x1921 $x663) @x1917 $x288) $x636))) -(let ((@x1929 (unit-resolution @x1532 @x853 @x703 @x1126 @x1259 @x1791 @x832 @x1255 (or $x657 $x1529 $x1530 $x1142 $x903 $x1263)))) -(let ((@x1930 (unit-resolution @x1929 (unit-resolution @x1152 @x1926 $x660) @x1256 @x1914 (unit-resolution @x828 (unit-resolution @x599 @x1894 $x596) $x669) @x1909 $x1530))) -(let ((@x1932 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 1 -1 1 -1) (or $x706 $x743 $x313 $x1142 $x1192 $x817 $x1199 $x1200 $x439 $x818)) @x698 @x1130 @x1126 @x812 (or $x706 $x313 $x1142 $x817 $x1200 $x439)))) -(let ((@x1935 (unit-resolution (unit-resolution @x1932 @x1536 @x1615 (or $x313 $x1142 $x1200 $x439)) (unit-resolution @x1152 @x1926 $x660) (unit-resolution @x1118 @x1921 $x663) @x1894 $x313))) -(let ((@x1938 (lemma (unit-resolution @x1415 (unit-resolution @x647 @x1935 $x644) @x1930 false) $x657))) -(let ((@x1942 (unit-resolution @x569 (unit-resolution (unit-resolution @x1280 @x1695 (or $x92 $x766)) @x1938 $x92) $x582))) -(let ((@x1943 (unit-resolution (unit-resolution @x1653 @x1812 @x1615 (or $x463 $x339 $x745 $x438)) @x688 @x1843 @x763 $x339))) -(let ((@x1947 (unit-resolution @x1814 (unit-resolution @x1641 (unit-resolution @x633 @x1943 $x629) $x875) @x1843 @x688 $x288))) -(let ((@x1950 (unit-resolution @x1415 (unit-resolution @x647 (unit-resolution @x1848 @x1947 @x763 $x313) $x644) $x1382))) -(let ((@x1954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x463 $x813 $x815 $x438)) @x720 (or $x488 $x463 $x813 $x438)))) -(let ((@x1957 (unit-resolution @x1294 (unit-resolution @x573 (unit-resolution @x1954 @x762 @x763 @x688 $x488) $x584) $x1239))) -(let (($x1958 (not $x932))) -(let (($x1959 (or $x654 $x1324 $x1391 $x957 $x800 $x801 $x958 $x1404 $x1733 $x1092 $x1093 $x1958 $x1470 $x1530 $x1469 $x710))) -(let ((@x1961 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1959) @x1957 @x799 @x853 @x835 @x857 @x1259 @x1287 @x1695 @x1515 @x1611 @x966 @x1818 @x832 @x1950 (unit-resolution @x1726 (unit-resolution @x633 @x1943 $x629) $x1696) $x654))) -(let ((@x1962 (unit-resolution @x1301 (unit-resolution @x573 (unit-resolution @x1954 @x762 @x763 @x688 $x488) $x584) $x1240))) -(let ((@x1963 (unit-resolution @x1169 (unit-resolution @x647 (unit-resolution @x1848 @x1947 @x763 $x313) $x644) $x664))) -(let (($x1964 (or $x653 $x1400 $x1401 $x706 $x817 $x818 $x743 $x1199 $x1626 $x707 $x742 $x745 $x744 $x734 $x816 $x766))) -(let ((@x1966 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1964) @x1963 @x812 @x698 @x703 @x1130 @x715 @x1299 @x1938 @x687 @x1615 @x1812 @x1843 @x1536 (unit-resolution @x1641 (unit-resolution @x633 @x1943 $x629) $x875) @x1962 $x653))) -(let ((@x1992 (unit-resolution (lemma (unit-resolution @x1307 @x1966 @x1961 @x1942 false) (or $x463 $x438)) @x763 $x463))) -(let ((@x1995 (unit-resolution @x1387 (unit-resolution @x725 (unit-resolution @x591 @x1992 $x588) $x681) @x763 @x1992 $x488))) -(let ((@x1983 (unit-resolution @x1450 (unit-resolution @x641 (unit-resolution @x1848 @x1191 @x763 $x289) $x637) (unit-resolution @x1823 @x1191 (unit-resolution @x1848 @x1191 @x763 $x289) $x1403) false))) -(let ((@x1999 (unit-resolution @x647 (unit-resolution (lemma @x1983 (or $x313 $x438)) @x763 $x313) $x644))) -(let ((@x1971 (hypothesis $x932))) -(let ((@x1987 ((_ th-lemma arith assign-bounds 1 -1 1 1 -1 -1 -1 3 -3 1 -1 -1 1 2 -2 2) (unit-resolution @x1450 (hypothesis $x637) $x1361) @x1252 @x1255 (unit-resolution @x1415 @x1164 $x1382) @x1259 @x1695 @x1126 @x1611 @x853 @x1818 @x835 @x1971 @x832 @x1515 @x799 @x857 $x875))) -(let ((@x1988 ((_ th-lemma arith assign-bounds 1 -1 1 1 -1 -1 -1 3 -3 1 -1 -1 1 2 -2 2) (unit-resolution @x1438 (hypothesis $x637) $x1370) @x869 @x720 (unit-resolution @x1169 @x1164 $x664) @x715 @x1938 @x730 @x1615 @x698 @x1812 @x703 @x1843 @x687 @x1536 @x812 @x1130 $x1696))) -(let ((@x1974 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1964) (unit-resolution @x1169 @x1164 $x664) @x812 @x698 @x703 @x1130 @x715 @x1299 @x1938 @x687 @x1615 @x1812 @x1843 @x1536 @x1612 (hypothesis $x1240) $x653))) -(let ((@x1976 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1959) (unit-resolution @x1307 @x1974 @x1942 $x1305) @x799 @x853 @x835 @x857 @x1259 @x1287 @x1695 @x1515 @x1611 @x1971 @x1818 @x832 @x1322 (hypothesis $x1696) $x1530))) -(let ((@x1979 (lemma (unit-resolution @x1415 @x1164 @x1976 false) (or $x1165 $x1958 $x1324 $x1733 $x1626 $x1400)))) -(let ((@x1989 (unit-resolution @x1979 @x1988 @x1987 @x1322 @x1971 @x1164 (hypothesis $x1240) false))) -(let ((@x2002 (unit-resolution (lemma @x1989 (or $x1436 $x1324 $x1958 $x1165 $x1400 $x871 $x1263)) (unit-resolution @x1294 (unit-resolution @x573 @x1995 $x584) $x1239) @x966 @x1999 (unit-resolution @x1301 (unit-resolution @x573 @x1995 $x584) $x1240) (unit-resolution @x725 (unit-resolution @x591 @x1992 $x588) $x681) (unit-resolution @x1271 (unit-resolution @x591 @x1992 $x588) $x672) $x1436))) -(let ((@x2005 ((_ th-lemma arith assign-bounds -2 -1 1 2 -1 1 -1 1 1 -1 1) (or $x875 $x957 $x800 $x801 $x958 $x1404 $x289 $x1092 $x1093 $x1958 $x1470 $x464)))) -(let ((@x2006 (unit-resolution @x2005 (unit-resolution @x641 @x2002 $x288) @x799 @x853 @x835 @x857 @x832 @x1515 @x1992 @x1611 @x966 @x1818 $x875))) -(let ((@x2007 (unit-resolution @x1979 @x2006 (unit-resolution @x1294 (unit-resolution @x573 @x1995 $x584) $x1239) @x966 @x1999 (unit-resolution @x1301 (unit-resolution @x573 @x1995 $x584) $x1240) $x1733))) -(let ((@x2010 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x641 @x2002 $x288) $x636) $x661))) -(let ((@x2011 (unit-resolution @x774 @x2010 @x1938 @x763 (unit-resolution @x1169 @x1999 $x664) $x339))) -(let ((@x2014 (lemma (unit-resolution @x1726 (unit-resolution @x633 @x2011 $x629) @x2007 false) $x438))) -(let ((@x2021 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2) (or $x1501 $x707 $x706 $x817 $x818 $x743 $x439)) @x2014 @x698 @x1615 @x1812 @x1536 @x812 $x1501))) -(let ((@x2017 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1200 $x339)) (unit-resolution @x633 (unit-resolution @x1641 @x1635 $x1637) $x338) @x1635 $x1200))) -(let ((@x2018 (unit-resolution @x631 (unit-resolution @x633 (unit-resolution @x1641 @x1635 $x1637) $x338) $x628))) -(let ((@x2020 (lemma (unit-resolution @x1118 @x2018 @x2017 false) $x875))) -(let ((@x2023 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 -1 1) (or $x1626 $x1199 $x288 $x1529 $x389 $x742)) @x1130 @x1610 @x703 (or $x1626 $x288 $x1529)))) -(let ((@x2026 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x2023 @x2020 @x2021 $x288) $x636) $x660))) -(let ((@x2027 (unit-resolution @x1714 @x1701 (unit-resolution @x2023 @x2020 @x2021 $x288) @x2026 $x313))) -(let ((@x2030 (unit-resolution @x828 (unit-resolution @x599 @x2014 $x596) $x669))) -(let ((@x2034 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 -2 2 -1) (or $x932 $x817 $x818 $x706 $x364 $x743 $x903)) @x698 @x812 (or $x932 $x817 $x706 $x364 $x903)))) -(let ((@x2037 (unit-resolution (unit-resolution @x2034 @x1536 @x1615 @x1805 (or $x932 $x903)) @x2030 $x932))) -(let ((@x2040 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x1530 $x1469 $x710 $x338 $x1142 $x1192)) @x1126 @x1259 @x1695 (or $x488 $x1530 $x338 $x1142)))) -(let ((@x2041 (unit-resolution @x2040 (unit-resolution @x1415 (unit-resolution @x647 @x2027 $x644) $x1382) @x1701 @x2026 $x488))) -(let ((@x2045 (unit-resolution @x1979 (unit-resolution @x1301 (unit-resolution @x573 @x2041 $x584) $x1240) (unit-resolution @x1294 (unit-resolution @x573 @x2041 $x584) $x1239) @x2020 @x2037 (unit-resolution @x647 @x2027 $x644) @x1727 false))) -(let ((@x2046 (lemma @x2045 $x338))) -(let ((@x2049 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x2023 @x2020 @x2021 $x288) $x636) $x661))) -(let ((@x2050 (unit-resolution (unit-resolution @x709 @x1615 @x1812 (or $x463 $x339 $x439)) @x2046 @x2014 $x463))) -(let ((@x2055 (unit-resolution (unit-resolution @x1575 @x1791 (or $x654 $x903 $x1263 $x733 $x860)) (unit-resolution @x1271 (unit-resolution @x591 @x2050 $x588) $x672) @x2030 @x2049 (unit-resolution @x1132 (unit-resolution @x631 @x2046 $x628) $x667) $x654))) -(let ((@x2058 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 2 -2) (or $x839 $x706 $x817 $x818 $x903 $x1470 $x464)) @x2050 @x812 @x1615 @x1536 @x832 @x2030 $x839))) -(let ((@x2059 (unit-resolution @x1592 (unit-resolution @x1271 (unit-resolution @x591 @x2050 $x588) $x672) @x2026 @x2058 (unit-resolution @x693 (unit-resolution @x599 @x2014 $x596) $x678) (unit-resolution @x725 (unit-resolution @x591 @x2050 $x588) $x681) $x653))) -(unit-resolution @x1307 @x2059 @x2055 @x1942 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +(let ((@x1637 ((_ th-lemma arith assign-bounds -1 -1 1 1 -1) (or $x1629 $x1199 $x1531 $x742 $x288 $x389)))) +(let ((@x1639 (unit-resolution @x1636 (unit-resolution @x1637 @x1530 @x1127 @x1370 @x1610 @x703 $x1629) $x1632))) +(let ((@x1642 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x633 @x1639 $x338) $x628) $x663))) +(let ((@x1643 ((_ th-lemma arith farkas 1 1 1 1 1) @x1370 @x1642 @x1127 @x1027 (unit-resolution @x633 @x1639 $x338) false))) +(let ((@x1645 (lemma @x1643 (or $x363 $x288)))) +(let ((@x889 (unit-resolution @x926 (unit-resolution @x623 (unit-resolution @x1645 @x1370 $x363) $x620) $x670))) +(let ((@x890 (unit-resolution @x865 (unit-resolution @x623 (unit-resolution @x1645 @x1370 $x363) $x620) $x840))) +(let ((@x1650 (unit-resolution @x623 (unit-resolution @x1645 (unit-resolution @x1237 @x711 $x289) $x363) $x620))) +(let ((@x1672 (unit-resolution @x950 (unit-resolution @x615 @x1610 $x612) $x936))) +(let ((@x1648 (unit-resolution @x1237 @x711 $x289))) +(let ((@x1647 (hypothesis $x875))) +(let ((@x1617 (unit-resolution @x808 (unit-resolution @x615 @x1610 $x612) $x673))) +(let ((@x1651 (unit-resolution @x926 @x1650 $x670))) +(let ((@x1656 ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x1191 $x1423 $x288 $x707 $x706 $x414 $x743 $x742)))) +(let ((@x1657 (unit-resolution @x1656 @x1648 @x703 @x698 @x1138 @x1481 @x1617 @x1651 (unit-resolution @x1402 (unit-resolution @x641 @x1648 $x637) $x1360) $x313))) +(let ((@x1660 ((_ th-lemma arith assign-bounds -1 1 1 -1 -1 1 -1 -1 -3 3 1 1 2 -2 -2 2) (unit-resolution @x1168 (unit-resolution @x647 @x1657 $x644) $x664) @x715 @x711 @x687 @x720 @x730 (unit-resolution @x1405 (unit-resolution @x641 @x1648 $x637) $x1369) @x1651 @x1617 @x698 @x703 @x1382 @x1647 @x1127 @x1538 @x812 $x871))) +(let ((@x1662 ((_ th-lemma arith assign-bounds 1 1 1 2 2 1 1 1 1 1 1) (or $x463 $x744 $x745 $x707 $x706 $x743 $x742 $x1629 $x1199 $x288 $x817 $x818)))) +(let ((@x1663 (unit-resolution @x1662 @x1647 @x812 @x698 @x703 @x1127 @x1648 @x1617 @x1651 @x1382 @x1538 @x687 $x463))) +(let ((@x1667 (lemma (unit-resolution @x725 (unit-resolution @x591 @x1663 $x588) @x1660 false) (or $x1629 $x658 $x745)))) +(let ((@x1669 (unit-resolution @x633 (unit-resolution @x1636 (unit-resolution @x1667 @x941 @x711 $x1629) $x1632) $x338))) +(let ((@x1675 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x463 $x707 $x339 $x742 $x706 $x743 $x744 $x745 $x438)) @x687 @x698 @x703 (or $x463 $x707 $x339 $x706 $x745 $x438)))) +(let ((@x1677 (unit-resolution @x591 (unit-resolution @x1675 @x1669 @x1651 @x941 @x1617 @x763 $x463) $x588))) +(let ((@x1681 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 -2 2 2) (or $x1024 $x817 $x339 $x707 $x706 $x743 $x742)) @x1669 @x703 @x1617 @x1651 @x1538 @x698 $x1024))) +(let ((@x1682 (unit-resolution @x1451 @x1681 (unit-resolution @x725 @x1677 $x681) @x711 (unit-resolution @x1402 (unit-resolution @x641 @x1648 $x637) $x1360) @x1651 @x1617 @x941 (unit-resolution @x1405 (unit-resolution @x641 @x1648 $x637) $x1369) (unit-resolution @x865 @x1650 $x840) @x1672 (unit-resolution @x1129 (unit-resolution @x631 @x1669 $x628) $x663) @x944 false))) +(let ((@x1688 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 -2 2) (or $x1503 $x707 $x706 $x743 $x439 $x817 $x818)) @x1651 @x698 @x1617 @x812 @x1538 (unit-resolution (lemma @x1682 (or $x438 $x658)) @x711 $x438) $x1503))) +(let ((@x1690 (unit-resolution @x1636 (unit-resolution @x1637 @x1688 @x1127 @x1648 @x1610 @x703 $x1629) $x1632))) +(let ((@x1693 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x633 @x1690 $x338) $x628) $x663))) +(let ((@x1696 (unit-resolution ((_ th-lemma arith assign-bounds -3 -2 -2 2 2 -2 -2 2) (or $x839 $x706 $x339 $x707 $x742 $x743 $x439 $x817 $x818)) (unit-resolution @x633 @x1690 $x338) @x698 @x703 @x812 @x1617 @x1651 @x1538 (unit-resolution (lemma @x1682 (or $x438 $x658)) @x711 $x438) $x839))) +(let ((@x1697 (unit-resolution @x1491 @x1696 @x1693 @x1127 @x835 @x1648 @x1672 (unit-resolution @x865 @x1650 $x840) false))) +(let ((@x1698 (lemma @x1697 $x658))) +(let ((@x1612 (unit-resolution @x1402 (unit-resolution @x641 @x1370 $x637) $x1360))) +(let ((@x1741 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x763 @x1672 @x1517 $x363))) +(let ((@x1743 (unit-resolution @x926 (unit-resolution @x623 @x1741 $x620) $x670))) +(let ((@x1700 (hypothesis $x932))) +(let ((@x1704 (unit-resolution @x1662 @x1703 @x812 @x698 @x703 @x1127 @x1370 @x1617 @x683 @x1382 @x1538 @x687 $x463))) +(let ((@x1708 (unit-resolution @x647 (unit-resolution @x1656 @x1612 @x703 @x698 @x1138 @x1481 @x1617 @x683 @x1370 $x313) $x644))) +(let ((@x1709 (unit-resolution @x1438 @x1708 $x1381))) +(let ((@x1713 ((_ th-lemma arith assign-bounds 1 -1 -3/2 3/2 -1 1 -1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 1/2) @x1712 @x857 @x1672 @x853 @x1517 @x799 @x1709 @x1258 @x832 @x1254 (unit-resolution @x1270 (unit-resolution @x591 @x1704 $x588) $x672) @x1138 @x1612 @x1208 @x835 @x1700 $x657))) +(let ((@x1718 (unit-resolution ((_ th-lemma arith assign-bounds 2 1 1 1 1 1 1) (or $x488 $x288 $x1532 $x1471 $x710 $x1191 $x1423 $x338)) @x1701 @x1370 @x1138 @x1258 @x1698 @x1612 @x1709 $x488))) +(let (($x1723 (not $x932))) +(let (($x1724 (or $x654 $x1415 $x1416 $x1532 $x1471 $x710 $x1472 $x1723 $x1092 $x957 $x958 $x1091 $x815 $x871 $x814 $x1386))) +(let ((@x1726 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1724) (unit-resolution @x725 (unit-resolution @x591 @x1704 $x588) $x681) @x832 @x853 @x835 @x730 @x1258 @x1286 @x1698 @x720 @x1672 @x1700 @x1208 (unit-resolution @x1405 (unit-resolution @x641 @x1370 $x637) $x1369) (unit-resolution @x1293 (unit-resolution @x573 @x1718 $x584) $x1238) @x1709 $x654))) +(let (($x816 (not $x650))) +(let (($x1729 (or $x653 $x1323 $x1422 $x734 $x816 $x766 $x744 $x745 $x707 $x706 $x743 $x742 $x1421 $x1262 $x1191 $x1423))) +(let ((@x1731 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1729) @x1713 @x687 @x698 @x703 @x1138 @x715 @x1298 @x1254 (unit-resolution @x1168 @x1708 $x664) @x1617 @x683 @x1382 (unit-resolution @x1270 (unit-resolution @x591 @x1704 $x588) $x672) (unit-resolution @x1300 (unit-resolution @x573 @x1718 $x584) $x1239) @x1612 $x653))) +(let ((@x1732 (unit-resolution @x1306 @x1731 @x1726 (unit-resolution @x569 (unit-resolution @x1279 @x1713 @x1698 $x92) $x582) false))) +(let ((@x1734 (lemma @x1732 (or $x338 $x707 $x745 $x1723 $x1092 $x288)))) +(let ((@x1745 (unit-resolution @x1734 @x1370 @x941 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1741 $x620) $x840) @x1743 $x338))) +(let ((@x1747 (unit-resolution @x591 (unit-resolution @x1675 @x1745 @x763 @x941 @x1617 @x1743 $x463) $x588))) +(let ((@x1750 (unit-resolution @x647 (unit-resolution @x1656 @x1612 @x703 @x698 @x1138 @x1481 @x1617 @x1743 @x1370 $x313) $x644))) +(let ((@x1751 (unit-resolution @x1438 @x1750 $x1381))) +(let ((@x1735 (hypothesis $x1381))) +(let ((@x1736 ((_ th-lemma arith farkas 3/4 1/4 -1/4 -3/4 1/2 -1/2 -1/2 1/2 -1/4 1/4 1/4 -1/4 -1/4 1/4 1/4 -1/4 1/4 1) @x683 @x1617 @x698 @x703 @x858 @x857 @x1517 @x799 @x1735 @x1258 @x1255 @x832 @x1254 @x1251 @x1138 (hypothesis $x1360) @x1700 @x1481 false))) +(let ((@x1754 (unit-resolution (lemma @x1736 (or $x657 $x707 $x860 $x1532 $x1262 $x1423 $x1723)) (unit-resolution @x1117 (unit-resolution @x631 @x1745 $x628) $x667) @x1743 @x1751 (unit-resolution @x1270 @x1747 $x672) @x1612 @x966 $x657))) +(let ((@x1759 ((_ th-lemma arith assign-bounds 2 3/4 3/4 3/4 3/4 3/4 1/2 1/2 3/4 3/4 1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4) @x1370 @x1751 @x1258 @x1698 @x1138 @x1612 (unit-resolution @x1129 (unit-resolution @x631 @x1745 $x628) $x663) @x1127 @x1617 @x698 @x1538 @x812 @x687 @x720 (unit-resolution @x725 @x1747 $x681) @x1743 @x703 @x941 $x488))) +(let ((@x1762 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1724) (unit-resolution @x1293 (unit-resolution @x573 @x1759 $x584) $x1238) @x832 @x853 @x835 @x730 @x1258 @x1286 @x1698 @x720 @x1672 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1741 $x620) $x840) (unit-resolution @x1405 (unit-resolution @x641 @x1370 $x637) $x1369) (unit-resolution @x725 @x1747 $x681) @x1751 $x654))) +(let ((@x1767 (unit-resolution @x1426 (unit-resolution @x1300 (unit-resolution @x573 @x1759 $x584) $x1239) @x799 @x698 @x703 @x857 @x1138 @x1617 @x1612 @x1743 (unit-resolution @x1117 (unit-resolution @x631 @x1745 $x628) $x667) (unit-resolution @x1270 @x1747 $x672) (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1517 @x1481 $x933) @x1254 @x1298 $x653))) +(let ((@x1768 (unit-resolution @x1306 @x1767 @x1762 (unit-resolution @x569 (unit-resolution @x1279 @x1754 @x1698 $x92) $x582) false))) +(let ((@x1770 (lemma @x1768 (or $x288 $x438)))) +(let ((@x891 (unit-resolution @x1770 @x1370 $x438))) +(let ((@x783 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 -2 2 -1) (or $x932 $x817 $x818 $x706 $x364 $x743 $x903)) @x698 @x812 (or $x932 $x817 $x706 $x364 $x903)))) +(let ((@x795 (unit-resolution (unit-resolution @x783 @x1538 @x1617 (or $x932 $x364 $x903)) (unit-resolution @x828 (unit-resolution @x599 @x891 $x596) $x669) (unit-resolution @x1645 @x1370 $x363) $x932))) +(let ((@x809 (unit-resolution (unit-resolution @x709 @x1617 (or $x463 $x339 $x439 $x707)) @x889 @x688 @x891 $x339))) +(let ((@x821 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x891 $x596) $x678) @x891 $x675))) +(let ((@x836 (lemma (unit-resolution @x1734 @x821 @x809 @x1370 @x795 @x890 @x889 false) (or $x288 $x463)))) +(let ((@x918 (unit-resolution @x836 @x688 $x288))) +(let ((@x722 (unit-resolution @x1151 (unit-resolution @x639 @x918 $x636) $x660))) +(let ((@x1807 (unit-resolution (unit-resolution @x1193 @x1138 (or $x338 $x313 $x1141 $x289)) @x1701 @x918 @x722 $x313))) +(let ((@x838 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x1672 @x1517 (or $x363 $x438)))) +(let ((@x910 (unit-resolution @x623 (unit-resolution @x838 @x763 $x363) $x620))) +(let ((@x920 (unit-resolution @x1146 (unit-resolution @x639 @x918 $x636) $x661))) +(let ((@x916 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x463 $x813 $x815 $x438)) @x720 (or $x488 $x463 $x813 $x438)))) +(let ((@x923 (unit-resolution @x1293 (unit-resolution @x573 (unit-resolution @x916 @x763 @x688 @x762 $x488) $x584) $x1238))) +(let ((@x924 ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 -1 1 3 -3 1 -1 -1 2 -2 2 -2) @x923 @x1286 @x762 @x720 @x730 (hypothesis $x1699) @x857 @x1672 @x853 @x1517 @x799 @x920 @x832 @x966 (unit-resolution @x865 @x910 $x840) @x835 $x654))) +(let (($x886 (>= ?x676 0))) +(let ((@x735 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x886)) @x758 $x886))) +(let ((@x736 (unit-resolution @x1300 (unit-resolution @x573 (unit-resolution @x916 @x763 @x688 @x762 $x488) $x584) $x1239))) +(let ((@x682 ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 -1 1 3 -3 1 -1 -1 2 -2 2 -2) @x736 @x1298 @x735 @x1254 @x1138 @x1647 @x1127 @x1617 @x698 @x1538 @x812 @x722 @x687 @x941 (unit-resolution @x926 @x910 $x670) @x703 $x653))) +(let (($x741 (not $x886))) +(let (($x748 (or $x657 $x741 $x1532 $x1471 $x1421 $x1191 $x706 $x743 $x744 $x745 $x707 $x742 $x1141))) +(let ((@x750 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1) $x748) (unit-resolution @x926 @x910 $x670) @x698 @x703 @x1138 @x1258 @x1254 @x722 @x1617 @x687 @x941 @x1735 @x735 $x657))) +(let ((@x755 (unit-resolution @x1279 @x1698 (or $x92 $x766)))) +(let ((@x917 (unit-resolution @x569 (unit-resolution @x755 @x750 $x92) (unit-resolution @x1306 @x682 @x924 $x91) false))) +(let ((@x1810 (unit-resolution (lemma @x917 (or $x438 $x1532 $x1629 (not $x1699) $x463)) (unit-resolution @x1438 (unit-resolution @x647 @x1807 $x644) $x1381) @x1703 @x1712 @x688 $x438))) +(let ((@x1780 (hypothesis $x886))) +(let (($x1782 (or $x657 $x1531 $x741 $x1532 $x1471 $x1421 $x1191 $x957 $x958 $x744 $x742 $x1141 $x784 $x800 $x801))) +(let ((@x1784 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -2 2) $x1782) (hypothesis $x1503) @x799 @x853 @x703 @x1138 @x1258 @x1254 @x1139 @x868 @x1517 @x1672 @x687 @x1735 @x1780 $x657))) +(let ((@x1789 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x338 $x1532 $x1471 $x710 $x1191 $x1141)) @x1701 @x1138 @x1258 @x1698 @x1139 @x1735 $x488))) +(let (($x927 (not $x1699))) +(let (($x1792 (or $x654 $x1415 $x1416 $x741 $x1421 $x1191 $x927 $x1424 $x957 $x958 $x800 $x801 $x1141 $x1532 $x1471 $x710))) +(let ((@x1794 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1792) (unit-resolution @x1293 (unit-resolution @x573 @x1789 $x584) $x1238) @x799 @x853 @x857 @x1138 @x1258 @x1286 @x1698 @x1139 @x1517 @x1672 @x1254 @x1735 @x1780 @x1712 $x654))) +(let (($x1796 (or $x653 $x1323 $x1422 $x813 $x815 $x814 $x1629 $x1199 $x706 $x743 $x817 $x818 $x733 $x734 $x816 $x766))) +(let ((@x1798 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1796) @x1784 @x812 @x698 @x1127 @x730 @x715 @x1298 @x720 @x731 @x716 @x1617 @x934 @x1538 @x1703 (unit-resolution @x1300 (unit-resolution @x573 @x1789 $x584) $x1239) $x653))) +(let ((@x1799 (unit-resolution @x1306 @x1798 @x1794 (unit-resolution @x569 (unit-resolution @x755 @x1784 $x92) $x582) false))) +(let ((@x1814 (unit-resolution (lemma @x1799 (or $x1531 $x733 $x734 $x813 $x1141 $x1532 $x741 $x784 $x338)) (unit-resolution @x1168 (unit-resolution @x647 @x1807 $x644) $x664) @x920 @x762 @x722 (unit-resolution @x1438 (unit-resolution @x647 @x1807 $x644) $x1381) @x735 (unit-resolution @x693 (unit-resolution @x599 @x1810 $x596) $x678) @x1701 $x1531))) +(let ((@x1816 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 -2 2) (or $x1503 $x707 $x706 $x743 $x439 $x817 $x818)) @x698 @x1617 @x812 @x1538 (or $x1503 $x707 $x439)))) +(let ((@x1803 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x1503)) (hypothesis $x621) (hypothesis $x1531) false))) +(let ((@x1804 (lemma @x1803 (or $x823 $x1503)))) +(let ((@x1820 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x1804 @x1814 $x823) $x363) $x620))) +(let ((@x1821 (unit-resolution @x926 @x1820 (unit-resolution @x1816 @x1814 @x1810 $x707) false))) +(let ((@x1861 (unit-resolution (lemma @x1821 (or $x338 $x463)) @x688 $x338))) +(let ((@x1827 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 -1 -1 1 1 -1) (or $x860 $x707 $x414 $x742 $x1424 $x800 $x801 $x289 $x438)) @x799 @x703 @x857 @x1481 @x1517 (or $x860 $x707 $x289 $x438)))) +(let ((@x1829 (unit-resolution @x926 @x910 (unit-resolution @x1827 @x763 @x1078 @x858 $x707) false))) +(let ((@x1831 (lemma @x1829 (or $x438 $x289 $x860)))) +(let ((@x1864 (unit-resolution @x1831 @x918 (unit-resolution @x1117 (unit-resolution @x631 @x1861 $x628) $x667) $x438))) +(let ((@x1865 (unit-resolution (unit-resolution @x709 @x1617 (or $x463 $x339 $x439 $x707)) @x1864 @x688 @x1861 $x707))) +(let ((@x1868 (unit-resolution @x1129 (unit-resolution @x631 @x1861 $x628) $x663))) +(let ((@x1619 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x706 $x743 $x313 $x1141 $x1191 $x817 $x1198 $x1199 $x439 $x818)) @x698 @x1127 @x1138 @x812 (or $x706 $x313 $x1141 $x817 $x1198 $x439)))) +(let ((@x1871 (unit-resolution (unit-resolution @x1619 @x1538 @x1617 (or $x313 $x1141 $x1198 $x439)) @x1864 @x722 @x1868 $x313))) +(let ((@x1836 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1796) @x1320 @x812 @x698 @x1127 @x730 @x715 @x1298 @x720 @x731 @x716 @x1617 @x934 @x1538 @x1647 @x764 $x1323))) +(let ((@x1833 ((_ th-lemma arith farkas 1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 1) @x1138 @x1139 @x1298 @x1320 @x934 @x720 @x1127 @x1617 @x698 @x1538 @x812 @x1213 (hypothesis $x1506) false))) +(let ((@x1837 (unit-resolution (lemma @x1833 (or $x1558 $x1141 $x653 $x813 $x1198)) @x1320 @x1139 @x934 @x1213 $x1558))) +(let ((@x1840 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1569 @x1837 $x1546) $x488) $x584))) +(let ((@x1843 (lemma (unit-resolution @x1300 @x1840 @x1836 false) (or $x653 $x1141 $x813 $x1198 $x733 $x734 $x1629 $x766)))) +(let ((@x1847 (unit-resolution @x1306 (unit-resolution @x1843 @x764 @x934 @x1213 @x731 @x716 @x1647 @x1139 $x653) (unit-resolution @x569 (unit-resolution @x755 @x764 $x92) $x582) $x1304))) +(let (($x1848 (or $x1550 $x814 $x733 $x1416 $x654 $x741 $x1421 $x1424 $x957 $x958 $x800 $x801 $x860))) +(let ((@x1850 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 1 -1 1 -1 -1) $x1848) @x1847 @x799 @x853 @x857 @x730 @x1254 @x731 @x1517 @x858 @x1672 @x1286 @x1780 $x1550))) +(let ((@x1853 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1583 @x1850 $x1546) $x488) $x584))) +(let ((@x1857 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 2 -2) (or $x1699 $x860 $x489 $x734 $x816 $x766 $x814 $x733)) @x764 @x715 @x730 @x731 @x716 @x858 (unit-resolution @x575 (unit-resolution @x1583 @x1850 $x1546) $x488) $x1699))) +(let ((@x1858 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1792) @x1857 (unit-resolution @x1293 @x1853 $x1238) @x799 @x853 @x857 @x1138 @x1258 @x1735 @x1698 @x1139 @x1517 @x1672 @x1847 @x1254 @x1780 @x1286 false))) +(let ((@x1878 (unit-resolution (lemma @x1858 (or $x766 $x1532 $x1141 $x741 $x733 $x734 $x860 $x813 $x1198 $x1629)) (unit-resolution @x1438 (unit-resolution @x647 @x1871 $x644) $x1381) @x722 @x735 @x920 (unit-resolution @x1168 (unit-resolution @x647 @x1871 $x644) $x664) (unit-resolution @x1117 (unit-resolution @x631 @x1861 $x628) $x667) @x762 @x1868 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1198 $x339)) @x1861 @x1868 $x875) $x766))) +(let ((@x1879 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -2 2) $x1782) @x1878 @x799 @x853 @x703 @x1138 @x1258 (unit-resolution @x1438 (unit-resolution @x647 @x1871 $x644) $x1381) @x722 (unit-resolution @x693 (unit-resolution @x599 @x1864 $x596) $x678) @x1517 @x1672 @x687 @x1254 @x735 $x1531))) +(let ((@x1882 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x1804 @x1879 $x823) $x363) $x620))) +(let ((@x1884 (lemma (unit-resolution @x926 @x1882 @x1865 false) $x463))) +(let ((@x1943 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 1) (or $x678 $x389 $x1472 $x817 $x818 $x464)) @x832 @x812 @x1610 @x1884 @x1538 $x678))) +(let ((@x1906 (unit-resolution @x1770 @x763 $x288))) +(let ((@x1910 (unit-resolution (unit-resolution @x1207 @x1481 (or $x438 $x289 $x313)) @x763 @x1906 $x313))) +(let ((@x1915 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x663 $x667)) (unit-resolution @x1831 @x1906 @x763 $x860) $x663))) +(let ((@x1886 (unit-resolution @x1270 (unit-resolution @x591 @x1884 $x588) $x672))) +(let ((@x1887 ((_ th-lemma arith farkas -1 1 -1 1 -3/2 3/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 1) @x857 @x1078 @x1517 @x799 @x1672 @x853 @x1735 @x1258 @x1255 @x1254 @x1700 @x832 @x1886 @x1138 @x1152 @x1208 @x835 (hypothesis $x1699) false))) +(let ((@x1890 (unit-resolution (lemma @x1887 (or $x657 $x289 $x1532 $x1723 $x1092 $x927)) @x1712 @x1735 @x1700 @x1208 @x1078 $x657))) +(let ((@x1772 (hypothesis $x871))) +(let ((@x1774 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x679)) @x758 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 $x813 $x463)) @x688 @x1772 $x813) false))) +(let ((@x1777 (unit-resolution @x591 (unit-resolution (lemma @x1774 (or $x463 $x681)) @x1772 $x463) $x588))) +(let ((@x1779 (lemma (unit-resolution @x725 @x1777 @x1772 false) $x681))) +(let ((@x1897 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x679 $x464 $x871)) @x1779 (or $x679 $x464)) @x1884 $x679))) +(let ((@x1899 (unit-resolution @x1306 (unit-resolution @x1843 @x1890 @x1897 @x1213 @x1147 @x716 @x1703 @x1152 $x653) (unit-resolution @x569 (unit-resolution @x755 @x1890 $x92) $x582) $x1304))) +(let ((@x1900 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x338 $x1532 $x1471 $x710 $x1191 $x1141)) @x1701 @x1138 @x1258 @x1698 @x1152 @x1735 $x488))) +(let ((@x1903 ((_ th-lemma arith farkas -1 -1 1 -2 2 -1 1 1 1 -1 -1 1 -1 1 -1 1) @x857 @x1517 @x799 @x1672 @x853 @x1735 @x1258 @x1698 @x1700 @x832 @x1208 @x835 (unit-resolution @x1293 (unit-resolution @x573 @x1900 $x584) $x1238) @x1286 @x1899 @x1712 false))) +(let ((@x1917 (unit-resolution (lemma @x1903 (or $x338 $x1532 $x1723 $x1092 $x1198 $x734 $x289)) (unit-resolution @x1438 (unit-resolution @x647 @x1910 $x644) $x1381) @x966 (unit-resolution @x865 @x910 $x840) @x1915 (unit-resolution @x1168 (unit-resolution @x647 @x1910 $x644) $x664) @x1906 $x338))) +(let ((@x1919 (unit-resolution @x1117 (unit-resolution @x631 @x1917 $x628) (unit-resolution @x1831 @x1906 @x763 $x860) false))) +(let ((@x1920 (lemma @x1919 $x438))) +(let ((@x1922 (unit-resolution @x828 (unit-resolution @x599 @x1920 $x596) $x669))) +(let ((@x1925 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 -2 2) (or $x839 $x706 $x817 $x818 $x464 $x903 $x1472)) @x832 @x812 @x1617 @x1538 @x1884 @x1922 $x839))) +(let ((@x1929 (unit-resolution @x631 (unit-resolution (unit-resolution @x1486 @x1481 (or $x338 $x872)) @x1925 $x338) $x628))) +(let ((@x1930 (unit-resolution @x1129 @x1929 $x663))) +(let ((@x1933 (unit-resolution (unit-resolution @x1491 @x1127 @x835 @x1672 (or $x872 $x1198 $x1092 $x288)) @x1370 @x1925 @x1930 $x1092))) +(let ((@x1934 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1198 $x339)) @x1930 (unit-resolution (unit-resolution @x1486 @x1481 (or $x338 $x872)) @x1925 $x338) $x875))) +(let ((@x1937 (unit-resolution (unit-resolution @x1637 @x1127 @x1610 @x703 (or $x1629 $x1531 $x288)) @x1370 @x1934 $x1531))) +(let ((@x1939 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) (unit-resolution @x1816 @x1937 @x1920 $x707) @x1933 false))) +(let ((@x1945 (unit-resolution @x1151 (unit-resolution @x639 (lemma @x1939 $x288) $x636) $x660))) +(let ((@x1948 (unit-resolution (unit-resolution @x1580 @x1779 (or $x653 $x872 $x1141 $x1262 $x784)) @x1945 @x1886 @x1925 @x1943 $x653))) +(let ((@x1950 (unit-resolution @x1146 (unit-resolution @x639 (lemma @x1939 $x288) $x636) $x661))) +(let ((@x1951 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 $x957)) @x1672 @x1610 $x780))) +(let ((@x1954 (unit-resolution (unit-resolution @x1592 @x1951 (or $x654 $x903 $x1262 $x733 $x860)) @x1950 @x1886 @x1922 (unit-resolution @x1117 @x1929 $x667) $x654))) +(let ((@x1957 (unit-resolution @x755 (unit-resolution @x569 (unit-resolution @x1306 @x1954 @x1948 $x91) $x583) $x766))) +(let ((@x1958 (unit-resolution (unit-resolution @x1619 @x1538 @x1617 (or $x313 $x1141 $x1198 $x439)) @x1945 @x1920 @x1930 $x313))) +(let ((@x1963 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x1249 $x314 $x1532)) (unit-resolution @x1438 (unit-resolution @x647 @x1958 $x644) $x1381) @x1958 $x1249))) +(let ((@x1966 (unit-resolution (unit-resolution @x1264 @x1951 (or $x657 $x707 $x1261 $x1262 $x733 $x903 $x860)) @x1963 @x1886 (unit-resolution @x1117 @x1929 $x667) @x1950 @x1922 @x1957 $x707))) +(let ((@x1968 (unit-resolution @x1534 @x853 @x703 @x1138 @x1258 @x1951 @x832 @x1254 (or $x657 $x1531 $x1532 $x903 $x1262 $x1141)))) +(let ((@x1969 (unit-resolution @x1968 (unit-resolution @x1438 (unit-resolution @x647 @x1958 $x644) $x1381) @x1886 @x1922 @x1945 @x1957 $x1531))) +(let ((@x1972 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x1804 @x1969 $x823) $x363) $x620))) +(unit-resolution @x926 @x1972 @x1966 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +5c29815a1036cbd6b831d4adbe102069cf0d830f 20 0 +unsat +((set-logic AUFLIRA) +(proof +(let ((?x30 (* 2.0 x$))) +(let ((?x32 (+ ?x30 1.0))) +(let ((?x28 (+ x$ x$))) +(let (($x33 (< ?x28 ?x32))) +(let (($x34 (or false $x33))) +(let (($x35 (or $x33 $x34))) +(let (($x36 (not $x35))) +(let ((@x67 (monotonicity (rewrite (= (< ?x30 (+ 1.0 ?x30)) true)) (= (not (< ?x30 (+ 1.0 ?x30))) (not true))))) +(let ((@x71 (trans @x67 (rewrite (= (not true) false)) (= (not (< ?x30 (+ 1.0 ?x30))) false)))) +(let ((?x40 (+ 1.0 ?x30))) +(let (($x43 (< ?x30 ?x40))) +(let ((@x45 (monotonicity (rewrite (= ?x28 ?x30)) (rewrite (= ?x32 ?x40)) (= $x33 $x43)))) +(let ((@x52 (trans (monotonicity @x45 (= $x34 (or false $x43))) (rewrite (= (or false $x43) $x43)) (= $x34 $x43)))) +(let ((@x59 (trans (monotonicity @x45 @x52 (= $x35 (or $x43 $x43))) (rewrite (= (or $x43 $x43) $x43)) (= $x35 $x43)))) +(let ((@x62 (monotonicity @x59 (= $x36 (not $x43))))) +(mp (asserted $x36) (trans @x62 @x71 (= $x36 false)) false)))))))))))))))))) faae12ee7efe4347f92e42776a0e0e57a624319c 113 0 unsat @@ -2355,7 +2300,7 @@ (let ((?x263 (+ ?x31 ?x262))) (let (($x280 (>= ?x263 0))) (let (($x264 (= ?x263 0))) -(let (($x205 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x136 (mod ?v0 ?v1))) +(let (($x205 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x136 (mod ?v0 ?v1))) (let ((?x93 (* (- 1) ?v1))) (let ((?x90 (* (- 1) ?v0))) (let ((?x144 (mod ?x90 ?x93))) @@ -2365,9 +2310,9 @@ (let (($x78 (= ?v1 0))) (let ((?x175 (ite $x78 ?v0 ?x170))) (let ((?x135 (mod$ ?v0 ?v1))) -(= ?x135 ?x175))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +(= ?x135 ?x175))))))))))) :pattern ( (mod$ ?v0 ?v1) ) :qid k!9)) )) -(let (($x181 (forall ((?v0 Int) (?v1 Int) )(let ((?x136 (mod ?v0 ?v1))) +(let (($x181 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x136 (mod ?v0 ?v1))) (let ((?x93 (* (- 1) ?v1))) (let ((?x90 (* (- 1) ?v0))) (let ((?x144 (mod ?x90 ?x93))) @@ -2377,7 +2322,7 @@ (let (($x78 (= ?v1 0))) (let ((?x175 (ite $x78 ?v0 ?x170))) (let ((?x135 (mod$ ?v0 ?v1))) -(= ?x135 ?x175)))))))))))) +(= ?x135 ?x175))))))))))) :qid k!9)) )) (let ((?x136 (mod ?1 ?0))) (let ((?x93 (* (- 1) ?0))) @@ -2390,12 +2335,12 @@ (let ((?x175 (ite $x78 ?1 ?x170))) (let ((?x135 (mod$ ?1 ?0))) (let (($x178 (= ?x135 ?x175))) -(let (($x142 (forall ((?v0 Int) (?v1 Int) )(let (($x78 (= ?v1 0))) +(let (($x142 (forall ((?v0 Int) (?v1 Int) )(! (let (($x78 (= ?v1 0))) (let ((?x140 (ite $x78 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) (let ((?x135 (mod$ ?v0 ?v1))) -(= ?x135 ?x140))))) +(= ?x135 ?x140)))) :qid k!9)) )) -(let (($x164 (forall ((?v0 Int) (?v1 Int) )(let ((?x93 (* (- 1) ?v1))) +(let (($x164 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x93 (* (- 1) ?v1))) (let ((?x90 (* (- 1) ?v0))) (let ((?x144 (mod ?x90 ?x93))) (let ((?x150 (* (- 1) ?x144))) @@ -2405,7 +2350,7 @@ (let (($x78 (= ?v1 0))) (let ((?x158 (ite $x78 ?v0 ?x155))) (let ((?x135 (mod$ ?v0 ?v1))) -(= ?x135 ?x158)))))))))))) +(= ?x135 ?x158))))))))))) :qid k!9)) )) (let ((@x169 (monotonicity (rewrite (= (< 0 ?0) (not $x111))) (= (ite (< 0 ?0) ?x136 ?x150) (ite (not $x111) ?x136 ?x150))))) (let ((@x174 (trans @x169 (rewrite (= (ite (not $x111) ?x136 ?x150) ?x170)) (= (ite (< 0 ?0) ?x136 ?x150) ?x170)))) @@ -2441,7 +2386,7 @@ (let ((@x274 (monotonicity (trans @x261 (rewrite (= (= ?x31 ?x228) $x264)) (= $x231 $x264)) (= (or (not $x205) $x231) $x270)))) (let ((@x277 (trans @x274 (rewrite (= $x270 $x270)) (= (or (not $x205) $x231) $x270)))) (let ((@x278 (mp ((_ quant-inst x$ 2) (or (not $x205) $x231)) @x277 $x270))) -(let ((@x337 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x264) $x280)) (unit-resolution @x278 @x210 $x264) $x280))) +(let ((@x332 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x264) $x280)) (unit-resolution @x278 @x210 $x264) $x280))) (let (($x305 (>= ?x228 0))) (let (($x64 (>= ?x31 0))) (let (($x67 (not $x64))) @@ -2457,7 +2402,7 @@ (let ((@x54 (monotonicity (rewrite (= (+ x$ 1) (+ 1 x$))) @x51 (= (<= (+ x$ 1) (+ x$ (+ ?x32 1))) $x52)))) (let ((@x73 (trans (monotonicity @x54 (= $x36 $x55)) (trans @x63 @x69 (= $x55 $x67)) (= $x36 $x67)))) (let ((@x74 (mp (asserted $x36) @x73 $x67))) -((_ th-lemma arith farkas -1 1 1) @x74 (unit-resolution ((_ th-lemma arith) (or false $x305)) (true-axiom true) $x305) @x337 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +((_ th-lemma arith farkas -1 1 1) @x74 (unit-resolution ((_ th-lemma arith) (or false $x305)) (true-axiom true) $x305) @x332 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 57f344c9e787868c98d1e622f158c445c1899c96 112 0 unsat @@ -2471,7 +2416,7 @@ (let ((?x259 (+ ?x29 ?x258))) (let (($x275 (<= ?x259 0))) (let (($x260 (= ?x259 0))) -(let (($x201 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x132 (mod ?v0 ?v1))) +(let (($x201 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x132 (mod ?v0 ?v1))) (let ((?x89 (* (- 1) ?v1))) (let ((?x86 (* (- 1) ?v0))) (let ((?x140 (mod ?x86 ?x89))) @@ -2481,9 +2426,9 @@ (let (($x74 (= ?v1 0))) (let ((?x171 (ite $x74 ?v0 ?x166))) (let ((?x131 (mod$ ?v0 ?v1))) -(= ?x131 ?x171))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +(= ?x131 ?x171))))))))))) :pattern ( (mod$ ?v0 ?v1) ) :qid k!9)) )) -(let (($x177 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod ?v0 ?v1))) +(let (($x177 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x132 (mod ?v0 ?v1))) (let ((?x89 (* (- 1) ?v1))) (let ((?x86 (* (- 1) ?v0))) (let ((?x140 (mod ?x86 ?x89))) @@ -2493,7 +2438,7 @@ (let (($x74 (= ?v1 0))) (let ((?x171 (ite $x74 ?v0 ?x166))) (let ((?x131 (mod$ ?v0 ?v1))) -(= ?x131 ?x171)))))))))))) +(= ?x131 ?x171))))))))))) :qid k!9)) )) (let ((?x132 (mod ?1 ?0))) (let ((?x89 (* (- 1) ?0))) @@ -2506,12 +2451,12 @@ (let ((?x171 (ite $x74 ?1 ?x166))) (let ((?x131 (mod$ ?1 ?0))) (let (($x174 (= ?x131 ?x171))) -(let (($x138 (forall ((?v0 Int) (?v1 Int) )(let (($x74 (= ?v1 0))) +(let (($x138 (forall ((?v0 Int) (?v1 Int) )(! (let (($x74 (= ?v1 0))) (let ((?x136 (ite $x74 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) (let ((?x131 (mod$ ?v0 ?v1))) -(= ?x131 ?x136))))) +(= ?x131 ?x136)))) :qid k!9)) )) -(let (($x160 (forall ((?v0 Int) (?v1 Int) )(let ((?x89 (* (- 1) ?v1))) +(let (($x160 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x89 (* (- 1) ?v1))) (let ((?x86 (* (- 1) ?v0))) (let ((?x140 (mod ?x86 ?x89))) (let ((?x146 (* (- 1) ?x140))) @@ -2521,7 +2466,7 @@ (let (($x74 (= ?v1 0))) (let ((?x154 (ite $x74 ?v0 ?x151))) (let ((?x131 (mod$ ?v0 ?v1))) -(= ?x131 ?x154)))))))))))) +(= ?x131 ?x154))))))))))) :qid k!9)) )) (let ((@x165 (monotonicity (rewrite (= (< 0 ?0) (not $x107))) (= (ite (< 0 ?0) ?x132 ?x146) (ite (not $x107) ?x132 ?x146))))) (let ((@x170 (trans @x165 (rewrite (= (ite (not $x107) ?x132 ?x146) ?x166)) (= (ite (< 0 ?0) ?x132 ?x146) ?x166)))) @@ -2557,7 +2502,7 @@ (let ((@x270 (monotonicity (trans @x257 (rewrite (= (= ?x29 ?x224) $x260)) (= $x227 $x260)) (= (or (not $x201) $x227) $x266)))) (let ((@x273 (trans @x270 (rewrite (= $x266 $x266)) (= (or (not $x201) $x227) $x266)))) (let ((@x274 (mp ((_ quant-inst x$ 2) (or (not $x201) $x227)) @x273 $x266))) -(let ((@x336 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x260) $x275)) (unit-resolution @x274 @x206 $x260) $x275))) +(let ((@x331 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x260) $x275)) (unit-resolution @x274 @x206 $x260) $x275))) (let (($x63 (>= ?x29 2))) (let ((?x37 (* 2 ?x29))) (let (($x56 (>= ?x37 3))) @@ -2570,7 +2515,7 @@ (let ((@x51 (monotonicity @x48 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x49)))) (let ((@x69 (trans @x51 @x67 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x63)))) (let ((@x70 (mp (asserted (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)))) @x69 $x63))) -((_ th-lemma arith farkas -1 1 1) @x70 @x336 (unit-resolution ((_ th-lemma arith) (or false $x319)) (true-axiom true) $x319) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +((_ th-lemma arith farkas -1 1 1) @x70 @x331 (unit-resolution ((_ th-lemma arith) (or false $x319)) (true-axiom true) $x319) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 3938db798ebafb55191dcdaf83a8615d1d59c0c3 32 0 unsat @@ -2605,248 +2550,11 @@ (let ((@x117 (unit-resolution ((_ th-lemma arith assign-bounds 1) (or $x102 (not $x100))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x95) $x100)) @x98 $x100) $x102))) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x28 (not $x101) (not $x102))) @x117 @x110 @x30 false)))))))))))))))))))))))))))))) -353c8b65ed1b98772a89ffdae52f1cfae628dd6a 236 0 -unsat -((set-logic ) -(proof -(let ((?x410 (div n$ 2))) -(let ((?x704 (* (- 1) ?x410))) -(let ((?x381 (div n$ 4))) -(let ((?x601 (* (- 2) ?x381))) -(let ((?x329 (mod n$ 4))) -(let ((?x363 (* (- 1) ?x329))) -(let ((?x35 (mod$ n$ 4))) -(let ((?x705 (+ n$ ?x35 ?x363 ?x601 ?x704))) -(let (($x706 (>= ?x705 2))) -(let ((?x39 (mod$ n$ 2))) -(let (($x515 (>= ?x39 1))) -(let (($x725 (not $x515))) -(let (($x514 (<= ?x39 1))) -(let ((?x519 (mod n$ 2))) -(let ((?x534 (* (- 1) ?x519))) -(let ((?x535 (+ ?x39 ?x534))) -(let (($x408 (<= ?x535 0))) -(let (($x490 (= ?x535 0))) -(let (($x191 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x108 (mod ?v0 ?v1))) -(let ((?x65 (* (- 1) ?v1))) -(let ((?x62 (* (- 1) ?v0))) -(let ((?x116 (mod ?x62 ?x65))) -(let ((?x122 (* (- 1) ?x116))) -(let (($x83 (<= ?v1 0))) -(let ((?x142 (ite $x83 ?x122 ?x108))) -(let (($x50 (= ?v1 0))) -(let ((?x147 (ite $x50 ?v0 ?x142))) -(let ((?x107 (mod$ ?v0 ?v1))) -(= ?x107 ?x147))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) -)) -(let (($x153 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod ?v0 ?v1))) -(let ((?x65 (* (- 1) ?v1))) -(let ((?x62 (* (- 1) ?v0))) -(let ((?x116 (mod ?x62 ?x65))) -(let ((?x122 (* (- 1) ?x116))) -(let (($x83 (<= ?v1 0))) -(let ((?x142 (ite $x83 ?x122 ?x108))) -(let (($x50 (= ?v1 0))) -(let ((?x147 (ite $x50 ?v0 ?x142))) -(let ((?x107 (mod$ ?v0 ?v1))) -(= ?x107 ?x147)))))))))))) -)) -(let ((?x108 (mod ?1 ?0))) -(let ((?x65 (* (- 1) ?0))) -(let ((?x62 (* (- 1) ?1))) -(let ((?x116 (mod ?x62 ?x65))) -(let ((?x122 (* (- 1) ?x116))) -(let (($x83 (<= ?0 0))) -(let ((?x142 (ite $x83 ?x122 ?x108))) -(let (($x50 (= ?0 0))) -(let ((?x147 (ite $x50 ?1 ?x142))) -(let ((?x107 (mod$ ?1 ?0))) -(let (($x150 (= ?x107 ?x147))) -(let (($x114 (forall ((?v0 Int) (?v1 Int) )(let (($x50 (= ?v1 0))) -(let ((?x112 (ite $x50 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) -(let ((?x107 (mod$ ?v0 ?v1))) -(= ?x107 ?x112))))) -)) -(let (($x136 (forall ((?v0 Int) (?v1 Int) )(let ((?x65 (* (- 1) ?v1))) -(let ((?x62 (* (- 1) ?v0))) -(let ((?x116 (mod ?x62 ?x65))) -(let ((?x122 (* (- 1) ?x116))) -(let ((?x108 (mod ?v0 ?v1))) -(let (($x51 (< 0 ?v1))) -(let ((?x127 (ite $x51 ?x108 ?x122))) -(let (($x50 (= ?v1 0))) -(let ((?x130 (ite $x50 ?v0 ?x127))) -(let ((?x107 (mod$ ?v0 ?v1))) -(= ?x107 ?x130)))))))))))) -)) -(let ((@x141 (monotonicity (rewrite (= (< 0 ?0) (not $x83))) (= (ite (< 0 ?0) ?x108 ?x122) (ite (not $x83) ?x108 ?x122))))) -(let ((@x146 (trans @x141 (rewrite (= (ite (not $x83) ?x108 ?x122) ?x142)) (= (ite (< 0 ?0) ?x108 ?x122) ?x142)))) -(let ((@x149 (monotonicity @x146 (= (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122)) ?x147)))) -(let ((@x152 (monotonicity @x149 (= (= ?x107 (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122))) $x150)))) -(let (($x51 (< 0 ?0))) -(let ((?x127 (ite $x51 ?x108 ?x122))) -(let ((?x130 (ite $x50 ?1 ?x127))) -(let (($x133 (= ?x107 ?x130))) -(let (($x134 (= (= ?x107 (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))))) $x133))) -(let ((@x118 (monotonicity (rewrite (= (- ?1) ?x62)) (rewrite (= (- ?0) ?x65)) (= (mod (- ?1) (- ?0)) ?x116)))) -(let ((@x126 (trans (monotonicity @x118 (= (- (mod (- ?1) (- ?0))) (- ?x116))) (rewrite (= (- ?x116) ?x122)) (= (- (mod (- ?1) (- ?0))) ?x122)))) -(let ((@x129 (monotonicity @x126 (= (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))) ?x127)))) -(let ((@x132 (monotonicity @x129 (= (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0))))) ?x130)))) -(let ((@x157 (trans (quant-intro (monotonicity @x132 $x134) (= $x114 $x136)) (quant-intro @x152 (= $x136 $x153)) (= $x114 $x153)))) -(let ((@x168 (mp~ (mp (asserted $x114) @x157 $x153) (nnf-pos (refl (~ $x150 $x150)) (~ $x153 $x153)) $x153))) -(let ((@x196 (mp @x168 (quant-intro (refl (= $x150 $x150)) (= $x153 $x191)) $x191))) -(let (($x260 (not $x191))) -(let (($x541 (or $x260 $x490))) -(let ((?x211 (* (- 1) 2))) -(let ((?x222 (* (- 1) n$))) -(let ((?x517 (mod ?x222 ?x211))) -(let ((?x518 (* (- 1) ?x517))) -(let (($x209 (<= 2 0))) -(let ((?x520 (ite $x209 ?x518 ?x519))) -(let (($x208 (= 2 0))) -(let ((?x521 (ite $x208 n$ ?x520))) -(let (($x485 (= ?x39 ?x521))) -(let ((@x593 (monotonicity (monotonicity (rewrite (= ?x211 (- 2))) (= ?x517 (mod ?x222 (- 2)))) (= ?x518 (* (- 1) (mod ?x222 (- 2))))))) -(let ((@x221 (rewrite (= $x209 false)))) -(let ((@x596 (monotonicity @x221 @x593 (= ?x520 (ite false (* (- 1) (mod ?x222 (- 2))) ?x519))))) -(let ((@x599 (trans @x596 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 2))) ?x519) ?x519)) (= ?x520 ?x519)))) -(let ((@x219 (rewrite (= $x208 false)))) -(let ((@x487 (trans (monotonicity @x219 @x599 (= ?x521 (ite false n$ ?x519))) (rewrite (= (ite false n$ ?x519) ?x519)) (= ?x521 ?x519)))) -(let ((@x538 (trans (monotonicity @x487 (= $x485 (= ?x39 ?x519))) (rewrite (= (= ?x39 ?x519) $x490)) (= $x485 $x490)))) -(let ((@x406 (trans (monotonicity @x538 (= (or $x260 $x485) $x541)) (rewrite (= $x541 $x541)) (= (or $x260 $x485) $x541)))) -(let ((@x407 (mp ((_ quant-inst n$ 2) (or $x260 $x485)) @x406 $x541))) -(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x408)) (unit-resolution @x407 @x196 $x490) $x408))) -(let (($x303 (>= ?x519 2))) -(let (($x304 (not $x303))) -(let ((@x26 (true-axiom true))) -(let ((@x722 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x514 $x303 (not $x408))) (unit-resolution ((_ th-lemma arith) (or false $x304)) @x26 $x304) @x715 $x514))) -(let (($x41 (= ?x39 1))) -(let (($x169 (not $x41))) -(let ((?x42 (mod$ m$ 2))) -(let (($x43 (= ?x42 1))) -(let ((?x29 (+ n$ m$))) -(let ((?x214 (mod ?x29 2))) -(let ((?x253 (* (- 1) ?x214))) -(let ((?x31 (mod$ ?x29 2))) -(let ((?x603 (+ n$ m$ ?x31 ?x35 ?x253 (* (- 1) (div ?x29 2)) ?x363 ?x601 (* (- 1) (div m$ 2))))) -(let (($x604 (>= ?x603 2))) -(let (($x523 (>= ?x42 1))) -(let (($x609 (not $x523))) -(let (($x522 (<= ?x42 1))) -(let ((?x439 (mod m$ 2))) -(let ((?x466 (* (- 1) ?x439))) -(let ((?x467 (+ ?x42 ?x466))) -(let (($x482 (<= ?x467 0))) -(let (($x468 (= ?x467 0))) -(let (($x473 (or $x260 $x468))) -(let ((?x440 (ite $x209 (* (- 1) (mod (* (- 1) m$) ?x211)) ?x439))) -(let ((?x441 (ite $x208 m$ ?x440))) -(let (($x442 (= ?x42 ?x441))) -(let ((@x453 (rewrite (= (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439) ?x439)))) -(let (($x447 (= (* (- 1) (mod (* (- 1) m$) ?x211)) (* (- 1) (mod (* (- 1) m$) (- 2)))))) -(let ((@x229 (rewrite (= ?x211 (- 2))))) -(let ((@x445 (monotonicity @x229 (= (mod (* (- 1) m$) ?x211) (mod (* (- 1) m$) (- 2)))))) -(let ((@x451 (monotonicity @x221 (monotonicity @x445 $x447) (= ?x440 (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439))))) -(let ((@x458 (monotonicity @x219 (trans @x451 @x453 (= ?x440 ?x439)) (= ?x441 (ite false m$ ?x439))))) -(let ((@x465 (monotonicity (trans @x458 (rewrite (= (ite false m$ ?x439) ?x439)) (= ?x441 ?x439)) (= $x442 (= ?x42 ?x439))))) -(let ((@x477 (monotonicity (trans @x465 (rewrite (= (= ?x42 ?x439) $x468)) (= $x442 $x468)) (= (or $x260 $x442) $x473)))) -(let ((@x481 (mp ((_ quant-inst m$ 2) (or $x260 $x442)) (trans @x477 (rewrite (= $x473 $x473)) (= (or $x260 $x442) $x473)) $x473))) -(let ((@x277 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) $x482)) (unit-resolution @x481 @x196 $x468) $x482))) -(let ((@x386 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x439 2)))) @x26 (not (>= ?x439 2))))) -(let ((@x384 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x522 (>= ?x439 2) (not $x482))) @x386 @x277 $x522))) -(let ((@x564 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x43 (not $x522) $x609)) (hypothesis (not $x43)) (or (not $x522) $x609)))) -(let ((?x272 (div ?x29 2))) -(let ((?x288 (* (- 2) ?x272))) -(let ((?x289 (+ n$ m$ ?x253 ?x288))) -(let (($x294 (<= ?x289 0))) -(let (($x287 (= ?x289 0))) -(let ((@x617 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x294)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x294))) -(let (($x433 (<= ?x31 0))) -(let (($x32 (= ?x31 0))) -(let ((@x33 (asserted $x32))) -(let ((?x254 (+ ?x31 ?x253))) -(let (($x270 (<= ?x254 0))) -(let (($x255 (= ?x254 0))) -(let (($x261 (or $x260 $x255))) -(let ((?x215 (ite $x209 (* (- 1) (mod (* (- 1) ?x29) ?x211)) ?x214))) -(let ((?x216 (ite $x208 ?x29 ?x215))) -(let (($x217 (= ?x31 ?x216))) -(let (($x239 (= (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214) ?x214))) -(let (($x237 (= ?x215 (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214)))) -(let (($x234 (= (* (- 1) (mod (* (- 1) ?x29) ?x211)) (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2)))))) -(let ((@x232 (monotonicity (rewrite (= (* (- 1) ?x29) (+ ?x222 (* (- 1) m$)))) @x229 (= (mod (* (- 1) ?x29) ?x211) (mod (+ ?x222 (* (- 1) m$)) (- 2)))))) -(let ((@x242 (trans (monotonicity @x221 (monotonicity @x232 $x234) $x237) (rewrite $x239) (= ?x215 ?x214)))) -(let ((@x249 (trans (monotonicity @x219 @x242 (= ?x216 (ite false ?x29 ?x214))) (rewrite (= (ite false ?x29 ?x214) ?x214)) (= ?x216 ?x214)))) -(let ((@x259 (trans (monotonicity @x249 (= $x217 (= ?x31 ?x214))) (rewrite (= (= ?x31 ?x214) $x255)) (= $x217 $x255)))) -(let ((@x268 (trans (monotonicity @x259 (= (or $x260 $x217) $x261)) (rewrite (= $x261 $x261)) (= (or $x260 $x217) $x261)))) -(let ((@x269 (mp ((_ quant-inst (+ n$ m$) 2) (or $x260 $x217)) @x268 $x261))) -(let ((@x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x270)) (unit-resolution @x269 @x196 $x255) $x270))) -(let ((?x498 (+ m$ ?x466 (* (- 2) (div m$ 2))))) -(let (($x496 (= ?x498 0))) -(let ((@x633 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (<= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (<= ?x498 0)))) -(let ((?x397 (* (- 4) ?x381))) -(let ((?x398 (+ n$ ?x363 ?x397))) -(let (($x403 (<= ?x398 0))) -(let (($x396 (= ?x398 0))) -(let ((@x640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x403)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x403))) -(let ((?x364 (+ ?x35 ?x363))) -(let (($x379 (<= ?x364 0))) -(let (($x365 (= ?x364 0))) -(let (($x370 (or $x260 $x365))) -(let ((?x330 (ite (<= 4 0) (* (- 1) (mod ?x222 (* (- 1) 4))) ?x329))) -(let ((?x331 (ite (= 4 0) n$ ?x330))) -(let (($x332 (= ?x35 ?x331))) -(let ((@x342 (monotonicity (rewrite (= (* (- 1) 4) (- 4))) (= (mod ?x222 (* (- 1) 4)) (mod ?x222 (- 4)))))) -(let ((@x345 (monotonicity @x342 (= (* (- 1) (mod ?x222 (* (- 1) 4))) (* (- 1) (mod ?x222 (- 4))))))) -(let ((@x348 (monotonicity (rewrite (= (<= 4 0) false)) @x345 (= ?x330 (ite false (* (- 1) (mod ?x222 (- 4))) ?x329))))) -(let ((@x352 (trans @x348 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 4))) ?x329) ?x329)) (= ?x330 ?x329)))) -(let ((@x355 (monotonicity (rewrite (= (= 4 0) false)) @x352 (= ?x331 (ite false n$ ?x329))))) -(let ((@x362 (monotonicity (trans @x355 (rewrite (= (ite false n$ ?x329) ?x329)) (= ?x331 ?x329)) (= $x332 (= ?x35 ?x329))))) -(let ((@x374 (monotonicity (trans @x362 (rewrite (= (= ?x35 ?x329) $x365)) (= $x332 $x365)) (= (or $x260 $x332) $x370)))) -(let ((@x378 (mp ((_ quant-inst n$ 4) (or $x260 $x332)) (trans @x374 (rewrite (= $x370 $x370)) (= (or $x260 $x332) $x370)) $x370))) -(let ((@x645 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x379)) (unit-resolution @x378 @x196 $x365) $x379))) -(let (($x435 (<= ?x35 3))) -(let (($x37 (= ?x35 3))) -(let ((@x38 (asserted $x37))) -(let ((@x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) (>= ?x467 0))) (unit-resolution @x481 @x196 $x468) (>= ?x467 0)))) -(let ((@x656 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1 1 1 1) @x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x604) @x645 @x640 @x633 @x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x433)) @x33 $x433) @x617 (hypothesis $x609) false))) -(let ((@x565 (unit-resolution (lemma @x656 (or (not $x604) $x523)) (unit-resolution @x564 @x384 $x609) (not $x604)))) -(let (($x295 (>= ?x289 0))) -(let ((@x566 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x295)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x295))) -(let (($x434 (>= ?x31 0))) -(let (($x271 (>= ?x254 0))) -(let ((@x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x271)) (unit-resolution @x269 @x196 $x255) $x271))) -(let ((@x537 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (>= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (>= ?x498 0)))) -(let ((@x549 (unit-resolution ((_ th-lemma arith) (or false (>= ?x439 0))) @x26 (>= ?x439 0)))) -(let (($x404 (>= ?x398 0))) -(let ((@x552 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x404)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x404))) -(let (($x380 (>= ?x364 0))) -(let ((@x273 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x380)) (unit-resolution @x378 @x196 $x365) $x380))) -(let (($x436 (>= ?x35 3))) -(let ((@x545 ((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x273 @x552 @x549 @x537 @x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x434)) @x33 $x434) @x566 @x565 false))) -(let (($x171 (or $x169 (not $x43)))) -(let ((@x177 (monotonicity (rewrite (= (and $x41 $x43) (not $x171))) (= (not (and $x41 $x43)) (not (not $x171)))))) -(let ((@x181 (trans @x177 (rewrite (= (not (not $x171)) $x171)) (= (not (and $x41 $x43)) $x171)))) -(let ((@x182 (mp (asserted (not (and $x41 $x43))) @x181 $x171))) -(let ((@x729 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x41 (not $x514) $x725)) (unit-resolution @x182 (lemma @x545 $x43) $x169) (or (not $x514) $x725)))) -(let ((?x420 (* (- 2) ?x410))) -(let ((?x421 (+ n$ ?x420 ?x534))) -(let (($x426 (<= ?x421 0))) -(let (($x419 (= ?x421 0))) -(let ((@x737 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x426)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x426))) -(let (($x409 (>= ?x535 0))) -(let ((@x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x409)) (unit-resolution @x407 @x196 $x490) $x409))) -(let ((@x742 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1) @x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x706) @x640 @x737 @x645 (unit-resolution @x729 @x722 $x725) false))) -(let (($x427 (>= ?x421 0))) -(let ((@x584 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x427)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x427))) -(let (($x542 (>= ?x519 0))) -((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x552 (unit-resolution ((_ th-lemma arith) (or false $x542)) @x26 $x542) @x584 @x273 (lemma @x742 (not $x706)) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) - dcc9b986d57d4904aeadc1233210450bb15df4d3 12 0 unsat ((set-logic AUFLIA) (proof -(let (($x28 (exists ((?v0 Int) )false) +(let (($x28 (exists ((?v0 Int) )(! false :qid k!4)) )) (let (($x27 (not $x28))) (let (($x29 (not $x27))) @@ -2859,7 +2567,7 @@ unsat ((set-logic AUFLIRA) (proof -(let (($x27 (exists ((?v0 Real) )false) +(let (($x27 (exists ((?v0 Real) )(! false :qid k!4)) )) (let (($x28 (not $x27))) (let (($x29 (not $x28))) @@ -2872,19 +2580,19 @@ unsat ((set-logic AUFLIA) (proof -(let (($x52 (forall ((?v0 Int) )(<= ?v0 0)) +(let (($x52 (forall ((?v0 Int) )(! (<= ?v0 0) :qid k!4)) )) -(let (($x46 (forall ((?v0 Int) )(let (($x34 (<= ?v0 0))) +(let (($x46 (forall ((?v0 Int) )(! (let (($x34 (<= ?v0 0))) (let (($x35 (not $x34))) -(not $x35)))) +(not $x35))) :qid k!4)) )) (let ((@x54 (quant-intro (rewrite (= (not (not (<= ?0 0))) (<= ?0 0))) (= $x46 $x52)))) -(let (($x38 (exists ((?v0 Int) )(let (($x34 (<= ?v0 0))) -(not $x34))) +(let (($x38 (exists ((?v0 Int) )(! (let (($x34 (<= ?v0 0))) +(not $x34)) :qid k!4)) )) (let (($x41 (not $x38))) (let ((@x48 (nnf-neg (refl (~ (not (not (<= ?0 0))) (not (not (<= ?0 0))))) (~ $x41 $x46)))) -(let (($x29 (exists ((?v0 Int) )(< 0 ?v0)) +(let (($x29 (exists ((?v0 Int) )(! (< 0 ?v0) :qid k!4)) )) (let (($x30 (not $x29))) (let ((@x40 (quant-intro (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x29 $x38)))) @@ -2895,19 +2603,19 @@ unsat ((set-logic AUFLIRA) (proof -(let (($x51 (forall ((?v0 Real) )(<= ?v0 0.0)) +(let (($x51 (forall ((?v0 Real) )(! (<= ?v0 0.0) :qid k!4)) )) -(let (($x45 (forall ((?v0 Real) )(let (($x33 (<= ?v0 0.0))) +(let (($x45 (forall ((?v0 Real) )(! (let (($x33 (<= ?v0 0.0))) (let (($x34 (not $x33))) -(not $x34)))) +(not $x34))) :qid k!4)) )) (let ((@x53 (quant-intro (rewrite (= (not (not (<= ?0 0.0))) (<= ?0 0.0))) (= $x45 $x51)))) -(let (($x37 (exists ((?v0 Real) )(let (($x33 (<= ?v0 0.0))) -(not $x33))) +(let (($x37 (exists ((?v0 Real) )(! (let (($x33 (<= ?v0 0.0))) +(not $x33)) :qid k!4)) )) (let (($x40 (not $x37))) (let ((@x47 (nnf-neg (refl (~ (not (not (<= ?0 0.0))) (not (not (<= ?0 0.0))))) (~ $x40 $x45)))) -(let (($x28 (exists ((?v0 Real) )(< 0.0 ?v0)) +(let (($x28 (exists ((?v0 Real) )(! (< 0.0 ?v0) :qid k!4)) )) (let (($x29 (not $x28))) (let ((@x39 (quant-intro (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x28 $x37)))) @@ -2919,27 +2627,27 @@ ((set-logic AUFLIA) (declare-fun ?v0!0 () Int) (proof -(let (($x71 (forall ((?v1 Int) )(<= (+ ?v1 (* (- 1) ?v0!0)) 0)) +(let (($x71 (forall ((?v1 Int) )(! (<= (+ ?v1 (* (- 1) ?v0!0)) 0) :qid k!4)) )) -(let (($x63 (forall ((?v1 Int) )(not (not (<= (+ ?v1 (* (- 1) ?v0!0)) 0)))) +(let (($x63 (forall ((?v1 Int) )(! (not (not (<= (+ ?v1 (* (- 1) ?v0!0)) 0))) :qid k!4)) )) (let (($x54 (<= (+ ?0 (* (- 1) ?v0!0)) 0))) (let (($x60 (not (not $x54)))) -(let (($x46 (forall ((?v0 Int) )(exists ((?v1 Int) )(not (<= (+ ?v1 (* (- 1) ?v0)) 0))) -) +(let (($x46 (forall ((?v0 Int) )(! (exists ((?v1 Int) )(! (not (<= (+ ?v1 (* (- 1) ?v0)) 0)) :qid k!4)) + :qid k!4)) )) (let (($x49 (not $x46))) -(let (($x56 (exists ((?v1 Int) )(let (($x54 (<= (+ ?v1 (* (- 1) ?v0!0)) 0))) -(not $x54))) +(let (($x56 (exists ((?v1 Int) )(! (let (($x54 (<= (+ ?v1 (* (- 1) ?v0!0)) 0))) +(not $x54)) :qid k!4)) )) (let ((@x67 (trans (sk (~ $x49 (not $x56))) (nnf-neg (refl (~ $x60 $x60)) (~ (not $x56) $x63)) (~ $x49 $x63)))) -(let (($x31 (forall ((?v0 Int) )(exists ((?v1 Int) )(< ?v0 ?v1)) -) +(let (($x31 (forall ((?v0 Int) )(! (exists ((?v1 Int) )(! (< ?v0 ?v1) :qid k!4)) + :qid k!4)) )) (let (($x32 (not $x31))) -(let (($x43 (exists ((?v1 Int) )(not (<= (+ ?v1 (* (- 1) ?0)) 0))) +(let (($x43 (exists ((?v1 Int) )(! (not (<= (+ ?v1 (* (- 1) ?0)) 0)) :qid k!4)) )) -(let (($x30 (exists ((?v1 Int) )(< ?0 ?v1)) +(let (($x30 (exists ((?v1 Int) )(! (< ?0 ?v1) :qid k!4)) )) (let ((@x42 (rewrite (= (< ?1 ?0) (not (<= (+ ?0 (* (- 1) ?1)) 0)))))) (let ((@x51 (monotonicity (quant-intro (quant-intro @x42 (= $x30 $x43)) (= $x31 $x46)) (= $x32 $x49)))) @@ -2954,10 +2662,10 @@ (proof (let (($x53 (= ?v1!0 1))) (let (($x59 (not (or (not (and (= ?v0!1 0) $x53)) (not (= ?v0!1 ?v1!0)))))) -(let (($x43 (forall ((?v0 Int) (?v1 Int) )(or (not (and (= ?v0 0) (= ?v1 1))) (not (= ?v0 ?v1)))) +(let (($x43 (forall ((?v0 Int) (?v1 Int) )(! (or (not (and (= ?v0 0) (= ?v1 1))) (not (= ?v0 ?v1))) :qid k!4)) )) (let (($x46 (not $x43))) -(let (($x36 (forall ((?v0 Int) (?v1 Int) )(=> (and (= ?v0 0) (= ?v1 1)) (not (= ?v0 ?v1)))) +(let (($x36 (forall ((?v0 Int) (?v1 Int) )(! (=> (and (= ?v0 0) (= ?v1 1)) (not (= ?v0 ?v1))) :qid k!4)) )) (let (($x37 (not $x36))) (let (($x41 (= (=> (and (= ?1 0) (= ?0 1)) (not (= ?1 ?0))) (or (not (and (= ?1 0) (= ?0 1))) (not (= ?1 ?0)))))) @@ -2973,33 +2681,33 @@ unsat ((set-logic AUFLIA) (proof -(let (($x35 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x31 (<= 0 ?v1))) +(let (($x35 (exists ((?v0 Int) )(! (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1))) (let (($x30 (< ?v1 0))) (let (($x32 (or $x30 $x31))) (let (($x29 (< ?v0 ?v1))) -(=> $x29 $x32)))))) -) +(=> $x29 $x32))))) :qid k!4)) + :qid k!4)) )) (let (($x36 (not $x35))) -(let (($x45 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x31 (<= 0 ?v1))) +(let (($x45 (exists ((?v0 Int) )(! (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1))) (let (($x30 (< ?v1 0))) (let (($x32 (or $x30 $x31))) (let (($x29 (< ?v0 ?v1))) (let (($x38 (not $x29))) -(or $x38 $x32))))))) -) +(or $x38 $x32)))))) :qid k!4)) + :qid k!4)) )) (let (($x48 (not $x45))) -(let (($x88 (exists ((?v0 Int) )true) +(let (($x88 (exists ((?v0 Int) )(! true :qid k!4)) )) -(let (($x42 (forall ((?v1 Int) )(let (($x31 (<= 0 ?v1))) +(let (($x42 (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1))) (let (($x30 (< ?v1 0))) (let (($x32 (or $x30 $x31))) (let (($x29 (< ?0 ?v1))) (let (($x38 (not $x29))) -(or $x38 $x32))))))) +(or $x38 $x32)))))) :qid k!4)) )) -(let (($x81 (forall ((?v1 Int) )true) +(let (($x81 (forall ((?v1 Int) )(! true :qid k!4)) )) (let (($x31 (<= 0 ?0))) (let (($x30 (< ?0 0))) @@ -3015,11 +2723,11 @@ (let ((@x87 (trans (quant-intro (trans @x76 @x78 (= $x39 true)) (= $x42 $x81)) (elim-unused (= $x81 true)) (= $x42 true)))) (let ((@x94 (trans (quant-intro @x87 (= $x45 $x88)) (elim-unused (= $x88 true)) (= $x45 true)))) (let ((@x101 (trans (monotonicity @x94 (= $x48 (not true))) (rewrite (= (not true) false)) (= $x48 false)))) -(let (($x34 (forall ((?v1 Int) )(let (($x31 (<= 0 ?v1))) +(let (($x34 (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1))) (let (($x30 (< ?v1 0))) (let (($x32 (or $x30 $x31))) (let (($x29 (< ?0 ?v1))) -(=> $x29 $x32)))))) +(=> $x29 $x32))))) :qid k!4)) )) (let ((@x47 (quant-intro (quant-intro (rewrite (= (=> $x29 $x32) $x39)) (= $x34 $x42)) (= $x35 $x45)))) (let ((@x50 (monotonicity @x47 (= $x36 $x48)))) @@ -3029,24 +2737,24 @@ unsat ((set-logic AUFLIA) (proof -(let (($x37 (forall ((?v0 Int) (?v1 Int) )(let ((?x34 (* 2 ?v1))) +(let (($x37 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x34 (* 2 ?v1))) (let ((?x31 (* 2 ?v0))) (let ((?x33 (+ ?x31 1))) (let (($x35 (< ?x33 ?x34))) (let (($x29 (< ?v0 ?v1))) -(=> $x29 $x35))))))) +(=> $x29 $x35)))))) :qid k!4)) )) (let (($x38 (not $x37))) -(let (($x55 (forall ((?v0 Int) (?v1 Int) )(let ((?x34 (* 2 ?v1))) +(let (($x55 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x34 (* 2 ?v1))) (let ((?x31 (* 2 ?v0))) (let ((?x40 (+ 1 ?x31))) (let (($x43 (< ?x40 ?x34))) (let (($x29 (< ?v0 ?v1))) (let (($x49 (not $x29))) -(or $x49 $x43)))))))) +(or $x49 $x43))))))) :qid k!4)) )) (let (($x58 (not $x55))) -(let (($x84 (forall ((?v0 Int) (?v1 Int) )true) +(let (($x84 (forall ((?v0 Int) (?v1 Int) )(! true :qid k!4)) )) (let ((?x34 (* 2 ?0))) (let ((?x31 (* 2 ?1))) @@ -3072,21 +2780,21 @@ unsat ((set-logic AUFLIA) (proof -(let (($x36 (forall ((?v0 Int) (?v1 Int) )(let ((?x33 (* 2 ?v1))) +(let (($x36 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x33 (* 2 ?v1))) (let ((?x30 (* 2 ?v0))) (let ((?x32 (+ ?x30 1))) (let (($x34 (= ?x32 ?x33))) -(not $x34)))))) +(not $x34))))) :qid k!4)) )) (let (($x37 (not $x36))) -(let (($x48 (forall ((?v0 Int) (?v1 Int) )(let ((?x33 (* 2 ?v1))) +(let (($x48 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x33 (* 2 ?v1))) (let ((?x30 (* 2 ?v0))) (let ((?x39 (+ 1 ?x30))) (let (($x42 (= ?x39 ?x33))) -(not $x42)))))) +(not $x42))))) :qid k!4)) )) (let (($x51 (not $x48))) -(let (($x63 (forall ((?v0 Int) (?v1 Int) )true) +(let (($x63 (forall ((?v0 Int) (?v1 Int) )(! true :qid k!4)) )) (let ((?x33 (* 2 ?0))) (let ((?x30 (* 2 ?1))) @@ -3119,14 +2827,14 @@ (let ((@x95 (monotonicity (monotonicity @x80 (= (>= (+ ?v0!1 ?v1!0) 2) $x90)) (= (not (>= (+ ?v0!1 ?v1!0) 2)) $x93)))) (let ((@x86 (monotonicity (monotonicity @x80 (= (<= (+ ?v0!1 ?v1!0) 2) $x81)) (= (not (<= (+ ?v0!1 ?v1!0) 2)) $x84)))) (let ((@x98 (monotonicity @x86 (monotonicity @x80 (= (= (+ ?v0!1 ?v1!0) 2) $x87)) @x95 (= $x73 (or $x84 $x87 $x93))))) -(let (($x60 (forall ((?v0 Int) (?v1 Int) )(let (($x41 (not (>= (+ ?v0 ?v1) 2)))) +(let (($x60 (forall ((?v0 Int) (?v1 Int) )(! (let (($x41 (not (>= (+ ?v0 ?v1) 2)))) (let ((?x30 (+ ?v0 ?v1))) (let (($x32 (= ?x30 2))) (let (($x46 (not (<= ?x30 2)))) -(or $x46 $x32 $x41)))))) +(or $x46 $x32 $x41))))) :qid k!4)) )) (let (($x63 (not $x60))) -(let (($x36 (forall ((?v0 Int) (?v1 Int) )(or (< 2 (+ ?v0 ?v1)) (or (= (+ ?v0 ?v1) 2) (< (+ ?v0 ?v1) 2)))) +(let (($x36 (forall ((?v0 Int) (?v1 Int) )(! (or (< 2 (+ ?v0 ?v1)) (or (= (+ ?v0 ?v1) 2) (< (+ ?v0 ?v1) 2))) :qid k!4)) )) (let (($x37 (not $x36))) (let (($x41 (not (>= (+ ?1 ?0) 2)))) @@ -3150,28 +2858,28 @@ ((set-logic AUFLIA) (declare-fun ?v0!0 () Int) (proof -(let (($x83 (<= ?v0!0 0))) (let (($x86 (<= ?v0!0 (- 1)))) (let (($x87 (not $x86))) -(let ((@x105 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x87 $x83)) (hypothesis (not $x83)) $x87))) (let (($x84 (>= ?v0!0 1))) +(let (($x83 (<= ?v0!0 0))) +(let (($x93 (not $x83))) (let (($x85 (not $x84))) (let (($x88 (ite $x83 $x85 $x87))) (let (($x89 (not $x88))) -(let (($x73 (forall ((?v0 Int) )(let (($x58 (not (<= ?v0 (- 1))))) +(let (($x73 (forall ((?v0 Int) )(! (let (($x58 (not (<= ?v0 (- 1))))) (let (($x61 (not (>= ?v0 1)))) -(ite (<= ?v0 0) $x61 $x58)))) +(ite (<= ?v0 0) $x61 $x58))) :qid k!4)) )) (let (($x76 (not $x73))) -(let (($x34 (forall ((?v0 Int) )(let (($x32 (< ?v0 1))) +(let (($x34 (forall ((?v0 Int) )(! (let (($x32 (< ?v0 1))) (let (($x28 (< 0 ?v0))) -(ite $x28 (< 0 (+ ?v0 1)) $x32)))) +(ite $x28 (< 0 (+ ?v0 1)) $x32))) :qid k!4)) )) (let (($x35 (not $x34))) -(let (($x46 (forall ((?v0 Int) )(let (($x32 (< ?v0 1))) +(let (($x46 (forall ((?v0 Int) )(! (let (($x32 (< ?v0 1))) (let (($x40 (< 0 (+ 1 ?v0)))) (let (($x28 (< 0 ?v0))) -(ite $x28 $x40 $x32))))) +(ite $x28 $x40 $x32)))) :qid k!4)) )) (let (($x58 (not (<= ?0 (- 1))))) (let (($x61 (not (>= ?0 1)))) @@ -3187,18 +2895,18 @@ (let ((@x45 (monotonicity @x42 (= (ite $x28 (< 0 (+ ?0 1)) $x32) $x43)))) (let ((@x51 (monotonicity (quant-intro @x45 (= $x34 $x46)) (= $x35 (not $x46))))) (let ((@x92 (mp~ (mp (asserted $x35) (trans @x51 @x78 (= $x35 $x76)) $x76) (sk (~ $x76 $x89)) $x89))) -(let ((@x108 (unit-resolution (unit-resolution (def-axiom (or $x88 $x83 $x86)) @x92 (or $x83 $x86)) @x105 (hypothesis (not $x83)) false))) -(let ((@x109 (lemma @x108 $x83))) -(let ((@x114 (unit-resolution (def-axiom (or $x88 (not $x83) $x84)) @x92 (or (not $x83) $x84)))) -(unit-resolution @x114 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x85 (not $x83))) @x109 $x85) @x109 false))))))))))))))))))))))))))))))))) +(let ((@x105 (unit-resolution (unit-resolution (def-axiom (or $x88 $x93 $x84)) @x92 (or $x93 $x84)) (hypothesis $x85) $x93))) +(let ((@x108 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x83 $x84)) @x105 (hypothesis $x85) false))) +(let ((@x109 (lemma @x108 $x84))) +(unit-resolution (unit-resolution (def-axiom (or $x88 $x83 $x86)) @x92 (or $x83 $x86)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x93 $x85)) @x109 $x93) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x87 $x85)) @x109 $x87) false))))))))))))))))))))))))))))))))) e566ad249d308c74a627c15c9f02c271a6843a42 31 0 unsat ((set-logic AUFLIA) (proof -(let (($x56 (forall ((?v0 Int) )(let (($x50 (not (<= ?v0 0)))) +(let (($x56 (forall ((?v0 Int) )(! (let (($x50 (not (<= ?v0 0)))) (let (($x45 (not (>= ?v0 0)))) -(or $x45 $x50)))) +(or $x45 $x50))) :qid k!4)) )) (let (($x458 (not $x56))) (let (($x153 (<= 0 0))) @@ -3207,15 +2915,15 @@ (let (($x143 (not $x158))) (let (($x154 (or $x143 $x68))) (let (($x119 (or $x458 $x154))) -(let ((@x482 (trans (monotonicity (rewrite (= $x153 true)) (= $x68 (not true))) (rewrite (= (not true) false)) (= $x68 false)))) +(let ((@x137 (trans (monotonicity (rewrite (= $x153 true)) (= $x68 (not true))) (rewrite (= (not true) false)) (= $x68 false)))) (let ((@x261 (trans (monotonicity (rewrite (= $x158 true)) (= $x143 (not true))) (rewrite (= (not true) false)) (= $x143 false)))) -(let ((@x116 (trans (monotonicity @x261 @x482 (= $x154 (or false false))) (rewrite (= (or false false) false)) (= $x154 false)))) +(let ((@x116 (trans (monotonicity @x261 @x137 (= $x154 (or false false))) (rewrite (= (or false false) false)) (= $x154 false)))) (let ((@x463 (trans (monotonicity @x116 (= $x119 (or $x458 false))) (rewrite (= (or $x458 false) $x458)) (= $x119 $x458)))) (let ((@x464 (mp ((_ quant-inst 0) $x119) @x463 $x458))) (let (($x50 (not (<= ?0 0)))) (let (($x45 (not (>= ?0 0)))) (let (($x53 (or $x45 $x50))) -(let (($x31 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0))) +(let (($x31 (forall ((?v0 Int) )(! (or (< ?v0 0) (< 0 ?v0)) :qid k!4)) )) (let (($x33 (not (ite $x31 false true)))) (let ((@x55 (monotonicity (rewrite (= (< ?0 0) $x45)) (rewrite (= (< 0 ?0) $x50)) (= (or (< ?0 0) (< 0 ?0)) $x53)))) @@ -3232,15 +2940,15 @@ (proof (let ((?x96 (ite z3name!0 (- 1) 3))) (let (($x99 (<= ?x96 0))) -(let (($x62 (forall ((?v0 Int) )(let (($x56 (not (<= ?v0 0)))) +(let (($x62 (forall ((?v0 Int) )(! (let (($x56 (not (<= ?v0 0)))) (let (($x51 (not (>= ?v0 0)))) -(or $x51 $x56)))) +(or $x51 $x56))) :qid k!4)) )) (let ((?x65 (ite $x62 (- 1) 3))) (let (($x71 (<= ?x65 0))) (let ((@x93 (intro-def (and (or (not z3name!0) $x62) (or z3name!0 (not $x62)))))) (let ((@x101 (monotonicity (monotonicity (apply-def @x93 (~ $x62 z3name!0)) (= ?x65 ?x96)) (= $x71 $x99)))) -(let (($x31 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0))) +(let (($x31 (forall ((?v0 Int) )(! (or (< ?v0 0) (< 0 ?v0)) :qid k!4)) )) (let (($x37 (not (< 0 (ite $x31 (- 1) 3))))) (let (($x56 (not (<= ?0 0)))) @@ -3267,9 +2975,9 @@ (let (($x179 (not $x542))) (let (($x206 (or $x179 $x533))) (let (($x529 (or $x90 $x206))) -(let ((@x522 (trans (monotonicity (rewrite (= $x323 true)) (= $x533 (not true))) (rewrite (= (not true) false)) (= $x533 false)))) +(let ((@x527 (trans (monotonicity (rewrite (= $x323 true)) (= $x533 (not true))) (rewrite (= (not true) false)) (= $x533 false)))) (let ((@x200 (trans (monotonicity (rewrite (= $x542 true)) (= $x179 (not true))) (rewrite (= (not true) false)) (= $x179 false)))) -(let ((@x528 (trans (monotonicity @x200 @x522 (= $x206 (or false false))) (rewrite (= (or false false) false)) (= $x206 false)))) +(let ((@x528 (trans (monotonicity @x200 @x527 (= $x206 (or false false))) (rewrite (= (or false false) false)) (= $x206 false)))) (let ((@x237 (trans (monotonicity @x528 (= $x529 (or $x90 false))) (rewrite (= (or $x90 false) $x90)) (= $x529 $x90)))) (let ((@x238 (mp ((_ quant-inst 0) $x529) @x237 $x90))) (let (($x89 (or $x88 $x62))) @@ -3291,27 +2999,27 @@ unsat ((set-logic AUFLIA) (proof -(let (($x38 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x33 (- 6))) +(let (($x38 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(! (let ((?x33 (- 6))) (let ((?x34 (* ?x33 ?v1))) (let ((?x31 (* 4 ?v0))) (let ((?x35 (+ ?x31 ?x34))) -(= ?x35 1)))))) +(= ?x35 1))))) :qid k!4)) )) (let (($x29 (not $x38))) (let (($x39 (not $x29))) -(let (($x61 (exists ((?v0 Int) (?v1 Int) )(let ((?x58 (* (- 6) ?v1))) +(let (($x61 (exists ((?v0 Int) (?v1 Int) )(! (let ((?x58 (* (- 6) ?v1))) (let ((?x57 (* 4 ?v0))) (let ((?x59 (+ ?x57 ?x58))) -(= ?x59 1))))) +(= ?x59 1)))) :qid k!4)) )) -(let (($x77 (exists ((?v0 Int) (?v1 Int) )false) +(let (($x77 (exists ((?v0 Int) (?v1 Int) )(! false :qid k!4)) )) (let ((@x81 (quant-intro (rewrite (= (= (+ (* 4 ?1) (* (- 6) ?0)) 1) false)) (= $x61 $x77)))) (let ((@x85 (trans @x81 (elim-unused (= $x77 false)) (= $x61 false)))) -(let (($x53 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x44 (* (- 6) ?v1))) +(let (($x53 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(! (let ((?x44 (* (- 6) ?v1))) (let ((?x31 (* 4 ?v0))) (let ((?x47 (+ ?x31 ?x44))) -(= ?x47 1))))) +(= ?x47 1)))) :qid k!4)) )) (let ((?x44 (* (- 6) ?1))) (let ((?x31 (* 4 ?2))) @@ -3336,17 +3044,17 @@ (let ((?x105 (+ ?v2!0 ?v1!1))) (let (($x106 (<= ?x105 0))) (let (($x108 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0)))) (not $x106)))) -(let (($x88 (forall ((?v1 Int) (?v2 Int) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) (not (<= (+ ?v2 ?v1) 0)))) +(let (($x88 (forall ((?v1 Int) (?v2 Int) )(! (or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) (not (<= (+ ?v2 ?v1) 0))) :qid k!4)) )) (let (($x91 (not $x88))) -(let (($x36 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let (($x31 (and (< 0 ?v1) (< 0 ?v2)))) -(=> $x31 (< 0 (+ ?v1 ?v2))))) -) +(let (($x36 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Int) )(! (let (($x31 (and (< 0 ?v1) (< 0 ?v2)))) +(=> $x31 (< 0 (+ ?v1 ?v2)))) :qid k!4)) + :qid k!4)) )) (let (($x37 (not $x36))) -(let (($x54 (forall ((?v1 Int) (?v2 Int) )(let ((?x39 (+ ?v2 ?v1))) +(let (($x54 (forall ((?v1 Int) (?v2 Int) )(! (let ((?x39 (+ ?v2 ?v1))) (let (($x42 (< 0 ?x39))) -(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42)))) +(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))) :qid k!4)) )) (let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0)))) (not (<= (+ ?0 ?1) 0))))) (let ((?x39 (+ ?0 ?1))) @@ -3357,13 +3065,13 @@ (let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0))))))) (let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?x39 0)))) (= $x49 $x85)))) (let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91)))) -(let (($x57 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let ((?x39 (+ ?v2 ?v1))) +(let (($x57 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Int) )(! (let ((?x39 (+ ?v2 ?v1))) (let (($x42 (< 0 ?x39))) -(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42)))) -) +(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))) :qid k!4)) + :qid k!4)) )) -(let (($x35 (forall ((?v1 Int) (?v2 Int) )(let (($x31 (and (< 0 ?v1) (< 0 ?v2)))) -(=> $x31 (< 0 (+ ?v1 ?v2))))) +(let (($x35 (forall ((?v1 Int) (?v2 Int) )(! (let (($x31 (and (< 0 ?v1) (< 0 ?v2)))) +(=> $x31 (< 0 (+ ?v1 ?v2)))) :qid k!4)) )) (let ((@x44 (monotonicity (rewrite (= (+ ?1 ?0) ?x39)) (= (< 0 (+ ?1 ?0)) $x42)))) (let ((@x47 (monotonicity @x44 (= (=> $x31 (< 0 (+ ?1 ?0))) (=> $x31 $x42))))) @@ -3380,25 +3088,24 @@ (let ((@x117 (and-elim (not-or-elim @x112 (and $x100 $x102)) $x102))) ((_ th-lemma arith farkas 1 1 1) @x117 @x116 @x118 false))))))))))))))))))))))))))))))))))) -9201a8009730b821ad6a3a2b64598e50ab5748ca 46 0 +9201a8009730b821ad6a3a2b64598e50ab5748ca 45 0 unsat ((set-logic AUFLIRA) (declare-fun ?v1!1 () Int) (declare-fun ?v2!0 () Real) (proof (let (($x105 (<= ?v1!1 (- 1)))) -(let (($x106 (not $x105))) -(let (($x107 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0)))) $x106))) -(let (($x88 (forall ((?v1 Int) (?v2 Real) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) (not (<= ?v1 (- 1))))) +(let (($x107 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0)))) (not $x105)))) +(let (($x88 (forall ((?v1 Int) (?v2 Real) )(! (or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) (not (<= ?v1 (- 1)))) :qid k!4)) )) (let (($x91 (not $x88))) -(let (($x37 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x31 (and (< 0 ?v1) (< 0.0 ?v2)))) -(=> $x31 (< (- 1) ?v1)))) -) +(let (($x37 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Real) )(! (let (($x31 (and (< 0 ?v1) (< 0.0 ?v2)))) +(=> $x31 (< (- 1) ?v1))) :qid k!4)) + :qid k!4)) )) (let (($x27 (not $x37))) -(let (($x54 (forall ((?v1 Int) (?v2 Real) )(let (($x42 (< (- 1) ?v1))) -(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42))) +(let (($x54 (forall ((?v1 Int) (?v2 Real) )(! (let (($x42 (< (- 1) ?v1))) +(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)) :qid k!4)) )) (let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))) (not (<= ?1 (- 1)))))) (let (($x42 (< (- 1) ?1))) @@ -3408,12 +3115,12 @@ (let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0.0))))))) (let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?1 (- 1))))) (= $x49 $x85)))) (let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91)))) -(let (($x57 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x42 (< (- 1) ?v1))) -(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42))) -) +(let (($x57 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Real) )(! (let (($x42 (< (- 1) ?v1))) +(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)) :qid k!4)) + :qid k!4)) )) -(let (($x36 (forall ((?v1 Int) (?v2 Real) )(let (($x31 (and (< 0 ?v1) (< 0.0 ?v2)))) -(=> $x31 (< (- 1) ?v1)))) +(let (($x36 (forall ((?v1 Int) (?v2 Real) )(! (let (($x31 (and (< 0 ?v1) (< 0.0 ?v2)))) +(=> $x31 (< (- 1) ?v1))) :qid k!4)) )) (let ((@x44 (monotonicity (rewrite (= (- 1) (- 1))) (= (< (- 1) ?1) $x42)))) (let ((@x47 (monotonicity @x44 (= (=> $x31 (< (- 1) ?1)) (=> $x31 $x42))))) @@ -3425,19 +3132,19 @@ (let (($x99 (<= ?v1!1 0))) (let (($x100 (not $x99))) (let ((@x115 (and-elim (not-or-elim @x111 (and $x100 (not (<= ?v2!0 0.0)))) $x100))) -(unit-resolution (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x106 $x99)) @x115 $x106) @x117 false))))))))))))))))))))))))))))))) +(unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x105) $x99)) @x115 @x117 false)))))))))))))))))))))))))))))) d9fbfe5a894f4a224aaf7d1fa1f67325ad2e1497 110 0 unsat ((set-logic AUFLIA) (proof -(let (($x152 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0))) +(let (($x152 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0))) (let (($x69 (not $x68))) (let (($x143 (not false))) (let (($x146 (or $x143 $x69))) -(not $x146)))))) +(not $x146))))) :qid k!4)) )) -(let (($x174 (forall ((?v0 Int) )false) +(let (($x174 (forall ((?v0 Int) )(! false :qid k!4)) )) (let (($x68 (<= ?0 0))) (let (($x69 (not $x68))) @@ -3446,88 +3153,88 @@ (let ((@x166 (trans (monotonicity (rewrite (= $x143 true)) (= $x146 (or true $x69))) (rewrite (= (or true $x69) true)) (= $x146 true)))) (let ((@x173 (trans (monotonicity @x166 (= (not $x146) (not true))) (rewrite (= (not true) false)) (= (not $x146) false)))) (let ((@x180 (trans (quant-intro @x173 (= $x152 $x174)) (elim-unused (= $x174 false)) (= $x152 false)))) -(let (($x122 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0))) +(let (($x122 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0))) (let (($x69 (not $x68))) -(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0))) +(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0))) (let (($x69 (not $x68))) -(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69)))) +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4)) )) (let (($x78 (not $x75))) (let (($x81 (or $x78 $x69))) -(not $x81))))))) +(not $x81)))))) :qid k!4)) )) -(let (($x138 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0))) +(let (($x138 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0))) (let (($x69 (not $x68))) -(let (($x126 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0))) -(not $x68))) +(let (($x126 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0))) +(not $x68)) :qid k!4)) )) -(not (or (not $x126) $x69)))))) +(not (or (not $x126) $x69))))) :qid k!4)) )) (let ((@x156 (trans (rewrite (= $x122 $x138)) (rewrite (= $x138 $x152)) (= $x122 $x152)))) -(let (($x116 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0))) -(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0))) +(let (($x116 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0))) +(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0))) (let (($x69 (not $x68))) -(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69)))) +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4)) )) -(and $x75 $x68)))) +(and $x75 $x68))) :qid k!4)) )) -(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0))) +(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0))) (let (($x69 (not $x68))) -(or (not (>= (+ ?v1 (* (- 1) ?0)) 0)) $x69)))) +(or (not (>= (+ ?v1 (* (- 1) ?0)) 0)) $x69))) :qid k!4)) )) (let (($x78 (not $x75))) (let (($x81 (or $x78 $x69))) (let (($x104 (not $x81))) (let (($x113 (and $x75 $x68))) -(let (($x107 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0))) +(let (($x107 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0))) (let (($x69 (not $x68))) (let (($x100 (not $x69))) -(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0))) +(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0))) (let (($x69 (not $x68))) -(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69)))) +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4)) )) -(and $x75 $x100)))))) +(and $x75 $x100))))) :qid k!4)) )) (let ((@x115 (monotonicity (rewrite (= (not $x69) $x68)) (= (and $x75 (not $x69)) $x113)))) -(let (($x84 (exists ((?v0 Int) )(let (($x68 (<= ?v0 0))) +(let (($x84 (exists ((?v0 Int) )(! (let (($x68 (<= ?v0 0))) (let (($x69 (not $x68))) -(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0))) +(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0))) (let (($x69 (not $x68))) -(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69)))) +(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4)) )) (let (($x78 (not $x75))) -(or $x78 $x69)))))) +(or $x78 $x69))))) :qid k!4)) )) (let (($x87 (not $x84))) (let (($x72 (or (not (>= (+ ?0 (* (- 1) ?1)) 0)) $x69))) (let ((@x99 (nnf-neg (nnf-pos (refl (~ $x72 $x72)) (~ $x75 $x75)) (~ (not $x78) $x75)))) (let ((@x106 (nnf-neg @x99 (refl (~ (not $x69) (not $x69))) (~ $x104 (and $x75 (not $x69)))))) -(let (($x34 (exists ((?v0 Int) )(let (($x30 (< 0 ?v0))) -(let (($x32 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1))) +(let (($x34 (exists ((?v0 Int) )(! (let (($x30 (< 0 ?v0))) +(let (($x32 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1))) (let (($x29 (<= ?v0 ?v1))) -(=> $x29 $x30)))) +(=> $x29 $x30))) :qid k!4)) )) -(=> $x32 $x30)))) +(=> $x32 $x30))) :qid k!4)) )) (let (($x35 (not $x34))) -(let (($x53 (exists ((?v0 Int) )(let (($x30 (< 0 ?v0))) -(let (($x41 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1))) -(or (not (<= ?v0 ?v1)) $x30))) +(let (($x53 (exists ((?v0 Int) )(! (let (($x30 (< 0 ?v0))) +(let (($x41 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1))) +(or (not (<= ?v0 ?v1)) $x30)) :qid k!4)) )) -(or (not $x41) $x30)))) +(or (not $x41) $x30))) :qid k!4)) )) (let (($x30 (< 0 ?0))) -(let (($x41 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1))) -(or (not (<= ?0 ?v1)) $x30))) +(let (($x41 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1))) +(or (not (<= ?0 ?v1)) $x30)) :qid k!4)) )) (let (($x48 (or (not $x41) $x30))) (let ((@x67 (monotonicity (rewrite (= (<= ?1 ?0) (>= (+ ?0 (* (- 1) ?1)) 0))) (= (not (<= ?1 ?0)) (not (>= (+ ?0 (* (- 1) ?1)) 0)))))) (let ((@x74 (monotonicity @x67 (rewrite (= $x30 $x69)) (= (or (not (<= ?1 ?0)) $x30) $x72)))) (let ((@x80 (monotonicity (quant-intro @x74 (= $x41 $x75)) (= (not $x41) $x78)))) (let ((@x86 (quant-intro (monotonicity @x80 (rewrite (= $x30 $x69)) (= $x48 $x81)) (= $x53 $x84)))) -(let (($x32 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1))) +(let (($x32 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1))) (let (($x29 (<= ?0 ?v1))) -(=> $x29 $x30)))) +(=> $x29 $x30))) :qid k!4)) )) (let (($x33 (=> $x32 $x30))) (let ((@x40 (rewrite (= (=> (<= ?1 ?0) $x30) (or (not (<= ?1 ?0)) $x30))))) @@ -3538,23 +3245,19 @@ (let ((@x125 (mp (mp @x110 (quant-intro @x115 (= $x107 $x116)) $x116) (quant-intro (rewrite (= $x113 $x104)) (= $x116 $x122)) $x122))) (mp (mp @x125 @x156 $x152) @x180 false)))))))))))))))))))))))))))))))))))))))))))))) -68af267a155ec93a64652d04b7ee09ecad3d48b9 3 0 -(error "line 5 column 91: invalid function application, arguments missing") -sat -(error "line 7 column 10: proof is not available") -ae4f4fb9c10608b8e3b893cc6c99e3ec5d13a86c 24 0 +ae4f4fb9c10608b8e3b893cc6c99e3ec5d13a86c 23 0 unsat ((set-logic AUFLIA) (declare-fun ?v1!0 () Int) (proof (let (($x64 (>= ?v1!0 1))) -(let (($x52 (forall ((?v1 Int) )(or (not (<= ?v1 0)) (not (>= ?v1 1)))) +(let (($x52 (forall ((?v1 Int) )(! (or (not (<= ?v1 0)) (not (>= ?v1 1))) :qid k!4)) )) (let (($x55 (not $x52))) -(let (($x33 (forall ((?v0 Int) (?v1 Int) )(or (< 0 ?v1) (< ?v1 1))) +(let (($x33 (forall ((?v0 Int) (?v1 Int) )(! (or (< 0 ?v1) (< ?v1 1)) :qid k!4)) )) (let (($x27 (not $x33))) -(let (($x35 (forall ((?v1 Int) )(or (< 0 ?v1) (< ?v1 1))) +(let (($x35 (forall ((?v1 Int) )(! (or (< 0 ?v1) (< ?v1 1)) :qid k!4)) )) (let (($x32 (or (< 0 ?0) (< ?0 1)))) (let ((@x51 (monotonicity (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (rewrite (= (< ?0 1) (not (>= ?0 1)))) (= $x32 (or (not (<= ?0 0)) (not (>= ?0 1))))))) @@ -3562,10 +3265,9 @@ (let ((@x59 (trans (monotonicity (elim-unused (= $x33 $x35)) (= $x27 (not $x35))) @x57 (= $x27 $x55)))) (let ((@x70 (mp~ (mp (asserted $x27) @x59 $x55) (sk (~ $x55 (not (or (not (<= ?v1!0 0)) (not $x64))))) (not (or (not (<= ?v1!0 0)) (not $x64)))))) (let ((@x74 (not-or-elim @x70 $x64))) -(let (($x65 (not $x64))) (let (($x62 (<= ?v1!0 0))) (let ((@x73 (not-or-elim @x70 $x62))) -(unit-resolution (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x65 (not $x62))) @x73 $x65) @x74 false)))))))))))))))))) +(unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x62) (not $x64))) @x73 @x74 false))))))))))))))))) d98ad8f668dead6f610669a52351ea0176a811b0 26 0 unsat @@ -3708,9 +3410,9 @@ (let ((@x50 (monotonicity (rewrite (= (=> $x39 $x40) (or (not $x39) $x40))) (= (not (=> $x39 $x40)) (not (or (not $x39) $x40)))))) (let ((@x51 (not-or-elim (mp (asserted (not (=> $x39 $x40))) @x50 (not (or (not $x39) $x40))) $x39))) (let (($x56 (= ?x37 x$))) -(let (($x478 (forall ((?v0 A$) (?v1 B$) )(!(= (fst$ (pair$ ?v0 ?v1)) ?v0) :pattern ( (pair$ ?v0 ?v1) ))) +(let (($x478 (forall ((?v0 A$) (?v1 B$) )(! (= (fst$ (pair$ ?v0 ?v1)) ?v0) :pattern ( (pair$ ?v0 ?v1) ) :qid k!12)) )) -(let (($x32 (forall ((?v0 A$) (?v1 B$) )(= (fst$ (pair$ ?v0 ?v1)) ?v0)) +(let (($x32 (forall ((?v0 A$) (?v1 B$) )(! (= (fst$ (pair$ ?v0 ?v1)) ?v0) :qid k!12)) )) (let (($x31 (= (fst$ (pair$ ?1 ?0)) ?1))) (let ((@x55 (mp~ (asserted $x32) (nnf-pos (refl (~ $x31 $x31)) (~ $x32 $x32)) $x32))) @@ -3739,9 +3441,9 @@ (let ((@x504 (symm (monotonicity @x74 (= ?x59 (snd$a ?x55))) (= (snd$a ?x55) ?x59)))) (let ((?x100 (snd$a ?x55))) (let (($x185 (= ?x100 x$))) -(let (($x534 (forall ((?v0 B$) (?v1 A$) )(!(= (snd$a (pair$ ?v0 ?v1)) ?v1) :pattern ( (pair$ ?v0 ?v1) ))) +(let (($x534 (forall ((?v0 B$) (?v1 A$) )(! (= (snd$a (pair$ ?v0 ?v1)) ?v1) :pattern ( (pair$ ?v0 ?v1) ) :qid k!21)) )) -(let (($x47 (forall ((?v0 B$) (?v1 A$) )(= (snd$a (pair$ ?v0 ?v1)) ?v1)) +(let (($x47 (forall ((?v0 B$) (?v1 A$) )(! (= (snd$a (pair$ ?v0 ?v1)) ?v1) :qid k!21)) )) (let (($x46 (= (snd$a (pair$ ?1 ?0)) ?0))) (let ((@x96 (mp~ (asserted $x47) (nnf-pos (refl (~ $x46 $x46)) (~ $x47 $x47)) $x47))) @@ -3750,9 +3452,9 @@ (let ((@x191 ((_ quant-inst y$ x$) $x190))) (let ((?x187 (fst$a ?x52))) (let (($x188 (= ?x187 x$))) -(let (($x522 (forall ((?v0 A$) (?v1 B$) )(!(= (fst$a (pair$a ?v0 ?v1)) ?v0) :pattern ( (pair$a ?v0 ?v1) ))) +(let (($x522 (forall ((?v0 A$) (?v1 B$) )(! (= (fst$a (pair$a ?v0 ?v1)) ?v0) :pattern ( (pair$a ?v0 ?v1) ) :qid k!19)) )) -(let (($x39 (forall ((?v0 A$) (?v1 B$) )(= (fst$a (pair$a ?v0 ?v1)) ?v0)) +(let (($x39 (forall ((?v0 A$) (?v1 B$) )(! (= (fst$a (pair$a ?v0 ?v1)) ?v0) :qid k!19)) )) (let (($x38 (= (fst$a (pair$a ?1 ?0)) ?1))) (let ((@x90 (mp~ (asserted $x39) (nnf-pos (refl (~ $x38 $x38)) (~ $x39 $x39)) $x39))) @@ -3782,22 +3484,22 @@ (let (($x204 (= ?x197 v1$))) (let (($x53 (= i$ i1$))) (let (($x484 (ite $x53 $x204 $x205))) -(let (($x531 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(!(let ((?x46 (fun_app$ ?v0 ?v3))) +(let (($x531 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(! (let ((?x46 (fun_app$ ?v0 ?v3))) (let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) (let (($x45 (= ?v3 ?v1))) -(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46))))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) ))) +(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46))))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) ) :qid k!20)) )) -(let (($x102 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(let ((?x46 (fun_app$ ?v0 ?v3))) +(let (($x102 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(! (let ((?x46 (fun_app$ ?v0 ?v3))) (let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) (let (($x45 (= ?v3 ?v1))) -(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46)))))) +(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46))))) :qid k!20)) )) (let ((?x46 (fun_app$ ?3 ?0))) (let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0))) (let (($x45 (= ?0 ?2))) (let (($x97 (ite $x45 (= ?x44 ?1) (= ?x44 ?x46)))) -(let (($x49 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) -(= ?x44 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3))))) +(let (($x49 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(! (let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) +(= ?x44 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :qid k!20)) )) (let ((@x104 (quant-intro (rewrite (= (= ?x44 (ite $x45 ?1 ?x46)) $x97)) (= $x49 $x102)))) (let ((@x91 (refl (~ (= ?x44 (ite $x45 ?1 ?x46)) (= ?x44 (ite $x45 ?1 ?x46)))))) @@ -3858,16 +3560,16 @@ (let (($x46 (= ?x44 x$))) (let (($x73 (not $x46))) (let (($x47 (id$a true))) -(let (($x510 (forall ((?v0 Bool) )(!(let (($x33 (id$a ?v0))) -(= $x33 ?v0)) :pattern ( (id$a ?v0) ))) +(let (($x510 (forall ((?v0 Bool) )(! (let (($x33 (id$a ?v0))) +(= $x33 ?v0)) :pattern ( (id$a ?v0) ) :qid k!9)) )) -(let (($x40 (forall ((?v0 Bool) )(let (($x33 (id$a ?v0))) -(= $x33 ?v0))) +(let (($x40 (forall ((?v0 Bool) )(! (let (($x33 (id$a ?v0))) +(= $x33 ?v0)) :qid k!9)) )) (let ((@x514 (quant-intro (refl (= (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (= $x40 $x510)))) (let ((@x69 (nnf-pos (refl (~ (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (~ $x40 $x40)))) -(let (($x35 (forall ((?v0 Bool) )(let (($x33 (id$a ?v0))) -(= $x33 ?v0))) +(let (($x35 (forall ((?v0 Bool) )(! (let (($x33 (id$a ?v0))) +(= $x33 ?v0)) :qid k!9)) )) (let ((@x42 (quant-intro (rewrite (= (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (= $x35 $x40)))) (let ((@x515 (mp (mp~ (mp (asserted $x35) @x42 $x40) @x69 $x40) @x514 $x510))) @@ -3883,11 +3585,11 @@ (let ((@x56 (monotonicity (rewrite (= (= $x47 true) $x47)) (= (and $x46 (= $x47 true)) $x54)))) (let ((@x62 (mp (asserted (not (and $x46 (= $x47 true)))) (monotonicity @x56 (= (not (and $x46 (= $x47 true))) $x57)) $x57))) (let ((@x84 (mp @x62 @x83 $x71))) -(let (($x503 (forall ((?v0 A$) )(!(let ((?x28 (id$ ?v0))) -(= ?x28 ?v0)) :pattern ( (id$ ?v0) ))) +(let (($x503 (forall ((?v0 A$) )(! (let ((?x28 (id$ ?v0))) +(= ?x28 ?v0)) :pattern ( (id$ ?v0) ) :qid k!8)) )) -(let (($x30 (forall ((?v0 A$) )(let ((?x28 (id$ ?v0))) -(= ?x28 ?v0))) +(let (($x30 (forall ((?v0 A$) )(! (let ((?x28 (id$ ?v0))) +(= ?x28 ?v0)) :qid k!8)) )) (let ((@x507 (quant-intro (refl (= (= (id$ ?0) ?0) (= (id$ ?0) ?0))) (= $x30 $x503)))) (let ((@x64 (nnf-pos (refl (~ (= (id$ ?0) ?0) (= (id$ ?0) ?0))) (~ $x30 $x30)))) @@ -3900,7 +3602,22 @@ unsat ((set-logic AUFLIA) (proof -(let (($x29 (exists ((?v0 A$) )(g$ ?v0)) +(let (($x29 (exists ((?v0 A$) )(! (g$ ?v0) :qid k!7)) +)) +(let (($x30 (ite $x29 true false))) +(let (($x31 (f$ $x30))) +(let (($x32 (=> $x31 true))) +(let (($x33 (not $x32))) +(let ((@x42 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= $x31 (f$ $x29))) (= $x32 (=> (f$ $x29) true))))) +(let ((@x46 (trans @x42 (rewrite (= (=> (f$ $x29) true) true)) (= $x32 true)))) +(let ((@x53 (trans (monotonicity @x46 (= $x33 (not true))) (rewrite (= (not true) false)) (= $x33 false)))) +(mp (asserted $x33) @x53 false))))))))))) + +8b09776b03122aeacc9dd9526e1f0e5d41a07f14 14 0 +unsat +((set-logic AUFLIA) +(proof +(let (($x29 (forall ((?v0 A$) )(! (g$ ?v0) :qid k!7)) )) (let (($x30 (ite $x29 true false))) (let (($x31 (f$ $x30))) @@ -3927,20 +3644,20 @@ (let ((@x77 (not-or-elim (mp (asserted (not (=> $x59 $x63))) @x73 (not (or (not $x59) $x63))) $x75))) (let ((?x79 (fun_app$a uu$ 3))) (let (($x168 (fun_app$ ?x79 42))) -(let (($x52 (forall ((?v0 Int) (?v1 Int) )(!(let (($x46 (<= (+ ?v0 (* (- 1) ?v1)) 0))) +(let (($x52 (forall ((?v0 Int) (?v1 Int) )(! (let (($x46 (<= (+ ?v0 (* (- 1) ?v1)) 0))) (let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1))) -(= $x31 $x46))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) ))) +(= $x31 $x46))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) ) :qid k!10)) )) (let (($x46 (<= (+ ?1 (* (- 1) ?0)) 0))) (let (($x31 (fun_app$ (fun_app$a uu$ ?1) ?0))) (let (($x49 (= $x31 $x46))) -(let (($x35 (forall ((?v0 Int) (?v1 Int) )(!(let (($x32 (<= ?v0 ?v1))) +(let (($x35 (forall ((?v0 Int) (?v1 Int) )(! (let (($x32 (<= ?v0 ?v1))) (let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1))) -(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) ))) +(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) ) :qid k!10)) )) -(let (($x40 (forall ((?v0 Int) (?v1 Int) )(!(let (($x32 (<= ?v0 ?v1))) +(let (($x40 (forall ((?v0 Int) (?v1 Int) )(! (let (($x32 (<= ?v0 ?v1))) (let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1))) -(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) ))) +(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) ) :qid k!10)) )) (let ((@x51 (monotonicity (rewrite (= (<= ?1 ?0) $x46)) (= (= $x31 (<= ?1 ?0)) $x49)))) (let ((@x42 (quant-intro (rewrite (= (= $x31 (<= ?1 ?0)) (= $x31 (<= ?1 ?0)))) (= $x35 $x40)))) @@ -3958,33 +3675,6 @@ (let ((@x478 (mp ((_ quant-inst 3 42) (or (not $x52) $x171)) (trans (monotonicity @x131 $x137) (rewrite (= $x134 $x134)) $x137) $x134))) (unit-resolution (unit-resolution @x478 @x78 $x168) (mp @x77 @x472 (not $x168)) false))))))))))))))))))))))))))))))))))) -8b09776b03122aeacc9dd9526e1f0e5d41a07f14 14 0 -unsat -((set-logic AUFLIA) -(proof -(let (($x29 (forall ((?v0 A$) )(g$ ?v0)) -)) -(let (($x30 (ite $x29 true false))) -(let (($x31 (f$ $x30))) -(let (($x32 (=> $x31 true))) -(let (($x33 (not $x32))) -(let ((@x42 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= $x31 (f$ $x29))) (= $x32 (=> (f$ $x29) true))))) -(let ((@x46 (trans @x42 (rewrite (= (=> (f$ $x29) true) true)) (= $x32 true)))) -(let ((@x53 (trans (monotonicity @x46 (= $x33 (not true))) (rewrite (= (not true) false)) (= $x33 false)))) -(mp (asserted $x33) @x53 false))))))))))) - -40c61a0200976d6203302a7343af5b7ad1e6ce36 11 0 -unsat -((set-logic AUFLIA) -(proof -(let (($x29 (forall ((?v0 A$) )(p$ ?v0)) -)) -(let (($x30 (not $x29))) -(let (($x31 (or $x29 $x30))) -(let (($x32 (not $x31))) -(let ((@x42 (trans (monotonicity (rewrite (= $x31 true)) (= $x32 (not true))) (rewrite (= (not true) false)) (= $x32 false)))) -(mp (asserted $x32) @x42 false)))))))) - 9cdd1051dbf4e0648f71536fbc74bbab8e0e744e 75 0 unsat ((set-logic AUFLIA) @@ -4000,9 +3690,9 @@ (let ((?x188 (fun_app$ uu$ 1))) (let ((?x160 (cons$ ?x188 ?x189))) (let (($x290 (= ?x185 ?x160))) -(let (($x521 (forall ((?v0 Int_int_fun$) (?v1 Int) (?v2 Int_list$) )(!(= (map$ ?v0 (cons$ ?v1 ?v2)) (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2))) :pattern ( (map$ ?v0 (cons$ ?v1 ?v2)) ) :pattern ( (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2)) ))) +(let (($x521 (forall ((?v0 Int_int_fun$) (?v1 Int) (?v2 Int_list$) )(! (= (map$ ?v0 (cons$ ?v1 ?v2)) (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2))) :pattern ( (map$ ?v0 (cons$ ?v1 ?v2)) ) :pattern ( (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2)) ) :qid k!13)) )) -(let (($x72 (forall ((?v0 Int_int_fun$) (?v1 Int) (?v2 Int_list$) )(= (map$ ?v0 (cons$ ?v1 ?v2)) (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2)))) +(let (($x72 (forall ((?v0 Int_int_fun$) (?v1 Int) (?v2 Int_list$) )(! (= (map$ ?v0 (cons$ ?v1 ?v2)) (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2))) :qid k!13)) )) (let (($x71 (= (map$ ?2 (cons$ ?1 ?0)) (cons$ (fun_app$ ?2 ?1) (map$ ?2 ?0))))) (let ((@x97 (mp~ (asserted $x72) (nnf-pos (refl (~ $x71 $x71)) (~ $x72 $x72)) $x72))) @@ -4010,9 +3700,9 @@ (let (($x173 (or (not $x521) $x290))) (let ((@x506 ((_ quant-inst uu$ 1 nil$) $x173))) (let (($x492 (= ?x189 nil$))) -(let (($x513 (forall ((?v0 Int_int_fun$) )(!(= (map$ ?v0 nil$) nil$) :pattern ( (map$ ?v0 nil$) ))) +(let (($x513 (forall ((?v0 Int_int_fun$) )(! (= (map$ ?v0 nil$) nil$) :pattern ( (map$ ?v0 nil$) ) :qid k!12)) )) -(let (($x61 (forall ((?v0 Int_int_fun$) )(= (map$ ?v0 nil$) nil$)) +(let (($x61 (forall ((?v0 Int_int_fun$) )(! (= (map$ ?v0 nil$) nil$) :qid k!12)) )) (let ((@x515 (refl (= (= (map$ ?0 nil$) nil$) (= (map$ ?0 nil$) nil$))))) (let ((@x83 (refl (~ (= (map$ ?0 nil$) nil$) (= (map$ ?0 nil$) nil$))))) @@ -4020,14 +3710,14 @@ (let (($x495 (or (not $x513) $x492))) (let ((@x496 ((_ quant-inst uu$) $x495))) (let (($x136 (= ?x188 2))) -(let (($x51 (forall ((?v0 Int) )(!(= (+ ?v0 (* (- 1) (fun_app$ uu$ ?v0))) (- 1)) :pattern ( (fun_app$ uu$ ?v0) ))) +(let (($x51 (forall ((?v0 Int) )(! (= (+ ?v0 (* (- 1) (fun_app$ uu$ ?v0))) (- 1)) :pattern ( (fun_app$ uu$ ?v0) ) :qid k!11)) )) (let (($x47 (= (+ ?0 (* (- 1) (fun_app$ uu$ ?0))) (- 1)))) -(let (($x34 (forall ((?v0 Int) )(!(let ((?x29 (fun_app$ uu$ ?v0))) -(= ?x29 (+ ?v0 1))) :pattern ( (fun_app$ uu$ ?v0) ))) +(let (($x34 (forall ((?v0 Int) )(! (let ((?x29 (fun_app$ uu$ ?v0))) +(= ?x29 (+ ?v0 1))) :pattern ( (fun_app$ uu$ ?v0) ) :qid k!11)) )) -(let (($x42 (forall ((?v0 Int) )(!(let ((?x29 (fun_app$ uu$ ?v0))) -(= ?x29 (+ 1 ?v0))) :pattern ( (fun_app$ uu$ ?v0) ))) +(let (($x42 (forall ((?v0 Int) )(! (let ((?x29 (fun_app$ uu$ ?v0))) +(= ?x29 (+ 1 ?v0))) :pattern ( (fun_app$ uu$ ?v0) ) :qid k!11)) )) (let ((@x53 (quant-intro (rewrite (= (= (fun_app$ uu$ ?0) (+ 1 ?0)) $x47)) (= $x42 $x51)))) (let ((?x29 (fun_app$ uu$ ?0))) @@ -4061,6 +3751,18 @@ (let ((@x82 (asserted $x81))) (unit-resolution @x82 @x466 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +40c61a0200976d6203302a7343af5b7ad1e6ce36 11 0 +unsat +((set-logic AUFLIA) +(proof +(let (($x29 (forall ((?v0 A$) )(! (p$ ?v0) :qid k!6)) +)) +(let (($x30 (not $x29))) +(let (($x31 (or $x29 $x30))) +(let (($x32 (not $x31))) +(let ((@x42 (trans (monotonicity (rewrite (= $x31 true)) (= $x32 (not true))) (rewrite (= (not true) false)) (= $x32 false)))) +(mp (asserted $x32) @x42 false)))))))) + f17a5e4d5f1a5a93fbc847f858c7c845c29d8349 109 0 unsat ((set-logic AUFLIA) @@ -4071,35 +3773,35 @@ (let (($x79 (= ?x77 6))) (let (($x150 (<= ?x75 4))) (let (($x174 (= ?x75 4))) -(let (($x513 (forall ((?v0 Int) )(!(let (($x55 (>= ?v0 10))) -(ite $x55 (= (dec_10$ ?v0) (dec_10$ (+ (- 10) ?v0))) (= (dec_10$ ?v0) ?v0))) :pattern ( (dec_10$ ?v0) ))) +(let (($x513 (forall ((?v0 Int) )(! (let (($x55 (>= ?v0 10))) +(ite $x55 (= (dec_10$ ?v0) (dec_10$ (+ (- 10) ?v0))) (= (dec_10$ ?v0) ?v0))) :pattern ( (dec_10$ ?v0) ) :qid k!5)) )) -(let (($x92 (forall ((?v0 Int) )(let (($x55 (>= ?v0 10))) -(ite $x55 (= (dec_10$ ?v0) (dec_10$ (+ (- 10) ?v0))) (= (dec_10$ ?v0) ?v0)))) +(let (($x92 (forall ((?v0 Int) )(! (let (($x55 (>= ?v0 10))) +(ite $x55 (= (dec_10$ ?v0) (dec_10$ (+ (- 10) ?v0))) (= (dec_10$ ?v0) ?v0))) :qid k!5)) )) (let (($x55 (>= ?0 10))) (let (($x87 (ite $x55 (= (dec_10$ ?0) (dec_10$ (+ (- 10) ?0))) (= (dec_10$ ?0) ?0)))) -(let (($x68 (forall ((?v0 Int) )(let ((?x38 (+ (- 10) ?v0))) +(let (($x68 (forall ((?v0 Int) )(! (let ((?x38 (+ (- 10) ?v0))) (let ((?x41 (dec_10$ ?x38))) (let (($x55 (>= ?v0 10))) (let ((?x60 (ite $x55 ?x41 ?v0))) (let ((?x28 (dec_10$ ?v0))) -(= ?x28 ?x60))))))) +(= ?x28 ?x60)))))) :qid k!5)) )) (let ((?x38 (+ (- 10) ?0))) (let ((?x41 (dec_10$ ?x38))) (let ((?x60 (ite $x55 ?x41 ?0))) (let ((?x28 (dec_10$ ?0))) (let (($x65 (= ?x28 ?x60))) -(let (($x35 (forall ((?v0 Int) )(let ((?x28 (dec_10$ ?v0))) -(= ?x28 (ite (< ?v0 10) ?v0 (dec_10$ (- ?v0 10)))))) +(let (($x35 (forall ((?v0 Int) )(! (let ((?x28 (dec_10$ ?v0))) +(= ?x28 (ite (< ?v0 10) ?v0 (dec_10$ (- ?v0 10))))) :qid k!5)) )) -(let (($x50 (forall ((?v0 Int) )(let ((?x38 (+ (- 10) ?v0))) +(let (($x50 (forall ((?v0 Int) )(! (let ((?x38 (+ (- 10) ?v0))) (let ((?x41 (dec_10$ ?x38))) (let (($x30 (< ?v0 10))) (let ((?x44 (ite $x30 ?v0 ?x41))) (let ((?x28 (dec_10$ ?v0))) -(= ?x28 ?x44))))))) +(= ?x28 ?x44)))))) :qid k!5)) )) (let ((@x59 (monotonicity (rewrite (= (< ?0 10) (not $x55))) (= (ite (< ?0 10) ?0 ?x41) (ite (not $x55) ?0 ?x41))))) (let ((@x64 (trans @x59 (rewrite (= (ite (not $x55) ?0 ?x41) ?x60)) (= (ite (< ?0 10) ?0 ?x41) ?x60)))) @@ -4166,21 +3868,26 @@ (let ((@x479 (monotonicity @x204 (= (or $x501 (ite (>= ?x76 10) $x491 (= ?x77 ?x76))) $x205)))) (let ((@x212 (trans @x479 (rewrite (= $x205 $x205)) (= (or $x501 (ite (>= ?x76 10) $x491 (= ?x77 ?x76))) $x205)))) (let ((@x481 (mp ((_ quant-inst (* 4 ?x75)) (or $x501 (ite (>= ?x76 10) $x491 (= ?x77 ?x76)))) @x212 $x205))) -(let ((@x397 (unit-resolution (def-axiom (or (not $x486) (not $x131) $x491)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x151) $x131)) @x428 $x131) (unit-resolution @x481 @x518 $x486) $x491))) +(let ((@x397 (unit-resolution (def-axiom (or (not $x486) (not $x131) $x491)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x131 (not $x151))) @x428 $x131) (unit-resolution @x481 @x518 $x486) $x491))) (let (($x80 (not $x79))) (let ((@x81 (asserted $x80))) (unit-resolution @x81 (trans @x397 ((_ th-lemma arith eq-propagate 1 1 -4 -4) @x410 @x422 @x428 @x438 (= ?x490 6)) $x79) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) -8c0c900f4d4a92edc7d6113704948dc9280df015 336 0 +8c0c900f4d4a92edc7d6113704948dc9280df015 348 0 unsat ((set-logic ) (proof -(let ((?x99 (mod$ l$ 2))) (let ((?x96 (map$ uu$ xs$))) (let ((?x97 (eval_dioph$ ks$ ?x96))) -(let ((?x98 (mod$ ?x97 2))) -(let (($x100 (= ?x98 ?x99))) +(let ((?x424 (+ l$ ?x97))) +(let ((?x425 (mod ?x424 2))) +(let (($x482 (>= ?x425 2))) +(let (($x564 (not $x482))) +(let ((@x26 (true-axiom true))) +(let ((?x369 (* (- 1) l$))) (let ((?x93 (eval_dioph$ ks$ xs$))) +(let ((?x678 (+ ?x93 ?x369))) +(let (($x679 (<= ?x678 0))) (let (($x95 (= ?x93 l$))) (let ((?x110 (* (- 1) ?x97))) (let ((?x111 (+ l$ ?x110))) @@ -4189,56 +3896,38 @@ (let ((?x102 (eval_dioph$ ks$ ?x101))) (let (($x117 (= ?x102 ?x114))) (let (($x282 (not $x117))) +(let ((?x99 (mod$ l$ 2))) +(let ((?x98 (mod$ ?x97 2))) +(let (($x100 (= ?x98 ?x99))) (let (($x281 (not $x100))) (let (($x283 (or $x281 $x282))) -(let ((?x744 (div ?x93 2))) -(let ((?x970 (* (- 1) ?x744))) -(let ((?x699 (mod ?x93 2))) -(let ((?x726 (* (- 1) ?x699))) -(let ((?x516 (mod l$ 2))) -(let ((?x543 (* (- 1) ?x516))) -(let (($x972 (>= (+ l$ ?x99 ?x543 (* (- 1) (div l$ 2)) ?x726 ?x970) 1))) -(let ((?x369 (* (- 1) l$))) -(let ((?x693 (+ ?x93 ?x369))) -(let (($x695 (>= ?x693 0))) -(let (($x861 (not $x695))) -(let (($x694 (<= ?x693 0))) -(let ((?x686 (+ ?x102 (* (- 1) ?x114)))) -(let (($x687 (<= ?x686 0))) -(let (($x284 (not $x283))) -(let ((@x466 (hypothesis $x284))) -(let ((@x856 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x687)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x687))) -(let ((?x437 (+ l$ ?x110 (* (- 2) (div ?x111 2)) (* (- 1) (mod (+ l$ ?x97) 2))))) -(let (($x443 (>= ?x437 0))) -(let (($x434 (= ?x437 0))) -(let ((@x26 (true-axiom true))) -(let ((@x793 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) $x443)) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) $x443))) -(let ((?x501 (* (- 2) ?x102))) -(let ((?x502 (+ ?x93 ?x110 ?x501))) -(let (($x509 (<= ?x502 0))) -(let (($x503 (= ?x502 0))) -(let (($x304 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let (($x465 (>= ?x425 0))) +(let ((?x496 (* (- 2) ?x102))) +(let ((?x497 (+ ?x93 ?x110 ?x496))) +(let (($x504 (<= ?x497 0))) +(let (($x498 (= ?x497 0))) +(let (($x304 (forall ((?v0 Int_list$) (?v1 Int_list$) )(! (let ((?x45 (eval_dioph$ ?v0 ?v1))) (let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1)))))) -(= ?x83 0))) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ) :pattern ( (eval_dioph$ ?v0 (map$ uua$ ?v1)) ))) +(= ?x83 0))) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ) :pattern ( (eval_dioph$ ?v0 (map$ uua$ ?v1)) ) :qid k!19)) )) -(let (($x85 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let (($x85 (forall ((?v0 Int_list$) (?v1 Int_list$) )(! (let ((?x45 (eval_dioph$ ?v0 ?v1))) (let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1)))))) -(= ?x83 0)))) +(= ?x83 0))) :qid k!19)) )) (let ((?x45 (eval_dioph$ ?1 ?0))) (let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?1 (map$ uu$ ?0))) (* (- 2) (eval_dioph$ ?1 (map$ uua$ ?0)))))) (let (($x79 (= ?x83 0))) -(let (($x58 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let (($x58 (forall ((?v0 Int_list$) (?v1 Int_list$) )(! (let ((?x45 (eval_dioph$ ?v0 ?v1))) (let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1)))) (let ((?x56 (+ (* (eval_dioph$ ?v0 (map$ uua$ ?v1)) 2) ?x48))) -(= ?x56 ?x45))))) +(= ?x56 ?x45)))) :qid k!19)) )) -(let (($x74 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let (($x74 (forall ((?v0 Int_list$) (?v1 Int_list$) )(! (let ((?x45 (eval_dioph$ ?v0 ?v1))) (let ((?x54 (eval_dioph$ ?v0 (map$ uua$ ?v1)))) (let ((?x60 (* 2 ?x54))) (let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1)))) (let ((?x66 (+ ?x48 ?x60))) -(= ?x66 ?x45))))))) +(= ?x66 ?x45)))))) :qid k!19)) )) (let ((?x54 (eval_dioph$ ?1 (map$ uua$ ?0)))) (let ((?x60 (* 2 ?x54))) @@ -4251,13 +3940,155 @@ (let ((@x89 (trans @x76 (quant-intro (rewrite (= $x71 $x79)) (= $x74 $x85)) (= $x58 $x85)))) (let ((@x270 (mp~ (mp (asserted $x58) @x89 $x85) (nnf-pos (refl (~ $x79 $x79)) (~ $x85 $x85)) $x85))) (let ((@x309 (mp @x270 (quant-intro (refl (= $x79 $x79)) (= $x85 $x304)) $x304))) -(let (($x507 (or (not $x304) $x503))) -(let ((@x508 ((_ quant-inst ks$ xs$) $x507))) -(let ((@x800 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x509)) (unit-resolution @x508 @x309 $x503) $x509))) -(let ((?x396 (+ ?x114 (* (- 1) (div ?x111 2))))) -(let (($x413 (<= ?x396 0))) +(let (($x502 (or (not $x304) $x498))) +(let ((@x503 ((_ quant-inst ks$ xs$) $x502))) +(let ((@x795 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x498) $x504)) (unit-resolution @x503 @x309 $x498) $x504))) +(let (($x815 (not $x679))) +(let (($x680 (>= ?x678 0))) +(let ((?x592 (mod ?x97 2))) +(let ((?x619 (* (- 1) ?x592))) +(let ((?x511 (mod l$ 2))) +(let ((?x538 (* (- 1) ?x511))) +(let ((?x776 (* (- 1) ?x102))) +(let ((?x759 (+ l$ ?x98 ?x776 ?x538 (* (- 1) (div l$ 2)) ?x619 (* (- 1) (div ?x97 2))))) +(let (($x760 (>= ?x759 1))) +(let (($x747 (not $x760))) +(let ((?x674 (* (- 1) ?x99))) +(let ((?x675 (+ ?x98 ?x674))) +(let (($x676 (<= ?x675 0))) +(let (($x284 (not $x283))) +(let ((@x493 (hypothesis $x284))) +(let ((@x781 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x281 $x676)) (unit-resolution (def-axiom (or $x283 $x100)) @x493 $x100) $x676))) +(let ((?x670 (* (- 1) ?x114))) +(let ((?x671 (+ ?x102 ?x670))) +(let (($x673 (>= ?x671 0))) +(let ((@x787 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x673)) (unit-resolution (def-axiom (or $x283 $x117)) @x493 $x117) $x673))) +(let ((?x557 (div l$ 2))) +(let ((?x570 (* (- 2) ?x557))) +(let ((?x571 (+ l$ ?x538 ?x570))) +(let (($x576 (<= ?x571 0))) +(let (($x569 (= ?x571 0))) +(let ((@x568 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x569) $x576)) (unit-resolution ((_ th-lemma arith) (or false $x569)) @x26 $x569) $x576))) +(let ((?x620 (+ ?x98 ?x619))) +(let (($x635 (<= ?x620 0))) +(let (($x621 (= ?x620 0))) +(let (($x318 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x200 (mod ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let (($x175 (<= ?v1 0))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let (($x143 (= ?v1 0))) +(let ((?x239 (ite $x143 ?v0 ?x234))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x239))))))))))) :pattern ( (mod$ ?v0 ?v1) ) :qid k!22)) +)) +(let (($x245 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x200 (mod ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let (($x175 (<= ?v1 0))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let (($x143 (= ?v1 0))) +(let ((?x239 (ite $x143 ?v0 ?x234))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x239))))))))))) :qid k!22)) +)) +(let ((?x200 (mod ?1 ?0))) +(let ((?x157 (* (- 1) ?0))) +(let ((?x154 (* (- 1) ?1))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let (($x175 (<= ?0 0))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let (($x143 (= ?0 0))) +(let ((?x239 (ite $x143 ?1 ?x234))) +(let ((?x199 (mod$ ?1 ?0))) +(let (($x242 (= ?x199 ?x239))) +(let (($x206 (forall ((?v0 Int) (?v1 Int) )(! (let (($x143 (= ?v1 0))) +(let ((?x204 (ite $x143 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x204)))) :qid k!22)) +)) +(let (($x228 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let ((?x200 (mod ?v0 ?v1))) +(let (($x144 (< 0 ?v1))) +(let ((?x219 (ite $x144 ?x200 ?x214))) +(let (($x143 (= ?v1 0))) +(let ((?x222 (ite $x143 ?v0 ?x219))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x222))))))))))) :qid k!22)) +)) +(let ((@x233 (monotonicity (rewrite (= (< 0 ?0) (not $x175))) (= (ite (< 0 ?0) ?x200 ?x214) (ite (not $x175) ?x200 ?x214))))) +(let ((@x238 (trans @x233 (rewrite (= (ite (not $x175) ?x200 ?x214) ?x234)) (= (ite (< 0 ?0) ?x200 ?x214) ?x234)))) +(let ((@x241 (monotonicity @x238 (= (ite $x143 ?1 (ite (< 0 ?0) ?x200 ?x214)) ?x239)))) +(let ((@x244 (monotonicity @x241 (= (= ?x199 (ite $x143 ?1 (ite (< 0 ?0) ?x200 ?x214))) $x242)))) +(let (($x144 (< 0 ?0))) +(let ((?x219 (ite $x144 ?x200 ?x214))) +(let ((?x222 (ite $x143 ?1 ?x219))) +(let (($x225 (= ?x199 ?x222))) +(let (($x226 (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))))) $x225))) +(let ((@x210 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (mod (- ?1) (- ?0)) ?x208)))) +(let ((@x218 (trans (monotonicity @x210 (= (- (mod (- ?1) (- ?0))) (- ?x208))) (rewrite (= (- ?x208) ?x214)) (= (- (mod (- ?1) (- ?0))) ?x214)))) +(let ((@x221 (monotonicity @x218 (= (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))) ?x219)))) +(let ((@x224 (monotonicity @x221 (= (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0))))) ?x222)))) +(let ((@x249 (trans (quant-intro (monotonicity @x224 $x226) (= $x206 $x228)) (quant-intro @x244 (= $x228 $x245)) (= $x206 $x245)))) +(let ((@x280 (mp~ (mp (asserted $x206) @x249 $x245) (nnf-pos (refl (~ $x242 $x242)) (~ $x245 $x245)) $x245))) +(let ((@x323 (mp @x280 (quant-intro (refl (= $x242 $x242)) (= $x245 $x318)) $x318))) +(let (($x545 (not $x318))) +(let (($x626 (or $x545 $x621))) +(let ((?x359 (* (- 1) 2))) +(let ((?x590 (mod ?x110 ?x359))) +(let ((?x591 (* (- 1) ?x590))) +(let (($x357 (<= 2 0))) +(let ((?x593 (ite $x357 ?x591 ?x592))) +(let (($x356 (= 2 0))) +(let ((?x594 (ite $x356 ?x97 ?x593))) +(let (($x595 (= ?x98 ?x594))) +(let ((@x601 (monotonicity (monotonicity (rewrite (= ?x359 (- 2))) (= ?x590 (mod ?x110 (- 2)))) (= ?x591 (* (- 1) (mod ?x110 (- 2))))))) +(let ((@x368 (rewrite (= $x357 false)))) +(let ((@x604 (monotonicity @x368 @x601 (= ?x593 (ite false (* (- 1) (mod ?x110 (- 2))) ?x592))))) +(let ((@x608 (trans @x604 (rewrite (= (ite false (* (- 1) (mod ?x110 (- 2))) ?x592) ?x592)) (= ?x593 ?x592)))) +(let ((@x366 (rewrite (= $x356 false)))) +(let ((@x615 (trans (monotonicity @x366 @x608 (= ?x594 (ite false ?x97 ?x592))) (rewrite (= (ite false ?x97 ?x592) ?x592)) (= ?x594 ?x592)))) +(let ((@x625 (trans (monotonicity @x615 (= $x595 (= ?x98 ?x592))) (rewrite (= (= ?x98 ?x592) $x621)) (= $x595 $x621)))) +(let ((@x633 (trans (monotonicity @x625 (= (or $x545 $x595) $x626)) (rewrite (= $x626 $x626)) (= (or $x545 $x595) $x626)))) +(let ((@x634 (mp ((_ quant-inst (eval_dioph$ ks$ ?x96) 2) (or $x545 $x595)) @x633 $x626))) +(let ((@x431 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x621) $x635)) (unit-resolution @x634 @x323 $x621) $x635))) +(let ((?x637 (div ?x97 2))) +(let ((?x650 (* (- 2) ?x637))) +(let ((?x651 (+ ?x97 ?x619 ?x650))) +(let (($x656 (<= ?x651 0))) +(let (($x649 (= ?x651 0))) +(let ((@x661 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x649) $x656)) (unit-resolution ((_ th-lemma arith) (or false $x649)) @x26 $x649) $x656))) +(let ((?x539 (+ ?x99 ?x538))) +(let (($x555 (<= ?x539 0))) +(let (($x540 (= ?x539 0))) +(let (($x546 (or $x545 $x540))) +(let ((?x506 (mod ?x369 ?x359))) +(let ((?x507 (* (- 1) ?x506))) +(let ((?x512 (ite $x357 ?x507 ?x511))) +(let ((?x513 (ite $x356 l$ ?x512))) +(let (($x514 (= ?x99 ?x513))) +(let ((@x520 (monotonicity (monotonicity (rewrite (= ?x359 (- 2))) (= ?x506 (mod ?x369 (- 2)))) (= ?x507 (* (- 1) (mod ?x369 (- 2))))))) +(let ((@x523 (monotonicity @x368 @x520 (= ?x512 (ite false (* (- 1) (mod ?x369 (- 2))) ?x511))))) +(let ((@x527 (trans @x523 (rewrite (= (ite false (* (- 1) (mod ?x369 (- 2))) ?x511) ?x511)) (= ?x512 ?x511)))) +(let ((@x534 (trans (monotonicity @x366 @x527 (= ?x513 (ite false l$ ?x511))) (rewrite (= (ite false l$ ?x511) ?x511)) (= ?x513 ?x511)))) +(let ((@x544 (trans (monotonicity @x534 (= $x514 (= ?x99 ?x511))) (rewrite (= (= ?x99 ?x511) $x540)) (= $x514 $x540)))) +(let ((@x553 (trans (monotonicity @x544 (= (or $x545 $x514) $x546)) (rewrite (= $x546 $x546)) (= (or $x545 $x514) $x546)))) +(let ((@x554 (mp ((_ quant-inst l$ 2) (or $x545 $x514)) @x553 $x546))) +(let ((@x668 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x540) $x555)) (unit-resolution @x554 @x323 $x540) $x555))) +(let ((?x361 (div ?x111 2))) +(let ((?x395 (* (- 1) ?x361))) +(let ((?x396 (+ ?x114 ?x395))) +(let (($x414 (>= ?x396 0))) (let (($x397 (= ?x396 0))) -(let (($x311 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x145 (div ?v0 ?v1))) +(let (($x311 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x145 (div ?v0 ?v1))) (let ((?x157 (* (- 1) ?v1))) (let ((?x154 (* (- 1) ?v0))) (let ((?x160 (div ?x154 ?x157))) @@ -4265,9 +4096,9 @@ (let ((?x182 (ite $x175 ?x160 ?x145))) (let (($x143 (= ?v1 0))) (let ((?x141 (div$ ?v0 ?v1))) -(= ?x141 (ite $x143 0 ?x182)))))))))) :pattern ( (div$ ?v0 ?v1) ))) +(= ?x141 (ite $x143 0 ?x182)))))))))) :pattern ( (div$ ?v0 ?v1) ) :qid k!21)) )) -(let (($x193 (forall ((?v0 Int) (?v1 Int) )(let ((?x145 (div ?v0 ?v1))) +(let (($x193 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x145 (div ?v0 ?v1))) (let ((?x157 (* (- 1) ?v1))) (let ((?x154 (* (- 1) ?v0))) (let ((?x160 (div ?x154 ?x157))) @@ -4275,23 +4106,16 @@ (let ((?x182 (ite $x175 ?x160 ?x145))) (let (($x143 (= ?v1 0))) (let ((?x141 (div$ ?v0 ?v1))) -(= ?x141 (ite $x143 0 ?x182))))))))))) +(= ?x141 (ite $x143 0 ?x182)))))))))) :qid k!21)) )) -(let ((?x145 (div ?1 ?0))) -(let ((?x157 (* (- 1) ?0))) -(let ((?x154 (* (- 1) ?1))) -(let ((?x160 (div ?x154 ?x157))) -(let (($x175 (<= ?0 0))) -(let ((?x182 (ite $x175 ?x160 ?x145))) -(let (($x143 (= ?0 0))) (let ((?x141 (div$ ?1 ?0))) -(let (($x190 (= ?x141 (ite $x143 0 ?x182)))) -(let (($x152 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0))) +(let (($x190 (= ?x141 (ite $x143 0 (ite $x175 (div ?x154 ?x157) (div ?1 ?0)))))) +(let (($x152 (forall ((?v0 Int) (?v1 Int) )(! (let (($x143 (= ?v1 0))) (let ((?x150 (ite $x143 0 (ite (< 0 ?v1) (div ?v0 ?v1) (div (- ?v0) (- ?v1)))))) (let ((?x141 (div$ ?v0 ?v1))) -(= ?x141 ?x150))))) +(= ?x141 ?x150)))) :qid k!21)) )) -(let (($x172 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1))) +(let (($x172 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x157 (* (- 1) ?v1))) (let ((?x154 (* (- 1) ?v0))) (let ((?x160 (div ?x154 ?x157))) (let ((?x145 (div ?v0 ?v1))) @@ -4300,15 +4124,16 @@ (let (($x143 (= ?v1 0))) (let ((?x166 (ite $x143 0 ?x163))) (let ((?x141 (div$ ?v0 ?v1))) -(= ?x141 ?x166))))))))))) +(= ?x141 ?x166)))))))))) :qid k!21)) )) -(let (($x144 (< 0 ?0))) +(let ((?x160 (div ?x154 ?x157))) +(let ((?x145 (div ?1 ?0))) (let ((?x163 (ite $x144 ?x145 ?x160))) (let ((?x166 (ite $x143 0 ?x163))) +(let (($x169 (= ?x141 ?x166))) (let ((@x181 (monotonicity (rewrite (= $x144 (not $x175))) (= ?x163 (ite (not $x175) ?x145 ?x160))))) -(let ((@x186 (trans @x181 (rewrite (= (ite (not $x175) ?x145 ?x160) ?x182)) (= ?x163 ?x182)))) -(let ((@x192 (monotonicity (monotonicity @x186 (= ?x166 (ite $x143 0 ?x182))) (= (= ?x141 ?x166) $x190)))) -(let (($x169 (= ?x141 ?x166))) +(let ((@x186 (trans @x181 (rewrite (= (ite (not $x175) ?x145 ?x160) (ite $x175 ?x160 ?x145))) (= ?x163 (ite $x175 ?x160 ?x145))))) +(let ((@x192 (monotonicity (monotonicity @x186 (= ?x166 (ite $x143 0 (ite $x175 ?x160 ?x145)))) (= $x169 $x190)))) (let (($x170 (= (= ?x141 (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0))))) $x169))) (let ((@x162 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (div (- ?1) (- ?0)) ?x160)))) (let ((@x168 (monotonicity (monotonicity @x162 (= (ite $x144 ?x145 (div (- ?1) (- ?0))) ?x163)) (= (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0)))) ?x166)))) @@ -4316,25 +4141,42 @@ (let ((@x275 (mp~ (mp (asserted $x152) @x197 $x193) (nnf-pos (refl (~ $x190 $x190)) (~ $x193 $x193)) $x193))) (let ((@x316 (mp @x275 (quant-intro (refl (= $x190 $x190)) (= $x193 $x311)) $x311))) (let (($x403 (or (not $x311) $x397))) -(let ((?x361 (div ?x111 2))) -(let (($x357 (<= 2 0))) -(let ((?x362 (ite $x357 (div (* (- 1) ?x111) (* (- 1) 2)) ?x361))) -(let (($x356 (= 2 0))) +(let ((?x358 (* (- 1) ?x111))) +(let ((?x360 (div ?x358 ?x359))) +(let ((?x362 (ite $x357 ?x360 ?x361))) (let ((?x363 (ite $x356 0 ?x362))) (let (($x364 (= ?x114 ?x363))) -(let ((@x374 (rewrite (= (* (- 1) 2) (- 2))))) -(let ((@x377 (monotonicity (rewrite (= (* (- 1) ?x111) (+ ?x369 ?x97))) @x374 (= (div (* (- 1) ?x111) (* (- 1) 2)) (div (+ ?x369 ?x97) (- 2)))))) -(let ((@x368 (rewrite (= $x357 false)))) +(let ((@x374 (rewrite (= ?x359 (- 2))))) +(let ((@x377 (monotonicity (rewrite (= ?x358 (+ ?x369 ?x97))) @x374 (= ?x360 (div (+ ?x369 ?x97) (- 2)))))) (let ((@x380 (monotonicity @x368 @x377 (= ?x362 (ite false (div (+ ?x369 ?x97) (- 2)) ?x361))))) (let ((@x384 (trans @x380 (rewrite (= (ite false (div (+ ?x369 ?x97) (- 2)) ?x361) ?x361)) (= ?x362 ?x361)))) -(let ((@x366 (rewrite (= $x356 false)))) (let ((@x391 (trans (monotonicity @x366 @x384 (= ?x363 (ite false 0 ?x361))) (rewrite (= (ite false 0 ?x361) ?x361)) (= ?x363 ?x361)))) (let ((@x401 (trans (monotonicity @x391 (= $x364 (= ?x114 ?x361))) (rewrite (= (= ?x114 ?x361) $x397)) (= $x364 $x397)))) (let ((@x410 (trans (monotonicity @x401 (= (or (not $x311) $x364) $x403)) (rewrite (= $x403 $x403)) (= (or (not $x311) $x364) $x403)))) -(let ((@x802 (unit-resolution (mp ((_ quant-inst (+ l$ ?x110) 2) (or (not $x311) $x364)) @x410 $x403) @x316 $x397))) -(let ((?x425 (mod (+ l$ ?x97) 2))) -(let (($x465 (>= ?x425 0))) -(let ((@x810 ((_ th-lemma arith farkas 1 -2 -2 -1 1 1) (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (hypothesis $x687) @x800 (hypothesis (not $x694)) @x793 false))) +(let ((@x411 (mp ((_ quant-inst (+ l$ ?x110) 2) (or (not $x311) $x364)) @x410 $x403))) +(let ((@x485 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x414)) (unit-resolution @x411 @x316 $x397) $x414))) +(let ((?x436 (* (- 1) ?x425))) +(let ((?x435 (* (- 2) ?x361))) +(let ((?x437 (+ l$ ?x110 ?x435 ?x436))) +(let (($x442 (<= ?x437 0))) +(let (($x434 (= ?x437 0))) +(let ((@x745 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) $x442)) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) $x442))) +(let ((@x746 ((_ th-lemma arith farkas 1 -2 -2 -2 1 1 1 1 1 1) @x745 @x485 (hypothesis $x673) (hypothesis $x760) (hypothesis $x676) @x668 @x661 @x431 @x568 (unit-resolution ((_ th-lemma arith) (or false $x564)) @x26 $x564) false))) +(let ((@x788 (unit-resolution (lemma @x746 (or $x747 (not $x673) (not $x676))) @x787 @x781 $x747))) +(let (($x677 (>= ?x675 0))) +(let ((@x812 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x281 $x677)) (unit-resolution (def-axiom (or $x283 $x100)) @x493 $x100) $x677))) +(let (($x577 (>= ?x571 0))) +(let ((@x778 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x569) $x577)) (unit-resolution ((_ th-lemma arith) (or false $x569)) @x26 $x569) $x577))) +(let (($x556 (>= ?x539 0))) +(let ((@x645 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x540) $x556)) (unit-resolution @x554 @x323 $x540) $x556))) +(let (($x636 (>= ?x620 0))) +(let ((@x652 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x621) $x636)) (unit-resolution @x634 @x323 $x621) $x636))) +(let (($x505 (>= ?x497 0))) +(let ((@x488 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x498) $x505)) (unit-resolution @x503 @x309 $x498) $x505))) +(let (($x657 (>= ?x651 0))) +(let ((@x581 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x649) $x657)) (unit-resolution ((_ th-lemma arith) (or false $x649)) @x26 $x649) $x657))) +(let ((@x582 ((_ th-lemma arith farkas -1/2 -1/2 -1/2 1/2 -1/2 -1/2 -1/2 1) @x581 (hypothesis $x677) @x488 (hypothesis (not $x680)) @x652 @x645 @x778 (hypothesis $x747) false))) +(let ((@x813 (unit-resolution (lemma @x582 (or $x680 (not $x677) $x760)) @x812 @x788 $x680))) (let (($x134 (not $x95))) (let (($x290 (= $x95 $x283))) (let ((@x289 (monotonicity (rewrite (= (and $x100 $x117) $x284)) (= (= $x134 (and $x100 $x117)) (= $x134 $x284))))) @@ -4349,164 +4191,36 @@ (let ((@x139 (trans (monotonicity @x130 (= $x108 (not (= $x95 $x120)))) (rewrite (= (not (= $x95 $x120)) $x135)) (= $x108 $x135)))) (let ((@x295 (mp (mp (asserted $x108) @x139 $x135) @x294 $x290))) (let ((@x344 (unit-resolution (def-axiom (or $x134 $x283 (not $x290))) @x295 (or $x134 $x283)))) -(let ((@x898 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x95 (not $x694) $x861)) (unit-resolution @x344 @x466 $x134) (or (not $x694) $x861)))) -(let ((@x899 (unit-resolution @x898 (unit-resolution (lemma @x810 (or $x694 (not $x687))) @x856 $x694) $x861))) -(let ((?x544 (+ ?x99 ?x543))) -(let (($x561 (>= ?x544 0))) -(let (($x545 (= ?x544 0))) -(let (($x318 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x200 (mod ?v0 ?v1))) -(let ((?x157 (* (- 1) ?v1))) -(let ((?x154 (* (- 1) ?v0))) -(let ((?x208 (mod ?x154 ?x157))) -(let ((?x214 (* (- 1) ?x208))) -(let (($x175 (<= ?v1 0))) -(let ((?x234 (ite $x175 ?x214 ?x200))) -(let (($x143 (= ?v1 0))) -(let ((?x239 (ite $x143 ?v0 ?x234))) -(let ((?x199 (mod$ ?v0 ?v1))) -(= ?x199 ?x239))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) -)) -(let (($x245 (forall ((?v0 Int) (?v1 Int) )(let ((?x200 (mod ?v0 ?v1))) -(let ((?x157 (* (- 1) ?v1))) -(let ((?x154 (* (- 1) ?v0))) -(let ((?x208 (mod ?x154 ?x157))) -(let ((?x214 (* (- 1) ?x208))) -(let (($x175 (<= ?v1 0))) -(let ((?x234 (ite $x175 ?x214 ?x200))) -(let (($x143 (= ?v1 0))) -(let ((?x239 (ite $x143 ?v0 ?x234))) -(let ((?x199 (mod$ ?v0 ?v1))) -(= ?x199 ?x239)))))))))))) -)) -(let ((?x200 (mod ?1 ?0))) -(let ((?x208 (mod ?x154 ?x157))) -(let ((?x214 (* (- 1) ?x208))) -(let ((?x234 (ite $x175 ?x214 ?x200))) -(let ((?x239 (ite $x143 ?1 ?x234))) -(let ((?x199 (mod$ ?1 ?0))) -(let (($x242 (= ?x199 ?x239))) -(let (($x206 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0))) -(let ((?x204 (ite $x143 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) -(let ((?x199 (mod$ ?v0 ?v1))) -(= ?x199 ?x204))))) -)) -(let (($x228 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1))) -(let ((?x154 (* (- 1) ?v0))) -(let ((?x208 (mod ?x154 ?x157))) -(let ((?x214 (* (- 1) ?x208))) -(let ((?x200 (mod ?v0 ?v1))) -(let (($x144 (< 0 ?v1))) -(let ((?x219 (ite $x144 ?x200 ?x214))) -(let (($x143 (= ?v1 0))) -(let ((?x222 (ite $x143 ?v0 ?x219))) -(let ((?x199 (mod$ ?v0 ?v1))) -(= ?x199 ?x222)))))))))))) +(let ((@x819 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x95 $x815 (not $x680))) (unit-resolution @x344 @x493 $x134) (or $x815 (not $x680))))) +(let (($x672 (<= ?x671 0))) +(let ((@x823 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x672)) (unit-resolution (def-axiom (or $x283 $x117)) @x493 $x117) $x672))) +(let (($x413 (<= ?x396 0))) +(let ((@x802 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) (unit-resolution @x411 @x316 $x397) $x413))) +(let (($x443 (>= ?x437 0))) +(let ((@x826 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) $x443)) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) $x443))) +(let ((@x827 ((_ th-lemma arith farkas 1 -2 -2 1 -1 1) @x826 @x802 @x823 (unit-resolution @x819 @x813 $x815) @x795 (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) false))) +(let ((@x828 (lemma @x827 $x283))) +(let ((@x340 (unit-resolution (def-axiom (or $x95 $x284 (not $x290))) @x295 (or $x95 $x284)))) +(let ((@x584 (unit-resolution @x340 @x828 $x95))) +(let (($x807 (not $x672))) +(let ((@x888 ((_ th-lemma arith assign-bounds 1 -1/2 -1/2 1/2 -1/2) (or $x673 (not $x413) (not $x465) (not $x443) (not $x504) (not $x680))))) +(let ((@x889 (unit-resolution @x888 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x680)) @x584 $x680) @x802 @x826 (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) @x795 $x673))) +(let ((@x741 (symm (monotonicity (symm @x584 (= l$ ?x93)) (= ?x99 (mod$ ?x93 2))) (= (mod$ ?x93 2) ?x99)))) +(let ((?x499 (mod$ ?x93 2))) +(let (($x500 (= ?x499 ?x98))) +(let (($x297 (forall ((?v0 Int_list$) (?v1 Int_list$) )(! (= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ) :qid k!18)) )) -(let ((@x233 (monotonicity (rewrite (= $x144 (not $x175))) (= (ite $x144 ?x200 ?x214) (ite (not $x175) ?x200 ?x214))))) -(let ((@x238 (trans @x233 (rewrite (= (ite (not $x175) ?x200 ?x214) ?x234)) (= (ite $x144 ?x200 ?x214) ?x234)))) -(let ((@x244 (monotonicity (monotonicity @x238 (= (ite $x143 ?1 (ite $x144 ?x200 ?x214)) ?x239)) (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 ?x214))) $x242)))) -(let ((?x219 (ite $x144 ?x200 ?x214))) -(let ((?x222 (ite $x143 ?1 ?x219))) -(let (($x225 (= ?x199 ?x222))) -(let (($x226 (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))))) $x225))) -(let ((@x210 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (mod (- ?1) (- ?0)) ?x208)))) -(let ((@x218 (trans (monotonicity @x210 (= (- (mod (- ?1) (- ?0))) (- ?x208))) (rewrite (= (- ?x208) ?x214)) (= (- (mod (- ?1) (- ?0))) ?x214)))) -(let ((@x221 (monotonicity @x218 (= (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))) ?x219)))) -(let ((@x224 (monotonicity @x221 (= (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0))))) ?x222)))) -(let ((@x249 (trans (quant-intro (monotonicity @x224 $x226) (= $x206 $x228)) (quant-intro @x244 (= $x228 $x245)) (= $x206 $x245)))) -(let ((@x280 (mp~ (mp (asserted $x206) @x249 $x245) (nnf-pos (refl (~ $x242 $x242)) (~ $x245 $x245)) $x245))) -(let ((@x323 (mp @x280 (quant-intro (refl (= $x242 $x242)) (= $x245 $x318)) $x318))) -(let (($x550 (not $x318))) -(let (($x551 (or $x550 $x545))) -(let ((?x359 (* (- 1) 2))) -(let ((?x511 (mod ?x369 ?x359))) -(let ((?x512 (* (- 1) ?x511))) -(let ((?x517 (ite $x357 ?x512 ?x516))) -(let ((?x518 (ite $x356 l$ ?x517))) -(let (($x519 (= ?x99 ?x518))) -(let ((@x525 (monotonicity (monotonicity @x374 (= ?x511 (mod ?x369 (- 2)))) (= ?x512 (* (- 1) (mod ?x369 (- 2))))))) -(let ((@x528 (monotonicity @x368 @x525 (= ?x517 (ite false (* (- 1) (mod ?x369 (- 2))) ?x516))))) -(let ((@x532 (trans @x528 (rewrite (= (ite false (* (- 1) (mod ?x369 (- 2))) ?x516) ?x516)) (= ?x517 ?x516)))) -(let ((@x539 (trans (monotonicity @x366 @x532 (= ?x518 (ite false l$ ?x516))) (rewrite (= (ite false l$ ?x516) ?x516)) (= ?x518 ?x516)))) -(let ((@x549 (trans (monotonicity @x539 (= $x519 (= ?x99 ?x516))) (rewrite (= (= ?x99 ?x516) $x545)) (= $x519 $x545)))) -(let ((@x558 (trans (monotonicity @x549 (= (or $x550 $x519) $x551)) (rewrite (= $x551 $x551)) (= (or $x550 $x519) $x551)))) -(let ((@x559 (mp ((_ quant-inst l$ 2) (or $x550 $x519)) @x558 $x551))) -(let ((@x902 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x561)) (unit-resolution @x559 @x323 $x545) $x561))) -(let ((?x757 (* (- 2) ?x744))) -(let ((?x758 (+ ?x93 ?x726 ?x757))) -(let (($x764 (>= ?x758 0))) -(let (($x756 (= ?x758 0))) -(let ((@x872 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x764)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x764))) -(let ((?x562 (div l$ 2))) -(let ((?x575 (* (- 2) ?x562))) -(let ((?x576 (+ l$ ?x543 ?x575))) -(let (($x582 (>= ?x576 0))) -(let (($x574 (= ?x576 0))) -(let ((@x880 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x582)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x582))) -(let ((?x504 (mod$ ?x93 2))) -(let ((?x727 (+ ?x504 ?x726))) -(let (($x728 (= ?x727 0))) -(let (($x733 (or $x550 $x728))) -(let ((?x696 (* (- 1) ?x93))) -(let ((?x697 (mod ?x696 ?x359))) -(let ((?x698 (* (- 1) ?x697))) -(let ((?x700 (ite $x357 ?x698 ?x699))) -(let ((?x701 (ite $x356 ?x93 ?x700))) -(let (($x702 (= ?x504 ?x701))) -(let ((@x708 (monotonicity (monotonicity @x374 (= ?x697 (mod ?x696 (- 2)))) (= ?x698 (* (- 1) (mod ?x696 (- 2))))))) -(let ((@x711 (monotonicity @x368 @x708 (= ?x700 (ite false (* (- 1) (mod ?x696 (- 2))) ?x699))))) -(let ((@x715 (trans @x711 (rewrite (= (ite false (* (- 1) (mod ?x696 (- 2))) ?x699) ?x699)) (= ?x700 ?x699)))) -(let ((@x722 (trans (monotonicity @x366 @x715 (= ?x701 (ite false ?x93 ?x699))) (rewrite (= (ite false ?x93 ?x699) ?x699)) (= ?x701 ?x699)))) -(let ((@x732 (trans (monotonicity @x722 (= $x702 (= ?x504 ?x699))) (rewrite (= (= ?x504 ?x699) $x728)) (= $x702 $x728)))) -(let ((@x740 (trans (monotonicity @x732 (= (or $x550 $x702) $x733)) (rewrite (= $x733 $x733)) (= (or $x550 $x702) $x733)))) -(let ((@x427 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (>= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (>= ?x727 0)))) -(let ((?x783 (* (- 1) ?x504))) -(let ((?x784 (+ ?x99 ?x783))) -(let (($x786 (>= ?x784 0))) -(let (($x782 (= ?x99 ?x504))) -(let (($x821 (= ?x98 ?x504))) -(let (($x505 (= ?x504 ?x98))) -(let (($x297 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ))) -)) -(let (($x51 (forall ((?v0 Int_list$) (?v1 Int_list$) )(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2))) +(let (($x51 (forall ((?v0 Int_list$) (?v1 Int_list$) )(! (= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)) :qid k!18)) )) (let (($x50 (= (mod$ ?x45 2) (mod$ ?x48 2)))) (let ((@x265 (mp~ (asserted $x51) (nnf-pos (refl (~ $x50 $x50)) (~ $x51 $x51)) $x51))) (let ((@x302 (mp @x265 (quant-intro (refl (= $x50 $x50)) (= $x51 $x297)) $x297))) -(let (($x514 (or (not $x297) $x505))) -(let ((@x515 ((_ quant-inst ks$ xs$) $x514))) -(let ((@x824 (symm (unit-resolution (def-axiom (or $x283 $x100)) @x466 $x100) (= ?x99 ?x98)))) -(let ((@x939 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x786)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x786))) -(let (($x785 (<= ?x784 0))) -(let ((@x887 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x785)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x785))) -(let (($x688 (>= ?x686 0))) -(let ((@x855 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x688)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x688))) -(let ((@x979 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x425 2)))) @x26 (not (>= ?x425 2))))) -(let (($x560 (<= ?x544 0))) -(let ((@x461 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x560)) (unit-resolution @x559 @x323 $x545) $x560))) -(let (($x763 (<= ?x758 0))) -(let ((@x658 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x763)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x763))) -(let (($x581 (<= ?x576 0))) -(let ((@x986 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x581)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x581))) -(let ((@x989 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (<= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (<= ?x727 0)))) -(let (($x510 (>= ?x502 0))) -(let ((@x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x510)) (unit-resolution @x508 @x309 $x503) $x510))) -(let ((@x998 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) (>= ?x396 0))) @x802 (>= ?x396 0)))) -(let ((@x1001 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) (<= ?x437 0))) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) (<= ?x437 0)))) -(let ((@x1002 ((_ th-lemma arith farkas 1 -2 -2 -1 -2 1 1 1 1 1 1) @x1001 @x998 (hypothesis $x688) @x994 (hypothesis $x972) (hypothesis $x785) @x989 @x986 @x658 @x461 @x979 false))) -(let ((@x474 (unit-resolution (lemma @x1002 (or (not $x972) (not $x688) (not $x785))) @x855 @x887 (not $x972)))) -(let ((@x941 (unit-resolution @x474 ((_ th-lemma arith) @x939 @x427 @x880 @x872 @x902 @x899 $x972) false))) -(let ((@x942 (lemma @x941 $x283))) -(let ((@x340 (unit-resolution (def-axiom (or $x95 $x284 (not $x290))) @x295 (or $x95 $x284)))) -(let ((@x679 (unit-resolution @x340 @x942 $x95))) -(let ((@x889 (trans (symm (unit-resolution @x515 @x302 $x505) $x821) (monotonicity @x679 (= ?x504 ?x99)) $x100))) -(let (($x811 (not $x687))) -(let ((@x845 ((_ th-lemma arith assign-bounds 1 -1/2 -1/2 1/2 -1/2) (or $x688 (not $x413) (not $x465) (not $x443) (not $x509) $x861)))) -(let ((@x892 (unit-resolution @x845 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x695)) @x679 $x695) @x793 (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) @x800 $x688))) -(let ((@x935 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x117 $x811 (not $x688))) (hypothesis $x282) (or $x811 (not $x688))))) -(let ((@x955 ((_ th-lemma arith farkas -2 -2 1 -1 1 1) (unit-resolution @x935 @x892 $x811) @x998 @x1001 @x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x694)) @x679 $x694) @x979 false))) -(let ((@x472 (unit-resolution (unit-resolution (def-axiom (or $x284 $x281 $x282)) @x942 $x283) (lemma @x955 $x117) $x281))) -(unit-resolution @x472 @x889 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +(let (($x464 (or (not $x297) $x500))) +(let ((@x578 ((_ quant-inst ks$ xs$) $x464))) +(let ((@x748 (trans (symm (unit-resolution @x578 @x302 $x500) (= ?x98 ?x499)) @x741 $x100))) +(let ((@x891 (unit-resolution (unit-resolution (def-axiom (or $x284 $x281 $x282)) @x828 $x283) (lemma (unit-resolution (hypothesis $x281) @x748 false) $x100) $x282))) +(let ((@x895 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x117 $x807 (not $x673))) @x891 (or $x807 (not $x673))))) +((_ th-lemma arith farkas -2 -2 1 -1 1 1) (unit-resolution @x895 @x889 $x807) @x485 @x745 @x488 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x679)) @x584 $x679) (unit-resolution ((_ th-lemma arith) (or false $x564)) @x26 $x564) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) db184ed715734759b60f9bdc99290a92283563f5 64 0 unsat @@ -4523,27 +4237,27 @@ (let ((@x116 (asserted $x115))) (let (($x113 (less_eq$ ?x109 ?x112))) (let ((@x114 (asserted $x113))) -(let (($x578 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(!(let (($x97 (less_eq$ ?v0 ?v2))) +(let (($x578 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(! (let (($x97 (less_eq$ ?v0 ?v2))) (let (($x95 (less_eq$ ?v1 ?v2))) (let (($x138 (not $x95))) (let (($x93 (less_eq$ ?v0 ?v1))) (let (($x137 (not $x93))) -(or $x137 $x138 $x97)))))) :pattern ( (less_eq$ ?v0 ?v1) (less_eq$ ?v1 ?v2) ))) +(or $x137 $x138 $x97)))))) :pattern ( (less_eq$ ?v0 ?v1) (less_eq$ ?v1 ?v2) ) :qid k!17)) )) -(let (($x156 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2))) +(let (($x156 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(! (let (($x97 (less_eq$ ?v0 ?v2))) (let (($x95 (less_eq$ ?v1 ?v2))) (let (($x138 (not $x95))) (let (($x93 (less_eq$ ?v0 ?v1))) (let (($x137 (not $x93))) -(or $x137 $x138 $x97))))))) +(or $x137 $x138 $x97)))))) :qid k!17)) )) (let ((@x583 (trans (rewrite (= $x156 $x578)) (rewrite (= $x578 $x578)) (= $x156 $x578)))) -(let (($x105 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2))) +(let (($x105 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(! (let (($x97 (less_eq$ ?v0 ?v2))) (let (($x95 (less_eq$ ?v1 ?v2))) (let (($x93 (less_eq$ ?v0 ?v1))) (let (($x96 (and $x93 $x95))) (let (($x101 (not $x96))) -(or $x101 $x97))))))) +(or $x101 $x97)))))) :qid k!17)) )) (let (($x97 (less_eq$ ?2 ?0))) (let (($x95 (less_eq$ ?1 ?0))) @@ -4557,11 +4271,11 @@ (let ((@x143 (monotonicity (rewrite (= $x96 (not (or $x137 $x138)))) (= $x101 (not (not (or $x137 $x138))))))) (let ((@x147 (trans @x143 (rewrite (= (not (not (or $x137 $x138))) (or $x137 $x138))) (= $x101 (or $x137 $x138))))) (let ((@x155 (trans (monotonicity @x147 (= $x102 (or (or $x137 $x138) $x97))) (rewrite (= (or (or $x137 $x138) $x97) $x151)) (= $x102 $x151)))) -(let (($x99 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2))) +(let (($x99 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(! (let (($x97 (less_eq$ ?v0 ?v2))) (let (($x95 (less_eq$ ?v1 ?v2))) (let (($x93 (less_eq$ ?v0 ?v1))) (let (($x96 (and $x93 $x95))) -(=> $x96 $x97)))))) +(=> $x96 $x97))))) :qid k!17)) )) (let ((@x110 (mp (asserted $x99) (quant-intro (rewrite (= (=> $x96 $x97) $x102)) (= $x99 $x105)) $x105))) (let ((@x159 (mp (mp~ @x110 (nnf-pos (refl (~ $x102 $x102)) (~ $x105 $x105)) $x105) (quant-intro @x155 (= $x105 $x156)) $x156))) @@ -4580,13 +4294,13 @@ (let (($x142 (pred$e 1))) (let (($x144 (not $x142))) (let ((@x145 (asserted $x144))) -(let (($x615 (forall ((?v0 Int) )(!(pred$e ?v0) :pattern ( (pred$e ?v0) ))) +(let (($x615 (forall ((?v0 Int) )(! (pred$e ?v0) :pattern ( (pred$e ?v0) ) :qid k!29)) )) -(let (($x138 (forall ((?v0 Int) )(pred$e ?v0)) +(let (($x138 (forall ((?v0 Int) )(! (pred$e ?v0) :qid k!29)) )) -(let (($x127 (forall ((?v0 Int) )(let (($x125 (or (pred$d (cons$d ?v0 nil$d)) (not (pred$d (cons$d ?v0 nil$d)))))) +(let (($x127 (forall ((?v0 Int) )(! (let (($x125 (or (pred$d (cons$d ?v0 nil$d)) (not (pred$d (cons$d ?v0 nil$d)))))) (let (($x119 (pred$e ?v0))) -(and $x119 $x125)))) +(and $x119 $x125))) :qid k!29)) )) (let (($x119 (pred$e ?0))) (let (($x125 (or (pred$d (cons$d ?0 nil$d)) (not (pred$d (cons$d ?0 nil$d)))))) @@ -4611,9 +4325,9 @@ (let ((?x269 (cons$a true nil$a))) (let ((?x270 (g$c ?x269))) (let (($x587 (= ?x125 ?x270))) -(let (($x604 (forall ((?v0 Bool) )(!(= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a))) :pattern ( (some$a ?v0) ) :pattern ( (cons$a ?v0 nil$a) ))) +(let (($x604 (forall ((?v0 Bool) )(! (= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a))) :pattern ( (some$a ?v0) ) :pattern ( (cons$a ?v0 nil$a) ) :qid k!33)) )) -(let (($x43 (forall ((?v0 Bool) )(= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a)))) +(let (($x43 (forall ((?v0 Bool) )(! (= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a))) :qid k!33)) )) (let (($x42 (= (g$b (some$a ?0)) (g$c (cons$a ?0 nil$a))))) (let ((@x160 (mp~ (asserted $x43) (nnf-pos (refl (~ $x42 $x42)) (~ $x43 $x43)) $x43))) @@ -4622,13 +4336,13 @@ (let ((@x255 ((_ quant-inst true) $x254))) (let ((?x227 (size$ ?x269))) (let (($x569 (= ?x270 ?x227))) -(let (($x612 (forall ((?v0 Bool_list$) )(!(let ((?x61 (size$ ?v0))) +(let (($x612 (forall ((?v0 Bool_list$) )(! (let ((?x61 (size$ ?v0))) (let ((?x60 (g$c ?v0))) -(= ?x60 ?x61))) :pattern ( (g$c ?v0) ) :pattern ( (size$ ?v0) ))) +(= ?x60 ?x61))) :pattern ( (g$c ?v0) ) :pattern ( (size$ ?v0) ) :qid k!38)) )) -(let (($x63 (forall ((?v0 Bool_list$) )(let ((?x61 (size$ ?v0))) +(let (($x63 (forall ((?v0 Bool_list$) )(! (let ((?x61 (size$ ?v0))) (let ((?x60 (g$c ?v0))) -(= ?x60 ?x61)))) +(= ?x60 ?x61))) :qid k!38)) )) (let ((@x616 (quant-intro (refl (= (= (g$c ?0) (size$ ?0)) (= (g$c ?0) (size$ ?0)))) (= $x63 $x612)))) (let ((@x142 (nnf-pos (refl (~ (= (g$c ?0) (size$ ?0)) (= (g$c ?0) (size$ ?0)))) (~ $x63 $x63)))) @@ -4639,9 +4353,9 @@ (let ((?x105 (size$ nil$a))) (let ((?x233 (plus$ ?x105 ?x89))) (let (($x570 (= ?x227 ?x233))) -(let (($x657 (forall ((?v0 Bool) (?v1 Bool_list$) )(!(= (size$ (cons$a ?v0 ?v1)) (plus$ (size$ ?v1) (suc$ zero$))) :pattern ( (cons$a ?v0 ?v1) ))) +(let (($x657 (forall ((?v0 Bool) (?v1 Bool_list$) )(! (= (size$ (cons$a ?v0 ?v1)) (plus$ (size$ ?v1) (suc$ zero$))) :pattern ( (cons$a ?v0 ?v1) ) :qid k!46)) )) -(let (($x114 (forall ((?v0 Bool) (?v1 Bool_list$) )(= (size$ (cons$a ?v0 ?v1)) (plus$ (size$ ?v1) (suc$ zero$)))) +(let (($x114 (forall ((?v0 Bool) (?v1 Bool_list$) )(! (= (size$ (cons$a ?v0 ?v1)) (plus$ (size$ ?v1) (suc$ zero$))) :qid k!46)) )) (let (($x113 (= (size$ (cons$a ?1 ?0)) (plus$ (size$ ?0) ?x89)))) (let ((@x173 (mp~ (asserted $x114) (nnf-pos (refl (~ $x113 $x113)) (~ $x114 $x114)) $x114))) @@ -4658,9 +4372,9 @@ (let ((?x256 (cons$ 3 nil$))) (let ((?x588 (size$a ?x256))) (let (($x584 (= ?x588 ?x246))) -(let (($x664 (forall ((?v0 Int) (?v1 Int_list$) )(!(= (size$a (cons$ ?v0 ?v1)) (plus$ (size$a ?v1) (suc$ zero$))) :pattern ( (cons$ ?v0 ?v1) ))) +(let (($x664 (forall ((?v0 Int) (?v1 Int_list$) )(! (= (size$a (cons$ ?v0 ?v1)) (plus$ (size$a ?v1) (suc$ zero$))) :pattern ( (cons$ ?v0 ?v1) ) :qid k!47)) )) -(let (($x119 (forall ((?v0 Int) (?v1 Int_list$) )(= (size$a (cons$ ?v0 ?v1)) (plus$ (size$a ?v1) (suc$ zero$)))) +(let (($x119 (forall ((?v0 Int) (?v1 Int_list$) )(! (= (size$a (cons$ ?v0 ?v1)) (plus$ (size$a ?v1) (suc$ zero$))) :qid k!47)) )) (let (($x118 (= (size$a (cons$ ?1 ?0)) (plus$ (size$a ?0) ?x89)))) (let ((@x178 (mp~ (asserted $x119) (nnf-pos (refl (~ $x118 $x118)) (~ $x119 $x119)) $x119))) @@ -4669,13 +4383,13 @@ (let ((@x232 ((_ quant-inst 3 nil$) $x231))) (let ((?x267 (g$a ?x256))) (let (($x592 (= ?x267 ?x588))) -(let (($x620 (forall ((?v0 Int_list$) )(!(let ((?x67 (size$a ?v0))) +(let (($x620 (forall ((?v0 Int_list$) )(! (let ((?x67 (size$a ?v0))) (let ((?x66 (g$a ?v0))) -(= ?x66 ?x67))) :pattern ( (g$a ?v0) ) :pattern ( (size$a ?v0) ))) +(= ?x66 ?x67))) :pattern ( (g$a ?v0) ) :pattern ( (size$a ?v0) ) :qid k!39)) )) -(let (($x69 (forall ((?v0 Int_list$) )(let ((?x67 (size$a ?v0))) +(let (($x69 (forall ((?v0 Int_list$) )(! (let ((?x67 (size$a ?v0))) (let ((?x66 (g$a ?v0))) -(= ?x66 ?x67)))) +(= ?x66 ?x67))) :qid k!39)) )) (let ((@x622 (refl (= (= (g$a ?0) (size$a ?0)) (= (g$a ?0) (size$a ?0)))))) (let ((@x129 (nnf-pos (refl (~ (= (g$a ?0) (size$a ?0)) (= (g$a ?0) (size$a ?0)))) (~ $x69 $x69)))) @@ -4683,9 +4397,9 @@ (let (($x248 (or (not $x620) $x592))) (let ((@x585 ((_ quant-inst (cons$ 3 nil$)) $x248))) (let (($x268 (= ?x123 ?x267))) -(let (($x596 (forall ((?v0 Int) )(!(= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$))) :pattern ( (some$ ?v0) ) :pattern ( (cons$ ?v0 nil$) ))) +(let (($x596 (forall ((?v0 Int) )(! (= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$))) :pattern ( (some$ ?v0) ) :pattern ( (cons$ ?v0 nil$) ) :qid k!32)) )) -(let (($x34 (forall ((?v0 Int) )(= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$)))) +(let (($x34 (forall ((?v0 Int) )(! (= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$))) :qid k!32)) )) (let (($x33 (= (g$ (some$ ?0)) (g$a (cons$ ?0 nil$))))) (let ((@x157 (mp~ (asserted $x34) (nnf-pos (refl (~ $x33 $x33)) (~ $x34 $x34)) $x34))) @@ -4701,3 +4415,6 @@ (let ((@x128 (asserted $x127))) (unit-resolution @x128 @x546 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +785615f585a02b3e6ed8608ecc9660ba5c4025e2 2 0 +sat +(error "line 9 column 10: proof is not available") diff -r 4c51341245a1 -r 5c95c94952df src/HOL/SMT_Examples/SMT_Examples.thy --- a/src/HOL/SMT_Examples/SMT_Examples.thy Wed Apr 08 18:58:28 2015 +0200 +++ b/src/HOL/SMT_Examples/SMT_Examples.thy Wed Apr 08 19:05:57 2015 +0200 @@ -323,11 +323,6 @@ shows "x + x \ (let P = (abs x > 1) in if P \ \ P then 4 else 2) * x" using assms [[z3_extensions]] by smt -lemma - assumes "(n + m) mod 2 = 0" and "n mod 4 = 3" - shows "n mod 2 = 1 \ m mod 2 = (1::int)" - using assms [[z3_extensions]] by smt - subsection {* Linear arithmetic with quantifiers *} diff -r 4c51341245a1 -r 5c95c94952df src/HOL/SMT_Examples/SMT_Word_Examples.certs --- a/src/HOL/SMT_Examples/SMT_Word_Examples.certs Wed Apr 08 18:58:28 2015 +0200 +++ b/src/HOL/SMT_Examples/SMT_Word_Examples.certs Wed Apr 08 19:05:57 2015 +0200 @@ -73,25 +73,6 @@ (let ((@x63 (trans @x59 (rewrite (= (not true) false)) (= (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7)))) false)))) (mp (asserted (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))))) @x63 false))))))))) -b4600e6d14c88b633ac7bcc5b2e24af8539b0218 18 0 -unsat -((set-logic ) -(proof -(let ((?x31 (bvmul (_ bv4 4) x$))) -(let (($x32 (= ?x31 (_ bv4 4)))) -(let (($x43 (= (_ bv5 4) x$))) -(let (($x56 (not (or (not $x43) (= (_ bv4 4) ?x31))))) -(let ((@x48 (monotonicity (rewrite (= (= x$ (_ bv5 4)) $x43)) (= (not (= x$ (_ bv5 4))) (not $x43))))) -(let ((@x55 (monotonicity @x48 (rewrite (= $x32 (= (_ bv4 4) ?x31))) (= (or (not (= x$ (_ bv5 4))) $x32) (or (not $x43) (= (_ bv4 4) ?x31)))))) -(let (($x34 (not (=> (= x$ (_ bv5 4)) $x32)))) -(let ((@x39 (rewrite (= (=> (= x$ (_ bv5 4)) $x32) (or (not (= x$ (_ bv5 4))) $x32))))) -(let ((@x60 (trans (monotonicity @x39 (= $x34 (not (or (not (= x$ (_ bv5 4))) $x32)))) (monotonicity @x55 (= (not (or (not (= x$ (_ bv5 4))) $x32)) $x56)) (= $x34 $x56)))) -(let ((@x67 (monotonicity (not-or-elim (mp (asserted $x34) @x60 $x56) $x43) (= ?x31 (bvmul (_ bv4 4) (_ bv5 4)))))) -(let ((@x73 (monotonicity (trans @x67 (rewrite (= (bvmul (_ bv4 4) (_ bv5 4)) (_ bv4 4))) $x32) (= (= (_ bv4 4) ?x31) (= (_ bv4 4) (_ bv4 4)))))) -(let ((@x77 (trans @x73 (rewrite (= (= (_ bv4 4) (_ bv4 4)) true)) (= (= (_ bv4 4) ?x31) true)))) -(let ((@x84 (trans (monotonicity @x77 (= (not (= (_ bv4 4) ?x31)) (not true))) (rewrite (= (not true) false)) (= (not (= (_ bv4 4) ?x31)) false)))) -(mp (not-or-elim (mp (asserted $x34) @x60 $x56) (not (= (_ bv4 4) ?x31))) @x84 false)))))))))))))))) - 9673ca576ccae343db48aa68f876fd3a2515cc33 19 0 unsat ((set-logic ) @@ -112,6 +93,25 @@ (let ((@x67 (trans @x63 (rewrite (= (not true) false)) (= $x38 false)))) (mp (asserted $x38) @x67 false))))))))))))))))) +b4600e6d14c88b633ac7bcc5b2e24af8539b0218 18 0 +unsat +((set-logic ) +(proof +(let ((?x31 (bvmul (_ bv4 4) x$))) +(let (($x32 (= ?x31 (_ bv4 4)))) +(let (($x43 (= (_ bv5 4) x$))) +(let (($x56 (not (or (not $x43) (= (_ bv4 4) ?x31))))) +(let ((@x48 (monotonicity (rewrite (= (= x$ (_ bv5 4)) $x43)) (= (not (= x$ (_ bv5 4))) (not $x43))))) +(let ((@x55 (monotonicity @x48 (rewrite (= $x32 (= (_ bv4 4) ?x31))) (= (or (not (= x$ (_ bv5 4))) $x32) (or (not $x43) (= (_ bv4 4) ?x31)))))) +(let (($x34 (not (=> (= x$ (_ bv5 4)) $x32)))) +(let ((@x39 (rewrite (= (=> (= x$ (_ bv5 4)) $x32) (or (not (= x$ (_ bv5 4))) $x32))))) +(let ((@x60 (trans (monotonicity @x39 (= $x34 (not (or (not (= x$ (_ bv5 4))) $x32)))) (monotonicity @x55 (= (not (or (not (= x$ (_ bv5 4))) $x32)) $x56)) (= $x34 $x56)))) +(let ((@x67 (monotonicity (not-or-elim (mp (asserted $x34) @x60 $x56) $x43) (= ?x31 (bvmul (_ bv4 4) (_ bv5 4)))))) +(let ((@x73 (monotonicity (trans @x67 (rewrite (= (bvmul (_ bv4 4) (_ bv5 4)) (_ bv4 4))) $x32) (= (= (_ bv4 4) ?x31) (= (_ bv4 4) (_ bv4 4)))))) +(let ((@x77 (trans @x73 (rewrite (= (= (_ bv4 4) (_ bv4 4)) true)) (= (= (_ bv4 4) ?x31) true)))) +(let ((@x84 (trans (monotonicity @x77 (= (not (= (_ bv4 4) ?x31)) (not true))) (rewrite (= (not true) false)) (= (not (= (_ bv4 4) ?x31)) false)))) +(mp (not-or-elim (mp (asserted $x34) @x60 $x56) (not (= (_ bv4 4) ?x31))) @x84 false)))))))))))))))) + d150015a66b6757a72346710966844993c0f3c27 9 0 unsat ((set-logic ) @@ -327,18 +327,18 @@ (let ((?x28 (bv2int$ (_ bv0 2)))) (let (($x183 (<= ?x28 0))) (let (($x184 (not $x183))) -(let (($x175 (forall ((?v0 (_ BitVec 2)) )(!(let ((?x47 (bv2int$ ?v0))) +(let (($x175 (forall ((?v0 (_ BitVec 2)) )(! (let ((?x47 (bv2int$ ?v0))) (let (($x53 (<= ?x47 0))) -(not $x53))) :pattern ( (bv2int$ ?v0) ))) +(not $x53))) :pattern ( (bv2int$ ?v0) ) :qid k!9)) )) -(let (($x57 (forall ((?v0 (_ BitVec 2)) )(let ((?x47 (bv2int$ ?v0))) +(let (($x57 (forall ((?v0 (_ BitVec 2)) )(! (let ((?x47 (bv2int$ ?v0))) (let (($x53 (<= ?x47 0))) -(not $x53)))) +(not $x53))) :qid k!9)) )) (let ((@x177 (refl (= (not (<= (bv2int$ ?0) 0)) (not (<= (bv2int$ ?0) 0)))))) (let ((@x112 (refl (~ (not (<= (bv2int$ ?0) 0)) (not (<= (bv2int$ ?0) 0)))))) -(let (($x49 (forall ((?v0 (_ BitVec 2)) )(let ((?x47 (bv2int$ ?v0))) -(< 0 ?x47))) +(let (($x49 (forall ((?v0 (_ BitVec 2)) )(! (let ((?x47 (bv2int$ ?v0))) +(< 0 ?x47)) :qid k!9)) )) (let ((@x56 (rewrite (= (< 0 (bv2int$ ?0)) (not (<= (bv2int$ ?0) 0)))))) (let ((@x115 (mp~ (mp (asserted $x49) (quant-intro @x56 (= $x49 $x57)) $x57) (nnf-pos @x112 (~ $x57 $x57)) $x57))) diff -r 4c51341245a1 -r 5c95c94952df src/HOL/SMT_Examples/VCC_Max.certs --- a/src/HOL/SMT_Examples/VCC_Max.certs Wed Apr 08 18:58:28 2015 +0200 +++ b/src/HOL/SMT_Examples/VCC_Max.certs Wed Apr 08 19:05:57 2015 +0200 @@ -1,18 +1,92 @@ -8ec9d30fc9fdbc0ea292e0fdf148a6230c16dbca 2972 0 +8ec9d30fc9fdbc0ea292e0fdf148a6230c16dbca 2924 0 unsat ((set-logic ) +(declare-fun ?v0!15 () Int) (declare-fun ?v0!14 () Int) -(declare-fun ?v0!15 () Int) (declare-fun ?v0!13 () Int) (proof +(let ((?x10076 (b_S_array$ b_T_T_u1$ v_b_P_H_len$))) +(let ((?x22595 (b_S_ptr$ ?x10076 v_b_P_H_arr$))) +(let ((?x24598 (b_S_idx$ ?x22595 v_b_L_H_p_G_0$ b_T_T_u1$))) +(let ((?x10272 (b_S_typemap$ v_b_S_s$))) +(let ((?x24302 (b_S_select_o_tm$ ?x10272 ?x24598))) +(let ((?x24605 (b_S_ts_n_emb$ ?x24302))) +(let (($x24606 (= ?x24605 ?x22595))) +(let (($x24611 (b_S_typed$ v_b_S_s$ ?x24598))) +(let (($x24614 (not $x24611))) +(let (($x24608 (b_S_ts_n_is_n_volatile$ ?x24302))) +(let (($x24607 (not $x24606))) +(let (($x24615 (or $x24607 $x24608 (not (b_S_ts_n_is_n_array_n_elt$ ?x24302)) $x24614))) +(let (($x24616 (not $x24615))) +(let (($x11901 (>= v_b_L_H_p_G_0$ 0))) +(let (($x20030 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10238 (= ?x10163 v_b_S_result_G_0$))) +(let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12168 (<= ?v0 4294967295))) +(let (($x16553 (not $x12168))) +(let (($x2815 (>= ?v0 0))) +(let (($x3763 (not $x2815))) +(or $x3763 $x16553 $x11800 (not $x10238))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ) :qid k!704)) +)) +(let (($x20035 (not $x20030))) +(let (($x20022 (forall ((?v0 Int) )(! (let ((?x11816 (* (- 1) v_b_S_result_G_0$))) +(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x11818 (<= (+ ?x10163 ?x11816) 0))) +(let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12168 (<= ?v0 4294967295))) +(let (($x16553 (not $x12168))) +(let (($x2815 (>= ?v0 0))) +(let (($x3763 (not $x2815))) +(or $x3763 $x16553 $x11800 $x11818))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ) :qid k!704)) +)) +(let (($x20027 (not $x20022))) +(let (($x20038 (or $x20027 $x20035))) +(let (($x20041 (not $x20038))) (let ((?x10078 (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))) +(let ((?x15743 (b_S_idx$ ?x10078 ?v0!15 b_T_T_u1$))) +(let ((?x15744 (b_S_read_n_u1$ v_b_S_s$ ?x15743))) +(let ((?x16029 (* (- 1) ?x15744))) +(let (($x16031 (>= (+ v_b_S_result_G_0$ ?x16029) 0))) +(let (($x16009 (<= (+ v_b_P_H_len$ (* (- 1) ?v0!15)) 0))) +(let (($x15737 (<= ?v0!15 4294967295))) +(let (($x19560 (not $x15737))) +(let (($x15736 (>= ?v0!15 0))) +(let (($x19559 (not $x15736))) +(let (($x19575 (or $x19559 $x19560 $x16009 $x16031))) +(let (($x19580 (not $x19575))) +(let (($x20044 (or $x19580 $x20041))) +(let (($x20047 (not $x20044))) +(let (($x10222 (= v_b_S_result_G_0$ v_b_L_H_max_G_1$))) +(let (($x19640 (not $x10222))) +(let (($x10220 (= v_b_SL_H_witness_G_2$ v_b_SL_H_witness_G_0$))) +(let (($x19639 (not $x10220))) +(let (($x10218 (= v_b_L_H_p_G_2$ v_b_L_H_p_G_0$))) +(let (($x19638 (not $x10218))) +(let (($x10216 (= v_b_L_H_max_G_4$ v_b_L_H_max_G_1$))) +(let (($x19637 (not $x10216))) +(let (($x11432 (>= v_b_SL_H_witness_G_0$ 0))) +(let (($x19501 (not $x11432))) +(let (($x11429 (>= v_b_L_H_p_G_0$ 1))) +(let (($x19474 (not $x11429))) +(let (($x15729 (not b_S_position_n_marker$))) +(let (($x20050 (or $x15729 $x19474 $x19501 $x19637 $x19638 $x19639 $x19640 $x20047))) +(let (($x20053 (not $x20050))) +(let (($x20056 (or $x15729 $x20053))) +(let (($x20059 (not $x20056))) +(let ((?x11484 (* (- 1) v_b_L_H_p_G_0$))) +(let ((?x11485 (+ v_b_P_H_len$ ?x11484))) +(let (($x11486 (<= ?x11485 0))) +(let (($x11487 (not $x11486))) +(let (($x20062 (or $x11487 $x19474 $x19501 $x20059))) +(let (($x20065 (not $x20062))) (let ((?x10372 (b_S_idx$ ?x10078 v_b_SL_H_witness_G_1$ b_T_T_u1$))) (let ((?x10373 (b_S_read_n_u1$ v_b_S_s$ ?x10372))) (let (($x10374 (= ?x10373 v_b_L_H_max_G_3$))) +(let (($x19411 (not $x10374))) (let (($x11647 (<= (+ v_b_P_H_len$ (* (- 1) v_b_SL_H_witness_G_1$)) 0))) -(let (($x19412 (or $x11647 (not $x10374)))) +(let (($x19412 (or $x11647 $x19411))) (let (($x19413 (not $x19412))) -(let (($x19906 (forall ((?v0 Int) )(!(let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) +(let (($x19906 (forall ((?v0 Int) )(! (let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11633 (<= (+ ?x10163 ?x11631) 0))) (let (($x11615 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) @@ -20,7 +94,7 @@ (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11615 $x11633))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +(or $x3763 $x16553 $x11615 $x11633))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ) :qid k!704)) )) (let (($x19911 (not $x19906))) (let (($x19914 (or $x19911 $x19413))) @@ -38,9 +112,7 @@ (let (($x19386 (not $x19381))) (let (($x19920 (or $x19386 $x19917))) (let (($x19923 (not $x19920))) -(let ((?x11581 (* (- 1) v_b_L_H_p_G_1$))) -(let ((?x11609 (+ v_b_P_H_len$ ?x11581))) -(let (($x11608 (>= ?x11609 0))) +(let (($x11608 (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_1$)) 0))) (let (($x11612 (not $x11608))) (let (($x19926 (or $x11612 $x19923))) (let (($x19929 (not $x19926))) @@ -52,6 +124,7 @@ (let (($x19454 (not $x11578))) (let (($x10358 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_24$ b_H_loc_o_p$ v_b_L_H_p_G_1$ b_T_T_u4$))) (let (($x19453 (not $x10358))) +(let ((?x11581 (* (- 1) v_b_L_H_p_G_1$))) (let ((?x11582 (+ v_b_L_H_p_G_0$ ?x11581))) (let (($x11580 (= ?x11582 (- 1)))) (let (($x19452 (not $x11580))) @@ -63,26 +136,17 @@ (let (($x19941 (not $x19938))) (let (($x19944 (or $x15611 $x15614 $x19941))) (let (($x19947 (not $x19944))) -(let (($x11429 (>= v_b_L_H_p_G_0$ 1))) -(let (($x19474 (not $x11429))) (let (($x10392 (= v_b_SL_H_witness_G_1$ v_b_SL_H_witness_G_0$))) (let (($x19513 (not $x10392))) (let (($x10391 (= v_b_L_H_max_G_3$ v_b_L_H_max_G_1$))) (let (($x19512 (not $x10391))) -(let (($x11432 (>= v_b_SL_H_witness_G_0$ 0))) -(let (($x19501 (not $x11432))) (let ((?x10320 (b_S_idx$ ?x10078 v_b_L_H_p_G_0$ b_T_T_u1$))) (let ((?x10327 (b_S_read_n_u1$ v_b_S_s$ ?x10320))) (let ((?x11517 (* (- 1) ?x10327))) -(let ((?x11518 (+ v_b_L_H_max_G_1$ ?x11517))) -(let (($x11516 (>= ?x11518 0))) +(let (($x11516 (>= (+ v_b_L_H_max_G_1$ ?x11517) 0))) (let (($x11515 (not $x11516))) (let (($x19980 (or $x11515 $x19501 $x19512 $x19513 $x19474 $x19455 $x19947))) (let (($x19983 (not $x19980))) -(let ((?x25039 (+ ?x10327 ?x15891))) -(let (($x25041 (>= ?x25039 0))) -(let (($x25038 (= ?x10327 ?x15634))) -(let (($x25035 (= v_b_L_H_p_G_0$ ?v0!14))) (let (($x10340 (= v_b_SL_H_witness_G_1$ v_b_L_H_p_G_0$))) (let (($x19473 (not $x10340))) (let (($x10338 (= v_b_L_H_max_G_3$ v_b_L_H_max_G_2$))) @@ -113,201 +177,6 @@ (let (($x19989 (not $x19986))) (let (($x19992 (or $x15590 $x15599 $x19474 $x19501 $x19989))) (let (($x19995 (not $x19992))) -(let ((?x23404 (b_S_ref$ ?x10320))) -(let ((?x23228 (b_S_ptr$ b_T_T_u1$ ?x23404))) -(let ((?x23728 (b_S_typ$ ?x23228))) -(let ((?x23730 (b_S_kind_n_of$ ?x23728))) -(let (($x24098 (= ?x23730 b_S_kind_n_primitive$))) -(let ((?x21472 (b_S_kind_n_of$ b_T_T_u1$))) -(let (($x21473 (= ?x21472 b_S_kind_n_primitive$))) -(let (($x9768 (b_S_is_n_primitive$ b_T_T_u1$))) -(let (($x21480 (= $x9768 $x21473))) -(let (($x9891 (forall ((?v0 B_S_ctype$) )(!(let ((?x9849 (b_S_kind_n_of$ ?v0))) -(let (($x9883 (= ?x9849 b_S_kind_n_primitive$))) -(let (($x2704 (b_S_is_n_primitive$ ?v0))) -(= $x2704 $x9883)))) :pattern ( (b_S_is_n_primitive$ ?v0) ))) -)) -(let ((?x9849 (b_S_kind_n_of$ ?0))) -(let (($x9883 (= ?x9849 b_S_kind_n_primitive$))) -(let (($x2704 (b_S_is_n_primitive$ ?0))) -(let (($x9888 (= $x2704 $x9883))) -(let (($x9886 (forall ((?v0 B_S_ctype$) )(!(let ((?x9849 (b_S_kind_n_of$ ?v0))) -(let (($x9883 (= ?x9849 b_S_kind_n_primitive$))) -(let (($x2704 (b_S_is_n_primitive$ ?v0))) -(= $x2704 $x9883)))) :pattern ( (b_S_is_n_primitive$ ?v0) ))) -)) -(let ((@x9896 (mp (asserted $x9886) (quant-intro (rewrite (= (= $x2704 $x9883) $x9888)) (= $x9886 $x9891)) $x9891))) -(let ((@x15456 (mp~ @x9896 (nnf-pos (refl (~ $x9888 $x9888)) (~ $x9891 $x9891)) $x9891))) -(let (($x21224 (not $x9891))) -(let (($x21483 (or $x21224 $x21480))) -(let ((@x21484 ((_ quant-inst b_T_T_u1$) $x21483))) -(let ((@x9769 (asserted $x9768))) -(let ((@x23544 (unit-resolution (def-axiom (or (not $x21480) (not $x9768) $x21473)) @x9769 (or (not $x21480) $x21473)))) -(let ((?x23241 (b_S_typ$ ?x10320))) -(let (($x23242 (= ?x23241 b_T_T_u1$))) -(let (($x23270 (= $x10321 $x23242))) -(let (($x19828 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(let ((?x6636 (b_S_typ$ ?v0))) -(let (($x7865 (= ?x6636 ?v1))) -(let (($x9596 (b_S_is$ ?v0 ?v1))) -(= $x9596 $x7865)))) :pattern ( (b_S_is$ ?v0 ?v1) ))) -)) -(let (($x9617 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(let ((?x6636 (b_S_typ$ ?v0))) -(let (($x7865 (= ?x6636 ?v1))) -(let (($x9596 (b_S_is$ ?v0 ?v1))) -(= $x9596 $x7865))))) -)) -(let ((?x6636 (b_S_typ$ ?1))) -(let (($x7865 (= ?x6636 ?0))) -(let (($x9596 (b_S_is$ ?1 ?0))) -(let (($x9614 (= $x9596 $x7865))) -(let (($x9611 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(let ((?x6636 (b_S_typ$ ?v0))) -(let (($x7865 (= ?x6636 ?v1))) -(let (($x9596 (b_S_is$ ?v0 ?v1))) -(= $x9596 $x7865))))) -)) -(let ((@x9622 (mp (asserted $x9611) (quant-intro (rewrite (= (= $x9596 $x7865) $x9614)) (= $x9611 $x9617)) $x9617))) -(let ((@x19833 (mp (mp~ @x9622 (nnf-pos (refl (~ $x9614 $x9614)) (~ $x9617 $x9617)) $x9617) (quant-intro (refl (= $x9614 $x9614)) (= $x9617 $x19828)) $x19828))) -(let (($x22002 (not $x19828))) -(let (($x23990 (or $x22002 $x23270))) -(let ((@x23870 ((_ quant-inst (b_S_idx$ ?x10078 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) $x23990))) -(let ((?x10045 (b_S_sizeof$ b_T_T_u1$))) -(let ((?x23278 (* ?x10045 v_b_L_H_p_G_0$))) -(let ((?x10079 (b_S_ref$ ?x10078))) -(let ((?x24174 (+ ?x10079 ?x23278))) -(let ((?x24198 (b_S_ptr$ b_T_T_u1$ ?x24174))) -(let ((?x23028 (b_S_typ$ ?x24198))) -(let (($x23029 (= ?x23028 b_T_T_u1$))) -(let (($x19841 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0) :pattern ( (b_S_ptr$ ?v0 ?v1) ))) -)) -(let (($x9659 (forall ((?v0 B_S_ctype$) (?v1 Int) )(= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0)) -)) -(let (($x9658 (= (b_S_typ$ (b_S_ptr$ ?1 ?0)) ?1))) -(let ((@x15361 (mp~ (asserted $x9659) (nnf-pos (refl (~ $x9658 $x9658)) (~ $x9659 $x9659)) $x9659))) -(let ((@x19846 (mp @x15361 (quant-intro (refl (= $x9658 $x9658)) (= $x9659 $x19841)) $x19841))) -(let (($x24201 (= ?x10320 ?x24198))) -(let (($x24214 (not $x24201))) -(let (($x24067 (b_S_extent_n_hint$ ?x10320 ?x10078))) -(let (($x24065 (not $x24067))) -(let (($x24160 (or $x24065 $x24214))) -(let (($x24161 (not $x24160))) -(let (($x18180 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x7205 (b_S_idx$ ?v0 ?v1 ?v2))) -(let (($x7213 (= ?x7205 (b_S_ptr$ ?v2 (+ (b_S_ref$ ?v0) (* ?v1 (b_S_sizeof$ ?v2))))))) -(not (or (not (b_S_extent_n_hint$ ?x7205 ?v0)) (not $x7213))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) ))) -)) -(let (($x7216 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x7205 (b_S_idx$ ?v0 ?v1 ?v2))) -(let (($x7213 (= ?x7205 (b_S_ptr$ ?v2 (+ (b_S_ref$ ?v0) (* ?v1 (b_S_sizeof$ ?v2))))))) -(and (b_S_extent_n_hint$ ?x7205 ?v0) $x7213))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) ))) -)) -(let ((?x7205 (b_S_idx$ ?2 ?1 ?0))) -(let (($x7213 (= ?x7205 (b_S_ptr$ ?0 (+ (b_S_ref$ ?2) (* ?1 (b_S_sizeof$ ?0))))))) -(let (($x7214 (and (b_S_extent_n_hint$ ?x7205 ?2) $x7213))) -(let ((@x18179 (rewrite (= $x7214 (not (or (not (b_S_extent_n_hint$ ?x7205 ?2)) (not $x7213))))))) -(let ((@x14561 (mp~ (asserted $x7216) (nnf-pos (refl (~ $x7214 $x7214)) (~ $x7216 $x7216)) $x7216))) -(let ((@x18183 (mp @x14561 (quant-intro @x18179 (= $x7216 $x18180)) $x18180))) -(let (($x22568 (not $x18180))) -(let (($x24300 (or $x22568 $x24161))) -(let (($x24080 (not (= ?x10320 (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045))))))) -(let (($x24081 (not (or $x24065 $x24080)))) -(let (($x24202 (= (= ?x10320 (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045)))) $x24201))) -(let ((@x24197 (monotonicity (rewrite (= (* v_b_L_H_p_G_0$ ?x10045) ?x23278)) (= (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045)) ?x24174)))) -(let ((@x24200 (monotonicity @x24197 (= (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045))) ?x24198)))) -(let ((@x24150 (monotonicity (monotonicity (monotonicity @x24200 $x24202) (= $x24080 $x24214)) (= (or $x24065 $x24080) $x24160)))) -(let ((@x24316 (monotonicity (monotonicity @x24150 (= $x24081 $x24161)) (= (or $x22568 $x24081) $x24300)))) -(let ((@x24299 (mp ((_ quant-inst (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x22568 $x24081)) (trans @x24316 (rewrite (= $x24300 $x24300)) (= (or $x22568 $x24081) $x24300)) $x24300))) -(let ((@x24341 (unit-resolution (def-axiom (or $x24160 $x24201)) (unit-resolution @x24299 @x18183 $x24161) $x24201))) -(let ((@x24343 (trans (monotonicity @x24341 (= ?x23241 ?x23028)) (unit-resolution ((_ quant-inst b_T_T_u1$ (+ ?x10079 ?x23278)) (or (not $x19841) $x23029)) @x19846 $x23029) $x23242))) -(let (($x23889 (not $x23242))) -(let ((@x24337 (unit-resolution (def-axiom (or (not $x23270) $x10321 $x23889)) (hypothesis $x15590) (or (not $x23270) $x23889)))) -(let ((@x24344 (unit-resolution (unit-resolution @x24337 (unit-resolution @x23870 @x19833 $x23270) $x23889) @x24343 false))) -(let ((@x24345 (lemma @x24344 $x10321))) -(let ((@x25031 (unit-resolution (def-axiom (or (not $x23270) $x15590 $x23242)) @x24345 (or (not $x23270) $x23242)))) -(let (($x23306 (= ?x10320 ?x23228))) -(let (($x9607 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(or (not (b_S_is$ ?v0 ?v1)) (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0)))) :pattern ( (b_S_is$ ?v0 ?v1) ))) -)) -(let (($x9604 (or (not $x9596) (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1)))))) -(let (($x9601 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(let (($x9596 (b_S_is$ ?v0 ?v1))) -(=> $x9596 (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0))))) :pattern ( (b_S_is$ ?v0 ?v1) ))) -)) -(let ((@x9606 (rewrite (= (=> $x9596 (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1)))) $x9604)))) -(let ((@x15336 (mp~ (mp (asserted $x9601) (quant-intro @x9606 (= $x9601 $x9607)) $x9607) (nnf-pos (refl (~ $x9604 $x9604)) (~ $x9607 $x9607)) $x9607))) -(let (($x21994 (not $x9607))) -(let (($x24294 (or $x21994 $x15590 $x23306))) -(let ((@x24335 (mp ((_ quant-inst (b_S_idx$ ?x10078 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or $x21994 (or $x15590 $x23306))) (rewrite (= (or $x21994 (or $x15590 $x23306)) $x24294)) $x24294))) -(let ((@x25262 (symm (unit-resolution @x24335 @x15336 @x24345 $x23306) (= ?x23228 ?x10320)))) -(let ((@x24694 (trans (monotonicity @x25262 (= ?x23728 ?x23241)) (unit-resolution @x25031 (unit-resolution @x23870 @x19833 $x23270) $x23242) (= ?x23728 b_T_T_u1$)))) -(let ((@x24696 (trans (monotonicity @x24694 (= ?x23730 ?x21472)) (unit-resolution @x23544 (unit-resolution @x21484 @x15456 $x21480) $x21473) $x24098))) -(let ((?x10272 (b_S_typemap$ v_b_S_s$))) -(let ((?x24217 (b_S_select_o_tm$ ?x10272 ?x23228))) -(let ((?x24218 (b_S_ts_n_emb$ ?x24217))) -(let (($x23775 (b_S_closed$ v_b_S_s$ ?x24218))) -(let (($x23784 (not $x23775))) -(let (($x23805 (b_S_ts_n_is_n_volatile$ ?x24217))) -(let (($x23770 (not $x23805))) -(let (($x23797 (or $x23770 $x23784))) -(let ((@x24686 (monotonicity (monotonicity @x25262 (= ?x24217 (b_S_select_o_tm$ ?x10272 ?x10320))) (= $x23805 (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x10272 ?x10320)))))) -(let ((@x24702 (symm @x24686 (= (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x10272 ?x10320)) $x23805)))) -(let ((@x24701 (monotonicity @x24702 (= (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x10272 ?x10320))) $x23770)))) -(let ((?x23124 (b_S_select_o_tm$ ?x10272 ?x10320))) -(let (($x23361 (b_S_ts_n_is_n_volatile$ ?x23124))) -(let (($x23297 (not $x23361))) -(let (($x23362 (or $x15593 $x23361))) -(let (($x23363 (not $x23362))) -(let (($x11901 (>= v_b_L_H_p_G_0$ 0))) -(let (($x20030 (forall ((?v0 Int) )(!(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) -(let (($x10238 (= ?x10163 v_b_S_result_G_0$))) -(let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) -(let (($x12168 (<= ?v0 4294967295))) -(let (($x16553 (not $x12168))) -(let (($x2815 (>= ?v0 0))) -(let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11800 (not $x10238))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) -)) -(let (($x20035 (not $x20030))) -(let (($x20022 (forall ((?v0 Int) )(!(let ((?x11816 (* (- 1) v_b_S_result_G_0$))) -(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) -(let (($x11818 (<= (+ ?x10163 ?x11816) 0))) -(let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) -(let (($x12168 (<= ?v0 4294967295))) -(let (($x16553 (not $x12168))) -(let (($x2815 (>= ?v0 0))) -(let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11800 $x11818))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) -)) -(let (($x20027 (not $x20022))) -(let (($x20038 (or $x20027 $x20035))) -(let (($x20041 (not $x20038))) -(let ((?x15743 (b_S_idx$ ?x10078 ?v0!15 b_T_T_u1$))) -(let ((?x15744 (b_S_read_n_u1$ v_b_S_s$ ?x15743))) -(let ((?x16029 (* (- 1) ?x15744))) -(let (($x16031 (>= (+ v_b_S_result_G_0$ ?x16029) 0))) -(let (($x16009 (<= (+ v_b_P_H_len$ (* (- 1) ?v0!15)) 0))) -(let (($x15737 (<= ?v0!15 4294967295))) -(let (($x19560 (not $x15737))) -(let (($x15736 (>= ?v0!15 0))) -(let (($x19559 (not $x15736))) -(let (($x19575 (or $x19559 $x19560 $x16009 $x16031))) -(let (($x19580 (not $x19575))) -(let (($x20044 (or $x19580 $x20041))) -(let (($x20047 (not $x20044))) -(let (($x10222 (= v_b_S_result_G_0$ v_b_L_H_max_G_1$))) -(let (($x19640 (not $x10222))) -(let (($x10220 (= v_b_SL_H_witness_G_2$ v_b_SL_H_witness_G_0$))) -(let (($x19639 (not $x10220))) -(let (($x10218 (= v_b_L_H_p_G_2$ v_b_L_H_p_G_0$))) -(let (($x19638 (not $x10218))) -(let (($x10216 (= v_b_L_H_max_G_4$ v_b_L_H_max_G_1$))) -(let (($x19637 (not $x10216))) -(let (($x15729 (not b_S_position_n_marker$))) -(let (($x20050 (or $x15729 $x19474 $x19501 $x19637 $x19638 $x19639 $x19640 $x20047))) -(let (($x20053 (not $x20050))) -(let (($x20056 (or $x15729 $x20053))) -(let (($x20059 (not $x20056))) -(let ((?x11484 (* (- 1) v_b_L_H_p_G_0$))) -(let ((?x11485 (+ v_b_P_H_len$ ?x11484))) -(let (($x11486 (<= ?x11485 0))) -(let (($x11487 (not $x11486))) -(let (($x20062 (or $x11487 $x19474 $x19501 $x20059))) -(let (($x20065 (not $x20062))) (let (($x19998 (or $x15590 $x15599 $x19995))) (let (($x20001 (not $x19998))) (let (($x20004 (or $x15590 $x15593 $x20001))) @@ -342,10 +211,8 @@ (let ((?x10191 (b_S_read_n_u1$ v_b_S_s$ ?x10190))) (let (($x10192 (= ?x10191 v_b_L_H_max_G_1$))) (let (($x19674 (not $x10192))) -(let ((?x11865 (* (- 1) v_b_SL_H_witness_G_0$))) -(let ((?x11866 (+ v_b_P_H_len$ ?x11865))) -(let (($x11867 (<= ?x11866 0))) -(let (($x19898 (forall ((?v0 Int) )(!(let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) +(let (($x11867 (<= (+ v_b_P_H_len$ (* (- 1) v_b_SL_H_witness_G_0$)) 0))) +(let (($x19898 (forall ((?v0 Int) )(! (let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11889 (<= (+ ?x10163 ?x11887) 0))) (let (($x11871 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) @@ -353,7 +220,7 @@ (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11871 $x11889))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +(or $x3763 $x16553 $x11871 $x11889))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ) :qid k!704)) )) (let (($x19903 (not $x19898))) (let (($x11898 (>= ?x11485 0))) @@ -374,76 +241,73 @@ (let (($x11259 (<= v_b_P_H_len$ 0))) (let (($x20074 (or $x11259 $x15548 $x19667 $x19668 $x19669 $x19670 $x19671 $x19672 $x19903 $x11867 $x19674 $x19675 $x19676 $x19677 $x19678 $x19679 $x19680 $x19681 $x19682 $x19683 $x19474 $x19501 $x20071))) (let (($x20077 (not $x20074))) +(let (($x10145 (= v_b_L_H_max_G_0$ ?x10144))) (let (($x20080 (or $x11259 $x15548 $x20077))) (let (($x20083 (not $x20080))) -(let (($x19890 (forall ((?v0 Int) )(!(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x19890 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11404 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x10163)) 0))) (let (($x11388 (>= ?v0 1))) (let (($x12168 (<= ?v0 4294967295))) (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11388 $x11404)))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +(or $x3763 $x16553 $x11388 $x11404)))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ) :qid k!704)) )) (let (($x19895 (not $x19890))) (let (($x20086 (or $x19895 $x20083))) (let (($x20089 (not $x20086))) (let ((?x15529 (b_S_idx$ ?x10078 ?v0!13 b_T_T_u1$))) (let ((?x15530 (b_S_read_n_u1$ v_b_S_s$ ?x15529))) -(let (($x15533 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x15530)) 0))) +(let ((?x15531 (* (- 1) ?x15530))) +(let (($x15533 (>= (+ v_b_L_H_max_G_0$ ?x15531) 0))) (let (($x15525 (>= ?v0!13 1))) (let (($x15524 (<= ?v0!13 4294967295))) (let (($x19298 (not $x15524))) (let (($x15523 (>= ?v0!13 0))) (let (($x19297 (not $x15523))) (let (($x19313 (or $x19297 $x19298 $x15525 $x15533))) -(let (($x20589 (not $x15533))) (let (($x19318 (not $x19313))) -(let ((@x23991 (hypothesis $x19318))) +(let (($x20092 (or $x19318 $x20089))) +(let (($x20095 (not $x20092))) +(let (($x11382 (>= v_b_P_H_len$ 1))) +(let (($x11385 (not $x11382))) +(let (($x20098 (or $x11385 $x20095))) +(let (($x20101 (not $x20098))) +(let (($x20104 (or $x11385 $x20101))) +(let (($x20107 (not $x20104))) +(let (($x10148 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_8$ b_H_loc_o_p$ 1 b_T_T_u4$))) +(let (($x19727 (not $x10148))) +(let (($x10147 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_14_o_3$ b_H_loc_o_witness$ 0 b_T_T_u4$))) +(let (($x19726 (not $x10147))) +(let (($x10146 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_12_o_3$ b_H_loc_o_max$ v_b_L_H_max_G_0$ b_T_T_u1$))) +(let (($x19725 (not $x10146))) +(let (($x19724 (not $x10145))) (let (($x10141 (b_S_thread_n_local$ v_b_S_s$ ?x10137))) -(let ((?x21175 (b_S_typ$ ?x10078))) -(let ((?x22803 (b_S_kind_n_of$ ?x21175))) -(let (($x22807 (= ?x22803 b_S_kind_n_primitive$))) -(let (($x21176 (= ?x21175 b_T_T_u1$))) -(let (($x21147 (not $x19841))) -(let (($x21181 (or $x21147 $x21176))) -(let ((@x21182 ((_ quant-inst b_T_T_u1$ v_b_P_H_arr$) $x21181))) -(let ((@x23076 (trans (monotonicity (unit-resolution @x21182 @x19846 $x21176) (= ?x22803 ?x21472)) (unit-resolution @x23544 (unit-resolution @x21484 @x15456 $x21480) $x21473) $x22807))) -(let ((?x22818 (b_S_select_o_tm$ ?x10272 ?x10078))) -(let ((?x22903 (b_S_ts_n_emb$ ?x22818))) -(let (($x22904 (b_S_closed$ v_b_S_s$ ?x22903))) -(let (($x22902 (b_S_ts_n_is_n_volatile$ ?x22818))) -(let (($x22897 (not $x22902))) -(let (($x22906 (or $x22897 (not $x22904)))) +(let (($x15511 (not $x10141))) +(let (($x10138 (b_S_is$ ?x10137 b_T_T_u1$))) +(let (($x15502 (not $x10138))) +(let (($x20110 (or $x15502 $x15511 $x19724 $x19725 $x19726 $x19727 $x20107))) +(let (($x20113 (not $x20110))) +(let (($x20116 (or $x15502 $x15511 $x20113))) +(let (($x20119 (not $x20116))) +(let (($x10139 (b_S_typed$ v_b_S_s$ ?x10137))) +(let (($x15505 (not $x10139))) +(let (($x20122 (or $x15502 $x15505 $x20119))) +(let (($x20125 (not $x20122))) (let ((?x22478 (b_S_select_o_tm$ ?x10272 ?x10137))) -(let ((?x22485 (b_S_ref$ ?x10137))) -(let ((?x22505 (b_S_ptr$ b_T_T_u1$ ?x22485))) -(let ((?x22655 (b_S_select_o_tm$ ?x10272 ?x22505))) -(let (($x22506 (= ?x10137 ?x22505))) -(let ((?x22553 (b_S_ptr$ b_T_T_u1$ ?x10079))) -(let (($x22556 (= ?x10137 ?x22553))) -(let (($x22559 (not $x22556))) -(let (($x22523 (b_S_extent_n_hint$ ?x10137 ?x10078))) -(let (($x22524 (not $x22523))) -(let (($x22562 (or $x22524 $x22559))) -(let (($x22565 (not $x22562))) -(let (($x22569 (or $x22568 $x22565))) -(let (($x22542 (or $x22524 (not (= ?x10137 (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* 0 ?x10045)))))))) -(let (($x22543 (not $x22542))) -(let (($x22560 (= (not (= ?x10137 (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* 0 ?x10045))))) $x22559))) -(let ((@x22548 (monotonicity (rewrite (= (* 0 ?x10045) 0)) (= (+ ?x10079 (* 0 ?x10045)) (+ ?x10079 0))))) -(let ((@x22552 (trans @x22548 (rewrite (= (+ ?x10079 0) ?x10079)) (= (+ ?x10079 (* 0 ?x10045)) ?x10079)))) -(let ((@x22555 (monotonicity @x22552 (= (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* 0 ?x10045))) ?x22553)))) -(let ((@x22558 (monotonicity @x22555 (= (= ?x10137 (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* 0 ?x10045)))) $x22556)))) -(let ((@x22567 (monotonicity (monotonicity (monotonicity @x22558 $x22560) (= $x22542 $x22562)) (= $x22543 $x22565)))) -(let ((@x22576 (trans (monotonicity @x22567 (= (or $x22568 $x22543) $x22569)) (rewrite (= $x22569 $x22569)) (= (or $x22568 $x22543) $x22569)))) -(let ((@x22577 (mp ((_ quant-inst (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) 0 b_T_T_u1$) (or $x22568 $x22543)) @x22576 $x22569))) -(let ((@x22581 (def-axiom (or $x22562 $x22556)))) -(let ((@x24189 (unit-resolution @x22581 (lemma (unit-resolution @x22577 @x18183 (hypothesis $x22562) false) $x22565) $x22556))) +(let (($x22602 (b_S_ts_n_is_n_volatile$ ?x22478))) +(let (($x22603 (or $x15505 $x22602))) +(let (($x22604 (not $x22603))) +(let ((?x10079 (b_S_ref$ ?x10078))) +(let ((?x10080 (b_S_ptr$ ?x10076 ?x10079))) +(let ((?x21014 (b_S_ref$ ?x10080))) +(let ((?x21983 (b_S_ptr$ ?x10076 ?x21014))) +(let ((?x22343 (b_S_domain$ v_b_S_s$ ?x21983))) +(let (($x22596 (b_S_set_n_in$ ?x22595 ?x22343))) (let (($x21179 (= ?x10079 v_b_P_H_arr$))) -(let (($x19835 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1) :pattern ( (b_S_ptr$ ?v0 ?v1) ))) +(let (($x19835 (forall ((?v0 B_S_ctype$) (?v1 Int) )(! (= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1) :pattern ( (b_S_ptr$ ?v0 ?v1) ) :qid k!627)) )) -(let (($x9655 (forall ((?v0 B_S_ctype$) (?v1 Int) )(= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1)) +(let (($x9655 (forall ((?v0 B_S_ctype$) (?v1 Int) )(! (= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1) :qid k!627)) )) (let (($x9654 (= (b_S_ref$ (b_S_ptr$ ?1 ?0)) ?0))) (let ((@x15356 (mp~ (asserted $x9655) (nnf-pos (refl (~ $x9654 $x9654)) (~ $x9655 $x9655)) $x9655))) @@ -451,43 +315,22 @@ (let (($x21152 (not $x19835))) (let (($x21184 (or $x21152 $x21179))) (let ((@x21185 ((_ quant-inst b_T_T_u1$ v_b_P_H_arr$) $x21184))) -(let ((@x24511 (unit-resolution @x21185 @x19840 $x21179))) -(let ((@x22852 (monotonicity @x24511 (= ?x22553 ?x10078)))) -(let ((@x24073 (monotonicity (trans (hypothesis $x22556) @x22852 (= ?x10137 ?x10078)) (= ?x22485 ?x10079)))) -(let ((@x22338 (symm (monotonicity (trans @x24073 @x24511 (= ?x22485 v_b_P_H_arr$)) (= ?x22505 ?x10078)) (= ?x10078 ?x22505)))) -(let ((@x22340 (unit-resolution (hypothesis (not $x22506)) (trans (trans (hypothesis $x22556) @x22852 (= ?x10137 ?x10078)) @x22338 $x22506) false))) -(let ((@x23667 (unit-resolution (lemma @x22340 (or $x22559 $x22506)) @x24189 $x22506))) -(let ((@x23699 (trans (symm @x22852 (= ?x10078 ?x22553)) (symm @x24189 (= ?x22553 ?x10137)) (= ?x10078 ?x10137)))) -(let ((@x22940 (trans (monotonicity (trans @x23699 @x23667 (= ?x10078 ?x22505)) (= ?x22818 ?x22655)) (symm (monotonicity @x23667 (= ?x22478 ?x22655)) (= ?x22655 ?x22478)) (= ?x22818 ?x22478)))) -(let ((@x23082 (symm (monotonicity @x22940 (= $x22902 (b_S_ts_n_is_n_volatile$ ?x22478))) (= (b_S_ts_n_is_n_volatile$ ?x22478) $x22902)))) -(let (($x22602 (b_S_ts_n_is_n_volatile$ ?x22478))) -(let (($x22641 (not $x22602))) -(let (($x10139 (b_S_typed$ v_b_S_s$ ?x10137))) -(let (($x15505 (not $x10139))) -(let (($x22603 (or $x15505 $x22602))) -(let (($x22604 (not $x22603))) -(let ((?x10076 (b_S_array$ b_T_T_u1$ v_b_P_H_len$))) -(let ((?x10080 (b_S_ptr$ ?x10076 ?x10079))) -(let ((?x21014 (b_S_ref$ ?x10080))) -(let ((?x21983 (b_S_ptr$ ?x10076 ?x21014))) -(let ((?x22343 (b_S_domain$ v_b_S_s$ ?x21983))) -(let ((?x22595 (b_S_ptr$ ?x10076 v_b_P_H_arr$))) -(let (($x22596 (b_S_set_n_in$ ?x22595 ?x22343))) -(let ((@x24530 (monotonicity (symm @x24511 (= v_b_P_H_arr$ ?x10079)) (= ?x22595 ?x10080)))) +(let ((@x23445 (unit-resolution @x21185 @x19840 $x21179))) +(let ((@x23680 (monotonicity (symm @x23445 (= v_b_P_H_arr$ ?x10079)) (= ?x22595 ?x10080)))) (let (($x21990 (= ?x10080 ?x21983))) (let (($x10084 (b_S_is$ ?x10080 ?x10076))) (let (($x11245 (>= (+ b_S_max_o_u4$ (* (- 1) v_b_P_H_len$)) 0))) (let (($x11243 (>= v_b_P_H_len$ 0))) -(let (($x10439 (forall ((?v0 B_S_ptr$) )(!(let (($x10113 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0))) -(not $x10113)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) ))) +(let (($x10439 (forall ((?v0 B_S_ptr$) )(! (let (($x10113 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0))) +(not $x10113)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) ) :qid k!704)) )) (let ((?x10111 (b_S_current_n_timestamp$ v_b_S_s$))) (let (($x10112 (= v_b_H_wrTime_S_1_T_6_o_1$ ?x10111))) (let (($x10109 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_len$ v_b_P_H_len$ b_T_T_u4$))) (let (($x10107 (b_S_local_n_value_n_is_n_ptr$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_arr$ ?x10078 ?x2238))) (let (($x10106 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_arr$ ?x10105 ?x2238))) -(let (($x11256 (forall ((?v0 B_S_pure_n_function$) )(!(let (($x11251 (>= (+ (b_S_frame_n_level$ ?v0) (* (- 1) b_S_current_n_frame_n_level$)) 0))) -(not $x11251)) :pattern ( (b_S_frame_n_level$ ?v0) ))) +(let (($x11256 (forall ((?v0 B_S_pure_n_function$) )(! (let (($x11251 (>= (+ (b_S_frame_n_level$ ?v0) (* (- 1) b_S_current_n_frame_n_level$)) 0))) +(not $x11251)) :pattern ( (b_S_frame_n_level$ ?v0) ) :qid k!704)) )) (let (($x10096 (b_S_good_n_state_n_ext$ b_H_tok_S_1_T_6_o_1$ v_b_S_s$))) (let (($x10095 (b_S_function_n_entry$ v_b_S_s$))) @@ -509,7 +352,7 @@ (let (($x11286 (>= (+ b_S_max_o_u1$ (* (- 1) v_b_L_H_max$)) 0))) (let (($x11284 (>= v_b_L_H_max$ 0))) (let (($x11342 (and $x11284 $x11286 $x11276 $x11278 $x11268 $x11270 $x11264 $x11260 $x10081 $x10083 $x10084 $x10085 $x10088 $x10089 $x10095 $x10096 $x10097 $x11256 $x10106 $x10107 $x10109 $x10112 $x10439 $x11243 $x11245))) -(let (($x11844 (exists ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x11844 (exists ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10238 (= ?x10163 v_b_S_result_G_0$))) (let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) (let (($x11802 (not $x11800))) @@ -517,9 +360,9 @@ (let ((?x3114 (+ ?v0 ?x3113))) (let (($x3115 (<= ?x3114 0))) (let (($x2815 (>= ?v0 0))) -(and $x2815 $x3115 $x11802 $x10238)))))))))) +(and $x2815 $x3115 $x11802 $x10238))))))))) :qid k!704)) )) -(let (($x11824 (forall ((?v0 Int) )(let ((?x11816 (* (- 1) v_b_S_result_G_0$))) +(let (($x11824 (forall ((?v0 Int) )(! (let ((?x11816 (* (- 1) v_b_S_result_G_0$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11818 (<= (+ ?x10163 ?x11816) 0))) (let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) @@ -530,7 +373,7 @@ (let (($x2815 (>= ?v0 0))) (let (($x11808 (and $x2815 $x3115 $x11802))) (let (($x11813 (not $x11808))) -(or $x11813 $x11818))))))))))))) +(or $x11813 $x11818)))))))))))) :qid k!704)) )) (let (($x11827 (not $x11824))) (let (($x11847 (or $x11827 $x11844))) @@ -544,7 +387,7 @@ (let (($x11859 (or $x11777 $x11856))) (let (($x11648 (not $x11647))) (let (($x11651 (and $x11648 $x10374))) -(let (($x11639 (forall ((?v0 Int) )(let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) +(let (($x11639 (forall ((?v0 Int) )(! (let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11633 (<= (+ ?x10163 ?x11631) 0))) (let (($x11615 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) @@ -555,7 +398,7 @@ (let (($x2815 (>= ?v0 0))) (let (($x11623 (and $x2815 $x3115 $x11617))) (let (($x11628 (not $x11623))) -(or $x11628 $x11633))))))))))))) +(or $x11628 $x11633)))))))))))) :qid k!704)) )) (let (($x11642 (not $x11639))) (let (($x11654 (or $x11642 $x11651))) @@ -596,7 +439,7 @@ (let (($x11476 (and $x10284 $x10204 $x10097 $x10291 $x10292 $x10293 $x10294 $x10295 $x10296 $x11429 $x11432))) (let (($x11481 (not $x11476))) (let (($x11868 (not $x11867))) -(let (($x11895 (forall ((?v0 Int) )(let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) +(let (($x11895 (forall ((?v0 Int) )(! (let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11889 (<= (+ ?x10163 ?x11887) 0))) (let (($x11871 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) @@ -607,16 +450,16 @@ (let (($x2815 (>= ?v0 0))) (let (($x11879 (and $x2815 $x3115 $x11873))) (let (($x11884 (not $x11879))) -(or $x11884 $x11889))))))))))))) +(or $x11884 $x11889)))))))))))) :qid k!704)) )) (let (($x11904 (>= ?x11574 0))) -(let (($x11907 (>= (+ b_S_max_o_u4$ ?x11865) 0))) +(let (($x11907 (>= (+ b_S_max_o_u4$ (* (- 1) v_b_SL_H_witness_G_0$)) 0))) (let (($x11914 (>= (+ b_S_max_o_u1$ (* (- 1) v_b_L_H_max_G_1$)) 0))) (let (($x11957 (and $x11260 $x10167 $x11911 $x11914 $x11907 $x11901 $x11904 $x11898 $x11895 $x11868 $x10192 $x11429 $x11432))) (let (($x11962 (not $x11957))) (let (($x11971 (or $x11962 $x11481 $x11862))) (let (($x11979 (and $x11260 $x10167 $x11971))) -(let (($x11411 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x11411 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11404 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x10163)) 0))) (let (($x11388 (>= ?v0 1))) (let (($x11389 (not $x11388))) @@ -626,20 +469,13 @@ (let (($x2815 (>= ?v0 0))) (let (($x11395 (and $x2815 $x3115 $x11389))) (let (($x11400 (not $x11395))) -(or $x11400 $x11404)))))))))))) +(or $x11400 $x11404))))))))))) :qid k!704)) )) (let (($x11414 (not $x11411))) (let (($x11984 (or $x11414 $x11979))) (let (($x11987 (and $x11411 $x11984))) -(let (($x11382 (>= v_b_P_H_len$ 1))) -(let (($x11385 (not $x11382))) (let (($x11990 (or $x11385 $x11987))) (let (($x11993 (and $x11382 $x11990))) -(let (($x10148 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_8$ b_H_loc_o_p$ 1 b_T_T_u4$))) -(let (($x10147 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_14_o_3$ b_H_loc_o_witness$ 0 b_T_T_u4$))) -(let (($x10146 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_12_o_3$ b_H_loc_o_max$ v_b_L_H_max_G_0$ b_T_T_u1$))) -(let (($x10145 (= v_b_L_H_max_G_0$ ?x10144))) -(let (($x10138 (b_S_is$ ?x10137 b_T_T_u1$))) (let (($x11374 (and $x10138 $x10141 $x10145 $x10146 $x10147 $x10148))) (let (($x11379 (not $x11374))) (let (($x11996 (or $x11379 $x11993))) @@ -653,22 +489,22 @@ (let (($x12018 (or $x11221 $x12013))) (let (($x12021 (and $x10136 $x12018))) (let (($x12027 (not (or (not $x11342) $x12021)))) -(let (($x10242 (exists ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10242 (exists ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10238 (= ?x10163 v_b_S_result_G_0$))) (let (($x10233 (< ?v0 v_b_P_H_len$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) -(and $x2766 (and $x3097 (and $x10233 $x10238))))))))) +(and $x2766 (and $x3097 (and $x10233 $x10238)))))))) :qid k!704)) )) (let (($x10244 (and $x10242 (=> $x10242 true)))) -(let (($x10237 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10237 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10235 (<= ?x10163 v_b_S_result_G_0$))) (let (($x10233 (< ?v0 v_b_P_H_len$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10234 (and $x3098 $x10233))) -(=> $x10234 $x10235))))))))) +(=> $x10234 $x10235)))))))) :qid k!704)) )) (let (($x10245 (=> $x10237 $x10244))) (let (($x10227 (and true (and $x10216 (and $x10218 (and $x10220 (and $x10222 true))))))) @@ -689,13 +525,13 @@ (let (($x10377 (=> (and (and (< v_b_SL_H_witness_G_1$ v_b_P_H_len$) $x10374) false) true))) (let (($x10375 (and (< v_b_SL_H_witness_G_1$ v_b_P_H_len$) $x10374))) (let (($x10378 (and $x10375 $x10377))) -(let (($x10370 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10370 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10368 (<= ?x10163 v_b_L_H_max_G_3$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10367 (and $x3098 (< ?v0 v_b_L_H_p_G_1$)))) -(=> $x10367 $x10368)))))))) +(=> $x10367 $x10368))))))) :qid k!704)) )) (let (($x10379 (=> $x10370 $x10378))) (let (($x10365 (<= v_b_L_H_p_G_1$ v_b_P_H_len$))) @@ -728,33 +564,33 @@ (let (($x10297 (and $x10295 $x10296))) (let (($x10205 (and $x10204 $x10097))) (let (($x10307 (and $x10205 (and $x10291 (and $x10292 (and $x10293 (and $x10294 (and $x10297 $x10301)))))))) -(let (($x10283 (forall ((?v0 B_S_ptr$) )(!(let ((?x10280 (b_S_timestamp$ v_b_S_s$ ?v0))) -(<= ?x10280 ?x10280)) :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) ))) +(let (($x10283 (forall ((?v0 B_S_ptr$) )(! (let ((?x10280 (b_S_timestamp$ v_b_S_s$ ?v0))) +(<= ?x10280 ?x10280)) :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) ) :qid k!704)) )) (let (($x10286 (and (<= ?x10111 ?x10111) (and $x10283 $x10284)))) -(let (($x10278 (forall ((?v0 B_S_ptr$) )(!(let (($x10260 (b_S_thread_n_local$ v_b_S_s$ ?v0))) +(let (($x10278 (forall ((?v0 B_S_ptr$) )(! (let (($x10260 (b_S_thread_n_local$ v_b_S_s$ ?v0))) (let ((?x10272 (b_S_typemap$ v_b_S_s$))) (let ((?x10273 (b_S_select_o_tm$ ?x10272 ?v0))) (let (($x10275 (and (= ?x10273 ?x10273) $x10260))) -(=> $x10260 $x10275))))) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) ))) +(=> $x10260 $x10275))))) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) ) :qid k!704)) )) (let (($x10287 (and $x10278 $x10286))) -(let (($x10271 (forall ((?v0 B_S_ptr$) )(!(let (($x10260 (b_S_thread_n_local$ v_b_S_s$ ?v0))) +(let (($x10271 (forall ((?v0 B_S_ptr$) )(! (let (($x10260 (b_S_thread_n_local$ v_b_S_s$ ?v0))) (let ((?x10256 (b_S_statusmap$ v_b_S_s$))) (let ((?x10257 (b_S_select_o_sm$ ?x10256 ?v0))) (let (($x10269 (and (= ?x10257 ?x10257) $x10260))) -(=> $x10260 $x10269))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ))) +(=> $x10260 $x10269))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ) :qid k!704)) )) (let (($x10288 (and $x10271 $x10287))) -(let (($x10267 (forall ((?v0 B_S_ptr$) )(!(let (($x10260 (b_S_thread_n_local$ v_b_S_s$ ?v0))) +(let (($x10267 (forall ((?v0 B_S_ptr$) )(! (let (($x10260 (b_S_thread_n_local$ v_b_S_s$ ?v0))) (let ((?x10261 (b_S_memory$ v_b_S_s$))) (let ((?x10262 (b_S_select_o_mem$ ?x10261 ?v0))) (let (($x10264 (and (= ?x10262 ?x10262) $x10260))) -(=> $x10260 $x10264))))) :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) ))) +(=> $x10260 $x10264))))) :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) ) :qid k!704)) )) (let (($x10289 (and $x10267 $x10288))) -(let (($x10259 (forall ((?v0 B_S_ptr$) )(!(let (($x10253 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_owner$ v_b_S_s$ ?v0))) b_S_kind_n_thread$))) -(=> (not $x10253) (not $x10253))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ))) +(let (($x10259 (forall ((?v0 B_S_ptr$) )(! (let (($x10253 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_owner$ v_b_S_s$ ?v0))) b_S_kind_n_thread$))) +(=> (not $x10253) (not $x10253))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ) :qid k!704)) )) (let (($x10290 (and $x10259 $x10289))) (let (($x10311 (and true (and $x10182 (and $x10290 (and $x10286 $x10307)))))) @@ -768,13 +604,13 @@ (let (($x10249 (=> $x10214 $x10248))) (let (($x10420 (and $x10249 $x10419))) (let (($x10194 (and (and (< v_b_SL_H_witness_G_0$ v_b_P_H_len$) $x10192) $x10182))) -(let (($x10188 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10188 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10186 (<= ?x10163 v_b_L_H_max_G_1$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10185 (and $x3098 (< ?v0 v_b_L_H_p_G_0$)))) -(=> $x10185 $x10186)))))))) +(=> $x10185 $x10186))))))) :qid k!704)) )) (let (($x10183 (<= v_b_L_H_p_G_0$ v_b_P_H_len$))) (let (($x10180 (and (<= 0 v_b_L_H_p_G_0$) (<= v_b_L_H_p_G_0$ b_S_max_o_u4$)))) @@ -785,13 +621,13 @@ (let (($x10074 (< 0 v_b_P_H_len$))) (let (($x10168 (and $x10074 $x10167))) (let (($x10421 (=> (and $x10168 $x10201) $x10420))) -(let (($x10166 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10166 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10164 (<= ?x10163 v_b_L_H_max_G_0$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10161 (and $x3098 (< ?v0 1)))) -(=> $x10161 $x10164)))))))) +(=> $x10161 $x10164))))))) :qid k!704)) )) (let (($x10423 (=> $x10166 (and $x10168 $x10421)))) (let (($x10159 (<= 1 v_b_P_H_len$))) @@ -803,12 +639,12 @@ (let (($x10429 (=> $x10140 (and $x10142 $x10427)))) (let (($x10431 (=> $x10136 (and $x10140 $x10429)))) (let (($x10119 (and (<= 0 v_b_P_H_len$) (<= v_b_P_H_len$ b_S_max_o_u4$)))) -(let (($x10116 (forall ((?v0 B_S_ptr$) )(!(let (($x10113 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0))) -(= $x10113 false)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) ))) +(let (($x10116 (forall ((?v0 B_S_ptr$) )(! (let (($x10113 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0))) +(= $x10113 false)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) ) :qid k!704)) )) (let (($x10108 (and $x10106 $x10107))) -(let (($x10104 (forall ((?v0 B_S_pure_n_function$) )(!(let ((?x10100 (b_S_frame_n_level$ ?v0))) -(< ?x10100 b_S_current_n_frame_n_level$)) :pattern ( (b_S_frame_n_level$ ?v0) ))) +(let (($x10104 (forall ((?v0 B_S_pure_n_function$) )(! (let ((?x10100 (b_S_frame_n_level$ ?v0))) +(< ?x10100 b_S_current_n_frame_n_level$)) :pattern ( (b_S_frame_n_level$ ?v0) ) :qid k!704)) )) (let (($x10098 (and $x10096 $x10097))) (let (($x10125 (and $x10098 (and $x10104 (and $x10108 (and $x10109 (and $x10112 (and $x10116 $x10119)))))))) @@ -822,14 +658,14 @@ (let (($x10134 (and true $x10133))) (let (($x10433 (=> $x10134 (and $x10136 $x10431)))) (let (($x10434 (not $x10433))) -(let (($x10649 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10649 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10235 (<= ?x10163 v_b_S_result_G_0$))) (let (($x10233 (< ?v0 v_b_P_H_len$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10234 (and $x3098 $x10233))) -(or (not $x10234) $x10235))))))))) +(or (not $x10234) $x10235)))))))) :qid k!704)) )) (let (($x10665 (or (not $x10649) $x10242))) (let (($x10670 (and $x10649 $x10665))) @@ -841,13 +677,13 @@ (let (($x10677 (or (not $x10642) $x10670))) (let (($x10682 (and b_S_position_n_marker$ $x10677))) (let (($x11134 (or (not (and $x10182 (and $x10410 $x10182))) $x10682))) -(let (($x10931 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10931 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10368 (<= ?x10163 v_b_L_H_max_G_3$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10367 (and $x3098 (< ?v0 v_b_L_H_p_G_1$)))) -(or (not $x10367) $x10368)))))))) +(or (not $x10367) $x10368))))))) :qid k!704)) )) (let (($x10954 (or (not $x10931) $x10375))) (let (($x10959 (and $x10931 $x10954))) @@ -903,13 +739,13 @@ (let (($x10823 (and $x10182 $x10813))) (let (($x10833 (and $x10182 $x10823))) (let (($x11146 (or (not $x10833) $x11139))) -(let (($x10529 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10529 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10186 (<= ?x10163 v_b_L_H_max_G_1$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10185 (and $x3098 (< ?v0 v_b_L_H_p_G_0$)))) -(or (not $x10185) $x10186)))))))) +(or (not $x10185) $x10186))))))) :qid k!704)) )) (let (($x10532 (and $x10529 $x10194))) (let (($x10535 (and $x10183 $x10532))) @@ -920,13 +756,13 @@ (let (($x10557 (and $x10168 $x10547))) (let (($x11162 (or (not $x10557) $x11146))) (let (($x11167 (and $x10168 $x11162))) -(let (($x10522 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x10522 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10164 (<= ?x10163 v_b_L_H_max_G_0$))) (let (($x3097 (<= ?v0 b_S_max_o_u4$))) (let (($x2766 (<= 0 ?v0))) (let (($x3098 (and $x2766 $x3097))) (let (($x10161 (and $x3098 (< ?v0 1)))) -(or (not $x10161) $x10164)))))))) +(or (not $x10161) $x10164))))))) :qid k!704)) )) (let (($x11174 (or (not $x10522) $x11167))) (let (($x11179 (and $x10522 $x11174))) @@ -1069,7 +905,7 @@ (let (($x11450 (= $x10801 (and $x10291 (and $x10292 (and $x10293 (and $x10294 (and $x10297 $x11434)))))))) (let ((@x11442 (monotonicity (monotonicity @x11436 (= $x10789 (and $x10297 $x11434))) (= $x10792 (and $x10294 (and $x10297 $x11434)))))) (let ((@x11448 (monotonicity (monotonicity @x11442 (= $x10795 (and $x10293 (and $x10294 (and $x10297 $x11434))))) (= $x10798 (and $x10292 (and $x10293 (and $x10294 (and $x10297 $x11434)))))))) -(let (($x11419 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) ))) +(let (($x11419 (forall ((?v0 B_S_ptr$) )(! true :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) ) :qid k!704)) )) (let (($x11417 (= (<= (b_S_timestamp$ v_b_S_s$ ?0) (b_S_timestamp$ v_b_S_s$ ?0)) true))) (let ((@x11425 (trans (quant-intro (rewrite $x11417) (= $x10283 $x11419)) (elim-unused (= $x11419 true)) (= $x10283 true)))) @@ -1228,7 +1064,7 @@ (let ((@x10800 (monotonicity @x10797 (= (and $x10292 (and $x10293 (and $x10294 (and $x10297 $x10301)))) $x10798)))) (let ((@x10809 (monotonicity (monotonicity (monotonicity @x10800 $x10802) (= $x10307 $x10804)) (= (and $x10286 $x10307) $x10807)))) (let ((@x10759 (rewrite (= (and true $x10286) $x10286)))) -(let (($x10748 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) ))) +(let (($x10748 (forall ((?v0 B_S_ptr$) )(! true :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) ) :qid k!704)) )) (let (($x10260 (b_S_thread_n_local$ v_b_S_s$ ?0))) (let (($x10275 (and (= (b_S_select_o_tm$ ?x10272 ?0) (b_S_select_o_tm$ ?x10272 ?0)) $x10260))) @@ -1240,7 +1076,7 @@ (let ((@x10747 (trans (monotonicity @x10743 (= $x10276 (=> $x10260 $x10260))) @x10714 (= $x10276 true)))) (let ((@x10754 (trans (quant-intro @x10747 (= $x10278 $x10748)) (elim-unused (= $x10748 true)) (= $x10278 true)))) (let ((@x10761 (trans (monotonicity @x10754 (= $x10287 (and true $x10286))) @x10759 (= $x10287 $x10286)))) -(let (($x10694 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ))) +(let (($x10694 (forall ((?v0 B_S_ptr$) )(! true :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ) :qid k!704)) )) (let ((?x10256 (b_S_statusmap$ v_b_S_s$))) (let ((?x10257 (b_S_select_o_sm$ ?x10256 ?0))) @@ -1250,7 +1086,7 @@ (let ((@x10731 (monotonicity (trans @x10727 @x10707 (= $x10269 $x10260)) (= $x10270 (=> $x10260 $x10260))))) (let ((@x10737 (trans (quant-intro (trans @x10731 @x10714 (= $x10270 true)) (= $x10271 $x10694)) (elim-unused (= $x10694 true)) (= $x10271 true)))) (let ((@x10765 (trans (monotonicity @x10737 @x10761 (= $x10288 (and true $x10286))) @x10759 (= $x10288 $x10286)))) -(let (($x10717 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) ))) +(let (($x10717 (forall ((?v0 B_S_ptr$) )(! true :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) ) :qid k!704)) )) (let ((?x10261 (b_S_memory$ v_b_S_s$))) (let ((?x10262 (b_S_select_o_mem$ ?x10261 ?0))) @@ -1275,8 +1111,7 @@ (let (($x10210 (and true (and $x10182 (and $x10205 $x10207))))) (let ((@x10576 (monotonicity (monotonicity @x10570 (= (and $x10205 $x10207) (and $x10205 $x10182))) (= (and $x10182 (and $x10205 $x10207)) $x10574)))) (let ((@x10583 (trans (monotonicity @x10576 (= $x10210 (and true $x10574))) (rewrite (= (and true $x10574) $x10574)) (= $x10210 $x10574)))) -(let ((@x10561 (rewrite (= $x10203 false)))) -(let ((@x10589 (monotonicity @x10561 (monotonicity @x10583 $x10585) (= $x10212 (and false (and $x10182 $x10574)))))) +(let ((@x10589 (monotonicity (rewrite (= $x10203 false)) (monotonicity @x10583 $x10585) (= $x10212 (and false (and $x10182 $x10574)))))) (let ((@x10596 (monotonicity (trans @x10589 @x10591 (= $x10212 false)) (= $x10213 (and $x10182 false))))) (let ((@x10600 (trans @x10596 (rewrite (= (and $x10182 false) false)) (= $x10213 false)))) (let ((@x10607 (trans (monotonicity @x10600 (= $x10214 (and true false))) (rewrite (= (and true false) false)) (= $x10214 false)))) @@ -1320,13 +1155,22 @@ (let ((@x12031 (trans @x11241 (monotonicity @x12026 (= (not $x11234) $x12027)) (= $x10434 $x12027)))) (let ((@x12033 (not-or-elim (mp (asserted $x10434) @x12031 $x12027) $x11342))) (let ((@x12044 (and-elim @x12033 $x10084))) +(let (($x9607 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(! (or (not (b_S_is$ ?v0 ?v1)) (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0)))) :pattern ( (b_S_is$ ?v0 ?v1) ) :qid k!622)) +)) +(let (($x9604 (or (not (b_S_is$ ?1 ?0)) (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1)))))) +(let (($x9601 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(! (let (($x9596 (b_S_is$ ?v0 ?v1))) +(=> $x9596 (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0))))) :pattern ( (b_S_is$ ?v0 ?v1) ) :qid k!622)) +)) +(let (($x9605 (= (=> (b_S_is$ ?1 ?0) (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1)))) $x9604))) +(let ((@x15336 (mp~ (mp (asserted $x9601) (quant-intro (rewrite $x9605) (= $x9601 $x9607)) $x9607) (nnf-pos (refl (~ $x9604 $x9604)) (~ $x9607 $x9607)) $x9607))) (let (($x21982 (not $x10084))) +(let (($x21994 (not $x9607))) (let (($x21995 (or $x21994 $x21982 $x21990))) (let ((@x22000 (mp ((_ quant-inst (b_S_ptr$ ?x10076 ?x10079) (b_S_array$ b_T_T_u1$ v_b_P_H_len$)) (or $x21994 (or $x21982 $x21990))) (rewrite (= (or $x21994 (or $x21982 $x21990)) $x21995)) $x21995))) -(let ((@x24520 (symm (unit-resolution @x22000 @x15336 @x12044 $x21990) (= ?x21983 ?x10080)))) -(let ((@x22795 (monotonicity (trans @x24520 (symm @x24530 (= ?x10080 ?x22595)) (= ?x21983 ?x22595)) (= (b_S_set_n_in$ ?x21983 ?x22343) $x22596)))) +(let ((@x23670 (symm (unit-resolution @x22000 @x15336 @x12044 $x21990) (= ?x21983 ?x10080)))) +(let ((@x23502 (monotonicity (trans @x23670 (symm @x23680 (= ?x10080 ?x22595)) (= ?x21983 ?x22595)) (= (b_S_set_n_in$ ?x21983 ?x22343) $x22596)))) (let (($x22344 (b_S_set_n_in$ ?x21983 ?x22343))) -(let (($x22362 (forall ((?v3 B_S_ptr$) )(!(let ((?x10078 (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))) +(let (($x22362 (forall ((?v3 B_S_ptr$) )(! (let ((?x10078 (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))) (let ((?x10079 (b_S_ref$ ?x10078))) (let ((?x10076 (b_S_array$ b_T_T_u1$ v_b_P_H_len$))) (let ((?x10080 (b_S_ptr$ ?x10076 ?x10079))) @@ -1336,7 +1180,7 @@ (let ((?x22358 (b_S_ver_n_domain$ ?x22357))) (let ((?x22234 (b_S_typ$ ?x21983))) (let (($x22353 (b_S_has_n_volatile_n_owns_n_set$ ?x22234))) -(or $x22353 (not (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ ?x21983))) (b_S_set_n_in2$ ?v3 ?x22358)))))))))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))))))) ))) +(or $x22353 (not (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ ?x21983))) (b_S_set_n_in2$ ?v3 ?x22358)))))))))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))))))) ) :qid k!564)) )) (let (($x22363 (not $x22362))) (let (($x22248 (b_S_closed$ v_b_S_s$ ?x21983))) @@ -1347,64 +1191,75 @@ (let (($x22318 (b_S_in_n_domain$ v_b_S_s$ ?x21983 ?x21983))) (let (($x22317 (b_S_in_n_domain_n_lab$ v_b_S_s$ ?x21983 ?x21983 b_l_H_public$))) (let (($x22326 (= $x22317 $x22318))) -(let (($x8728 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(!(let (($x8719 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) +(let (($x8728 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(! (let (($x8719 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) (let (($x8718 (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3))) -(= $x8718 $x8719))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) ))) +(= $x8718 $x8719))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) ) :qid k!567)) )) (let (($x8719 (b_S_in_n_domain$ ?3 ?2 ?1))) (let (($x8718 (b_S_in_n_domain_n_lab$ ?3 ?2 ?1 ?0))) (let (($x8725 (= $x8718 $x8719))) -(let (($x8723 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(!(let (($x8719 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) +(let (($x8723 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(! (let (($x8719 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) (let (($x8718 (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3))) -(= $x8718 $x8719))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) ))) +(= $x8718 $x8719))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) ) :qid k!567)) )) (let ((@x8733 (mp (asserted $x8723) (quant-intro (rewrite (= (= $x8718 $x8719) $x8725)) (= $x8723 $x8728)) $x8728))) (let ((@x15021 (mp~ @x8733 (nnf-pos (refl (~ $x8725 $x8725)) (~ $x8728 $x8728)) $x8728))) -(let (($x22612 (or (not $x8728) $x22326))) -(let ((@x22613 ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x10076 ?x21014) (b_S_ptr$ ?x10076 ?x21014) b_l_H_public$) $x22612))) +(let (($x22699 (or (not $x8728) $x22326))) +(let ((@x23229 ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x10076 ?x21014) (b_S_ptr$ ?x10076 ?x21014) b_l_H_public$) $x22699))) +(let ((@x22990 (unit-resolution @x23229 @x15021 $x22326))) +(let ((@x23563 (symm (monotonicity @x23670 @x23670 (= $x22317 $x10136)) (= $x10136 $x22317)))) (let (($x35 (= b_S_kind_n_primitive$ b_S_kind_n_array$))) (let (($x36 (not $x35))) -(let (($x22488 (= $x36 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x21983)) b_S_kind_n_primitive$))))) +(let (($x22421 (= $x36 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x21983)) b_S_kind_n_primitive$))))) (let ((?x22234 (b_S_typ$ ?x21983))) (let ((?x22387 (b_S_kind_n_of$ ?x22234))) (let (($x22388 (= ?x22387 b_S_kind_n_primitive$))) (let (($x22148 (= ?x10086 b_S_kind_n_array$))) (let (($x21115 (b_S_is_n_arraytype$ ?x10076))) (let (($x22149 (= $x21115 $x22148))) -(let (($x9869 (forall ((?v0 B_S_ctype$) )(!(let ((?x9849 (b_S_kind_n_of$ ?v0))) +(let (($x9869 (forall ((?v0 B_S_ctype$) )(! (let ((?x9849 (b_S_kind_n_of$ ?v0))) (let (($x9861 (= ?x9849 b_S_kind_n_array$))) (let (($x7848 (b_S_is_n_arraytype$ ?v0))) -(= $x7848 $x9861)))) :pattern ( (b_S_is_n_arraytype$ ?v0) ))) +(= $x7848 $x9861)))) :pattern ( (b_S_is_n_arraytype$ ?v0) ) :qid k!662)) )) +(let ((?x9849 (b_S_kind_n_of$ ?0))) (let (($x9861 (= ?x9849 b_S_kind_n_array$))) (let (($x7848 (b_S_is_n_arraytype$ ?0))) (let (($x9866 (= $x7848 $x9861))) -(let (($x9864 (forall ((?v0 B_S_ctype$) )(!(let ((?x9849 (b_S_kind_n_of$ ?v0))) +(let (($x9864 (forall ((?v0 B_S_ctype$) )(! (let ((?x9849 (b_S_kind_n_of$ ?v0))) (let (($x9861 (= ?x9849 b_S_kind_n_array$))) (let (($x7848 (b_S_is_n_arraytype$ ?v0))) -(= $x7848 $x9861)))) :pattern ( (b_S_is_n_arraytype$ ?v0) ))) +(= $x7848 $x9861)))) :pattern ( (b_S_is_n_arraytype$ ?v0) ) :qid k!662)) )) (let ((@x9874 (mp (asserted $x9864) (quant-intro (rewrite (= (= $x7848 $x9861) $x9866)) (= $x9864 $x9869)) $x9869))) (let ((@x15446 (mp~ @x9874 (nnf-pos (refl (~ $x9866 $x9866)) (~ $x9869 $x9869)) $x9869))) (let (($x22159 (or (not $x9869) $x22149))) (let ((@x22160 ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$)) $x22159))) -(let (($x7229 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(let ((?x6561 (b_S_array$ ?v0 ?v1))) -(b_S_is_n_arraytype$ ?x6561)) :pattern ( (b_S_array$ ?v0 ?v1) ))) +(let (($x7229 (forall ((?v0 B_S_ctype$) (?v1 Int) )(! (let ((?x6561 (b_S_array$ ?v0 ?v1))) +(b_S_is_n_arraytype$ ?x6561)) :pattern ( (b_S_array$ ?v0 ?v1) ) :qid k!502)) )) (let ((?x6561 (b_S_array$ ?1 ?0))) (let (($x7228 (b_S_is_n_arraytype$ ?x6561))) (let ((@x14576 (mp~ (asserted $x7229) (nnf-pos (refl (~ $x7228 $x7228)) (~ $x7229 $x7229)) $x7229))) (let (($x21122 (or (not $x7229) $x21115))) (let ((@x21123 ((_ quant-inst b_T_T_u1$ v_b_P_H_len$) $x21122))) -(let ((@x22406 (unit-resolution (def-axiom (or (not $x22149) (not $x21115) $x22148)) (unit-resolution @x21123 @x14576 $x21115) (or (not $x22149) $x22148)))) +(let ((@x22382 (unit-resolution (def-axiom (or (not $x22149) (not $x21115) $x22148)) (unit-resolution @x21123 @x14576 $x21115) (or (not $x22149) $x22148)))) (let ((?x21180 (b_S_typ$ ?x10080))) (let (($x21183 (= ?x21180 ?x10076))) +(let (($x19841 (forall ((?v0 B_S_ctype$) (?v1 Int) )(! (= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0) :pattern ( (b_S_ptr$ ?v0 ?v1) ) :qid k!628)) +)) +(let (($x9659 (forall ((?v0 B_S_ctype$) (?v1 Int) )(! (= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0) :qid k!628)) +)) +(let (($x9658 (= (b_S_typ$ (b_S_ptr$ ?1 ?0)) ?1))) +(let ((@x15361 (mp~ (asserted $x9659) (nnf-pos (refl (~ $x9658 $x9658)) (~ $x9659 $x9659)) $x9659))) +(let ((@x19846 (mp @x15361 (quant-intro (refl (= $x9658 $x9658)) (= $x9659 $x19841)) $x19841))) +(let (($x21147 (not $x19841))) (let (($x21188 (or $x21147 $x21183))) (let ((@x21189 ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ ?x10078)) $x21188))) -(let ((@x22414 (trans (monotonicity @x24520 (= ?x22234 ?x21180)) (unit-resolution @x21189 @x19846 $x21183) (= ?x22234 ?x10076)))) -(let ((@x22418 (trans (monotonicity @x22414 (= ?x22387 ?x10086)) (unit-resolution @x22406 (unit-resolution @x22160 @x15446 $x22149) $x22148) (= ?x22387 b_S_kind_n_array$)))) -(let ((@x22857 (monotonicity @x22418 (= $x22388 (= b_S_kind_n_array$ b_S_kind_n_primitive$))))) -(let ((@x22500 (trans @x22857 (commutativity (= (= b_S_kind_n_array$ b_S_kind_n_primitive$) $x35)) (= $x22388 $x35)))) +(let ((@x22406 (trans (monotonicity @x23670 (= ?x22234 ?x21180)) (unit-resolution @x21189 @x19846 $x21183) (= ?x22234 ?x10076)))) +(let ((@x22335 (trans (monotonicity @x22406 (= ?x22387 ?x10086)) (unit-resolution @x22382 (unit-resolution @x22160 @x15446 $x22149) $x22148) (= ?x22387 b_S_kind_n_array$)))) +(let ((@x22369 (monotonicity @x22335 (= $x22388 (= b_S_kind_n_array$ b_S_kind_n_primitive$))))) +(let ((@x22393 (trans @x22369 (commutativity (= (= b_S_kind_n_array$ b_S_kind_n_primitive$) $x35)) (= $x22388 $x35)))) (let (($x41 (= b_S_kind_n_thread$ b_S_kind_n_array$))) (let (($x42 (not $x41))) (let (($x39 (= b_S_kind_n_composite$ b_S_kind_n_array$))) @@ -1428,23 +1283,22 @@ (let ((@x75 (and-elim @x72 $x36))) (let (($x22333 (not $x22318))) (let (($x22336 (not $x22317))) -(let ((@x22935 (monotonicity (symm (monotonicity @x24520 @x24520 (= $x22317 $x10136)) (= $x10136 $x22317)) (= $x11221 $x22336)))) -(let ((@x22938 (unit-resolution (def-axiom (or (not $x22326) $x22317 $x22333)) (mp (hypothesis $x11221) @x22935 $x22336) (unit-resolution @x22613 @x15021 $x22326) $x22333))) +(let ((@x22397 (unit-resolution (def-axiom (or (not $x22326) $x22317 $x22333)) (mp (hypothesis $x11221) (monotonicity @x23563 (= $x11221 $x22336)) $x22336) @x22990 $x22333))) (let (($x22368 (b_S_is$ ?x21983 ?x22234))) -(let ((@x22885 (mp @x12044 (symm (monotonicity @x24520 @x22414 (= $x22368 $x10084)) (= $x10084 $x22368)) $x22368))) +(let ((@x23420 (mp @x12044 (symm (monotonicity @x23670 @x22406 (= $x22368 $x10084)) (= $x10084 $x22368)) $x22368))) (let (($x22385 (b_S_typed$ v_b_S_s$ ?x21983))) (let ((@x12045 (and-elim @x12033 $x10085))) -(let ((@x22517 (mp @x12045 (symm (monotonicity @x24520 (= $x22385 $x10085)) (= $x10085 $x22385)) $x22385))) +(let ((@x22419 (mp @x12045 (symm (monotonicity @x23670 (= $x22385 $x10085)) (= $x10085 $x22385)) $x22385))) (let ((?x22243 (b_S_owner$ v_b_S_s$ ?x21983))) (let (($x22259 (= ?x22243 b_S_me$))) (let ((@x12043 (and-elim @x12033 $x10083))) (let ((@x12042 (and-elim @x12033 $x10081))) -(let ((@x22429 (mp @x12042 (symm (monotonicity @x24520 (= $x22248 $x10081)) (= $x10081 $x22248)) $x22248))) +(let ((@x22437 (mp @x12042 (symm (monotonicity @x23670 (= $x22248 $x10081)) (= $x10081 $x22248)) $x22248))) (let (($x22235 (b_S_is_n_non_n_primitive$ ?x22234))) (let ((@x12047 (and-elim @x12033 $x10089))) -(let ((@x22409 (mp @x12047 (symm (monotonicity @x22414 (= $x22235 $x10089)) (= $x10089 $x22235)) $x22235))) +(let ((@x22500 (mp @x12047 (symm (monotonicity @x22406 (= $x22235 $x10089)) (= $x10089 $x22235)) $x22235))) (let ((@x12050 (and-elim @x12033 $x10097))) -(let (($x18905 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) +(let (($x18905 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) (let ((?x2247 (b_S_typ$ ?v1))) (let (($x2351 (b_S_is_n_non_n_primitive$ ?x2247))) (let (($x9239 (not $x2351))) @@ -1460,9 +1314,9 @@ (let (($x9185 (not $x2471))) (let (($x2687 (b_S_full_n_stop$ ?v0))) (let (($x16426 (not $x2687))) -(or $x16426 $x9185 $x16298 $x16299 $x9531 $x2249 $x9239 $x8613))))))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ))) +(or $x16426 $x9185 $x16298 $x16299 $x9531 $x2249 $x9239 $x8613))))))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ) :qid k!563)) )) -(let (($x8634 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) +(let (($x8634 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) (let ((?x2247 (b_S_typ$ ?v1))) (let (($x2351 (b_S_is_n_non_n_primitive$ ?x2247))) (let (($x2249 (= (b_S_kind_n_of$ ?x2247) b_S_kind_n_primitive$))) @@ -1475,7 +1329,7 @@ (let (($x2687 (b_S_full_n_stop$ ?v0))) (let (($x8625 (and $x2687 $x2471 $x2486 $x2487 $x2488 $x2294 $x2351))) (let (($x8628 (not $x8625))) -(or $x8628 $x8613)))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ))) +(or $x8628 $x8613)))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ) :qid k!563)) )) (let (($x8613 (b_S_in_n_domain$ ?1 ?0 ?0))) (let ((?x2247 (b_S_typ$ ?0))) @@ -1502,7 +1356,7 @@ (let (($x18886 (or $x16426 $x9185 $x16298 $x16299 $x9531 $x2249 $x9239))) (let ((@x18892 (monotonicity (rewrite (= $x8625 (not $x18886))) (= $x8628 (not (not $x18886)))))) (let ((@x18899 (monotonicity (trans @x18892 (rewrite (= (not (not $x18886)) $x18886)) (= $x8628 $x18886)) (= $x8631 (or $x18886 $x8613))))) -(let (($x8616 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) +(let (($x8616 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) (let ((?x2247 (b_S_typ$ ?v1))) (let (($x2351 (b_S_is_n_non_n_primitive$ ?x2247))) (let (($x2249 (= (b_S_kind_n_of$ ?x2247) b_S_kind_n_primitive$))) @@ -1514,9 +1368,9 @@ (let (($x2471 (b_S_closed$ ?v0 ?v1))) (let (($x2687 (b_S_full_n_stop$ ?v0))) (let (($x8612 (and $x2687 (and $x2471 (and $x2486 (and $x2487 (and $x2488 (and $x2294 $x2351)))))))) -(=> $x8612 $x8613))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ))) +(=> $x8612 $x8613))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ) :qid k!563)) )) -(let (($x8622 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) +(let (($x8622 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x8613 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) (let ((?x2247 (b_S_typ$ ?v1))) (let (($x2351 (b_S_is_n_non_n_primitive$ ?x2247))) (let (($x2249 (= (b_S_kind_n_of$ ?x2247) b_S_kind_n_primitive$))) @@ -1528,7 +1382,7 @@ (let (($x2471 (b_S_closed$ ?v0 ?v1))) (let (($x2687 (b_S_full_n_stop$ ?v0))) (let (($x8612 (and $x2687 (and $x2471 (and $x2486 (and $x2487 (and $x2488 (and $x2294 $x2351)))))))) -(or (not $x8612) $x8613))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ))) +(or (not $x8612) $x8613))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ) :qid k!563)) )) (let (($x8612 (and $x2687 (and $x2471 (and $x2486 (and $x2487 (and $x2488 (and $x2294 $x2351)))))))) (let (($x8619 (or (not $x8612) $x8613))) @@ -1539,20 +1393,19 @@ (let (($x22242 (not $x22235))) (let (($x22386 (not $x22385))) (let (($x22384 (not $x22368))) -(let (($x24309 (or (not $x18905) $x19677 $x22272 (not $x22259) $x22384 $x22386 $x22388 $x22242 $x22318))) -(let (($x22614 (= (or (not $x18905) (or $x19677 $x22272 (not $x22259) $x22384 $x22386 $x22388 $x22242 $x22318)) $x24309))) -(let ((@x24028 ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x10076 ?x21014)) (or (not $x18905) (or $x19677 $x22272 (not $x22259) $x22384 $x22386 $x22388 $x22242 $x22318))))) -(let ((@x24070 (mp @x24028 (rewrite $x22614) $x24309))) -(let ((@x22410 (unit-resolution @x24070 @x18908 @x12050 @x22409 @x22429 (trans (monotonicity @x24520 (= ?x22243 ?x10082)) @x12043 $x22259) (or $x22384 $x22386 $x22388 $x22318)))) -(let ((@x22411 (unit-resolution @x22410 @x22517 @x22885 @x22938 (mp @x75 (monotonicity (symm @x22500 (= $x35 $x22388)) $x22488) (not $x22388)) false))) -(let ((@x22434 (lemma @x22411 $x10136))) -(let ((@x22687 (mp @x22434 (symm (monotonicity @x24520 @x24520 (= $x22317 $x10136)) (= $x10136 $x22317)) $x22317))) -(let ((@x22688 (unit-resolution (def-axiom (or (not $x22326) $x22336 $x22318)) @x22687 (unit-resolution @x22613 @x15021 $x22326) $x22318))) +(let (($x23422 (or (not $x18905) $x19677 $x22272 (not $x22259) $x22384 $x22386 $x22388 $x22242 $x22318))) +(let (($x23058 (= (or (not $x18905) (or $x19677 $x22272 (not $x22259) $x22384 $x22386 $x22388 $x22242 $x22318)) $x23422))) +(let ((@x23077 ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x10076 ?x21014)) (or (not $x18905) (or $x19677 $x22272 (not $x22259) $x22384 $x22386 $x22388 $x22242 $x22318))))) +(let ((@x22720 (mp @x23077 (rewrite $x23058) $x23422))) +(let ((@x22519 (unit-resolution @x22720 @x18908 @x12050 @x22500 @x22437 (trans (monotonicity @x23670 (= ?x22243 ?x10082)) @x12043 $x22259) (or $x22384 $x22386 $x22388 $x22318)))) +(let ((@x22507 (unit-resolution @x22519 @x22419 @x23420 @x22397 (mp @x75 (monotonicity (symm @x22393 (= $x35 $x22388)) $x22421) (not $x22388)) false))) +(let ((@x22508 (lemma @x22507 $x10136))) +(let ((@x23561 (def-axiom (or (not $x22326) $x22336 $x22318)))) (let (($x22366 (or $x22333 $x22365))) -(let (($x18945 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x18929 (forall ((?v3 B_S_ptr$) )(!(let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) +(let (($x18945 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(! (let (($x18929 (forall ((?v3 B_S_ptr$) )(! (let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) (let ((?x6628 (b_S_typ$ ?v1))) (let (($x8640 (b_S_has_n_volatile_n_owns_n_set$ ?x6628))) -(or $x8640 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1))) $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ))) +(or $x8640 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1))) $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ) :qid k!564)) )) (let (($x2554 (b_S_closed$ ?v0 ?v1))) (let (($x8955 (not $x2554))) @@ -1561,25 +1414,25 @@ (let (($x18937 (not (or $x18744 $x8955 (not $x18929))))) (let (($x8461 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) (let (($x8672 (not $x8461))) -(or $x8672 $x18937))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ))) +(or $x8672 $x18937))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ) :qid k!564)) )) -(let (($x8687 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x8660 (forall ((?v3 B_S_ptr$) )(!(let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) +(let (($x8687 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(! (let (($x8660 (forall ((?v3 B_S_ptr$) )(! (let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) (let (($x8643 (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)))) (let (($x8644 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?v1))) $x8643))) (let (($x8656 (not $x8644))) -(or $x8656 $x8646))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ))) +(or $x8656 $x8646))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ) :qid k!564)) )) (let (($x2554 (b_S_closed$ ?v0 ?v1))) (let (($x8428 (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2)))) (let (($x8681 (and $x8428 $x2554 $x8660))) (let (($x8461 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) (let (($x8672 (not $x8461))) -(or $x8672 $x8681))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ))) +(or $x8672 $x8681))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ) :qid k!564)) )) -(let (($x18929 (forall ((?v3 B_S_ptr$) )(!(let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) +(let (($x18929 (forall ((?v3 B_S_ptr$) )(! (let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) (let ((?x6628 (b_S_typ$ ?1))) (let (($x8640 (b_S_has_n_volatile_n_owns_n_set$ ?x6628))) -(or $x8640 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1))) $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ))) +(or $x8640 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1))) $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ) :qid k!564)) )) (let (($x2554 (b_S_closed$ ?2 ?1))) (let (($x8955 (not $x2554))) @@ -1588,11 +1441,11 @@ (let (($x18937 (not (or $x18744 $x8955 (not $x18929))))) (let (($x8461 (b_S_in_n_domain$ ?2 ?1 ?0))) (let (($x8672 (not $x8461))) -(let (($x8660 (forall ((?v3 B_S_ptr$) )(!(let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) +(let (($x8660 (forall ((?v3 B_S_ptr$) )(! (let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) (let (($x8643 (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)))) (let (($x8644 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?1))) $x8643))) (let (($x8656 (not $x8644))) -(or $x8656 $x8646))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ))) +(or $x8656 $x8646))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ) :qid k!564)) )) (let (($x8681 (and $x8428 $x2554 $x8660))) (let (($x8684 (or $x8672 $x8681))) @@ -1613,36 +1466,36 @@ (let ((@x18947 (quant-intro (monotonicity @x18941 (= $x8684 (or $x8672 $x18937))) (= $x8687 $x18945)))) (let ((@x15001 (monotonicity (refl (~ $x8428 $x8428)) (refl (~ $x2554 $x2554)) (nnf-pos (refl (~ $x8657 $x8657)) (~ $x8660 $x8660)) (~ $x8681 $x8681)))) (let ((@x15005 (nnf-pos (monotonicity (refl (~ $x8672 $x8672)) @x15001 (~ $x8684 $x8684)) (~ $x8687 $x8687)))) -(let (($x8654 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x8649 (forall ((?v3 B_S_ptr$) )(!(let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) +(let (($x8654 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(! (let (($x8649 (forall ((?v3 B_S_ptr$) )(! (let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) (let (($x8643 (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)))) (let (($x8644 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?v1))) $x8643))) -(=> $x8644 $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ))) +(=> $x8644 $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ) :qid k!564)) )) (let (($x2554 (b_S_closed$ ?v0 ?v1))) (let (($x8428 (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2)))) (let (($x8461 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) -(=> $x8461 (and $x8428 (and $x2554 $x8649))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ))) +(=> $x8461 (and $x8428 (and $x2554 $x8649))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ) :qid k!564)) )) -(let (($x8678 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x8660 (forall ((?v3 B_S_ptr$) )(!(let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) +(let (($x8678 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(! (let (($x8660 (forall ((?v3 B_S_ptr$) )(! (let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) (let (($x8643 (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)))) (let (($x8644 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?v1))) $x8643))) (let (($x8656 (not $x8644))) -(or $x8656 $x8646))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ))) +(or $x8656 $x8646))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ) :qid k!564)) )) (let (($x2554 (b_S_closed$ ?v0 ?v1))) (let (($x8428 (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2)))) (let (($x8666 (and $x8428 (and $x2554 $x8660)))) (let (($x8461 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) (let (($x8672 (not $x8461))) -(or $x8672 $x8666))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ))) +(or $x8672 $x8666))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ) :qid k!564)) )) (let ((@x8686 (monotonicity (rewrite (= (and $x8428 (and $x2554 $x8660)) $x8681)) (= (or $x8672 (and $x8428 (and $x2554 $x8660))) $x8684)))) (let (($x8666 (and $x8428 (and $x2554 $x8660)))) (let (($x8673 (or $x8672 $x8666))) -(let (($x8649 (forall ((?v3 B_S_ptr$) )(!(let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) +(let (($x8649 (forall ((?v3 B_S_ptr$) )(! (let (($x8646 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) (let (($x8643 (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)))) (let (($x8644 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?1))) $x8643))) -(=> $x8644 $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ))) +(=> $x8644 $x8646)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ) :qid k!564)) )) (let (($x8652 (=> $x8461 (and $x8428 (and $x2554 $x8649))))) (let ((@x8665 (monotonicity (quant-intro (rewrite (= (=> $x8644 $x8646) $x8657)) (= $x8649 $x8660)) (= (and $x2554 $x8649) (and $x2554 $x8660))))) @@ -1650,11 +1503,14 @@ (let ((@x8680 (quant-intro (trans @x8671 (rewrite (= (=> $x8461 $x8666) $x8673)) (= $x8652 $x8673)) (= $x8654 $x8678)))) (let ((@x8692 (mp (asserted $x8654) (trans @x8680 (quant-intro @x8686 (= $x8678 $x8687)) (= $x8654 $x8687)) $x8687))) (let ((@x18948 (mp (mp~ @x8692 @x15005 $x8687) @x18947 $x18945))) -(let (($x22607 (or (not $x18945) $x22333 $x22365))) -(let ((@x22329 (mp ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x10076 ?x21014) (b_S_ptr$ ?x10076 ?x21014)) (or (not $x18945) $x22366)) (rewrite (= (or (not $x18945) $x22366) $x22607)) $x22607))) -(let ((@x22691 (unit-resolution (def-axiom (or $x22364 $x22344)) (unit-resolution (unit-resolution @x22329 @x18948 $x22366) @x22688 $x22365) $x22344))) +(let (($x22501 (or (not $x18945) $x22333 $x22365))) +(let ((@x22512 (mp ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x10076 ?x21014) (b_S_ptr$ ?x10076 ?x21014)) (or (not $x18945) $x22366)) (rewrite (= (or (not $x18945) $x22366) $x22501)) $x22501))) +(let ((@x24112 (unit-resolution (unit-resolution @x22512 @x18948 $x22366) (unit-resolution @x23561 (mp @x22508 @x23563 $x22317) @x22990 $x22318) $x22365))) +(let ((@x22487 (def-axiom (or $x22364 $x22344)))) (let ((@x12041 (and-elim @x12033 $x11260))) -(let (($x18667 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let (($x9768 (b_S_is_n_primitive$ b_T_T_u1$))) +(let ((@x9769 (asserted $x9768))) +(let (($x18667 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(! (let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) (let ((?x7097 (b_S_typemap$ ?v0))) (let (($x18655 (or (not (b_S_typed$ ?v0 ?x8245)) (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x7097 ?x8245))))) (let (($x18656 (not $x18655))) @@ -1667,9 +1523,9 @@ (let (($x8855 (not $x2704))) (let (($x8236 (b_S_full_n_stop$ ?v0))) (let (($x18629 (not $x8236))) -(or $x18629 $x8855 $x18630 $x16520 $x5403 $x18656)))))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +(or $x18629 $x8855 $x18630 $x16520 $x5403 $x18656)))))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :qid k!553)) )) -(let (($x8307 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let (($x8307 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(! (let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) (let ((?x7097 (b_S_typemap$ ?v0))) (let (($x8291 (and (b_S_typed$ ?v0 ?x8245) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x7097 ?x8245)))))) (let (($x5403 (>= (+ ?v4 (* (- 1) ?v3)) 0))) @@ -1680,7 +1536,7 @@ (let (($x8236 (b_S_full_n_stop$ ?v0))) (let (($x8270 (and $x8236 $x2704 $x8240 $x3057 $x6757))) (let (($x8275 (not $x8270))) -(or $x8275 $x8291)))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +(or $x8275 $x8291)))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :qid k!553)) )) (let ((?x8245 (b_S_idx$ (b_S_ptr$ ?0 ?4) ?1 ?0))) (let ((?x7097 (b_S_typemap$ ?5))) @@ -1691,6 +1547,7 @@ (let (($x16520 (not $x3057))) (let (($x8240 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?0 ?2) ?4) (b_S_domain$ ?5 ?3)))) (let (($x18630 (not $x8240))) +(let (($x2704 (b_S_is_n_primitive$ ?0))) (let (($x8855 (not $x2704))) (let (($x8236 (b_S_full_n_stop$ ?5))) (let (($x18629 (not $x8236))) @@ -1704,7 +1561,7 @@ (let ((@x18637 (monotonicity (rewrite (= $x8270 (not $x18631))) (= $x8275 (not (not $x18631)))))) (let ((@x18661 (monotonicity (trans @x18637 (rewrite (= (not (not $x18631)) $x18631)) (= $x8275 $x18631)) (rewrite (= $x8291 $x18656)) (= $x8304 (or $x18631 $x18656))))) (let ((@x18669 (quant-intro (trans @x18661 (rewrite (= (or $x18631 $x18656) $x18662)) (= $x8304 $x18662)) (= $x8307 $x18667)))) -(let (($x8296 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let (($x8296 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(! (let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) (let ((?x7097 (b_S_typemap$ ?v0))) (let (($x8291 (and (b_S_typed$ ?v0 ?x8245) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x7097 ?x8245)))))) (let (($x3027 (<= 0 ?v4))) @@ -1713,9 +1570,9 @@ (let (($x2704 (b_S_is_n_primitive$ ?v5))) (let (($x8236 (b_S_full_n_stop$ ?v0))) (let (($x8243 (and $x8236 (and $x2704 (and $x8240 $x6740))))) -(=> $x8243 $x8291)))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +(=> $x8243 $x8291)))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :qid k!553)) )) -(let (($x8301 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let (($x8301 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(! (let ((?x8245 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) (let ((?x7097 (b_S_typemap$ ?v0))) (let (($x8291 (and (b_S_typed$ ?v0 ?x8245) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x7097 ?x8245)))))) (let (($x3027 (<= 0 ?v4))) @@ -1725,7 +1582,7 @@ (let (($x8236 (b_S_full_n_stop$ ?v0))) (let (($x8243 (and $x8236 (and $x2704 (and $x8240 $x6740))))) (let (($x8254 (not $x8243))) -(or $x8254 $x8291))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +(or $x8254 $x8291))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :qid k!553)) )) (let (($x8243 (and $x8236 (and $x2704 (and $x8240 (and (<= 0 ?1) (< ?1 ?2))))))) (let (($x8254 (not $x8243))) @@ -1743,362 +1600,37 @@ (let (($x22597 (not $x22596))) (let (($x21489 (not $x9768))) (let (($x22629 (not $x18667))) -(let (($x22733 (or $x22629 $x19677 $x21489 $x22597 $x11259 $x22604))) -(let (($x22601 (>= (+ 0 (* (- 1) v_b_P_H_len$)) 0))) -(let (($x22599 (not (>= 0 0)))) +(let (($x22732 (or $x22629 $x19677 $x21489 $x22597 $x11259 $x22604))) +(let ((?x11246 (* (- 1) v_b_P_H_len$))) +(let ((?x22600 (+ 0 ?x11246))) +(let (($x22601 (>= ?x22600 0))) +(let (($x22598 (>= 0 0))) +(let (($x22599 (not $x22598))) (let (($x22605 (or $x19677 $x21489 $x22597 $x22599 $x22601 $x22604))) -(let (($x22734 (or $x22629 $x22605))) -(let (($x22728 (or $x19677 $x21489 $x22597 $x11259 $x22604))) -(let ((@x22717 (rewrite (= (+ 0 (* (- 1) v_b_P_H_len$)) (* (- 1) v_b_P_H_len$))))) -(let ((@x22724 (trans (monotonicity @x22717 (= $x22601 (>= (* (- 1) v_b_P_H_len$) 0))) (rewrite (= (>= (* (- 1) v_b_P_H_len$) 0) $x11259)) (= $x22601 $x11259)))) -(let ((@x22715 (trans (monotonicity (rewrite (= (>= 0 0) true)) (= $x22599 $x10203)) @x10561 (= $x22599 false)))) -(let ((@x22727 (monotonicity @x22715 @x22724 (= $x22605 (or $x19677 $x21489 $x22597 false $x11259 $x22604))))) -(let ((@x22732 (trans @x22727 (rewrite (= (or $x19677 $x21489 $x22597 false $x11259 $x22604) $x22728)) (= $x22605 $x22728)))) -(let ((@x22742 (trans (monotonicity @x22732 (= $x22734 (or $x22629 $x22728))) (rewrite (= (or $x22629 $x22728) $x22733)) (= $x22734 $x22733)))) -(let ((@x22743 (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x10076 ?x21014) v_b_P_H_len$ 0 b_T_T_u1$) $x22734) @x22742 $x22733))) -(let ((@x22761 (unit-resolution @x22743 @x18670 @x9769 @x12041 @x12050 (mp @x22691 @x22795 $x22596) (hypothesis $x22603) false))) -(let ((@x22760 (lemma @x22761 $x22604))) -(let ((@x23294 (mp (unit-resolution (def-axiom (or $x22603 $x22641)) @x22760 $x22641) (monotonicity @x23082 (= $x22641 $x22897)) $x22897))) -(let (($x22894 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x22903))) -(let ((?x22893 (b_S_owner$ v_b_S_s$ ?x22903))) -(let (($x22888 (= ?x22893 b_S_me$))) -(let (($x22895 (or $x22888 $x22894))) -(let (($x22896 (not $x22895))) -(let ((?x22890 (b_S_typ$ ?x22903))) -(let ((?x22891 (b_S_kind_n_of$ ?x22890))) -(let (($x22892 (= ?x22891 b_S_kind_n_primitive$))) -(let (($x22889 (not $x22906))) -(let (($x22817 (not $x22807))) -(let (($x22900 (or $x22817 $x22889 $x22892 $x22896))) -(let (($x22952 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x10078))) -(let (($x22953 (= (b_S_owner$ v_b_S_s$ ?x10078) b_S_me$))) -(let (($x22954 (or $x22953 $x22952))) -(let (($x22941 (not $x22954))) -(let (($x22942 (or $x22807 $x22941))) -(let (($x22920 (not $x22942))) -(let (($x22901 (not $x22900))) -(let (($x22921 (or $x22901 $x22920))) -(let (($x22923 (not $x22921))) -(let (($x22799 (b_S_typed$ v_b_S_s$ ?x10078))) -(let (($x22802 (not $x22799))) -(let (($x22939 (or $x22802 $x22923))) -(let (($x22943 (not $x22939))) -(let (($x22801 (b_S_thread_n_local$ v_b_S_s$ ?x10078))) -(let (($x22944 (= $x22801 $x22943))) -(let (($x19072 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) -(let ((?x2484 (b_S_owner$ ?v0 ?v1))) -(let (($x2486 (= ?x2484 b_S_me$))) -(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) -(let ((?x2769 (b_S_typemap$ ?v0))) -(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) -(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) -(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) -(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) -(let (($x9023 (not $x9022))) -(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) -(let (($x2294 (not $x2249))) -(let (($x19047 (or $x2294 (not $x9027) (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$) (not $x9035)))) -(let (($x19056 (or (not $x19047) (not (or $x2249 (not (or $x2486 $x9039))))))) -(let (($x2488 (b_S_typed$ ?v0 ?v1))) -(let (($x9531 (not $x2488))) -(let (($x19064 (not (or $x9531 (not $x19056))))) -(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) -(= $x9019 $x19064))))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) -)) -(let (($x9066 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) -(let ((?x2484 (b_S_owner$ ?v0 ?v1))) -(let (($x2486 (= ?x2484 b_S_me$))) -(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) -(let (($x2294 (not $x2249))) -(let (($x9041 (and $x2294 (or $x2486 $x9039)))) -(let ((?x2769 (b_S_typemap$ ?v0))) -(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) -(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) -(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) -(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) -(let (($x9023 (not $x9022))) -(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) -(let (($x9054 (and $x2249 $x9027 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) -(let (($x9057 (or $x9054 $x9041))) -(let (($x2488 (b_S_typed$ ?v0 ?v1))) -(let (($x9060 (and $x2488 $x9057))) -(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) -(= $x9019 $x9060))))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) -)) -(let ((?x2769 (b_S_typemap$ ?1))) -(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?0))) -(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) -(let (($x9035 (or (= (b_S_owner$ ?1 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?1 ?x9024)))) -(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) -(let (($x9023 (not $x9022))) -(let (($x9027 (or $x9023 (not (b_S_closed$ ?1 ?x9024))))) -(let (($x19047 (or $x2294 (not $x9027) (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$) (not $x9035)))) -(let (($x19056 (or (not $x19047) (not (or $x2249 (not (or $x2486 (b_S_in_n_wrapped_n_domain$ ?1 ?0)))))))) -(let (($x19064 (not (or $x9531 (not $x19056))))) -(let (($x9019 (b_S_thread_n_local$ ?1 ?0))) -(let (($x9041 (and $x2294 (or $x2486 (b_S_in_n_wrapped_n_domain$ ?1 ?0))))) -(let (($x9054 (and $x2249 $x9027 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) -(let (($x9057 (or $x9054 $x9041))) -(let (($x9060 (and $x2488 $x9057))) -(let (($x9063 (= $x9019 $x9060))) -(let (($x19054 (= $x9041 (not (or $x2249 (not (or $x2486 (b_S_in_n_wrapped_n_domain$ ?1 ?0)))))))) -(let ((@x19058 (monotonicity (rewrite (= $x9054 (not $x19047))) (rewrite $x19054) (= $x9057 $x19056)))) -(let ((@x19068 (trans (monotonicity @x19058 (= $x9060 (and $x2488 $x19056))) (rewrite (= (and $x2488 $x19056) $x19064)) (= $x9060 $x19064)))) -(let ((@x19074 (quant-intro (monotonicity @x19068 (= $x9063 (= $x9019 $x19064))) (= $x9066 $x19072)))) -(let (($x9046 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) -(let ((?x2484 (b_S_owner$ ?v0 ?v1))) -(let (($x2486 (= ?x2484 b_S_me$))) -(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) -(let (($x2294 (not $x2249))) -(let (($x9041 (and $x2294 (or $x2486 $x9039)))) -(let ((?x2769 (b_S_typemap$ ?v0))) -(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) -(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) -(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) -(let (($x9036 (and (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) -(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) -(let (($x9023 (not $x9022))) -(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) -(let (($x2488 (b_S_typed$ ?v0 ?v1))) -(let (($x9043 (and $x2488 (or (and $x2249 (and $x9027 $x9036)) $x9041)))) -(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) -(= $x9019 $x9043)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) -)) -(let (($x9051 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) -(let ((?x2484 (b_S_owner$ ?v0 ?v1))) -(let (($x2486 (= ?x2484 b_S_me$))) -(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) -(let (($x2294 (not $x2249))) -(let (($x9041 (and $x2294 (or $x2486 $x9039)))) -(let ((?x2769 (b_S_typemap$ ?v0))) -(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) -(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) -(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) -(let (($x9036 (and (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) -(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) -(let (($x9023 (not $x9022))) -(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) -(let (($x2488 (b_S_typed$ ?v0 ?v1))) -(let (($x9043 (and $x2488 (or (and $x2249 (and $x9027 $x9036)) $x9041)))) -(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) -(= $x9019 $x9043)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) -)) -(let (($x9036 (and (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) -(let (($x9043 (and $x2488 (or (and $x2249 (and $x9027 $x9036)) $x9041)))) -(let (($x9048 (= $x9019 $x9043))) -(let ((@x9059 (monotonicity (rewrite (= (and $x2249 (and $x9027 $x9036)) $x9054)) (= (or (and $x2249 (and $x9027 $x9036)) $x9041) $x9057)))) -(let ((@x9068 (quant-intro (monotonicity (monotonicity @x9059 (= $x9043 $x9060)) (= $x9048 $x9063)) (= $x9051 $x9066)))) -(let ((@x9070 (trans (quant-intro (rewrite (= (= $x9019 $x9043) $x9048)) (= $x9046 $x9051)) @x9068 (= $x9046 $x9066)))) -(let ((@x15111 (mp~ (mp (asserted $x9046) @x9070 $x9066) (nnf-pos (refl (~ $x9063 $x9063)) (~ $x9066 $x9066)) $x9066))) -(let ((@x19075 (mp @x15111 @x19074 $x19072))) -(let (($x23521 (or (not $x19072) $x22944))) -(let ((@x23524 ((_ quant-inst v_b_S_s$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$)) $x23521))) -(let (($x23055 (not $x22801))) -(let ((@x23295 (monotonicity (symm (monotonicity @x23699 (= $x22801 $x10141)) (= $x10141 $x22801)) (= (not $x10141) $x23055)))) -(let ((@x23090 (unit-resolution (def-axiom (or (not $x22944) $x22801 $x22939)) (mp (hypothesis (not $x10141)) @x23295 $x23055) (unit-resolution @x23524 @x19075 $x22944) $x22939))) -(let ((@x23706 (mp (unit-resolution (def-axiom (or $x22603 $x10139)) @x22760 $x10139) (symm (monotonicity @x23699 (= $x22799 $x10139)) (= $x10139 $x22799)) $x22799))) -(let ((@x23222 (unit-resolution (def-axiom (or $x22921 $x22900)) (unit-resolution (def-axiom (or $x22943 $x22802 $x22923)) @x23706 @x23090 $x22923) $x22900))) -(let ((?x24419 (b_S_ref$ ?x21983))) -(let ((?x24433 (b_S_ptr$ b_T_T_u1$ ?x24419))) -(let ((?x24410 (b_S_idx$ ?x21983 0 b_T_T_u1$))) -(let (($x24436 (= ?x24410 ?x24433))) -(let (($x24439 (not $x24436))) -(let (($x24411 (b_S_extent_n_hint$ ?x24410 ?x21983))) -(let (($x24418 (not $x24411))) -(let (($x24442 (or $x24418 $x24439))) -(let (($x24445 (not $x24442))) -(let (($x24448 (or $x22568 $x24445))) -(let (($x24424 (or $x24418 (not (= ?x24410 (b_S_ptr$ b_T_T_u1$ (+ ?x24419 (* 0 ?x10045)))))))) -(let (($x24425 (not $x24424))) -(let (($x24440 (= (not (= ?x24410 (b_S_ptr$ b_T_T_u1$ (+ ?x24419 (* 0 ?x10045))))) $x24439))) -(let ((@x24428 (monotonicity (rewrite (= (* 0 ?x10045) 0)) (= (+ ?x24419 (* 0 ?x10045)) (+ ?x24419 0))))) -(let ((@x24432 (trans @x24428 (rewrite (= (+ ?x24419 0) ?x24419)) (= (+ ?x24419 (* 0 ?x10045)) ?x24419)))) -(let ((@x24435 (monotonicity @x24432 (= (b_S_ptr$ b_T_T_u1$ (+ ?x24419 (* 0 ?x10045))) ?x24433)))) -(let ((@x24438 (monotonicity @x24435 (= (= ?x24410 (b_S_ptr$ b_T_T_u1$ (+ ?x24419 (* 0 ?x10045)))) $x24436)))) -(let ((@x24447 (monotonicity (monotonicity (monotonicity @x24438 $x24440) (= $x24424 $x24442)) (= $x24425 $x24445)))) -(let ((@x24455 (trans (monotonicity @x24447 (= (or $x22568 $x24425) $x24448)) (rewrite (= $x24448 $x24448)) (= (or $x22568 $x24425) $x24448)))) -(let ((@x24133 (unit-resolution (mp ((_ quant-inst (b_S_ptr$ ?x10076 ?x21014) 0 b_T_T_u1$) (or $x22568 $x24425)) @x24455 $x24448) @x18183 (hypothesis $x24442) false))) -(let ((@x24460 (def-axiom (or $x24442 $x24436)))) -(let ((?x24245 (b_S_idx$ ?x22595 0 b_T_T_u1$))) -(let ((?x24246 (b_S_select_o_tm$ ?x10272 ?x24245))) -(let ((?x24247 (b_S_ts_n_emb$ ?x24246))) -(let (($x24248 (= ?x24247 ?x22595))) -(let (($x24257 (b_S_typed$ v_b_S_s$ ?x24245))) -(let (($x24258 (not $x24257))) -(let (($x24255 (b_S_ts_n_is_n_volatile$ ?x24246))) -(let (($x24254 (not $x24248))) -(let (($x23737 (or $x24254 $x24255 (not (b_S_ts_n_is_n_array_n_elt$ ?x24246)) $x24258))) -(let (($x23791 (not $x23737))) -(let (($x24240 (b_S_typed$ v_b_S_s$ ?x22595))) -(let ((@x24353 (mp @x12045 (symm (monotonicity @x24530 (= $x24240 $x10085)) (= $x10085 $x24240)) $x24240))) -(let ((@x24355 (lemma (unit-resolution (hypothesis (not $x24240)) @x24353 false) $x24240))) -(let (($x17964 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let ((?x6897 (b_S_typemap$ ?v0))) -(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) -(let (($x17952 (or (not (= (b_S_ts_n_emb$ ?x6899) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) (b_S_ts_n_is_n_volatile$ ?x6899) (not $x6904) (not $x6905)))) -(let (($x17953 (not $x17952))) -(let (($x4862 (>= (+ ?v4 (* (- 1) ?v3)) 0))) -(let (($x2815 (>= ?v4 0))) -(let (($x3763 (not $x2815))) -(or (not (b_S_typed$ ?v0 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) $x3763 $x4862 $x17953)))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) -)) -(let (($x6943 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let ((?x6897 (b_S_typemap$ ?v0))) -(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) -(let ((?x6894 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) -(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) -(let (($x6937 (and $x6901 (not (b_S_ts_n_is_n_volatile$ ?x6899)) $x6904 $x6905))) -(let (($x4862 (>= (+ ?v4 (* (- 1) ?v3)) 0))) -(let (($x6603 (not $x4862))) -(let (($x2815 (>= ?v4 0))) -(let (($x6895 (b_S_typed$ ?v0 ?x6894))) -(let (($x6929 (and $x6895 $x2815 $x6603))) -(let (($x6934 (not $x6929))) -(or $x6934 $x6937)))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) -)) -(let (($x6905 (b_S_typed$ ?4 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2)))) -(let ((?x6897 (b_S_typemap$ ?4))) -(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2)))) -(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) -(let (($x17952 (or (not (= (b_S_ts_n_emb$ ?x6899) (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) (b_S_ts_n_is_n_volatile$ ?x6899) (not $x6904) (not $x6905)))) -(let (($x17953 (not $x17952))) -(let (($x4862 (>= (+ ?0 (* (- 1) ?1)) 0))) -(let (($x3763 (not $x2815))) -(let (($x17959 (or (not (b_S_typed$ ?4 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) $x3763 $x4862 $x17953))) -(let ((?x6894 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) -(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) -(let (($x6937 (and $x6901 (not (b_S_ts_n_is_n_volatile$ ?x6899)) $x6904 $x6905))) -(let (($x6603 (not $x4862))) -(let (($x6895 (b_S_typed$ ?4 ?x6894))) -(let (($x6929 (and $x6895 $x2815 $x6603))) -(let (($x6934 (not $x6929))) -(let (($x6940 (or $x6934 $x6937))) -(let (($x17938 (or (not $x6895) $x3763 $x4862))) -(let ((@x17944 (monotonicity (rewrite (= $x6929 (not $x17938))) (= $x6934 (not (not $x17938)))))) -(let ((@x17958 (monotonicity (trans @x17944 (rewrite (= (not (not $x17938)) $x17938)) (= $x6934 $x17938)) (rewrite (= $x6937 $x17953)) (= $x6940 (or $x17938 $x17953))))) -(let ((@x17966 (quant-intro (trans @x17958 (rewrite (= (or $x17938 $x17953) $x17959)) (= $x6940 $x17959)) (= $x6943 $x17964)))) -(let (($x6917 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let ((?x6897 (b_S_typemap$ ?v0))) -(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) -(let ((?x6894 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) -(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) -(let (($x6908 (and $x6901 (and (not (b_S_ts_n_is_n_volatile$ ?x6899)) (and $x6904 $x6905))))) -(let (($x2766 (<= 0 ?v4))) -(let (($x6566 (and $x2766 (< ?v4 ?v3)))) -(let (($x6895 (b_S_typed$ ?v0 ?x6894))) -(let (($x6896 (and $x6895 $x6566))) -(=> $x6896 $x6908)))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) -)) -(let (($x6923 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let ((?x6897 (b_S_typemap$ ?v0))) -(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) -(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) -(let ((?x6894 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) -(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) -(let (($x6908 (and $x6901 (and (not (b_S_ts_n_is_n_volatile$ ?x6899)) (and $x6904 $x6905))))) -(let (($x2766 (<= 0 ?v4))) -(let (($x6566 (and $x2766 (< ?v4 ?v3)))) -(let (($x6895 (b_S_typed$ ?v0 ?x6894))) -(let (($x6896 (and $x6895 $x6566))) -(or (not $x6896) $x6908)))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) -)) -(let (($x6908 (and $x6901 (and (not (b_S_ts_n_is_n_volatile$ ?x6899)) (and $x6904 $x6905))))) -(let (($x6920 (or (not (and $x6895 (and $x2766 (< ?0 ?1)))) $x6908))) -(let (($x6566 (and $x2766 (< ?0 ?1)))) -(let (($x6896 (and $x6895 $x6566))) -(let ((@x6608 (monotonicity @x2814 (rewrite (= (< ?0 ?1) $x6603)) (= $x6566 (and $x2815 $x6603))))) -(let ((@x6933 (trans (monotonicity @x6608 (= $x6896 (and $x6895 (and $x2815 $x6603)))) (rewrite (= (and $x6895 (and $x2815 $x6603)) $x6929)) (= $x6896 $x6929)))) -(let ((@x6942 (monotonicity (monotonicity @x6933 (= (not $x6896) $x6934)) (rewrite (= $x6908 $x6937)) (= $x6920 $x6940)))) -(let ((@x6947 (trans (quant-intro (rewrite (= (=> $x6896 $x6908) $x6920)) (= $x6917 $x6923)) (quant-intro @x6942 (= $x6923 $x6943)) (= $x6917 $x6943)))) -(let ((@x14355 (mp~ (mp (asserted $x6917) @x6947 $x6943) (nnf-pos (refl (~ $x6940 $x6940)) (~ $x6943 $x6943)) $x6943))) -(let ((@x17967 (mp @x14355 @x17966 $x17964))) -(let (($x24241 (not $x24240))) -(let (($x23252 (not $x17964))) -(let (($x23749 (or $x23252 $x24241 $x11259 $x23791))) -(let (($x23792 (or $x24241 $x22599 $x22601 $x23791))) -(let (($x23750 (or $x23252 $x23792))) -(let ((@x23251 (trans (monotonicity @x22715 @x22724 (= $x23792 (or $x24241 false $x11259 $x23791))) (rewrite (= (or $x24241 false $x11259 $x23791) (or $x24241 $x11259 $x23791))) (= $x23792 (or $x24241 $x11259 $x23791))))) -(let ((@x23352 (trans (monotonicity @x23251 (= $x23750 (or $x23252 (or $x24241 $x11259 $x23791)))) (rewrite (= (or $x23252 (or $x24241 $x11259 $x23791)) $x23749)) (= $x23750 $x23749)))) -(let ((@x23658 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ 0) $x23750) @x23352 $x23749) @x17967 @x12041 @x24355 (hypothesis $x23737) false))) -(let (($x21186 (= ?x21014 ?x10079))) -(let (($x21191 (or $x21152 $x21186))) -(let ((@x21192 ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ ?x10078)) $x21191))) -(let ((@x24524 (trans (monotonicity @x24520 (= ?x24419 ?x21014)) (unit-resolution @x21192 @x19840 $x21186) (= ?x24419 ?x10079)))) -(let ((@x24532 (trans @x24530 (unit-resolution @x22000 @x15336 @x12044 $x21990) (= ?x22595 ?x21983)))) -(let ((@x23632 (trans (monotonicity @x24532 (= ?x24245 ?x24410)) (hypothesis $x24436) (= ?x24245 ?x24433)))) -(let ((@x23628 (trans @x23632 (monotonicity (trans @x24524 @x24511 (= ?x24419 v_b_P_H_arr$)) (= ?x24433 ?x10078)) (= ?x24245 ?x10078)))) -(let ((@x23622 (trans (trans @x23628 (symm @x22852 (= ?x10078 ?x22553)) (= ?x24245 ?x22553)) (symm @x24189 (= ?x22553 ?x10137)) (= ?x24245 ?x10137)))) -(let ((@x23636 (symm (monotonicity (trans @x23622 @x23667 (= ?x24245 ?x22505)) (= ?x24246 ?x22655)) (= ?x22655 ?x24246)))) -(let ((@x23746 (monotonicity (monotonicity (trans @x23699 @x23667 (= ?x10078 ?x22505)) (= ?x22818 ?x22655)) (= ?x22903 (b_S_ts_n_emb$ ?x22655))))) -(let ((@x23678 (trans @x23746 (monotonicity @x23636 (= (b_S_ts_n_emb$ ?x22655) ?x24247)) (= ?x22903 ?x24247)))) -(let ((@x23867 (trans @x23678 (unit-resolution (def-axiom (or $x23737 $x24248)) (lemma @x23658 $x23791) $x24248) (= ?x22903 ?x22595)))) -(let ((@x23912 (trans (monotonicity (trans @x23867 @x24530 (= ?x22903 ?x10080)) (= ?x22893 ?x10082)) @x12043 $x22888))) -(let ((@x24132 (lemma (unit-resolution (hypothesis (not $x22888)) @x23912 false) (or $x24439 $x22888)))) -(let ((@x23115 (unit-resolution @x24132 (unit-resolution @x24460 (lemma @x24133 $x24445) $x24436) $x22888))) -(let ((?x22658 (b_S_ts_n_emb$ ?x22655))) -(let ((?x22663 (b_S_typ$ ?x22658))) -(let ((?x22664 (b_S_kind_n_of$ ?x22663))) -(let (($x22665 (= ?x22664 b_S_kind_n_primitive$))) -(let ((@x23071 (monotonicity (monotonicity (symm @x23746 (= ?x22658 ?x22903)) (= ?x22663 ?x22890)) (= ?x22664 ?x22891)))) -(let (($x22946 (b_S_is_n_non_n_primitive$ ?x22663))) -(let (($x23237 (not $x22946))) -(let (($x23503 (or $x22665 $x23237))) -(let (($x23504 (not $x23503))) -(let (($x19234 (forall ((?v0 B_S_type_n_state$) )(!(let (($x9543 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$))) -(let (($x19230 (or $x9543 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))))))) -(not $x19230))) :pattern ( (b_S_ts_n_emb$ ?v0) ))) -)) -(let (($x9548 (forall ((?v0 B_S_type_n_state$) )(!(let (($x9543 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$))) -(and (not $x9543) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))))) :pattern ( (b_S_ts_n_emb$ ?v0) ))) -)) -(let (($x9543 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?0))) b_S_kind_n_primitive$))) -(let (($x19230 (or $x9543 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0))))))) -(let (($x9546 (and (not $x9543) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0)))))) -(let ((@x15316 (mp~ (asserted $x9548) (nnf-pos (refl (~ $x9546 $x9546)) (~ $x9548 $x9548)) $x9548))) -(let ((@x19237 (mp @x15316 (quant-intro (rewrite (= $x9546 (not $x19230))) (= $x9548 $x19234)) $x19234))) -(let (($x23057 (or (not $x19234) $x23504))) -(let ((@x23058 ((_ quant-inst (b_S_select_o_tm$ ?x10272 ?x22505)) $x23057))) -(let ((@x23584 (unit-resolution (def-axiom (or $x23503 (not $x22665))) (unit-resolution @x23058 @x19237 $x23504) (not $x22665)))) -(let ((@x23060 (lemma (unit-resolution @x23584 (trans @x23071 (hypothesis $x22892) $x22665) false) (not $x22892)))) -(let ((@x23221 (unit-resolution (def-axiom (or $x22901 $x22817 $x22889 $x22892 $x22896)) @x23060 (unit-resolution (def-axiom (or $x22895 (not $x22888))) @x23115 $x22895) (or $x22901 $x22817 $x22889)))) -(let ((@x23406 (unit-resolution @x23221 @x23222 (unit-resolution (def-axiom (or $x22906 $x22902)) @x23294 $x22906) @x23076 false))) -(let ((@x23403 (lemma @x23406 $x10141))) -(let (($x20092 (or $x19318 $x20089))) -(let (($x20095 (not $x20092))) -(let (($x20098 (or $x11385 $x20095))) -(let (($x20101 (not $x20098))) -(let (($x20104 (or $x11385 $x20101))) -(let (($x20107 (not $x20104))) -(let (($x19727 (not $x10148))) -(let (($x19726 (not $x10147))) -(let (($x19725 (not $x10146))) -(let (($x19724 (not $x10145))) -(let (($x15511 (not $x10141))) -(let (($x15502 (not $x10138))) -(let (($x20110 (or $x15502 $x15511 $x19724 $x19725 $x19726 $x19727 $x20107))) -(let (($x20113 (not $x20110))) -(let (($x20116 (or $x15502 $x15511 $x20113))) -(let (($x20119 (not $x20116))) -(let (($x20122 (or $x15502 $x15505 $x20119))) -(let (($x20125 (not $x20122))) +(let (($x22774 (or $x22629 $x22605))) +(let (($x22742 (or $x19677 $x21489 $x22597 $x11259 $x22604))) +(let ((@x22706 (trans (monotonicity (rewrite (= ?x22600 ?x11246)) (= $x22601 (>= ?x11246 0))) (rewrite (= (>= ?x11246 0) $x11259)) (= $x22601 $x11259)))) +(let ((@x22711 (trans (monotonicity (rewrite (= $x22598 true)) (= $x22599 $x10203)) (rewrite (= $x10203 false)) (= $x22599 false)))) +(let ((@x22741 (monotonicity @x22711 @x22706 (= $x22605 (or $x19677 $x21489 $x22597 false $x11259 $x22604))))) +(let ((@x22731 (trans @x22741 (rewrite (= (or $x19677 $x21489 $x22597 false $x11259 $x22604) $x22742)) (= $x22605 $x22742)))) +(let ((@x23093 (trans (monotonicity @x22731 (= $x22774 (or $x22629 $x22742))) (rewrite (= (or $x22629 $x22742) $x22732)) (= $x22774 $x22732)))) +(let ((@x23490 (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x10076 ?x21014) v_b_P_H_len$ 0 b_T_T_u1$) $x22774) @x23093 $x22732))) +(let ((@x24453 (unit-resolution @x23490 @x18670 @x9769 @x12041 @x12050 (mp (unit-resolution @x22487 @x24112 $x22344) @x23502 $x22596) (hypothesis $x22603) false))) (let (($x20128 (or $x15502 $x15505 $x20125))) (let (($x20131 (not $x20128))) (let (($x20134 (or $x11221 $x20131))) (let (($x20137 (not $x20134))) (let (($x20140 (or $x11221 $x20137))) -(let (($x19617 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x19617 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10238 (= ?x10163 v_b_S_result_G_0$))) (let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) (let (($x12168 (<= ?v0 4294967295))) (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11800 (not $x10238)))))))))) +(or $x3763 $x16553 $x11800 (not $x10238))))))))) :qid k!704)) )) -(let (($x19602 (forall ((?v0 Int) )(let ((?x11816 (* (- 1) v_b_S_result_G_0$))) +(let (($x19602 (forall ((?v0 Int) )(! (let ((?x11816 (* (- 1) v_b_S_result_G_0$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11818 (<= (+ ?x10163 ?x11816) 0))) (let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) @@ -2106,14 +1638,14 @@ (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11800 $x11818)))))))))) +(or $x3763 $x16553 $x11800 $x11818))))))))) :qid k!704)) )) (let (($x19626 (not (or (not $x19602) (not $x19617))))) (let (($x19631 (or $x19580 $x19626))) (let (($x19643 (not (or $x15729 $x19474 $x19501 $x19637 $x19638 $x19639 $x19640 (not $x19631))))) (let (($x19648 (or $x15729 $x19643))) (let (($x19656 (not (or $x11487 $x19474 $x19501 (not $x19648))))) -(let (($x19408 (forall ((?v0 Int) )(let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) +(let (($x19408 (forall ((?v0 Int) )(! (let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11633 (<= (+ ?x10163 ?x11631) 0))) (let (($x11615 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) @@ -2121,7 +1653,7 @@ (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11615 $x11633)))))))))) +(or $x3763 $x16553 $x11615 $x11633))))))))) :qid k!704)) )) (let (($x19428 (not (or (not $x19408) $x19413)))) (let (($x19433 (or $x19386 $x19428))) @@ -2143,7 +1675,7 @@ (let (($x19546 (or $x15590 $x15593 $x19541))) (let (($x19554 (not (or $x11486 $x19474 $x19501 (not $x19546))))) (let (($x19661 (or $x19554 $x19656))) -(let (($x19362 (forall ((?v0 Int) )(let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) +(let (($x19362 (forall ((?v0 Int) )(! (let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11889 (<= (+ ?x10163 ?x11887) 0))) (let (($x11871 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) @@ -2151,19 +1683,19 @@ (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11871 $x11889)))))))))) +(or $x3763 $x16553 $x11871 $x11889))))))))) :qid k!704)) )) (let (($x19685 (or $x11259 $x15548 $x19667 $x19668 $x19669 $x19670 $x19671 $x19672 (not $x19362) $x11867 $x19674 $x19675 $x19676 $x19677 $x19678 $x19679 $x19680 $x19681 $x19682 $x19683 $x19474 $x19501 (not $x19661)))) (let (($x19686 (not $x19685))) (let (($x19691 (or $x11259 $x15548 $x19686))) -(let (($x19340 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x19340 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11404 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x10163)) 0))) (let (($x11388 (>= ?v0 1))) (let (($x12168 (<= ?v0 4294967295))) (let (($x16553 (not $x12168))) (let (($x2815 (>= ?v0 0))) (let (($x3763 (not $x2815))) -(or $x3763 $x16553 $x11388 $x11404))))))))) +(or $x3763 $x16553 $x11388 $x11404)))))))) :qid k!704)) )) (let (($x19700 (not (or (not $x19340) (not $x19691))))) (let (($x19705 (or $x19318 $x19700))) @@ -2177,6 +1709,7 @@ (let (($x19761 (or $x11221 $x19756))) (let (($x12168 (<= ?0 4294967295))) (let (($x16553 (not $x12168))) +(let (($x3763 (not $x2815))) (let (($x19606 (or $x3763 $x16553 $x11800 (not $x10238)))) (let ((@x20037 (monotonicity (quant-intro (refl (= $x19606 $x19606)) (= $x19617 $x20030)) (= (not $x19617) $x20035)))) (let ((@x20026 (quant-intro (refl (= (or $x3763 $x16553 $x11800 $x11818) (or $x3763 $x16553 $x11800 $x11818))) (= $x19602 $x20022)))) @@ -2218,16 +1751,16 @@ (let ((@x20127 (monotonicity (monotonicity @x20121 (= (or $x15502 $x15505 (not $x19735)) $x20122)) (= $x19743 $x20125)))) (let ((@x20133 (monotonicity (monotonicity @x20127 (= $x19748 $x20128)) (= (not $x19748) $x20131)))) (let ((@x20139 (monotonicity (monotonicity @x20133 (= (or $x11221 (not $x19748)) $x20134)) (= $x19756 $x20137)))) -(let (($x15761 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x15761 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10238 (= ?x10163 v_b_S_result_G_0$))) (let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) (let (($x11802 (not $x11800))) (let (($x12168 (<= ?v0 4294967295))) (let (($x2815 (>= ?v0 0))) (let (($x13448 (and $x2815 $x12168 $x11802 $x10238))) -(not $x13448))))))))) +(not $x13448)))))))) :qid k!704)) )) -(let (($x13442 (forall ((?v0 Int) )(let ((?x11816 (* (- 1) v_b_S_result_G_0$))) +(let (($x13442 (forall ((?v0 Int) )(! (let ((?x11816 (* (- 1) v_b_S_result_G_0$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11818 (<= (+ ?x10163 ?x11816) 0))) (let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) @@ -2236,7 +1769,7 @@ (let (($x2815 (>= ?v0 0))) (let (($x13433 (and $x2815 $x12168 $x11802))) (let (($x13436 (not $x13433))) -(or $x13436 $x11818))))))))))) +(or $x13436 $x11818)))))))))) :qid k!704)) )) (let (($x15765 (and $x13442 $x15761))) (let (($x16014 (not $x16009))) @@ -2249,7 +1782,7 @@ (let (($x16053 (or $x15729 $x16048))) (let (($x16059 (and $x11486 $x11429 $x11432 $x16053))) (let (($x15648 (not $x11651))) -(let (($x13373 (forall ((?v0 Int) )(let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) +(let (($x13373 (forall ((?v0 Int) )(! (let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11633 (<= (+ ?x10163 ?x11631) 0))) (let (($x11615 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) @@ -2258,7 +1791,7 @@ (let (($x2815 (>= ?v0 0))) (let (($x13364 (and $x2815 $x12168 $x11617))) (let (($x13367 (not $x13364))) -(or $x13367 $x11633))))))))))) +(or $x13367 $x11633)))))))))) :qid k!704)) )) (let (($x15651 (and $x13373 $x15648))) (let (($x15876 (not $x15871))) @@ -2284,7 +1817,7 @@ (let (($x15986 (or $x15590 $x15593 $x15981))) (let (($x15992 (and $x11487 $x11429 $x11432 $x15986))) (let (($x16064 (or $x15992 $x16059))) -(let (($x13340 (forall ((?v0 Int) )(let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) +(let (($x13340 (forall ((?v0 Int) )(! (let ((?x11887 (* (- 1) v_b_L_H_max_G_1$))) (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11889 (<= (+ ?x10163 ?x11887) 0))) (let (($x11871 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) @@ -2293,11 +1826,11 @@ (let (($x2815 (>= ?v0 0))) (let (($x13331 (and $x2815 $x12168 $x11873))) (let (($x13334 (not $x13331))) -(or $x13334 $x11889))))))))))) +(or $x13334 $x11889)))))))))) :qid k!704)) )) (let (($x16070 (and $x11260 $x10167 $x11911 $x13304 $x13315 $x11901 $x13326 $x11898 $x13340 $x11868 $x10192 $x10284 $x10204 $x10097 $x10291 $x10292 $x10293 $x10294 $x10295 $x10296 $x11429 $x11432 $x16064))) (let (($x16075 (or $x11259 $x15548 $x16070))) -(let (($x13292 (forall ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x13292 (forall ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x11404 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x10163)) 0))) (let (($x11388 (>= ?v0 1))) (let (($x11389 (not $x11388))) @@ -2305,7 +1838,7 @@ (let (($x2815 (>= ?v0 0))) (let (($x13283 (and $x2815 $x12168 $x11389))) (let (($x13286 (not $x13283))) -(or $x13286 $x11404)))))))))) +(or $x13286 $x11404))))))))) :qid k!704)) )) (let (($x16078 (and $x13292 $x16075))) (let (($x15528 (not (and $x15523 $x15524 (not $x15525))))) @@ -2398,8 +1931,7 @@ (let ((@x19753 (monotonicity (monotonicity @x19747 (= $x16109 $x19748)) (= $x16112 (and $x10136 $x19748))))) (let ((@x19763 (monotonicity (trans @x19753 (rewrite (= (and $x10136 $x19748) $x19756)) (= $x16112 $x19756)) (= $x16115 $x19761)))) (let (($x15746 (<= (+ ?x15744 (* (- 1) v_b_S_result_G_0$)) 0))) -(let (($x15741 (and $x15736 $x15737 (not (>= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) 0))))) -(let (($x15748 (not (or (not $x15741) $x15746)))) +(let (($x15748 (not (or (not (and $x15736 $x15737 (not (>= (+ ?v0!15 ?x11246) 0)))) $x15746)))) (let (($x15769 (or $x15748 $x15765))) (let (($x15732 (not $x11797))) (let (($x15773 (and $x15732 $x15769))) @@ -2455,16 +1987,16 @@ (let (($x15499 (not $x11221))) (let (($x15829 (and $x15499 $x15825))) (let (($x15833 (or $x11221 $x15829))) +(let (($x16037 (= (or (not (and $x15736 $x15737 (not (>= (+ ?v0!15 ?x11246) 0)))) $x15746) $x16036))) (let (($x16024 (= (+ ?x15744 (* (- 1) v_b_S_result_G_0$)) (+ (* (- 1) v_b_S_result_G_0$) ?x15744)))) (let ((@x16028 (monotonicity (rewrite $x16024) (= $x15746 (<= (+ (* (- 1) v_b_S_result_G_0$) ?x15744) 0))))) (let ((@x16035 (trans @x16028 (rewrite (= (<= (+ (* (- 1) v_b_S_result_G_0$) ?x15744) 0) $x16031)) (= $x15746 $x16031)))) -(let (($x15739 (>= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) 0))) -(let (($x16002 (= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) ?v0!15)))) -(let ((@x16006 (monotonicity (rewrite $x16002) (= $x15739 (>= (+ (* (- 1) v_b_P_H_len$) ?v0!15) 0))))) -(let ((@x16013 (trans @x16006 (rewrite (= (>= (+ (* (- 1) v_b_P_H_len$) ?v0!15) 0) $x16009)) (= $x15739 $x16009)))) -(let ((@x16019 (monotonicity (monotonicity @x16013 (= (not $x15739) $x16014)) (= $x15741 $x16017)))) -(let ((@x16038 (monotonicity (monotonicity @x16019 (= (not $x15741) $x16020)) @x16035 (= (or (not $x15741) $x15746) $x16036)))) -(let ((@x16047 (monotonicity (rewrite (= $x15732 $x11792)) (monotonicity (monotonicity @x16038 (= $x15748 $x16039)) (= $x15769 $x16042)) (= $x15773 (and $x11792 $x16042))))) +(let ((@x16006 (monotonicity (rewrite (= (+ ?v0!15 ?x11246) (+ ?x11246 ?v0!15))) (= (>= (+ ?v0!15 ?x11246) 0) (>= (+ ?x11246 ?v0!15) 0))))) +(let ((@x16013 (trans @x16006 (rewrite (= (>= (+ ?x11246 ?v0!15) 0) $x16009)) (= (>= (+ ?v0!15 ?x11246) 0) $x16009)))) +(let ((@x16019 (monotonicity (monotonicity @x16013 (= (not (>= (+ ?v0!15 ?x11246) 0)) $x16014)) (= (and $x15736 $x15737 (not (>= (+ ?v0!15 ?x11246) 0))) $x16017)))) +(let ((@x16022 (monotonicity @x16019 (= (not (and $x15736 $x15737 (not (>= (+ ?v0!15 ?x11246) 0)))) $x16020)))) +(let ((@x16044 (monotonicity (monotonicity (monotonicity @x16022 @x16035 $x16037) (= $x15748 $x16039)) (= $x15769 $x16042)))) +(let ((@x16047 (monotonicity (rewrite (= $x15732 $x11792)) @x16044 (= $x15773 (and $x11792 $x16042))))) (let ((@x16055 (monotonicity (trans @x16047 (rewrite (= (and $x11792 $x16042) $x16048)) (= $x15773 $x16048)) (= $x15777 $x16053)))) (let ((@x16058 (monotonicity (rewrite (= $x15726 $x11772)) @x16055 (= $x15781 (and $x11772 $x16053))))) (let (($x15899 (= (or (not (and $x15626 $x15627 (not (>= (+ ?v0!14 ?x11581) 0)))) $x15636) $x15898))) @@ -2501,13 +2033,13 @@ (let ((@x16103 (monotonicity (rewrite (= $x15508 $x10140)) @x16100 (= $x15821 (and $x10140 $x16098))))) (let ((@x16111 (monotonicity (trans @x16103 (rewrite (= (and $x10140 $x16098) $x16104)) (= $x15821 $x16104)) (= $x15825 $x16109)))) (let ((@x16117 (monotonicity (monotonicity (rewrite (= $x15499 $x10136)) @x16111 (= $x15829 $x16112)) (= $x15833 $x16115)))) -(let (($x13451 (exists ((?v0 Int) )(let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x13451 (exists ((?v0 Int) )(! (let ((?x10163 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) (let (($x10238 (= ?x10163 v_b_S_result_G_0$))) (let (($x11800 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) (let (($x11802 (not $x11800))) (let (($x12168 (<= ?v0 4294967295))) (let (($x2815 (>= ?v0 0))) -(and $x2815 $x12168 $x11802 $x10238)))))))) +(and $x2815 $x12168 $x11802 $x10238))))))) :qid k!704)) )) (let (($x13445 (not $x13442))) (let (($x13454 (or $x13445 $x13451))) @@ -2601,14 +2133,15 @@ (let ((@x13339 (monotonicity (monotonicity (monotonicity @x12172 (= $x11879 $x13331)) (= $x11884 $x13334)) (= $x11892 $x13337)))) (let ((@x13325 (monotonicity (monotonicity @x6446 (= ?x11574 (+ 4294967295 ?x11484))) (= $x11904 (>= (+ 4294967295 ?x11484) 0))))) (let ((@x13330 (trans @x13325 (rewrite (= (>= (+ 4294967295 ?x11484) 0) $x13326)) (= $x11904 $x13326)))) -(let ((@x13314 (monotonicity (monotonicity @x6446 (= (+ b_S_max_o_u4$ ?x11865) (+ 4294967295 ?x11865))) (= $x11907 (>= (+ 4294967295 ?x11865) 0))))) -(let ((@x13319 (trans @x13314 (rewrite (= (>= (+ 4294967295 ?x11865) 0) $x13315)) (= $x11907 $x13315)))) +(let ((@x13317 (rewrite (= (>= (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$)) 0) $x13315)))) +(let (($x13310 (= (+ b_S_max_o_u4$ (* (- 1) v_b_SL_H_witness_G_0$)) (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$))))) +(let ((@x13314 (monotonicity (monotonicity @x6446 $x13310) (= $x11907 (>= (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$)) 0))))) (let (($x13299 (= (+ b_S_max_o_u1$ (* (- 1) v_b_L_H_max_G_1$)) (+ 255 (* (- 1) v_b_L_H_max_G_1$))))) (let (($x6449 (= b_S_max_o_u1$ 255))) (let ((@x6450 (asserted $x6449))) (let ((@x13303 (monotonicity (monotonicity @x6450 $x13299) (= $x11914 (>= (+ 255 (* (- 1) v_b_L_H_max_G_1$)) 0))))) (let ((@x13308 (trans @x13303 (rewrite (= (>= (+ 255 (* (- 1) v_b_L_H_max_G_1$)) 0) $x13304)) (= $x11914 $x13304)))) -(let ((@x13345 (monotonicity @x13308 @x13319 @x13330 (quant-intro @x13339 (= $x11895 $x13340)) (= $x11957 $x13343)))) +(let ((@x13345 (monotonicity @x13308 (trans @x13314 @x13317 (= $x11907 $x13315)) @x13330 (quant-intro @x13339 (= $x11895 $x13340)) (= $x11957 $x13343)))) (let ((@x13474 (monotonicity (monotonicity @x13345 (= $x11962 $x13346)) @x13471 (= $x11971 $x13472)))) (let ((@x13291 (monotonicity (monotonicity (monotonicity @x12172 (= $x11395 $x13283)) (= $x11400 $x13286)) (= $x11408 $x13289)))) (let ((@x13480 (monotonicity (monotonicity (quant-intro @x13291 (= $x11411 $x13292)) (= $x11414 $x13295)) (monotonicity @x13474 (= $x11979 $x13475)) (= $x11984 $x13478)))) @@ -2618,82 +2151,455 @@ (let ((@x13510 (monotonicity (monotonicity @x13504 (= $x12021 (and $x10136 $x13502))) (= (not $x12021) $x13508)))) (let ((@x13511 (mp (not-or-elim (mp (asserted $x10434) @x12031 $x12027) (not $x12021)) @x13510 $x13508))) (let ((@x20143 (mp (mp (mp (mp~ @x13511 @x15835 $x15833) @x16117 $x16115) @x19763 $x19761) (monotonicity @x20139 (= $x19761 $x20140)) $x20140))) -(let ((@x24008 (unit-resolution (def-axiom (or $x20134 $x20128)) (unit-resolution @x20143 @x22434 $x20137) $x20128))) +(let ((@x24003 (unit-resolution (def-axiom (or $x20134 $x20128)) (unit-resolution @x20143 @x22508 $x20137) $x20128))) (let ((?x22514 (b_S_typ$ ?x10137))) (let (($x22515 (= ?x22514 b_T_T_u1$))) -(let ((@x22856 (trans (unit-resolution @x22581 (unit-resolution @x22577 @x18183 $x22565) $x22556) @x22852 (= ?x10137 ?x10078)))) -(let ((@x22875 (trans (monotonicity @x22856 (= ?x22514 ?x21175)) (unit-resolution @x21182 @x19846 $x21176) $x22515))) -(let (($x22932 (not $x22515))) +(let ((?x21175 (b_S_typ$ ?x10078))) +(let (($x21176 (= ?x21175 b_T_T_u1$))) +(let (($x21181 (or $x21147 $x21176))) +(let ((@x21182 ((_ quant-inst b_T_T_u1$ v_b_P_H_arr$) $x21181))) +(let ((?x22553 (b_S_ptr$ b_T_T_u1$ ?x10079))) +(let (($x22556 (= ?x10137 ?x22553))) +(let (($x22559 (not $x22556))) +(let (($x22523 (b_S_extent_n_hint$ ?x10137 ?x10078))) +(let (($x22524 (not $x22523))) +(let (($x22562 (or $x22524 $x22559))) +(let (($x22565 (not $x22562))) +(let (($x18180 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(! (let ((?x7205 (b_S_idx$ ?v0 ?v1 ?v2))) +(let (($x7213 (= ?x7205 (b_S_ptr$ ?v2 (+ (b_S_ref$ ?v0) (* ?v1 (b_S_sizeof$ ?v2))))))) +(not (or (not (b_S_extent_n_hint$ ?x7205 ?v0)) (not $x7213))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) ) :qid k!499)) +)) +(let (($x7216 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(! (let ((?x7205 (b_S_idx$ ?v0 ?v1 ?v2))) +(let (($x7213 (= ?x7205 (b_S_ptr$ ?v2 (+ (b_S_ref$ ?v0) (* ?v1 (b_S_sizeof$ ?v2))))))) +(and (b_S_extent_n_hint$ ?x7205 ?v0) $x7213))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) ) :qid k!499)) +)) +(let ((?x7205 (b_S_idx$ ?2 ?1 ?0))) +(let (($x7213 (= ?x7205 (b_S_ptr$ ?0 (+ (b_S_ref$ ?2) (* ?1 (b_S_sizeof$ ?0))))))) +(let (($x7214 (and (b_S_extent_n_hint$ ?x7205 ?2) $x7213))) +(let ((@x18179 (rewrite (= $x7214 (not (or (not (b_S_extent_n_hint$ ?x7205 ?2)) (not $x7213))))))) +(let ((@x14561 (mp~ (asserted $x7216) (nnf-pos (refl (~ $x7214 $x7214)) (~ $x7216 $x7216)) $x7216))) +(let ((@x18183 (mp @x14561 (quant-intro @x18179 (= $x7216 $x18180)) $x18180))) +(let (($x22568 (not $x18180))) +(let (($x22569 (or $x22568 $x22565))) +(let ((?x10045 (b_S_sizeof$ b_T_T_u1$))) +(let ((?x22537 (* 0 ?x10045))) +(let ((?x22538 (+ ?x10079 ?x22537))) +(let ((?x22539 (b_S_ptr$ b_T_T_u1$ ?x22538))) +(let (($x22540 (= ?x10137 ?x22539))) +(let (($x22541 (not $x22540))) +(let (($x22542 (or $x22524 $x22541))) +(let (($x22543 (not $x22542))) +(let ((@x22552 (trans (monotonicity (rewrite (= ?x22537 0)) (= ?x22538 (+ ?x10079 0))) (rewrite (= (+ ?x10079 0) ?x10079)) (= ?x22538 ?x10079)))) +(let ((@x22561 (monotonicity (monotonicity (monotonicity @x22552 (= ?x22539 ?x22553)) (= $x22540 $x22556)) (= $x22541 $x22559)))) +(let ((@x22573 (monotonicity (monotonicity (monotonicity @x22561 (= $x22542 $x22562)) (= $x22543 $x22565)) (= (or $x22568 $x22543) $x22569)))) +(let ((@x22577 (mp ((_ quant-inst (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) 0 b_T_T_u1$) (or $x22568 $x22543)) (trans @x22573 (rewrite (= $x22569 $x22569)) (= (or $x22568 $x22543) $x22569)) $x22569))) +(let ((@x23444 (unit-resolution (def-axiom (or $x22562 $x22556)) (unit-resolution @x22577 @x18183 $x22565) $x22556))) +(let ((@x22640 (monotonicity (trans @x23444 (monotonicity @x23445 (= ?x22553 ?x10078)) (= ?x10137 ?x10078)) (= ?x22514 ?x21175)))) +(let (($x22526 (not $x22515))) (let (($x22522 (= $x10138 $x22515))) -(let (($x22487 (or $x22002 $x22522))) -(let ((@x22492 ((_ quant-inst (b_S_idx$ ?x10078 0 b_T_T_u1$) b_T_T_u1$) $x22487))) -(let ((@x22511 (unit-resolution (def-axiom (or (not $x22522) $x10138 $x22932)) (hypothesis $x15502) (or (not $x22522) $x22932)))) -(let ((@x22873 (unit-resolution (unit-resolution @x22511 (unit-resolution @x22492 @x19833 $x22522) $x22932) @x22875 false))) -(let ((@x22876 (lemma @x22873 $x10138))) -(let ((@x24016 (unit-resolution (def-axiom (or $x20131 $x15502 $x15505 $x20125)) (unit-resolution (def-axiom (or $x22603 $x10139)) @x22760 $x10139) @x22876 @x24008 $x20125))) +(let (($x19828 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(! (let ((?x6636 (b_S_typ$ ?v0))) +(let (($x7865 (= ?x6636 ?v1))) +(let (($x9596 (b_S_is$ ?v0 ?v1))) +(= $x9596 $x7865)))) :pattern ( (b_S_is$ ?v0 ?v1) ) :qid k!623)) +)) +(let (($x9617 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(! (let ((?x6636 (b_S_typ$ ?v0))) +(let (($x7865 (= ?x6636 ?v1))) +(let (($x9596 (b_S_is$ ?v0 ?v1))) +(= $x9596 $x7865)))) :qid k!623)) +)) +(let ((?x6636 (b_S_typ$ ?1))) +(let (($x7865 (= ?x6636 ?0))) +(let (($x9596 (b_S_is$ ?1 ?0))) +(let (($x9614 (= $x9596 $x7865))) +(let (($x9611 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(! (let ((?x6636 (b_S_typ$ ?v0))) +(let (($x7865 (= ?x6636 ?v1))) +(let (($x9596 (b_S_is$ ?v0 ?v1))) +(= $x9596 $x7865)))) :qid k!623)) +)) +(let ((@x9622 (mp (asserted $x9611) (quant-intro (rewrite (= (= $x9596 $x7865) $x9614)) (= $x9611 $x9617)) $x9617))) +(let ((@x19833 (mp (mp~ @x9622 (nnf-pos (refl (~ $x9614 $x9614)) (~ $x9617 $x9617)) $x9617) (quant-intro (refl (= $x9614 $x9614)) (= $x9617 $x19828)) $x19828))) +(let (($x22002 (not $x19828))) +(let (($x22619 (or $x22002 $x22522))) +(let ((@x22534 ((_ quant-inst (b_S_idx$ ?x10078 0 b_T_T_u1$) b_T_T_u1$) $x22619))) +(let ((@x22471 (unit-resolution (def-axiom (or (not $x22522) $x10138 $x22526)) (hypothesis $x15502) (or (not $x22522) $x22526)))) +(let ((@x22636 (unit-resolution (unit-resolution @x22471 (unit-resolution @x22534 @x19833 $x22522) $x22526) (trans @x22640 (unit-resolution @x21182 @x19846 $x21176) $x22515) false))) +(let ((@x23411 (lemma @x22636 $x10138))) +(let ((@x23982 (unit-resolution (def-axiom (or $x20131 $x15502 $x15505 $x20125)) @x23411 @x24003 (or $x15505 $x20125)))) +(let ((@x23983 (unit-resolution @x23982 (unit-resolution (def-axiom (or $x22603 $x10139)) (lemma @x24453 $x22604) $x10139) $x20125))) +(let ((?x22805 (b_S_ts_n_emb$ ?x22478))) +(let ((?x22433 (b_S_owner$ v_b_S_s$ ?x22805))) +(let (($x22451 (= ?x22433 b_S_me$))) +(let ((?x22485 (b_S_ref$ ?x10137))) +(let ((?x22505 (b_S_ptr$ b_T_T_u1$ ?x22485))) +(let (($x22506 (= ?x10137 ?x22505))) +(let (($x24124 (or $x21994 $x15502 $x22506))) +(let ((@x24271 (mp ((_ quant-inst (b_S_idx$ ?x10078 0 b_T_T_u1$) b_T_T_u1$) (or $x21994 (or $x15502 $x22506))) (rewrite (= (or $x21994 (or $x15502 $x22506)) $x24124)) $x24124))) +(let ((@x23969 (unit-resolution @x24271 @x15336 @x23411 $x22506))) +(let ((?x23622 (b_S_ref$ ?x21983))) +(let ((?x23636 (b_S_ptr$ b_T_T_u1$ ?x23622))) +(let ((?x23613 (b_S_idx$ ?x21983 0 b_T_T_u1$))) +(let (($x23639 (= ?x23613 ?x23636))) +(let (($x23642 (not $x23639))) +(let (($x23614 (b_S_extent_n_hint$ ?x23613 ?x21983))) +(let (($x23621 (not $x23614))) +(let (($x23645 (or $x23621 $x23642))) +(let (($x23648 (not $x23645))) +(let (($x23651 (or $x22568 $x23648))) +(let (($x23628 (not (or $x23621 (not (= ?x23613 (b_S_ptr$ b_T_T_u1$ (+ ?x23622 ?x22537)))))))) +(let (($x23646 (= (or $x23621 (not (= ?x23613 (b_S_ptr$ b_T_T_u1$ (+ ?x23622 ?x22537))))) $x23645))) +(let ((@x22545 (rewrite (= ?x22537 0)))) +(let ((@x23635 (trans (monotonicity @x22545 (= (+ ?x23622 ?x22537) (+ ?x23622 0))) (rewrite (= (+ ?x23622 0) ?x23622)) (= (+ ?x23622 ?x22537) ?x23622)))) +(let ((@x23641 (monotonicity (monotonicity @x23635 (= (b_S_ptr$ b_T_T_u1$ (+ ?x23622 ?x22537)) ?x23636)) (= (= ?x23613 (b_S_ptr$ b_T_T_u1$ (+ ?x23622 ?x22537))) $x23639)))) +(let ((@x23644 (monotonicity @x23641 (= (not (= ?x23613 (b_S_ptr$ b_T_T_u1$ (+ ?x23622 ?x22537)))) $x23642)))) +(let ((@x23655 (monotonicity (monotonicity (monotonicity @x23644 $x23646) (= $x23628 $x23648)) (= (or $x22568 $x23628) $x23651)))) +(let ((@x23659 (mp ((_ quant-inst (b_S_ptr$ ?x10076 ?x21014) 0 b_T_T_u1$) (or $x22568 $x23628)) (trans @x23655 (rewrite (= $x23651 $x23651)) (= (or $x22568 $x23628) $x23651)) $x23651))) +(let ((@x23663 (def-axiom (or $x23645 $x23639)))) +(let ((@x24001 (unit-resolution @x23663 (lemma (unit-resolution @x23659 @x18183 (hypothesis $x23645) false) $x23648) $x23639))) +(let ((?x23546 (b_S_idx$ ?x22595 0 b_T_T_u1$))) +(let ((?x23547 (b_S_select_o_tm$ ?x10272 ?x23546))) +(let ((?x23548 (b_S_ts_n_emb$ ?x23547))) +(let (($x23549 (= ?x23548 ?x22595))) +(let (($x23554 (b_S_typed$ v_b_S_s$ ?x23546))) +(let (($x23555 (not $x23554))) +(let (($x23551 (b_S_ts_n_is_n_volatile$ ?x23547))) +(let (($x23550 (not $x23549))) +(let (($x23556 (or $x23550 $x23551 (not (b_S_ts_n_is_n_array_n_elt$ ?x23547)) $x23555))) +(let (($x23557 (not $x23556))) +(let (($x23538 (b_S_typed$ v_b_S_s$ ?x22595))) +(let ((@x23606 (mp @x12045 (symm (monotonicity @x23680 (= $x23538 $x10085)) (= $x10085 $x23538)) $x23538))) +(let ((@x23608 (lemma (unit-resolution (hypothesis (not $x23538)) @x23606 false) $x23538))) +(let (($x17964 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(! (let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x6897 (b_S_typemap$ ?v0))) +(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) +(let (($x17952 (or (not (= (b_S_ts_n_emb$ ?x6899) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) (b_S_ts_n_is_n_volatile$ ?x6899) (not $x6904) (not $x6905)))) +(let (($x17953 (not $x17952))) +(let (($x4862 (>= (+ ?v4 (* (- 1) ?v3)) 0))) +(let (($x2815 (>= ?v4 0))) +(let (($x3763 (not $x2815))) +(or (not (b_S_typed$ ?v0 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) $x3763 $x4862 $x17953)))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :qid k!493)) +)) +(let (($x6943 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(! (let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x6897 (b_S_typemap$ ?v0))) +(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) +(let ((?x6894 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) +(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) +(let (($x6937 (and $x6901 (not (b_S_ts_n_is_n_volatile$ ?x6899)) $x6904 $x6905))) +(let (($x4862 (>= (+ ?v4 (* (- 1) ?v3)) 0))) +(let (($x6603 (not $x4862))) +(let (($x2815 (>= ?v4 0))) +(let (($x6895 (b_S_typed$ ?v0 ?x6894))) +(let (($x6929 (and $x6895 $x2815 $x6603))) +(let (($x6934 (not $x6929))) +(or $x6934 $x6937)))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :qid k!493)) +)) +(let (($x6905 (b_S_typed$ ?4 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2)))) +(let ((?x6897 (b_S_typemap$ ?4))) +(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2)))) +(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) +(let (($x17952 (or (not (= (b_S_ts_n_emb$ ?x6899) (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) (b_S_ts_n_is_n_volatile$ ?x6899) (not $x6904) (not $x6905)))) +(let (($x17953 (not $x17952))) +(let (($x4862 (>= (+ ?0 (* (- 1) ?1)) 0))) +(let (($x17959 (or (not (b_S_typed$ ?4 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) $x3763 $x4862 $x17953))) +(let ((?x6894 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) +(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) +(let (($x6937 (and $x6901 (not (b_S_ts_n_is_n_volatile$ ?x6899)) $x6904 $x6905))) +(let (($x6603 (not $x4862))) +(let (($x6895 (b_S_typed$ ?4 ?x6894))) +(let (($x6929 (and $x6895 $x2815 $x6603))) +(let (($x6934 (not $x6929))) +(let (($x6940 (or $x6934 $x6937))) +(let (($x17938 (or (not $x6895) $x3763 $x4862))) +(let ((@x17944 (monotonicity (rewrite (= $x6929 (not $x17938))) (= $x6934 (not (not $x17938)))))) +(let ((@x17958 (monotonicity (trans @x17944 (rewrite (= (not (not $x17938)) $x17938)) (= $x6934 $x17938)) (rewrite (= $x6937 $x17953)) (= $x6940 (or $x17938 $x17953))))) +(let ((@x17966 (quant-intro (trans @x17958 (rewrite (= (or $x17938 $x17953) $x17959)) (= $x6940 $x17959)) (= $x6943 $x17964)))) +(let (($x6917 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(! (let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x6897 (b_S_typemap$ ?v0))) +(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) +(let ((?x6894 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) +(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) +(let (($x6908 (and $x6901 (and (not (b_S_ts_n_is_n_volatile$ ?x6899)) (and $x6904 $x6905))))) +(let (($x2766 (<= 0 ?v4))) +(let (($x6566 (and $x2766 (< ?v4 ?v3)))) +(let (($x6895 (b_S_typed$ ?v0 ?x6894))) +(let (($x6896 (and $x6895 $x6566))) +(=> $x6896 $x6908)))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :qid k!493)) +)) +(let (($x6923 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(! (let (($x6905 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x6897 (b_S_typemap$ ?v0))) +(let ((?x6899 (b_S_select_o_tm$ ?x6897 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x6904 (b_S_ts_n_is_n_array_n_elt$ ?x6899))) +(let ((?x6894 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) +(let (($x6901 (= (b_S_ts_n_emb$ ?x6899) ?x6894))) +(let (($x6908 (and $x6901 (and (not (b_S_ts_n_is_n_volatile$ ?x6899)) (and $x6904 $x6905))))) +(let (($x2766 (<= 0 ?v4))) +(let (($x6566 (and $x2766 (< ?v4 ?v3)))) +(let (($x6895 (b_S_typed$ ?v0 ?x6894))) +(let (($x6896 (and $x6895 $x6566))) +(or (not $x6896) $x6908)))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :qid k!493)) +)) +(let (($x6908 (and $x6901 (and (not (b_S_ts_n_is_n_volatile$ ?x6899)) (and $x6904 $x6905))))) +(let (($x6920 (or (not (and $x6895 (and $x2766 (< ?0 ?1)))) $x6908))) +(let (($x6566 (and $x2766 (< ?0 ?1)))) +(let (($x6896 (and $x6895 $x6566))) +(let ((@x6608 (monotonicity @x2814 (rewrite (= (< ?0 ?1) $x6603)) (= $x6566 (and $x2815 $x6603))))) +(let ((@x6933 (trans (monotonicity @x6608 (= $x6896 (and $x6895 (and $x2815 $x6603)))) (rewrite (= (and $x6895 (and $x2815 $x6603)) $x6929)) (= $x6896 $x6929)))) +(let ((@x6942 (monotonicity (monotonicity @x6933 (= (not $x6896) $x6934)) (rewrite (= $x6908 $x6937)) (= $x6920 $x6940)))) +(let ((@x6947 (trans (quant-intro (rewrite (= (=> $x6896 $x6908) $x6920)) (= $x6917 $x6923)) (quant-intro @x6942 (= $x6923 $x6943)) (= $x6917 $x6943)))) +(let ((@x14355 (mp~ (mp (asserted $x6917) @x6947 $x6943) (nnf-pos (refl (~ $x6940 $x6940)) (~ $x6943 $x6943)) $x6943))) +(let ((@x17967 (mp @x14355 @x17966 $x17964))) +(let (($x23539 (not $x23538))) +(let (($x23587 (not $x17964))) +(let (($x23588 (or $x23587 $x23539 $x11259 $x23557))) +(let (($x23558 (or $x23539 $x22599 $x22601 $x23557))) +(let (($x23589 (or $x23587 $x23558))) +(let ((@x23586 (trans (monotonicity @x22711 @x22706 (= $x23558 (or $x23539 false $x11259 $x23557))) (rewrite (= (or $x23539 false $x11259 $x23557) (or $x23539 $x11259 $x23557))) (= $x23558 (or $x23539 $x11259 $x23557))))) +(let ((@x23610 (trans (monotonicity @x23586 (= $x23589 (or $x23587 (or $x23539 $x11259 $x23557)))) (rewrite (= (or $x23587 (or $x23539 $x11259 $x23557)) $x23588)) (= $x23589 $x23588)))) +(let ((@x23661 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ 0) $x23589) @x23610 $x23588) @x17967 @x12041 @x23608 (hypothesis $x23556) false))) +(let ((@x23442 (hypothesis $x22506))) +(let ((@x23451 (symm @x23444 (= ?x22553 ?x10137)))) +(let ((@x23449 (monotonicity (symm @x23445 (= v_b_P_H_arr$ ?x10079)) (= ?x10078 ?x22553)))) +(let (($x21186 (= ?x21014 ?x10079))) +(let (($x21191 (or $x21152 $x21186))) +(let ((@x21192 ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ ?x10078)) $x21191))) +(let ((@x23674 (trans (monotonicity @x23670 (= ?x23622 ?x21014)) (unit-resolution @x21192 @x19840 $x21186) (= ?x23622 ?x10079)))) +(let ((@x23682 (trans @x23680 (unit-resolution @x22000 @x15336 @x12044 $x21990) (= ?x22595 ?x21983)))) +(let ((@x23781 (trans (monotonicity @x23682 (= ?x23546 ?x23613)) (hypothesis $x23639) (= ?x23546 ?x23636)))) +(let ((@x23782 (trans @x23781 (monotonicity (trans @x23674 @x23445 (= ?x23622 v_b_P_H_arr$)) (= ?x23636 ?x10078)) (= ?x23546 ?x10078)))) +(let ((@x23785 (trans (trans (trans @x23782 @x23449 (= ?x23546 ?x22553)) @x23451 (= ?x23546 ?x10137)) @x23442 (= ?x23546 ?x22505)))) +(let ((@x23787 (symm (monotonicity @x23785 (= ?x23547 (b_S_select_o_tm$ ?x10272 ?x22505))) (= (b_S_select_o_tm$ ?x10272 ?x22505) ?x23547)))) +(let ((@x23788 (monotonicity @x23787 (= (b_S_ts_n_emb$ (b_S_select_o_tm$ ?x10272 ?x22505)) ?x23548)))) +(let ((@x23704 (monotonicity (monotonicity @x23442 (= ?x22478 (b_S_select_o_tm$ ?x10272 ?x22505))) (= ?x22805 (b_S_ts_n_emb$ (b_S_select_o_tm$ ?x10272 ?x22505)))))) +(let ((@x23790 (trans (trans @x23704 @x23788 (= ?x22805 ?x23548)) (unit-resolution (def-axiom (or $x23556 $x23549)) (lemma @x23661 $x23557) $x23549) (= ?x22805 ?x22595)))) +(let ((@x23794 (trans (monotonicity (trans @x23790 @x23680 (= ?x22805 ?x10080)) (= ?x22433 ?x10082)) @x12043 $x22451))) +(let ((@x23797 (lemma (unit-resolution (hypothesis (not $x22451)) @x23794 false) (or $x23642 $x22451 (not $x22506))))) +(let ((@x24045 (unit-resolution (unit-resolution @x23797 @x24001 (or $x22451 (not $x22506))) @x23969 $x22451))) +(let ((?x22806 (b_S_typ$ ?x22805))) +(let ((?x22809 (b_S_kind_n_of$ ?x22806))) +(let (($x22810 (= ?x22809 b_S_kind_n_primitive$))) +(let (($x22807 (not $x22810))) +(let ((?x22655 (b_S_select_o_tm$ ?x10272 ?x22505))) +(let ((?x22658 (b_S_ts_n_emb$ ?x22655))) +(let ((?x22663 (b_S_typ$ ?x22658))) +(let ((?x22664 (b_S_kind_n_of$ ?x22663))) +(let (($x22665 (= ?x22664 b_S_kind_n_primitive$))) +(let ((@x22763 (monotonicity (monotonicity (symm @x23704 (= ?x22658 ?x22805)) (= ?x22663 ?x22806)) (= ?x22664 ?x22809)))) +(let (($x22767 (not (or $x22665 (not (b_S_is_n_non_n_primitive$ ?x22663)))))) +(let (($x19234 (forall ((?v0 B_S_type_n_state$) )(! (let (($x9543 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$))) +(let (($x19230 (or $x9543 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))))))) +(not $x19230))) :pattern ( (b_S_ts_n_emb$ ?v0) ) :qid k!618)) +)) +(let (($x9548 (forall ((?v0 B_S_type_n_state$) )(! (let (($x9543 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$))) +(and (not $x9543) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))))) :pattern ( (b_S_ts_n_emb$ ?v0) ) :qid k!618)) +)) +(let (($x9543 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?0))) b_S_kind_n_primitive$))) +(let (($x19230 (or $x9543 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0))))))) +(let (($x9546 (and (not $x9543) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0)))))) +(let ((@x15316 (mp~ (asserted $x9548) (nnf-pos (refl (~ $x9546 $x9546)) (~ $x9548 $x9548)) $x9548))) +(let ((@x19237 (mp @x15316 (quant-intro (rewrite (= $x9546 (not $x19230))) (= $x9548 $x19234)) $x19234))) +(let ((@x23507 (def-axiom (or (or $x22665 (not (b_S_is_n_non_n_primitive$ ?x22663))) (not $x22665))))) +(let ((@x23501 (unit-resolution @x23507 (unit-resolution ((_ quant-inst (b_S_select_o_tm$ ?x10272 ?x22505)) (or (not $x19234) $x22767)) @x19237 $x22767) (not $x22665)))) +(let ((@x23573 (lemma (unit-resolution @x23501 (trans @x22763 (hypothesis $x22810) $x22665) false) (or $x22807 (not $x22506))))) +(let (($x22432 (not (or (not $x22602) (not (b_S_closed$ v_b_S_s$ ?x22805)))))) +(let (($x22436 (= (b_S_kind_n_of$ ?x22514) b_S_kind_n_primitive$))) +(let (($x22427 (not $x22436))) +(let (($x22455 (or $x22427 $x22432 $x22810 (not (or $x22451 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x22805)))))) +(let (($x22447 (or (= (b_S_owner$ v_b_S_s$ ?x10137) b_S_me$) (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x10137)))) +(let (($x22456 (not $x22455))) +(let (($x22463 (not (or $x22456 (not (or $x22436 (not $x22447))))))) +(let (($x22464 (or $x15505 $x22463))) +(let (($x22465 (not $x22464))) +(let (($x22466 (= $x10141 $x22465))) +(let (($x19072 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x2484 (b_S_owner$ ?v0 ?v1))) +(let (($x2486 (= ?x2484 b_S_me$))) +(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let ((?x2769 (b_S_typemap$ ?v0))) +(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) +(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) +(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) +(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) +(let (($x9023 (not $x9022))) +(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) +(let (($x2294 (not $x2249))) +(let (($x19047 (or $x2294 (not $x9027) (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$) (not $x9035)))) +(let (($x19056 (or (not $x19047) (not (or $x2249 (not (or $x2486 $x9039))))))) +(let (($x2488 (b_S_typed$ ?v0 ?v1))) +(let (($x9531 (not $x2488))) +(let (($x19064 (not (or $x9531 (not $x19056))))) +(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x9019 $x19064))))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ) :qid k!583)) +)) +(let (($x9066 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x2484 (b_S_owner$ ?v0 ?v1))) +(let (($x2486 (= ?x2484 b_S_me$))) +(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let (($x2294 (not $x2249))) +(let (($x9041 (and $x2294 (or $x2486 $x9039)))) +(let ((?x2769 (b_S_typemap$ ?v0))) +(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) +(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) +(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) +(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) +(let (($x9023 (not $x9022))) +(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) +(let (($x9054 (and $x2249 $x9027 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) +(let (($x9057 (or $x9054 $x9041))) +(let (($x2488 (b_S_typed$ ?v0 ?v1))) +(let (($x9060 (and $x2488 $x9057))) +(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x9019 $x9060))))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ) :qid k!583)) +)) +(let ((?x2769 (b_S_typemap$ ?1))) +(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?0))) +(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) +(let (($x9035 (or (= (b_S_owner$ ?1 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?1 ?x9024)))) +(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) +(let (($x9023 (not $x9022))) +(let (($x9027 (or $x9023 (not (b_S_closed$ ?1 ?x9024))))) +(let (($x19047 (or $x2294 (not $x9027) (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$) (not $x9035)))) +(let (($x19056 (or (not $x19047) (not (or $x2249 (not (or $x2486 (b_S_in_n_wrapped_n_domain$ ?1 ?0)))))))) +(let (($x19064 (not (or $x9531 (not $x19056))))) +(let (($x9019 (b_S_thread_n_local$ ?1 ?0))) +(let (($x9041 (and $x2294 (or $x2486 (b_S_in_n_wrapped_n_domain$ ?1 ?0))))) +(let (($x9054 (and $x2249 $x9027 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) +(let (($x9057 (or $x9054 $x9041))) +(let (($x9060 (and $x2488 $x9057))) +(let (($x9063 (= $x9019 $x9060))) +(let (($x19054 (= $x9041 (not (or $x2249 (not (or $x2486 (b_S_in_n_wrapped_n_domain$ ?1 ?0)))))))) +(let ((@x19058 (monotonicity (rewrite (= $x9054 (not $x19047))) (rewrite $x19054) (= $x9057 $x19056)))) +(let ((@x19068 (trans (monotonicity @x19058 (= $x9060 (and $x2488 $x19056))) (rewrite (= (and $x2488 $x19056) $x19064)) (= $x9060 $x19064)))) +(let ((@x19074 (quant-intro (monotonicity @x19068 (= $x9063 (= $x9019 $x19064))) (= $x9066 $x19072)))) +(let (($x9046 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x2484 (b_S_owner$ ?v0 ?v1))) +(let (($x2486 (= ?x2484 b_S_me$))) +(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let (($x2294 (not $x2249))) +(let (($x9041 (and $x2294 (or $x2486 $x9039)))) +(let ((?x2769 (b_S_typemap$ ?v0))) +(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) +(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) +(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) +(let (($x9036 (and (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) +(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) +(let (($x9023 (not $x9022))) +(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) +(let (($x2488 (b_S_typed$ ?v0 ?v1))) +(let (($x9043 (and $x2488 (or (and $x2249 (and $x9027 $x9036)) $x9041)))) +(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x9019 $x9043)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ) :qid k!583)) +)) +(let (($x9051 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(! (let (($x9039 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x2484 (b_S_owner$ ?v0 ?v1))) +(let (($x2486 (= ?x2484 b_S_me$))) +(let (($x2249 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let (($x2294 (not $x2249))) +(let (($x9041 (and $x2294 (or $x2486 $x9039)))) +(let ((?x2769 (b_S_typemap$ ?v0))) +(let ((?x9020 (b_S_select_o_tm$ ?x2769 ?v1))) +(let ((?x9024 (b_S_ts_n_emb$ ?x9020))) +(let (($x9035 (or (= (b_S_owner$ ?v0 ?x9024) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x9024)))) +(let (($x9036 (and (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) +(let (($x9022 (b_S_ts_n_is_n_volatile$ ?x9020))) +(let (($x9023 (not $x9022))) +(let (($x9027 (or $x9023 (not (b_S_closed$ ?v0 ?x9024))))) +(let (($x2488 (b_S_typed$ ?v0 ?v1))) +(let (($x9043 (and $x2488 (or (and $x2249 (and $x9027 $x9036)) $x9041)))) +(let (($x9019 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x9019 $x9043)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ) :qid k!583)) +)) +(let (($x9036 (and (not (= (b_S_kind_n_of$ (b_S_typ$ ?x9024)) b_S_kind_n_primitive$)) $x9035))) +(let (($x9043 (and $x2488 (or (and $x2249 (and $x9027 $x9036)) $x9041)))) +(let (($x9048 (= $x9019 $x9043))) +(let ((@x9059 (monotonicity (rewrite (= (and $x2249 (and $x9027 $x9036)) $x9054)) (= (or (and $x2249 (and $x9027 $x9036)) $x9041) $x9057)))) +(let ((@x9068 (quant-intro (monotonicity (monotonicity @x9059 (= $x9043 $x9060)) (= $x9048 $x9063)) (= $x9051 $x9066)))) +(let ((@x9070 (trans (quant-intro (rewrite (= (= $x9019 $x9043) $x9048)) (= $x9046 $x9051)) @x9068 (= $x9046 $x9066)))) +(let ((@x15111 (mp~ (mp (asserted $x9046) @x9070 $x9066) (nnf-pos (refl (~ $x9063 $x9063)) (~ $x9066 $x9066)) $x9066))) +(let ((@x19075 (mp @x15111 @x19074 $x19072))) +(let ((@x22884 (unit-resolution (def-axiom (or (not $x22466) $x10141 $x22464)) (hypothesis $x15511) (or (not $x22466) $x22464)))) +(let ((@x22831 (unit-resolution @x22884 (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_idx$ ?x10078 0 b_T_T_u1$)) (or (not $x19072) $x22466)) @x19075 $x22466) $x22464))) +(let ((@x23475 (unit-resolution (def-axiom (or $x22465 $x15505 $x22463)) (hypothesis $x10139) (or $x22465 $x22463)))) +(let ((@x22517 (unit-resolution (def-axiom (or (or $x22456 (not (or $x22436 (not $x22447)))) $x22455)) (unit-resolution @x23475 @x22831 $x22463) $x22455))) +(let ((?x21472 (b_S_kind_n_of$ b_T_T_u1$))) +(let (($x21473 (= ?x21472 b_S_kind_n_primitive$))) +(let (($x21480 (= $x9768 $x21473))) +(let (($x9891 (forall ((?v0 B_S_ctype$) )(! (let ((?x9849 (b_S_kind_n_of$ ?v0))) +(let (($x9883 (= ?x9849 b_S_kind_n_primitive$))) +(let (($x2704 (b_S_is_n_primitive$ ?v0))) +(= $x2704 $x9883)))) :pattern ( (b_S_is_n_primitive$ ?v0) ) :qid k!664)) +)) +(let (($x9883 (= ?x9849 b_S_kind_n_primitive$))) +(let (($x9888 (= $x2704 $x9883))) +(let (($x9886 (forall ((?v0 B_S_ctype$) )(! (let ((?x9849 (b_S_kind_n_of$ ?v0))) +(let (($x9883 (= ?x9849 b_S_kind_n_primitive$))) +(let (($x2704 (b_S_is_n_primitive$ ?v0))) +(= $x2704 $x9883)))) :pattern ( (b_S_is_n_primitive$ ?v0) ) :qid k!664)) +)) +(let ((@x9896 (mp (asserted $x9886) (quant-intro (rewrite (= (= $x2704 $x9883) $x9888)) (= $x9886 $x9891)) $x9891))) +(let ((@x15456 (mp~ @x9896 (nnf-pos (refl (~ $x9888 $x9888)) (~ $x9891 $x9891)) $x9891))) +(let (($x21224 (not $x9891))) +(let (($x21483 (or $x21224 $x21480))) +(let ((@x21484 ((_ quant-inst b_T_T_u1$) $x21483))) +(let ((@x22996 (unit-resolution (def-axiom (or (not $x21480) $x21489 $x21473)) @x9769 (or (not $x21480) $x21473)))) +(let ((@x22988 (unit-resolution (def-axiom (or (not $x22522) $x15502 $x22515)) @x23411 (or (not $x22522) $x22515)))) +(let ((@x22744 (monotonicity (unit-resolution @x22988 (unit-resolution @x22534 @x19833 $x22522) $x22515) (= (b_S_kind_n_of$ ?x22514) ?x21472)))) +(let ((@x23400 (trans @x22744 (unit-resolution @x22996 (unit-resolution @x21484 @x15456 $x21480) $x21473) $x22436))) +(let (($x22453 (or $x22451 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x22805)))) +(let ((@x23008 (unit-resolution (def-axiom (or $x22453 (not $x22451))) (hypothesis $x22451) $x22453))) +(let ((@x23085 (unit-resolution (def-axiom (or $x22456 $x22427 $x22432 $x22810 (not $x22453))) (hypothesis $x22807) @x23008 (or $x22456 $x22427 $x22432)))) +(let ((@x22334 (def-axiom (or (or (not $x22602) (not (b_S_closed$ v_b_S_s$ ?x22805))) $x22602)))) +(let ((@x23029 (unit-resolution (def-axiom (or $x22603 (not $x22602))) (unit-resolution @x22334 (unit-resolution @x23085 @x23400 @x22517 $x22432) $x22602) $x22603))) +(let ((@x23005 (unit-resolution (unit-resolution @x22512 @x18948 $x22366) (unit-resolution @x23561 (mp (hypothesis $x10136) @x23563 $x22317) @x22990 $x22318) $x22365))) +(let ((@x23505 (unit-resolution @x23490 @x18670 @x9769 @x12041 @x12050 (mp (unit-resolution @x22487 @x23005 $x22344) @x23502 $x22596) @x23029 false))) +(let ((@x24068 (unit-resolution (lemma @x23505 (or $x11221 $x22810 $x15505 $x10141 (not $x22451))) @x22508 (or $x22810 $x15505 $x10141 (not $x22451))))) +(let ((@x24055 (unit-resolution @x24068 (unit-resolution @x23573 @x23969 $x22807) (unit-resolution (def-axiom (or $x22603 $x10139)) (lemma @x24453 $x22604) $x10139) @x24045 $x10141))) +(let ((@x24059 (unit-resolution (def-axiom (or $x20119 $x15502 $x15511 $x20113)) @x23411 (or $x20119 $x15511 $x20113)))) +(let ((@x23997 (unit-resolution @x24059 @x24055 (unit-resolution (def-axiom (or $x20122 $x20116)) @x23983 $x20116) $x20113))) +(let ((@x23272 (mp (hypothesis $x10145) (symm (commutativity (= $x10167 $x10145)) (= $x10145 $x10167)) $x10167))) +(let ((@x24048 (unit-resolution (lemma (unit-resolution (hypothesis $x15548) @x23272 false) (or $x19724 $x10167)) (unit-resolution (def-axiom (or $x20110 $x10145)) @x23997 $x10145) $x10167))) +(let ((@x24123 (unit-resolution (def-axiom (or $x20107 $x11385 $x20101)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x11259 $x11382)) @x12041 $x11382) (or $x20107 $x20101)))) +(let ((@x24138 (unit-resolution @x24123 (unit-resolution (def-axiom (or $x20110 $x20104)) @x23997 $x20104) $x20101))) (let ((?x22963 (* (- 1) ?x10144))) (let ((?x22964 (+ v_b_L_H_max_G_0$ ?x22963))) (let (($x22965 (>= ?x22964 0))) -(let ((@x20962 (def-axiom (or $x20119 $x15502 $x15511 $x20113)))) -(let ((@x22988 (unit-resolution @x20962 (hypothesis $x10138) (hypothesis $x10141) (hypothesis $x20116) $x20113))) -(let ((@x20944 (def-axiom (or $x20110 $x10145)))) -(let ((@x23016 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x19724 $x22965)) (unit-resolution @x20944 @x22988 $x10145) $x22965))) -(let (($x22455 (or $x21994 $x15502 $x22506))) -(let ((@x22447 (mp ((_ quant-inst (b_S_idx$ ?x10078 0 b_T_T_u1$) b_T_T_u1$) (or $x21994 (or $x15502 $x22506))) (rewrite (= (or $x21994 (or $x15502 $x22506)) $x22455)) $x22455))) -(let ((@x23003 (monotonicity ((_ th-lemma arith eq-propagate 0 0) (hypothesis $x15523) (hypothesis (not $x15525)) (= ?v0!13 0)) (= ?x15529 ?x10137)))) -(let ((@x23005 (trans @x23003 (unit-resolution @x22447 @x15336 (hypothesis $x10138) $x22506) (= ?x15529 ?x22505)))) -(let (($x23008 (or (not (= ?x15530 (b_S_read_n_u1$ v_b_S_s$ ?x22505))) (<= (+ ?x15530 (* (- 1) (b_S_read_n_u1$ v_b_S_s$ ?x22505))) 0)))) -(let ((@x23010 (unit-resolution ((_ th-lemma arith triangle-eq) $x23008) (monotonicity @x23005 (= ?x15530 (b_S_read_n_u1$ v_b_S_s$ ?x22505))) (<= (+ ?x15530 (* (- 1) (b_S_read_n_u1$ v_b_S_s$ ?x22505))) 0)))) -(let ((?x22685 (b_S_read_n_u1$ v_b_S_s$ ?x22505))) -(let ((?x22773 (* (- 1) ?x22685))) -(let ((?x22835 (+ ?x10144 ?x22773))) -(let (($x22839 (>= ?x22835 0))) -(let (($x22834 (= ?x10144 ?x22685))) -(let ((@x23011 (symm (unit-resolution @x22447 @x15336 (hypothesis $x10138) $x22506) (= ?x22505 ?x10137)))) -(let ((@x23020 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x22834) $x22839)) (symm (monotonicity @x23011 (= ?x22685 ?x10144)) $x22834) $x22839))) -(let ((@x23023 (lemma ((_ th-lemma arith farkas 1 -1 -1 1) @x23020 @x23010 (hypothesis $x20589) @x23016 false) (or $x15502 $x15533 $x19297 $x15525 $x15511 $x20119)))) -(let ((@x24012 (unit-resolution @x23023 @x22876 (unit-resolution (def-axiom (or $x20122 $x20116)) @x24016 $x20116) (or $x15533 $x19297 $x15525 $x15511)))) -(let ((@x24203 (unit-resolution (unit-resolution @x24012 @x23403 (or $x15533 $x19297 $x15525)) (unit-resolution (def-axiom (or $x19313 (not $x15525))) @x23991 (not $x15525)) (unit-resolution (def-axiom (or $x19313 $x15523)) @x23991 $x15523) (unit-resolution (def-axiom (or $x19313 $x20589)) @x23991 $x20589) false))) -(let ((@x24417 (unit-resolution @x20962 @x22876 (unit-resolution (def-axiom (or $x20122 $x20116)) @x24016 $x20116) (or $x15511 $x20113)))) -(let ((@x24506 (unit-resolution (def-axiom (or $x20110 $x20104)) (unit-resolution @x24417 @x23403 $x20113) $x20104))) -(let ((@x24507 (unit-resolution (def-axiom (or $x20107 $x11385 $x20101)) (lemma ((_ th-lemma arith farkas 1 1) @x12041 (hypothesis $x11385) false) $x11382) @x24506 $x20101))) -(let ((@x24462 (unit-resolution (def-axiom (or $x20095 $x19318 $x20089)) (unit-resolution (def-axiom (or $x20098 $x20092)) @x24507 $x20092) $x20092))) -(let ((@x24496 (unit-resolution (def-axiom (or $x20086 $x20080)) (unit-resolution @x24462 (lemma @x24203 $x19313) $x20089) $x20080))) -(let ((@x24578 (mp (unit-resolution @x20944 (unit-resolution @x24417 @x23403 $x20113) $x10145) (symm (commutativity (= $x10167 $x10145)) (= $x10145 $x10167)) $x10167))) -(let ((@x24580 (unit-resolution (def-axiom (or $x20083 $x11259 $x15548 $x20077)) @x12041 (or $x20083 $x15548 $x20077)))) -(let ((@x24583 (unit-resolution (unit-resolution @x24580 @x24578 (or $x20083 $x20077)) @x24496 $x20077))) -(let ((@x24576 (unit-resolution (def-axiom (or $x20074 $x11901)) @x24583 $x11901))) -(let ((@x24314 (unit-resolution (def-axiom (or $x20074 $x10192)) @x24583 $x10192))) -(let ((@x24415 (unit-resolution (def-axiom (or $x20074 $x11868)) @x24583 $x11868))) -(let ((@x24499 (unit-resolution (def-axiom (or $x20074 $x19898)) @x24583 $x19898))) -(let (($x23168 (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!15)) 0))) -(let (($x23092 (<= (+ v_b_L_H_max_G_1$ (* (- 1) v_b_S_result_G_0$)) 0))) +(let ((@x24119 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x19724 $x22965)) (unit-resolution (def-axiom (or $x20110 $x10145)) @x23997 $x10145) $x22965))) +(let ((@x24012 (hypothesis $x19318))) +(let ((@x24017 ((_ th-lemma arith eq-propagate 0 0) (unit-resolution (def-axiom (or $x19313 $x15523)) @x24012 $x15523) (unit-resolution (def-axiom (or $x19313 (not $x15525))) @x24012 (not $x15525)) (= ?v0!13 0)))) +(let ((@x24022 (symm (monotonicity (monotonicity @x24017 (= ?x15529 ?x10137)) (= ?x15530 ?x10144)) (= ?x10144 ?x15530)))) +(let ((@x24026 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x10144 ?x15530)) (>= (+ ?x10144 ?x15531) 0))) @x24022 (>= (+ ?x10144 ?x15531) 0)))) +(let ((@x24027 ((_ th-lemma arith farkas 1 -1 1) @x24026 (unit-resolution (def-axiom (or $x19313 (not $x15533))) @x24012 (not $x15533)) (hypothesis $x22965) false))) +(let ((@x24121 (unit-resolution (def-axiom (or $x20095 $x19318 $x20089)) (unit-resolution (lemma @x24027 (or $x19313 (not $x22965))) @x24119 $x19313) (unit-resolution (def-axiom (or $x20098 $x20092)) @x24138 $x20092) $x20089))) +(let ((@x24141 (unit-resolution (def-axiom (or $x20083 $x11259 $x15548 $x20077)) @x12041 (or $x20083 $x15548 $x20077)))) +(let ((@x24113 (unit-resolution @x24141 (unit-resolution (def-axiom (or $x20086 $x20080)) @x24121 $x20080) @x24048 $x20077))) +(let ((@x24140 (unit-resolution (def-axiom (or $x20074 $x11901)) @x24113 $x11901))) (let (($x23088 (= v_b_L_H_max_G_1$ v_b_S_result_G_0$))) (let ((@x9231 (asserted b_S_position_n_marker$))) -(let ((@x23318 (unit-resolution (unit-resolution (def-axiom (or $x20059 $x15729 $x20053)) @x9231 (or $x20059 $x20053)) (unit-resolution (def-axiom (or $x20062 $x20056)) (hypothesis $x20065) $x20056) $x20053))) -(let ((@x23324 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x23088) $x23092)) (symm (unit-resolution (def-axiom (or $x20050 $x10222)) @x23318 $x10222) $x23088) $x23092))) -(let (($x20801 (not $x16031))) -(let ((@x23175 (hypothesis $x10192))) +(let ((@x23316 (unit-resolution (unit-resolution (def-axiom (or $x20059 $x15729 $x20053)) @x9231 (or $x20059 $x20053)) (unit-resolution (def-axiom (or $x20062 $x20056)) (hypothesis $x20065) $x20056) $x20053))) +(let (($x23320 (or (not $x23088) (<= (+ v_b_L_H_max_G_1$ (* (- 1) v_b_S_result_G_0$)) 0)))) +(let ((@x23322 (unit-resolution ((_ th-lemma arith triangle-eq) $x23320) (symm (unit-resolution (def-axiom (or $x20050 $x10222)) @x23316 $x10222) $x23088) (<= (+ v_b_L_H_max_G_1$ (* (- 1) v_b_S_result_G_0$)) 0)))) (let ((@x23180 (hypothesis $x11868))) +(let ((@x23177 (trans (hypothesis $x10192) (symm (hypothesis $x10222) $x23088) (= ?x10191 v_b_S_result_G_0$)))) (let (($x23140 (not (= ?x10191 v_b_S_result_G_0$)))) (let (($x23145 (or $x20035 $x19501 $x19669 $x11867 $x23140))) -(let (($x23036 (>= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_P_H_len$)) 0))) +(let (($x23036 (>= (+ v_b_SL_H_witness_G_0$ ?x11246) 0))) (let (($x23141 (or $x19501 $x19669 $x23036 $x23140))) (let (($x23146 (or $x20035 $x23141))) -(let (($x23046 (= (>= (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$) 0) $x11867))) -(let (($x23044 (= $x23036 (>= (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$) 0)))) -(let (($x23041 (= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$)))) -(let ((@x23049 (trans (monotonicity (rewrite $x23041) $x23044) (rewrite $x23046) (= $x23036 $x11867)))) +(let ((@x23042 (rewrite (= (+ v_b_SL_H_witness_G_0$ ?x11246) (+ ?x11246 v_b_SL_H_witness_G_0$))))) +(let ((@x23045 (monotonicity @x23042 (= $x23036 (>= (+ ?x11246 v_b_SL_H_witness_G_0$) 0))))) +(let ((@x23049 (trans @x23045 (rewrite (= (>= (+ ?x11246 v_b_SL_H_witness_G_0$) 0) $x11867)) (= $x23036 $x11867)))) (let ((@x23150 (monotonicity (monotonicity @x23049 (= $x23141 (or $x19501 $x19669 $x11867 $x23140))) (= $x23146 (or $x20035 (or $x19501 $x19669 $x11867 $x23140)))))) (let ((@x23154 (trans @x23150 (rewrite (= (or $x20035 (or $x19501 $x19669 $x11867 $x23140)) $x23145)) (= $x23146 $x23145)))) -(let ((@x23182 (unit-resolution (mp ((_ quant-inst v_b_SL_H_witness_G_0$) $x23146) @x23154 $x23145) (hypothesis $x13315) @x23180 (hypothesis $x11432) (hypothesis $x20030) (trans @x23175 (symm (hypothesis $x10222) $x23088) (= ?x10191 v_b_S_result_G_0$)) false))) -(let ((@x23326 (unit-resolution (lemma @x23182 (or $x20035 $x19669 $x11867 $x19501 $x19674 $x19640)) (unit-resolution (def-axiom (or $x20050 $x10222)) @x23318 $x10222) @x23180 (hypothesis $x11432) @x23175 (hypothesis $x13315) $x20035))) -(let ((@x23328 (unit-resolution (def-axiom (or $x20047 $x19580 $x20041)) (unit-resolution (def-axiom (or $x20038 $x20030)) @x23326 $x20038) (unit-resolution (def-axiom (or $x20050 $x20044)) @x23318 $x20044) $x19580))) -(let ((@x23308 ((_ th-lemma arith farkas -1 1 1) (hypothesis (>= (+ v_b_L_H_max_G_1$ ?x16029) 0)) (hypothesis $x20801) (hypothesis $x23092) false))) -(let ((@x23312 (lemma @x23308 (or (not (>= (+ v_b_L_H_max_G_1$ ?x16029) 0)) $x16031 (not $x23092))))) -(let ((@x23330 (unit-resolution @x23312 (unit-resolution (def-axiom (or $x19575 $x20801)) @x23328 $x20801) @x23324 (not (>= (+ v_b_L_H_max_G_1$ ?x16029) 0))))) +(let ((@x23182 (unit-resolution (mp ((_ quant-inst v_b_SL_H_witness_G_0$) $x23146) @x23154 $x23145) (hypothesis $x13315) @x23180 (hypothesis $x11432) (hypothesis $x20030) @x23177 false))) +(let ((@x23324 (unit-resolution (lemma @x23182 (or $x20035 $x19669 $x11867 $x19501 $x19674 $x19640)) (unit-resolution (def-axiom (or $x20050 $x10222)) @x23316 $x10222) @x23180 (hypothesis $x11432) (hypothesis $x10192) (hypothesis $x13315) $x20035))) +(let ((@x23326 (unit-resolution (def-axiom (or $x20047 $x19580 $x20041)) (unit-resolution (def-axiom (or $x20038 $x20030)) @x23324 $x20038) (unit-resolution (def-axiom (or $x20050 $x20044)) @x23316 $x20044) $x19580))) +(let (($x23188 (>= (+ v_b_L_H_max_G_1$ ?x16029) 0))) +(let (($x23310 (or (not (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!15)) 0)) $x16009 $x11487))) +(let ((@x23308 ((_ th-lemma arith farkas -1 1 1) (hypothesis $x16014) (hypothesis (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!15)) 0)) (hypothesis $x11486) false))) +(let ((@x23330 (unit-resolution (lemma @x23308 $x23310) (unit-resolution (def-axiom (or $x19575 $x16014)) @x23326 $x16014) (unit-resolution (def-axiom (or $x20062 $x11486)) (hypothesis $x20065) $x11486) (not (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!15)) 0))))) (let ((@x23333 (hypothesis $x19898))) -(let (($x23188 (>= (+ v_b_L_H_max_G_1$ ?x16029) 0))) +(let (($x23168 (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!15)) 0))) (let (($x23196 (or $x19903 $x19559 $x19560 $x23168 $x23188))) (let (($x23134 (<= (+ ?x15744 (* (- 1) v_b_L_H_max_G_1$)) 0))) (let (($x23114 (>= (+ ?v0!15 ?x11484) 0))) @@ -2706,268 +2612,314 @@ (let ((@x23171 (trans @x23166 (rewrite (= (>= (+ ?x11484 ?v0!15) 0) $x23168)) (= $x23114 $x23168)))) (let ((@x23201 (monotonicity (monotonicity @x23171 @x23192 (= $x23135 (or $x19559 $x19560 $x23168 $x23188))) (= $x23197 (or $x19903 (or $x19559 $x19560 $x23168 $x23188)))))) (let ((@x23205 (trans @x23201 (rewrite (= (or $x19903 (or $x19559 $x19560 $x23168 $x23188)) $x23196)) (= $x23197 $x23196)))) -(let ((@x23335 (unit-resolution (mp ((_ quant-inst ?v0!15) $x23197) @x23205 $x23196) @x23333 (unit-resolution (def-axiom (or $x19575 $x15736)) @x23328 $x15736) (unit-resolution (def-axiom (or $x19575 $x15737)) @x23328 $x15737) (or $x23168 $x23188)))) -(let ((@x23338 ((_ th-lemma arith farkas -1 1 1) (unit-resolution (def-axiom (or $x19575 $x16014)) @x23328 $x16014) (unit-resolution @x23335 @x23330 $x23168) (unit-resolution (def-axiom (or $x20062 $x11486)) (hypothesis $x20065) $x11486) false))) -(let ((@x24500 (unit-resolution (lemma @x23338 (or $x20062 $x19903 $x11867 $x19501 $x19674 $x19669)) @x24499 @x24415 (unit-resolution (def-axiom (or $x20074 $x11432)) @x24583 $x11432) @x24314 (unit-resolution (def-axiom (or $x20074 $x13315)) @x24583 $x13315) $x20062))) -(let ((@x24502 (unit-resolution (def-axiom (or $x20071 $x20019 $x20065)) (unit-resolution (def-axiom (or $x20074 $x20068)) @x24583 $x20068) @x24500 $x20019))) -(let ((@x24656 (unit-resolution (def-axiom (or $x20016 $x11487)) @x24502 $x11487))) -(let ((@x24896 (mp @x22691 (symm (monotonicity @x24532 (= $x22596 $x22344)) (= $x22344 $x22596)) $x22596))) -(let ((@x23420 (hypothesis $x11487))) -(let (($x23378 (or $x22629 $x19677 $x21489 $x22597 $x19670 $x11486 $x23363))) -(let (($x23360 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_P_H_len$)) 0))) -(let (($x23364 (or $x19677 $x21489 $x22597 $x19670 $x23360 $x23363))) -(let (($x23379 (or $x22629 $x23364))) -(let ((@x23372 (rewrite (= (>= (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$) 0) $x11486)))) -(let (($x23366 (= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$)))) -(let ((@x23370 (monotonicity (rewrite $x23366) (= $x23360 (>= (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$) 0))))) -(let ((@x23377 (monotonicity (trans @x23370 @x23372 (= $x23360 $x11486)) (= $x23364 (or $x19677 $x21489 $x22597 $x19670 $x11486 $x23363))))) -(let ((@x23383 (monotonicity @x23377 (= $x23379 (or $x22629 (or $x19677 $x21489 $x22597 $x19670 $x11486 $x23363)))))) -(let ((@x23387 (trans @x23383 (rewrite (= (or $x22629 (or $x19677 $x21489 $x22597 $x19670 $x11486 $x23363)) $x23378)) (= $x23379 $x23378)))) -(let ((@x23388 (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x10076 ?x21014) v_b_P_H_len$ v_b_L_H_p_G_0$ b_T_T_u1$) $x23379) @x23387 $x23378))) -(let ((@x23422 (unit-resolution @x23388 @x18670 @x9769 @x12050 (hypothesis $x11901) @x23420 (hypothesis $x22596) (hypothesis $x23362) false))) -(let ((@x24759 (unit-resolution (lemma @x23422 (or $x23363 $x19670 $x11486 $x22597)) @x24896 (or $x23363 $x19670 $x11486)))) -(let ((@x24697 (unit-resolution (def-axiom (or $x23362 $x23297)) (unit-resolution @x24759 @x24656 @x24576 $x23363) $x23297))) -(let (($x23782 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x24218))) -(let ((?x23727 (b_S_owner$ v_b_S_s$ ?x24218))) -(let (($x23776 (= ?x23727 b_S_me$))) -(let (($x23785 (or $x23776 $x23782))) -(let (($x24475 (not $x23785))) -(let ((?x23804 (b_S_typ$ ?x24218))) -(let ((?x23768 (b_S_kind_n_of$ ?x23804))) -(let (($x23769 (= ?x23768 b_S_kind_n_primitive$))) -(let (($x23803 (not $x23797))) -(let (($x24099 (not $x24098))) -(let (($x24476 (or $x24099 $x23803 $x23769 $x24475))) -(let (($x24604 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x23228))) -(let (($x24478 (= (b_S_owner$ v_b_S_s$ ?x23228) b_S_me$))) -(let (($x24602 (or $x24478 $x24604))) -(let (($x24797 (not $x24602))) -(let (($x24820 (or $x24098 $x24797))) -(let (($x24655 (not $x24820))) -(let (($x24474 (not $x24476))) -(let (($x24912 (or $x24474 $x24655))) -(let (($x24913 (not $x24912))) -(let (($x24209 (b_S_typed$ v_b_S_s$ ?x23228))) -(let (($x24210 (not $x24209))) -(let (($x24931 (or $x24210 $x24913))) -(let (($x24932 (not $x24931))) -(let (($x23783 (b_S_thread_n_local$ v_b_S_s$ ?x23228))) -(let (($x24934 (= $x23783 $x24932))) -(let (($x24622 (or (not $x19072) $x24934))) -(let ((@x24172 ((_ quant-inst v_b_S_s$ (b_S_ptr$ b_T_T_u1$ ?x23404)) $x24622))) -(let (($x24628 (not $x23783))) -(let ((@x24670 (monotonicity (symm (monotonicity @x25262 (= $x23783 $x10324)) (= $x10324 $x23783)) (= $x15599 $x24628)))) -(let ((@x24708 (unit-resolution (def-axiom (or (not $x24934) $x23783 $x24931)) (mp (hypothesis $x15599) @x24670 $x24628) (unit-resolution @x24172 @x19075 $x24934) $x24931))) -(let ((@x24785 (unit-resolution (def-axiom (or $x23362 $x10322)) (unit-resolution @x24759 @x24656 @x24576 $x23363) $x10322))) -(let ((@x24710 (mp @x24785 (symm (monotonicity @x25262 (= $x24209 $x10322)) (= $x10322 $x24209)) $x24209))) -(let ((@x24724 (unit-resolution (def-axiom (or $x24912 $x24476)) (unit-resolution (def-axiom (or $x24932 $x24210 $x24913)) @x24710 @x24708 $x24913) $x24476))) -(let ((?x24320 (b_S_idx$ ?x22595 v_b_L_H_p_G_0$ b_T_T_u1$))) -(let ((?x24321 (b_S_select_o_tm$ ?x10272 ?x24320))) -(let ((?x24322 (b_S_ts_n_emb$ ?x24321))) -(let (($x24323 (= ?x24322 ?x22595))) -(let (($x24328 (b_S_typed$ v_b_S_s$ ?x24320))) -(let (($x24329 (not $x24328))) -(let (($x24325 (b_S_ts_n_is_n_volatile$ ?x24321))) -(let (($x24324 (not $x24323))) -(let (($x24330 (or $x24324 $x24325 (not (b_S_ts_n_is_n_array_n_elt$ ?x24321)) $x24329))) -(let (($x24331 (not $x24330))) -(let (($x25071 (or $x23252 $x24241 $x19670 $x11486 $x24331))) -(let (($x24332 (or $x24241 $x19670 $x23360 $x24331))) -(let (($x25072 (or $x23252 $x24332))) -(let ((@x25070 (monotonicity (trans @x23370 @x23372 (= $x23360 $x11486)) (= $x24332 (or $x24241 $x19670 $x11486 $x24331))))) -(let ((@x25080 (trans (monotonicity @x25070 (= $x25072 (or $x23252 (or $x24241 $x19670 $x11486 $x24331)))) (rewrite (= (or $x23252 (or $x24241 $x19670 $x11486 $x24331)) $x25071)) (= $x25072 $x25071)))) -(let ((@x25137 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ v_b_L_H_p_G_0$) $x25072) @x25080 $x25071) @x17967 @x24576 @x24656 @x24355 (hypothesis $x24330) false))) -(let ((@x25083 (def-axiom (or $x24330 $x24323)))) -(let ((?x24315 (b_S_ref$ ?x24198))) -(let ((?x24367 (* (- 1) ?x24315))) -(let ((?x24368 (+ ?x10079 ?x23278 ?x24367))) -(let (($x24402 (<= ?x24368 0))) -(let (($x24365 (= ?x24368 0))) -(let (($x24384 (or $x21152 $x24365))) -(let ((@x24394 (monotonicity (rewrite (= (= ?x24315 ?x24174) $x24365)) (= (or $x21152 (= ?x24315 ?x24174)) $x24384)))) -(let ((@x24404 (trans @x24394 (rewrite (= $x24384 $x24384)) (= (or $x21152 (= ?x24315 ?x24174)) $x24384)))) -(let ((@x24403 (mp ((_ quant-inst b_T_T_u1$ (+ ?x10079 ?x23278)) (or $x21152 (= ?x24315 ?x24174))) @x24404 $x24384))) -(let ((@x25241 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x24365) $x24402)) (unit-resolution @x24403 @x19840 $x24365) $x24402))) -(let (($x24407 (>= ?x24368 0))) -(let ((@x25244 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x24365) $x24407)) (unit-resolution @x24403 @x19840 $x24365) $x24407))) -(let ((?x24925 (+ ?x23278 ?x24419))) -(let (($x25226 (= ?x24174 ?x24925))) -(let ((?x25227 (* (- 1) ?x24925))) -(let ((?x25228 (+ ?x24174 ?x25227))) -(let (($x25229 (<= ?x25228 0))) -(let ((?x24127 (* (- 1) ?x21014))) -(let ((?x23641 (+ ?x10079 ?x24127))) -(let (($x24104 (<= ?x23641 0))) -(let ((@x25085 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x10079 ?x21014)) $x24104)) (symm (unit-resolution @x21192 @x19840 $x21186) (= ?x10079 ?x21014)) $x24104))) -(let ((?x25173 (* (- 1) ?x24419))) -(let ((?x25174 (+ ?x21014 ?x25173))) -(let (($x25175 (<= ?x25174 0))) -(let ((@x25090 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21014 ?x24419)) $x25175)) (symm (monotonicity @x24520 (= ?x24419 ?x21014)) (= ?x21014 ?x24419)) $x25175))) -(let ((@x25103 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x25229 (not $x24104) (not $x25175))) @x25090 @x25085 $x25229))) -(let (($x25230 (>= ?x25228 0))) -(let (($x23809 (>= ?x23641 0))) -(let ((@x25106 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x10079 ?x21014)) $x23809)) (symm (unit-resolution @x21192 @x19840 $x21186) (= ?x10079 ?x21014)) $x23809))) -(let (($x25176 (>= ?x25174 0))) -(let ((@x25109 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21014 ?x24419)) $x25176)) (symm (monotonicity @x24520 (= ?x24419 ?x21014)) (= ?x21014 ?x24419)) $x25176))) -(let ((@x25098 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x25230 (not $x23809) (not $x25176))) @x25109 @x25106 $x25230))) -(let ((@x25111 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x25226 (not $x25229) (not $x25230))) @x25098 @x25103 (hypothesis (not $x25226)) false))) -(let ((@x25182 (trans (symm (lemma @x25111 $x25226) (= ?x24925 ?x24174)) ((_ th-lemma arith eq-propagate -1 -1) @x25244 @x25241 (= ?x24174 ?x24315)) (= ?x24925 ?x24315)))) -(let ((@x25183 (trans @x25182 (monotonicity (symm @x24341 (= ?x24198 ?x10320)) (= ?x24315 ?x23404)) (= ?x24925 ?x23404)))) -(let ((?x24930 (b_S_ptr$ b_T_T_u1$ ?x24925))) -(let ((?x24463 (b_S_idx$ ?x21983 v_b_L_H_p_G_0$ b_T_T_u1$))) -(let (($x25146 (= ?x24463 ?x24930))) -(let (($x25152 (or (not (b_S_extent_n_hint$ ?x24463 ?x21983)) (not $x25146)))) -(let (($x25155 (not $x25152))) -(let (($x25158 (or $x22568 $x25155))) -(let (($x24469 (not (= ?x24463 (b_S_ptr$ b_T_T_u1$ (+ ?x24419 (* v_b_L_H_p_G_0$ ?x10045))))))) -(let (($x24471 (not (or (not (b_S_extent_n_hint$ ?x24463 ?x21983)) $x24469)))) -(let (($x25147 (= (= ?x24463 (b_S_ptr$ b_T_T_u1$ (+ ?x24419 (* v_b_L_H_p_G_0$ ?x10045)))) $x25146))) -(let ((@x25139 (monotonicity (rewrite (= (* v_b_L_H_p_G_0$ ?x10045) ?x23278)) (= (+ ?x24419 (* v_b_L_H_p_G_0$ ?x10045)) (+ ?x24419 ?x23278))))) -(let ((@x25143 (trans @x25139 (rewrite (= (+ ?x24419 ?x23278) ?x24925)) (= (+ ?x24419 (* v_b_L_H_p_G_0$ ?x10045)) ?x24925)))) -(let ((@x25145 (monotonicity @x25143 (= (b_S_ptr$ b_T_T_u1$ (+ ?x24419 (* v_b_L_H_p_G_0$ ?x10045))) ?x24930)))) -(let ((@x25154 (monotonicity (monotonicity (monotonicity @x25145 $x25147) (= $x24469 (not $x25146))) (= (or (not (b_S_extent_n_hint$ ?x24463 ?x21983)) $x24469) $x25152)))) -(let ((@x25162 (monotonicity (monotonicity @x25154 (= $x24471 $x25155)) (= (or $x22568 $x24471) $x25158)))) -(let ((@x25166 (mp ((_ quant-inst (b_S_ptr$ ?x10076 ?x21014) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x22568 $x24471)) (trans @x25162 (rewrite (= $x25158 $x25158)) (= (or $x22568 $x24471) $x25158)) $x25158))) -(let ((@x25257 (unit-resolution (def-axiom (or $x25152 $x25146)) (unit-resolution @x25166 @x18183 $x25155) $x25146))) -(let ((@x25185 (trans (trans (monotonicity @x24532 (= ?x24320 ?x24463)) @x25257 (= ?x24320 ?x24930)) (monotonicity @x25183 (= ?x24930 ?x23228)) (= ?x24320 ?x23228)))) -(let ((@x25217 (symm (monotonicity (trans @x25185 @x25262 (= ?x24320 ?x10320)) (= ?x24321 ?x23124)) (= ?x23124 ?x24321)))) -(let ((@x25274 (monotonicity (monotonicity @x25262 (= ?x24217 ?x23124)) (= ?x24218 (b_S_ts_n_emb$ ?x23124))))) -(let ((@x25219 (trans @x25274 (monotonicity @x25217 (= (b_S_ts_n_emb$ ?x23124) ?x24322)) (= ?x24218 ?x24322)))) -(let ((@x25221 (trans (trans @x25219 (hypothesis $x24323) (= ?x24218 ?x22595)) @x24530 (= ?x24218 ?x10080)))) -(let ((@x25293 (unit-resolution (hypothesis (not $x23776)) (trans (monotonicity @x25221 (= ?x23727 ?x10082)) @x12043 $x23776) false))) -(let ((@x24057 (unit-resolution (lemma @x25293 (or $x24324 $x23776)) (unit-resolution @x25083 (lemma @x25137 $x24331) $x24323) $x23776))) -(let ((?x23443 (b_S_ts_n_emb$ ?x23124))) -(let ((?x23448 (b_S_typ$ ?x23443))) -(let ((?x23449 (b_S_kind_n_of$ ?x23448))) -(let (($x23450 (= ?x23449 b_S_kind_n_primitive$))) -(let ((@x24651 (monotonicity (monotonicity (symm @x25274 (= ?x23443 ?x24218)) (= ?x23448 ?x23804)) (= ?x23449 ?x23768)))) -(let (($x23598 (b_S_is_n_non_n_primitive$ ?x23448))) -(let (($x23599 (not $x23598))) -(let (($x23602 (or $x23450 $x23599))) -(let (($x23603 (not $x23602))) -(let (($x24666 (or (not $x19234) $x23603))) -(let ((@x24626 ((_ quant-inst (b_S_select_o_tm$ ?x10272 ?x10320)) $x24666))) -(let ((@x24965 (unit-resolution (def-axiom (or $x23602 (not $x23450))) (unit-resolution @x24626 @x19237 $x23603) (not $x23450)))) -(let ((@x24645 (lemma (unit-resolution @x24965 (trans @x24651 (hypothesis $x23769) $x23450) false) (not $x23769)))) -(let ((@x24718 (unit-resolution (def-axiom (or $x24474 $x24099 $x23803 $x23769 $x24475)) @x24645 (unit-resolution (def-axiom (or $x23785 (not $x23776))) @x24057 $x23785) (or $x24474 $x24099 $x23803)))) -(let ((@x24717 (unit-resolution @x24718 @x24724 (unit-resolution (def-axiom (or $x23797 $x23805)) (mp @x24697 @x24701 $x23770) $x23797) @x24696 false))) +(let ((@x23335 (unit-resolution (mp ((_ quant-inst ?v0!15) $x23197) @x23205 $x23196) @x23333 (unit-resolution (def-axiom (or $x19575 $x15736)) @x23326 $x15736) (unit-resolution (def-axiom (or $x19575 $x15737)) @x23326 $x15737) (or $x23168 $x23188)))) +(let ((@x23337 ((_ th-lemma arith farkas -1 1 1) (unit-resolution @x23335 @x23330 $x23188) (unit-resolution (def-axiom (or $x19575 (not $x16031))) @x23326 (not $x16031)) @x23322 false))) +(let ((@x24129 (unit-resolution (lemma @x23337 (or $x20062 $x19903 $x11867 $x19501 $x19674 $x19669)) (unit-resolution (def-axiom (or $x20074 $x19898)) @x24113 $x19898) (unit-resolution (def-axiom (or $x20074 $x11868)) @x24113 $x11868) (unit-resolution (def-axiom (or $x20074 $x11432)) @x24113 $x11432) (unit-resolution (def-axiom (or $x20074 $x10192)) @x24113 $x10192) (unit-resolution (def-axiom (or $x20074 $x13315)) @x24113 $x13315) $x20062))) +(let ((@x20858 (def-axiom (or $x20071 $x20019 $x20065)))) +(let ((@x24135 (unit-resolution @x20858 (unit-resolution (def-axiom (or $x20074 $x20068)) @x24113 $x20068) @x24129 $x20019))) +(let ((@x24136 (unit-resolution (def-axiom (or $x20016 $x11487)) @x24135 $x11487))) +(let ((@x23427 (hypothesis $x11487))) +(let (($x24307 (or $x23587 $x23539 $x19670 $x11486 $x24616))) +(let (($x23367 (>= (+ v_b_L_H_p_G_0$ ?x11246) 0))) +(let (($x24617 (or $x23539 $x19670 $x23367 $x24616))) +(let (($x24303 (or $x23587 $x24617))) +(let ((@x23377 (monotonicity (rewrite (= (+ v_b_L_H_p_G_0$ ?x11246) (+ ?x11246 v_b_L_H_p_G_0$))) (= $x23367 (>= (+ ?x11246 v_b_L_H_p_G_0$) 0))))) +(let ((@x23381 (trans @x23377 (rewrite (= (>= (+ ?x11246 v_b_L_H_p_G_0$) 0) $x11486)) (= $x23367 $x11486)))) +(let ((@x24641 (monotonicity (monotonicity @x23381 (= $x24617 (or $x23539 $x19670 $x11486 $x24616))) (= $x24303 (or $x23587 (or $x23539 $x19670 $x11486 $x24616)))))) +(let ((@x24645 (trans @x24641 (rewrite (= (or $x23587 (or $x23539 $x19670 $x11486 $x24616)) $x24307)) (= $x24303 $x24307)))) +(let ((@x24637 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ v_b_L_H_p_G_0$) $x24303) @x24645 $x24307) @x17967 (hypothesis $x11901) @x23427 @x23608 (hypothesis $x24615) false))) +(let ((@x24149 (unit-resolution (def-axiom (or $x24615 $x24606)) (unit-resolution (lemma @x24637 (or $x24616 $x19670 $x11486)) @x24136 @x24140 $x24616) $x24606))) +(let ((?x24147 (b_S_ref$ ?x10320))) +(let ((?x24169 (b_S_ptr$ b_T_T_u1$ ?x24147))) +(let ((?x24320 (b_S_select_o_tm$ ?x10272 ?x24169))) +(let ((?x24323 (b_S_ts_n_emb$ ?x24320))) +(let ((?x24331 (b_S_owner$ v_b_S_s$ ?x24323))) +(let (($x24332 (= ?x24331 b_S_me$))) +(let (($x24385 (not $x24332))) +(let ((?x23162 (b_S_select_o_tm$ ?x10272 ?x10320))) +(let (($x23368 (b_S_ts_n_is_n_volatile$ ?x23162))) +(let (($x23369 (or $x15593 $x23368))) +(let (($x23370 (not $x23369))) +(let (($x23385 (or $x22629 $x19677 $x21489 $x22597 $x19670 $x11486 $x23370))) +(let (($x23371 (or $x19677 $x21489 $x22597 $x19670 $x23367 $x23370))) +(let (($x23386 (or $x22629 $x23371))) +(let ((@x23390 (monotonicity (monotonicity @x23381 (= $x23371 (or $x19677 $x21489 $x22597 $x19670 $x11486 $x23370))) (= $x23386 (or $x22629 (or $x19677 $x21489 $x22597 $x19670 $x11486 $x23370)))))) +(let ((@x23394 (trans @x23390 (rewrite (= (or $x22629 (or $x19677 $x21489 $x22597 $x19670 $x11486 $x23370)) $x23385)) (= $x23386 $x23385)))) +(let ((@x23429 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x10076 ?x21014) v_b_P_H_len$ v_b_L_H_p_G_0$ b_T_T_u1$) $x23386) @x23394 $x23385) @x18670 @x9769 @x12050 (hypothesis $x11901) @x23427 (hypothesis $x22596) (hypothesis $x23369) false))) +(let ((@x24150 (unit-resolution (lemma @x23429 (or $x23370 $x19670 $x11486 $x22597)) (mp (unit-resolution @x22487 @x24112 $x22344) @x23502 $x22596) (or $x23370 $x19670 $x11486)))) +(let ((@x24176 (unit-resolution (def-axiom (or $x23369 $x10322)) (unit-resolution @x24150 @x24136 @x24140 $x23370) $x10322))) +(let ((?x23294 (b_S_typ$ ?x10320))) +(let (($x23295 (= ?x23294 b_T_T_u1$))) +(let ((?x23287 (* ?x10045 v_b_L_H_p_G_0$))) +(let ((?x22911 (b_S_ref$ ?x22505))) +(let ((?x23291 (+ ?x22911 ?x23287))) +(let ((?x23296 (b_S_ptr$ b_T_T_u1$ ?x23291))) +(let ((?x23403 (b_S_typ$ ?x23296))) +(let (($x23404 (= ?x23403 b_T_T_u1$))) +(let ((?x23276 (b_S_idx$ ?x22505 v_b_L_H_p_G_0$ b_T_T_u1$))) +(let (($x23115 (= ?x23276 ?x23296))) +(let (($x23222 (or (not (b_S_extent_n_hint$ ?x23276 ?x22505)) (not $x23115)))) +(let (($x23225 (not $x23222))) +(let (($x23355 (or $x22568 $x23225))) +(let (($x23293 (not (= ?x23276 (b_S_ptr$ b_T_T_u1$ (+ ?x22911 (* v_b_L_H_p_G_0$ ?x10045))))))) +(let (($x23289 (not (or (not (b_S_extent_n_hint$ ?x23276 ?x22505)) $x23293)))) +(let (($x23129 (= (= ?x23276 (b_S_ptr$ b_T_T_u1$ (+ ?x22911 (* v_b_L_H_p_G_0$ ?x10045)))) $x23115))) +(let ((@x23250 (rewrite (= (* v_b_L_H_p_G_0$ ?x10045) ?x23287)))) +(let ((@x23130 (monotonicity (monotonicity @x23250 (= (+ ?x22911 (* v_b_L_H_p_G_0$ ?x10045)) ?x23291)) (= (b_S_ptr$ b_T_T_u1$ (+ ?x22911 (* v_b_L_H_p_G_0$ ?x10045))) ?x23296)))) +(let ((@x23224 (monotonicity (monotonicity (monotonicity @x23130 $x23129) (= $x23293 (not $x23115))) (= (or (not (b_S_extent_n_hint$ ?x23276 ?x22505)) $x23293) $x23222)))) +(let ((@x23359 (monotonicity (monotonicity @x23224 (= $x23289 $x23225)) (= (or $x22568 $x23289) $x23355)))) +(let ((@x23348 (mp ((_ quant-inst (b_S_ptr$ b_T_T_u1$ ?x22485) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x22568 $x23289)) (trans @x23359 (rewrite (= $x23355 $x23355)) (= (or $x22568 $x23289) $x23355)) $x23355))) +(let ((@x23441 (unit-resolution (def-axiom (or $x23222 $x23115)) (unit-resolution @x23348 @x18183 $x23225) $x23115))) +(let ((@x23457 (monotonicity (trans (trans @x23449 @x23451 (= ?x10078 ?x10137)) @x23442 (= ?x10078 ?x22505)) (= ?x10320 ?x23276)))) +(let ((@x23462 (trans (monotonicity (trans @x23457 @x23441 (= ?x10320 ?x23296)) (= ?x23294 ?x23403)) (unit-resolution ((_ quant-inst b_T_T_u1$ (+ ?x22911 ?x23287)) (or $x21147 $x23404)) @x19846 $x23404) $x23295))) +(let (($x23298 (not $x23295))) +(let (($x23297 (= $x10321 $x23295))) +(let ((@x23437 (unit-resolution (def-axiom (or (not $x23297) $x10321 $x23298)) (hypothesis $x15590) (or (not $x23297) $x23298)))) +(let ((@x23438 (unit-resolution @x23437 (unit-resolution ((_ quant-inst (b_S_idx$ ?x10078 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or $x22002 $x23297)) @x19833 $x23297) $x23298))) +(let ((@x24166 (unit-resolution (lemma (unit-resolution @x23438 @x23462 false) (or $x10321 (not $x22506))) @x23969 $x10321))) +(let (($x23397 (not $x23368))) +(let ((@x24155 (unit-resolution (def-axiom (or $x23369 $x23397)) (unit-resolution @x24150 @x24136 @x24140 $x23370) $x23397))) +(let (($x13277 (<= v_b_P_H_len$ 4294967295))) +(let ((@x13276 (monotonicity (monotonicity @x6446 (= (+ b_S_max_o_u4$ ?x11246) (+ 4294967295 ?x11246))) (= $x11245 (>= (+ 4294967295 ?x11246) 0))))) +(let ((@x13281 (trans @x13276 (rewrite (= (>= (+ 4294967295 ?x11246) 0) $x13277)) (= $x11245 $x13277)))) +(let ((@x13282 (mp (and-elim @x12033 $x11245) @x13281 $x13277))) +(let ((@x24996 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x13353 (not $x13277) $x11486)) @x13282 (or $x13353 $x11486)))) +(let ((@x24971 (hypothesis $x11570))) +(let ((@x25230 (hypothesis $x10322))) +(let ((@x24666 (hypothesis $x10321))) +(let ((@x25234 (unit-resolution @x20858 (unit-resolution (def-axiom (or $x20074 $x20068)) (hypothesis $x20077) $x20068) (unit-resolution (def-axiom (or $x20062 $x11486)) @x23427 $x20062) $x20019))) (let ((@x20784 (def-axiom (or $x20013 $x15590 $x15593 $x20007)))) -(let ((@x24630 (unit-resolution (unit-resolution @x20784 @x24345 (or $x20013 $x15593 $x20007)) @x24785 (unit-resolution (def-axiom (or $x20016 $x20010)) @x24502 $x20010) $x20007))) -(let ((@x20774 (def-axiom (or $x20004 $x19998)))) +(let ((@x25236 (unit-resolution @x20784 (unit-resolution (def-axiom (or $x20016 $x20010)) @x25234 $x20010) @x24666 @x25230 $x20007))) +(let (($x24170 (= ?x10320 ?x24169))) +(let ((@x24159 (mp ((_ quant-inst (b_S_idx$ ?x10078 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or $x21994 (or $x15590 $x24170))) (rewrite (= (or $x21994 (or $x15590 $x24170)) (or $x21994 $x15590 $x24170))) (or $x21994 $x15590 $x24170)))) +(let ((@x25240 (unit-resolution (def-axiom (or (not $x23297) $x15590 $x23295)) @x24666 (or (not $x23297) $x23295)))) +(let ((@x25241 (unit-resolution @x25240 (unit-resolution ((_ quant-inst (b_S_idx$ ?x10078 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or $x22002 $x23297)) @x19833 $x23297) $x23295))) +(let (($x24314 (b_S_typed$ v_b_S_s$ ?x24169))) +(let ((@x25244 (mp @x25230 (monotonicity (unit-resolution @x24159 @x15336 @x24666 $x24170) (= $x10322 $x24314)) $x24314))) +(let (($x24341 (or (= (b_S_owner$ v_b_S_s$ ?x24169) b_S_me$) (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x24169)))) +(let (($x24318 (= (b_S_kind_n_of$ (b_S_typ$ ?x24169)) b_S_kind_n_primitive$))) +(let (($x24330 (= (b_S_kind_n_of$ (b_S_typ$ ?x24323)) b_S_kind_n_primitive$))) +(let (($x24321 (b_S_ts_n_is_n_volatile$ ?x24320))) +(let (($x24322 (not $x24321))) +(let (($x24326 (or $x24322 (not (b_S_closed$ v_b_S_s$ ?x24323))))) +(let (($x24327 (not $x24326))) +(let (($x24319 (not $x24318))) +(let (($x24336 (or $x24319 $x24327 $x24330 (not (or $x24332 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x24323)))))) +(let (($x24337 (not $x24336))) +(let (($x24346 (not (or $x24337 (not (or $x24318 (not $x24341))))))) +(let (($x24315 (not $x24314))) +(let (($x24347 (or $x24315 $x24346))) +(let (($x24348 (not $x24347))) +(let (($x24313 (b_S_thread_n_local$ v_b_S_s$ ?x24169))) +(let (($x24349 (= $x24313 $x24348))) +(let ((@x24281 (symm (monotonicity (symm (hypothesis $x24170) (= ?x24169 ?x10320)) (= $x24313 $x10324)) (= $x10324 $x24313)))) +(let ((@x24575 (mp (hypothesis $x15599) (monotonicity @x24281 (= $x15599 (not $x24313))) (not $x24313)))) +(let ((@x24566 (unit-resolution (def-axiom (or (not $x24349) $x24313 $x24347)) @x24575 (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ b_T_T_u1$ ?x24147)) (or (not $x19072) $x24349)) @x19075 $x24349) $x24347))) +(let ((@x24590 (unit-resolution (def-axiom (or $x24348 $x24315 $x24346)) (hypothesis $x24314) (or $x24348 $x24346)))) +(let ((@x24603 (monotonicity (symm (hypothesis $x24170) (= ?x24169 ?x10320)) (= (b_S_typ$ ?x24169) ?x23294)))) +(let ((@x24647 (monotonicity (trans @x24603 (hypothesis $x23295) (= (b_S_typ$ ?x24169) b_T_T_u1$)) (= (b_S_kind_n_of$ (b_S_typ$ ?x24169)) ?x21472)))) +(let ((@x24650 (trans @x24647 (unit-resolution @x22996 (unit-resolution @x21484 @x15456 $x21480) $x21473) $x24318))) +(let ((@x24633 (monotonicity (symm (monotonicity (hypothesis $x24170) (= ?x23162 ?x24320)) (= ?x24320 ?x23162)) (= $x24321 $x23368)))) +(let ((@x24657 (mp (hypothesis $x23397) (monotonicity (symm @x24633 (= $x23368 $x24321)) (= $x23397 $x24322)) $x24322))) +(let (($x24333 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x24323))) +(let (($x24334 (or $x24332 $x24333))) +(let ((?x24328 (b_S_typ$ ?x24323))) +(let (($x24480 (b_S_is_n_non_n_primitive$ ?x24328))) +(let (($x24481 (not $x24480))) +(let (($x24364 (or $x24330 $x24481))) +(let (($x24365 (not $x24364))) +(let ((@x24467 (unit-resolution ((_ quant-inst (b_S_select_o_tm$ ?x10272 ?x24169)) (or (not $x19234) $x24365)) @x19237 (hypothesis $x24364) false))) +(let ((@x24663 (unit-resolution (def-axiom (or $x24364 (not $x24330))) (lemma @x24467 $x24365) (not $x24330)))) +(let ((@x24661 (unit-resolution (def-axiom (or $x24337 $x24319 $x24327 $x24330 (not $x24334))) @x24663 (unit-resolution (def-axiom (or $x24334 $x24385)) (hypothesis $x24332) $x24334) (or $x24337 $x24319 $x24327)))) +(let ((@x24785 (unit-resolution @x24661 (unit-resolution (def-axiom (or $x24326 $x24321)) @x24657 $x24326) @x24650 $x24337))) +(let ((@x24756 (unit-resolution (def-axiom (or (or $x24337 (not (or $x24318 (not $x24341)))) $x24336)) @x24785 (unit-resolution @x24590 @x24566 $x24346) false))) +(let ((@x25245 (unit-resolution (lemma @x24756 (or $x10324 $x24315 $x23298 (not $x24170) $x23368 $x24385)) @x25244 @x25241 (unit-resolution @x24159 @x15336 @x24666 $x24170) (hypothesis $x23397) (hypothesis $x24332) $x10324))) (let ((@x20768 (def-axiom (or $x20001 $x15590 $x15599 $x19995)))) -(let ((@x25020 (unit-resolution (unit-resolution @x20768 @x24345 (or $x20001 $x15599 $x19995)) (unit-resolution @x20774 @x24630 $x19998) (or $x15599 $x19995)))) -(let ((@x23989 (hypothesis $x19980))) -(let ((@x25004 (unit-resolution (def-axiom (or $x19959 $x15590 $x15599 $x19953)) @x24345 (or $x19959 $x15599 $x19953)))) -(let ((@x24684 (unit-resolution @x25004 (unit-resolution (def-axiom (or $x19992 $x10324)) (hypothesis $x19995) $x10324) (hypothesis $x19950) $x19959))) -(let ((@x20748 (def-axiom (or $x19989 $x19977 $x19983)))) -(let ((@x24916 (unit-resolution @x20748 (unit-resolution (def-axiom (or $x19992 $x19986)) (hypothesis $x19995) $x19986) @x23989 $x19977))) -(let ((@x20716 (def-axiom (or $x19974 $x19968)))) -(let ((@x24762 (unit-resolution (def-axiom (or $x19971 $x15590 $x15593 $x19965)) @x24345 (or $x19971 $x15593 $x19965)))) -(let ((@x24920 (unit-resolution @x24762 (unit-resolution @x20716 @x24916 $x19968) (unit-resolution (def-axiom (or $x19962 $x19956)) @x24684 $x19962) @x24785 false))) -(let ((@x24972 (unit-resolution (lemma @x24920 (or $x19992 $x19983 $x19953)) @x23989 (unit-resolution @x25020 (lemma @x24717 $x10324) $x19995) $x19953))) -(let (($x13277 (<= v_b_P_H_len$ 4294967295))) -(let (($x13272 (= (+ b_S_max_o_u4$ (* (- 1) v_b_P_H_len$)) (+ 4294967295 (* (- 1) v_b_P_H_len$))))) -(let ((@x13276 (monotonicity (monotonicity @x6446 $x13272) (= $x11245 (>= (+ 4294967295 (* (- 1) v_b_P_H_len$)) 0))))) -(let ((@x13281 (trans @x13276 (rewrite (= (>= (+ 4294967295 (* (- 1) v_b_P_H_len$)) 0) $x13277)) (= $x11245 $x13277)))) -(let ((@x13282 (mp (and-elim @x12033 $x11245) @x13281 $x13277))) -(let ((@x25068 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x13353 (not $x13277) $x11486)) @x13282 (or $x13353 $x11486)))) -(let ((@x25023 (unit-resolution (def-axiom (or $x19947 $x15611 $x15614 $x19941)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x19670 $x11570)) @x24576 $x11570) (unit-resolution @x25068 @x24656 $x13353) (or $x19947 $x19941)))) -(let ((@x25021 (unit-resolution @x25023 (unit-resolution (def-axiom (or $x19950 $x19944)) @x24972 $x19944) $x19941))) +(let ((@x25246 (unit-resolution @x20768 @x25245 @x24666 (unit-resolution (def-axiom (or $x20004 $x19998)) @x25236 $x19998) $x19995))) +(let ((@x20758 (def-axiom (or $x19992 $x19986)))) +(let ((@x20662 (def-axiom (or $x19947 $x15611 $x15614 $x19941)))) +(let ((@x24977 (unit-resolution @x20662 (unit-resolution (def-axiom (or $x19950 $x19944)) (hypothesis $x19953) $x19944) @x24971 (unit-resolution @x24996 @x23427 $x13353) $x19941))) (let ((@x20652 (def-axiom (or $x19938 $x19932)))) (let (($x20596 (>= ?x11582 (- 1)))) -(let ((@x25129 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x19452 $x20596)) (unit-resolution (def-axiom (or $x19938 $x11580)) @x25021 $x11580) $x20596))) -(let ((@x25134 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x11608 $x11486 (not $x20596))) @x24656 (or $x11608 (not $x20596))))) -(let ((@x20638 (def-axiom (or $x19935 $x11612 $x19929)))) -(let ((@x25133 (unit-resolution @x20638 (unit-resolution @x25134 @x25129 $x11608) (unit-resolution @x20652 @x25021 $x19932) $x19929))) -(let ((@x20630 (def-axiom (or $x19926 $x19920)))) -(let ((@x25121 (symm (unit-resolution (def-axiom (or $x19950 $x10338)) @x24972 $x10338) (= v_b_L_H_max_G_2$ v_b_L_H_max_G_3$)))) -(let ((@x25118 (symm (unit-resolution (def-axiom (or $x19950 $x10333)) @x24972 $x10333) (= ?x10327 v_b_L_H_max_G_2$)))) -(let ((@x25171 (monotonicity (unit-resolution (def-axiom (or $x19950 $x10340)) @x24972 $x10340) (= ?x10372 ?x10320)))) -(let ((@x25190 (trans (monotonicity @x25171 (= ?x10373 ?x10327)) @x25118 (= ?x10373 v_b_L_H_max_G_2$)))) -(let (($x24861 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_SL_H_witness_G_1$)) 0))) -(let ((@x25188 (symm (unit-resolution (def-axiom (or $x19950 $x10340)) @x24972 $x10340) (= v_b_L_H_p_G_0$ v_b_SL_H_witness_G_1$)))) -(let ((@x25200 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_L_H_p_G_0$ v_b_SL_H_witness_G_1$)) $x24861)) @x25188 $x24861))) -(let ((@x20614 (def-axiom (or $x19413 $x11647 (not $x10374))))) -(let ((@x25206 (unit-resolution @x20614 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x11648 (not $x24861) $x11486)) @x25200 @x24656 $x11648) (trans @x25190 @x25121 $x10374) $x19413))) -(let ((@x20618 (def-axiom (or $x19914 $x19412)))) -(let ((@x20626 (def-axiom (or $x19923 $x19386 $x19917)))) -(let ((@x25210 (unit-resolution @x20626 (unit-resolution @x20618 @x25206 $x19914) (unit-resolution @x20630 @x25133 $x19920) $x19386))) -(let (($x24195 (>= (+ v_b_L_H_max_G_1$ ?x15891) 0))) -(let (($x24206 (not $x24195))) +(let ((@x24640 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x19452 $x20596)) (unit-resolution (def-axiom (or $x19938 $x11580)) @x24977 $x11580) $x20596))) (let ((?x11631 (* (- 1) v_b_L_H_max_G_3$))) (let ((?x20720 (+ v_b_L_H_max_G_1$ ?x11631))) (let (($x20721 (<= ?x20720 0))) -(let (($x24870 (<= (+ ?x10327 ?x11631) 0))) -(let ((@x25195 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x10327 v_b_L_H_max_G_3$)) $x24870)) (trans @x25118 @x25121 (= ?x10327 v_b_L_H_max_G_3$)) $x24870))) -(let ((@x20758 (def-axiom (or $x19992 $x19986)))) -(let ((@x25198 (unit-resolution @x20758 (unit-resolution @x25020 (lemma @x24717 $x10324) $x19995) $x19986))) -(let ((@x25214 (unit-resolution (def-axiom (or $x19974 $x11515)) (unit-resolution @x20748 @x23989 @x25198 $x19977) $x11515))) -(let ((@x24170 (hypothesis $x20721))) -(let (($x20603 (not $x15893))) -(let ((@x24171 (hypothesis $x20603))) -(let ((@x24211 (lemma ((_ th-lemma arith farkas -1 1 1) (hypothesis $x24195) @x24171 @x24170 false) (or $x24206 $x15893 (not $x20721))))) -(let ((@x25131 (unit-resolution @x24211 (unit-resolution (def-axiom (or $x19381 $x20603)) @x25210 $x20603) (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x20721 (not $x24870) $x11516)) @x25214 @x25195 $x20721) $x24206))) +(let ((?x24669 (+ ?x10327 ?x11631))) +(let (($x24665 (<= ?x24669 0))) +(let (($x24691 (= ?x10327 v_b_L_H_max_G_3$))) +(let ((@x24748 (trans (monotonicity (hypothesis $x10338) (= $x24691 (= ?x10327 v_b_L_H_max_G_2$))) (commutativity (= (= ?x10327 v_b_L_H_max_G_2$) $x10333)) (= $x24691 $x10333)))) +(let ((@x24239 (unit-resolution (hypothesis (not $x24691)) (mp (hypothesis $x10333) (symm @x24748 (= $x10333 $x24691)) $x24691) false))) +(let ((@x24667 (unit-resolution (lemma @x24239 (or $x24691 $x19469 $x19472)) (unit-resolution (def-axiom (or $x19950 $x10333)) (hypothesis $x19953) $x10333) (unit-resolution (def-axiom (or $x19950 $x10338)) (hypothesis $x19953) $x10338) $x24691))) +(let ((@x24699 (unit-resolution @x20768 (unit-resolution (def-axiom (or $x19950 $x10324)) (hypothesis $x19953) $x10324) @x24666 (hypothesis $x19998) $x19995))) +(let (($x20719 (= v_b_L_H_max_G_1$ v_b_L_H_max_G_3$))) +(let ((@x22521 (hypothesis $x24665))) +(let (($x20722 (>= ?x20720 0))) +(let ((@x24987 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x20722 $x20721)) (hypothesis (not $x20721)) $x20722))) +(let ((@x25026 (lemma ((_ th-lemma arith farkas 1 1 1) (hypothesis $x11515) (hypothesis $x20722) @x22521 false) (or $x11516 (not $x20722) (not $x24665))))) +(let ((@x25004 (unit-resolution (def-axiom (or $x19974 $x11515)) (unit-resolution @x25026 @x24987 @x22521 $x11516) $x19974))) +(let ((@x20748 (def-axiom (or $x19989 $x19977 $x19983)))) +(let ((@x20732 (def-axiom (or $x19980 $x10391)))) +(let ((@x24978 (unit-resolution @x20732 (unit-resolution @x20748 @x25004 (hypothesis $x19986) $x19983) $x10391))) +(let ((@x25028 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x20719) $x20721)) (hypothesis (not $x20721)) (not $x20719)))) +(let ((@x24992 (unit-resolution @x25028 (mp @x24978 (symm (commutativity (= $x20719 $x10391)) (= $x10391 $x20719)) $x20719) false))) +(let ((@x24755 (unit-resolution (lemma @x24992 (or $x20721 $x19989 (not $x24665))) (unit-resolution @x20758 @x24699 $x19986) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x24691) $x24665)) @x24667 $x24665) $x20721))) +(let ((@x24801 (monotonicity (monotonicity (hypothesis $x10340) (= ?x10372 ?x10320)) (= ?x10373 ?x10327)))) +(let ((@x24798 (trans @x24801 (symm (hypothesis $x10333) (= ?x10327 v_b_L_H_max_G_2$)) (= ?x10373 v_b_L_H_max_G_2$)))) +(let ((@x24758 (trans @x24798 (symm (hypothesis $x10338) (= v_b_L_H_max_G_2$ v_b_L_H_max_G_3$)) $x10374))) +(let ((@x24760 (lemma (unit-resolution (hypothesis $x19411) @x24758 false) (or $x10374 $x19472 $x19469 $x19473)))) +(let ((@x25092 (unit-resolution @x24760 (unit-resolution (def-axiom (or $x19950 $x10338)) (hypothesis $x19953) $x10338) (unit-resolution (def-axiom (or $x19950 $x10333)) (hypothesis $x19953) $x10333) (unit-resolution (def-axiom (or $x19950 $x10340)) (hypothesis $x19953) $x10340) $x10374))) +(let ((?x11645 (* (- 1) v_b_SL_H_witness_G_1$))) +(let ((?x24983 (+ v_b_L_H_p_G_0$ ?x11645))) +(let (($x24986 (>= ?x24983 0))) +(let (($x25036 (= v_b_L_H_p_G_0$ v_b_SL_H_witness_G_1$))) +(let ((@x24772 (mp (hypothesis $x10340) (symm (commutativity (= $x25036 $x10340)) (= $x10340 $x25036)) $x25036))) +(let ((@x25067 (lemma (unit-resolution (hypothesis (not $x25036)) @x24772 false) (or $x25036 $x19473)))) +(let ((@x25089 (unit-resolution @x25067 (unit-resolution (def-axiom (or $x19950 $x10340)) (hypothesis $x19953) $x10340) $x25036))) +(let ((@x25136 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x24986) (hypothesis $x11647) @x23427 false) (or (not $x24986) $x11648 $x11486)))) +(let ((@x25093 (unit-resolution @x25136 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x25036) $x24986)) @x25089 $x24986) @x23427 $x11648))) +(let ((@x20614 (def-axiom (or $x19413 $x11647 $x19411)))) +(let ((@x20618 (def-axiom (or $x19914 $x19412)))) (let ((?x15869 (* (- 1) ?v0!14))) -(let ((?x23656 (+ v_b_L_H_p_G_0$ ?x15869))) -(let (($x24926 (>= ?x23656 0))) -(let ((@x24735 (hypothesis $x20596))) -(let ((@x24918 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x24926 $x15871 (not $x20596))) (hypothesis $x15876) @x24735 $x24926))) -(let (($x23657 (<= ?x23656 0))) -(let (($x24882 (or $x19903 $x19365 $x19366 $x23657 $x24195))) -(let (($x23648 (<= (+ ?x15634 (* (- 1) v_b_L_H_max_G_1$)) 0))) -(let (($x23640 (>= (+ ?v0!14 ?x11484) 0))) -(let (($x23649 (or $x19365 $x19366 $x23640 $x23648))) -(let (($x24880 (or $x19903 $x23649))) -(let (($x24587 (= (+ ?x15634 (* (- 1) v_b_L_H_max_G_1$)) (+ (* (- 1) v_b_L_H_max_G_1$) ?x15634)))) -(let ((@x24936 (monotonicity (rewrite $x24587) (= $x23648 (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x15634) 0))))) -(let ((@x24841 (trans @x24936 (rewrite (= (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x15634) 0) $x24195)) (= $x23648 $x24195)))) -(let ((@x24943 (monotonicity (rewrite (= (+ ?v0!14 ?x11484) (+ ?x11484 ?v0!14))) (= $x23640 (>= (+ ?x11484 ?v0!14) 0))))) -(let ((@x24623 (trans @x24943 (rewrite (= (>= (+ ?x11484 ?v0!14) 0) $x23657)) (= $x23640 $x23657)))) -(let ((@x24818 (monotonicity (monotonicity @x24623 @x24841 (= $x23649 (or $x19365 $x19366 $x23657 $x24195))) (= $x24880 (or $x19903 (or $x19365 $x19366 $x23657 $x24195)))))) -(let ((@x24597 (trans @x24818 (rewrite (= (or $x19903 (or $x19365 $x19366 $x23657 $x24195)) $x24882)) (= $x24880 $x24882)))) -(let ((@x24900 (unit-resolution (mp ((_ quant-inst ?v0!14) $x24880) @x24597 $x24882) @x23333 (unit-resolution (def-axiom (or $x19381 $x15626)) (hypothesis $x19386) $x15626) (unit-resolution (def-axiom (or $x19381 $x15627)) (hypothesis $x19386) $x15627) (hypothesis $x24206) $x23657))) -(let ((@x24984 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x25035 (not $x23657) (not $x24926))) @x24900 @x24918 (hypothesis (not $x25035)) false))) -(let ((@x24787 (lemma @x24984 (or $x19381 $x25035 $x19903 $x24195 $x15871 (not $x20596))))) -(let ((@x25179 (unit-resolution (unit-resolution @x24787 @x24499 (or $x19381 $x25035 $x24195 $x15871 (not $x20596))) @x25131 @x25129 (unit-resolution (def-axiom (or $x19381 $x15876)) @x25210 $x15876) @x25210 $x25035))) -(let ((@x25060 (monotonicity (symm (hypothesis $x25035) (= ?v0!14 v_b_L_H_p_G_0$)) (= ?x15633 ?x10320)))) -(let ((@x25064 (unit-resolution (hypothesis (not $x25038)) (symm (monotonicity @x25060 (= ?x15634 ?x10327)) $x25038) false))) -(let ((@x25067 (lemma @x25064 (or (not $x25035) $x25038)))) -(let ((@x25052 ((_ th-lemma arith triangle-eq) (or (not $x25038) $x25041)))) -(let ((@x25298 ((_ th-lemma arith farkas -1 -1 1) (unit-resolution (def-axiom (or $x19381 $x20603)) @x25210 $x20603) @x25195 (unit-resolution @x25052 (unit-resolution @x25067 @x25179 $x25038) $x25041) false))) -(let ((@x25299 (lemma @x25298 $x19983))) -(let ((@x24908 (unit-resolution @x25023 (unit-resolution (def-axiom (or $x19980 $x19944)) @x25299 $x19944) $x19941))) -(let ((@x24947 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x19452 $x20596)) (unit-resolution (def-axiom (or $x19938 $x11580)) @x24908 $x11580) $x20596))) -(let ((@x24954 (unit-resolution @x20638 (unit-resolution @x25134 @x24947 $x11608) (unit-resolution @x20652 @x24908 $x19932) $x19929))) -(let (($x20719 (= v_b_L_H_max_G_1$ v_b_L_H_max_G_3$))) -(let ((@x25006 (mp (unit-resolution (def-axiom (or $x19980 $x10391)) @x25299 $x10391) (symm (commutativity (= $x20719 $x10391)) (= $x10391 $x20719)) $x20719))) -(let (($x25065 (not $x25035))) -(let (($x25044 (not $x25038))) -(let (($x25049 (not $x25041))) -(let ((@x25051 (lemma ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x25041) @x24170 @x24171 (hypothesis $x11516) false) (or $x25049 (not $x20721) $x15893 $x11515)))) -(let ((@x24047 (unit-resolution @x25051 (unit-resolution (def-axiom (or $x19980 $x11516)) (hypothesis $x19983) $x11516) @x24171 @x24170 $x25049))) -(let ((@x24884 (unit-resolution @x20638 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x11608 $x11486 (not $x20596))) @x24735 @x23420 $x11608) (hypothesis $x19932) $x19929))) -(let ((@x24887 (symm (unit-resolution (def-axiom (or $x19980 $x10391)) (hypothesis $x19983) $x10391) $x20719))) -(let ((@x24982 (monotonicity (unit-resolution (def-axiom (or $x19980 $x10392)) (hypothesis $x19983) $x10392) (= ?x10372 ?x10190)))) -(let ((@x24897 (trans (monotonicity @x24982 (= ?x10373 ?x10191)) @x23175 (= ?x10373 v_b_L_H_max_G_1$)))) -(let ((?x11645 (* (- 1) v_b_SL_H_witness_G_1$))) +(let ((?x24928 (+ v_b_L_H_p_G_0$ ?x15869))) +(let (($x25152 (>= ?x24928 0))) +(let (($x25082 (not $x25152))) +(let (($x25159 (= v_b_L_H_p_G_0$ ?v0!14))) +(let (($x25184 (not $x25159))) +(let (($x25165 (= ?x10327 ?x15634))) +(let (($x25169 (not $x25165))) +(let ((?x23824 (+ ?x10327 ?x15891))) +(let (($x23830 (>= ?x23824 0))) +(let (($x23816 (not $x23830))) +(let ((@x23818 (hypothesis (not $x15893)))) +(let ((@x23838 (lemma ((_ th-lemma arith farkas -1 -1 1) @x22521 @x23818 (hypothesis $x23830) false) (or $x23816 (not $x24665) $x15893)))) +(let ((@x25123 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x25169 $x23830)) (unit-resolution @x23838 @x22521 @x23818 $x23816) $x25169))) +(let ((@x25179 (monotonicity (symm (hypothesis $x25159) (= ?v0!14 v_b_L_H_p_G_0$)) (= ?x15633 ?x10320)))) +(let ((@x25183 (unit-resolution (hypothesis $x25169) (symm (monotonicity @x25179 (= ?x15634 ?x10327)) $x25165) false))) +(let (($x24929 (<= ?x24928 0))) +(let (($x24941 (>= (+ v_b_L_H_max_G_1$ ?x15891) 0))) +(let (($x23835 (not $x24941))) +(let ((@x25078 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x23835 $x15893 (not $x20721))) (hypothesis $x20721) @x23818 $x23835))) +(let ((@x25066 (hypothesis $x20596))) +(let ((@x23813 ((_ th-lemma arith assign-bounds -1 -1) (or $x11608 $x11486 (not $x20596))))) +(let ((@x20638 (def-axiom (or $x19935 $x11612 $x19929)))) +(let ((@x25144 (unit-resolution @x20638 (unit-resolution @x23813 @x25066 @x23427 $x11608) (hypothesis $x19932) $x19929))) +(let ((@x20630 (def-axiom (or $x19926 $x19920)))) +(let ((@x20626 (def-axiom (or $x19923 $x19386 $x19917)))) +(let ((@x25132 (unit-resolution @x20626 (unit-resolution @x20630 @x25144 $x19920) (hypothesis $x19914) $x19386))) +(let (($x24949 (or $x19903 $x19365 $x19366 $x24929 $x24941))) +(let (($x24778 (<= (+ ?x15634 (* (- 1) v_b_L_H_max_G_1$)) 0))) +(let (($x24909 (>= (+ ?v0!14 ?x11484) 0))) +(let (($x24784 (or $x19365 $x19366 $x24909 $x24778))) +(let (($x24950 (or $x19903 $x24784))) +(let (($x24935 (= (+ ?x15634 (* (- 1) v_b_L_H_max_G_1$)) (+ (* (- 1) v_b_L_H_max_G_1$) ?x15634)))) +(let ((@x24939 (monotonicity (rewrite $x24935) (= $x24778 (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x15634) 0))))) +(let ((@x24945 (trans @x24939 (rewrite (= (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x15634) 0) $x24941)) (= $x24778 $x24941)))) +(let ((@x24905 (monotonicity (rewrite (= (+ ?v0!14 ?x11484) (+ ?x11484 ?v0!14))) (= $x24909 (>= (+ ?x11484 ?v0!14) 0))))) +(let ((@x24933 (trans @x24905 (rewrite (= (>= (+ ?x11484 ?v0!14) 0) $x24929)) (= $x24909 $x24929)))) +(let ((@x24954 (monotonicity (monotonicity @x24933 @x24945 (= $x24784 (or $x19365 $x19366 $x24929 $x24941))) (= $x24950 (or $x19903 (or $x19365 $x19366 $x24929 $x24941)))))) +(let ((@x24958 (trans @x24954 (rewrite (= (or $x19903 (or $x19365 $x19366 $x24929 $x24941)) $x24949)) (= $x24950 $x24949)))) +(let ((@x23833 (unit-resolution (mp ((_ quant-inst ?v0!14) $x24950) @x24958 $x24949) @x23333 (unit-resolution (def-axiom (or $x19381 $x15626)) @x25132 $x15626) (unit-resolution (def-axiom (or $x19381 $x15627)) @x25132 $x15627) (or $x24929 $x24941)))) +(let ((@x25097 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x25159 (not $x24929) $x25082)) (unit-resolution @x23833 @x25078 $x24929) (or $x25159 $x25082)))) +(let ((@x25098 (unit-resolution @x25097 (unit-resolution (lemma @x25183 (or $x25184 $x25165)) @x25123 $x25184) $x25082))) +(let ((@x25100 ((_ th-lemma arith farkas -1 -1 1) (unit-resolution (def-axiom (or $x19381 $x15876)) @x25132 $x15876) @x25066 @x25098 false))) +(let ((@x25087 (lemma @x25100 (or (not $x24665) (not $x20596) $x15893 $x19903 (not $x20721) $x19917 $x19935 $x11486)))) +(let ((@x25104 (unit-resolution @x25087 (unit-resolution @x20618 (unit-resolution @x20614 @x25093 @x25092 $x19413) $x19914) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x24691) $x24665)) @x24667 $x24665) @x23333 @x24755 @x24640 (unit-resolution @x20652 @x24977 $x19932) @x23427 $x15893))) +(let ((@x25102 (unit-resolution @x20638 (unit-resolution @x23813 @x24640 @x23427 $x11608) (unit-resolution @x20652 @x24977 $x19932) $x19929))) +(let ((@x25125 (unit-resolution @x20626 (unit-resolution @x20618 (unit-resolution @x20614 @x25093 @x25092 $x19413) $x19914) (unit-resolution @x20630 @x25102 $x19920) $x19386))) +(let ((@x20605 (def-axiom (or $x19381 (not $x15893))))) +(let ((@x25095 (lemma (unit-resolution @x20605 @x25125 @x25104 false) (or $x19950 $x19903 $x11486 $x15611 $x15590 $x20001)))) +(let ((@x25249 (unit-resolution @x25095 (unit-resolution (def-axiom (or $x20074 $x19898)) (hypothesis $x20077) $x19898) @x23427 @x24971 @x24666 (unit-resolution (def-axiom (or $x20004 $x19998)) @x25236 $x19998) $x19950))) +(let ((@x25250 (unit-resolution (def-axiom (or $x19959 $x15590 $x15599 $x19953)) @x25245 @x24666 @x25249 $x19959))) +(let ((@x25252 (unit-resolution (def-axiom (or $x19971 $x15590 $x15593 $x19965)) (unit-resolution (def-axiom (or $x19962 $x19956)) @x25250 $x19962) @x24666 @x25230 $x19971))) +(let ((@x25254 (unit-resolution @x20748 (unit-resolution (def-axiom (or $x19974 $x19968)) @x25252 $x19974) (unit-resolution @x20758 @x25246 $x19986) $x19983))) +(let ((@x25256 (unit-resolution @x20662 (unit-resolution (def-axiom (or $x19980 $x19944)) @x25254 $x19944) @x24971 (unit-resolution @x24996 @x23427 $x13353) $x19941))) +(let ((@x25259 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x19452 $x20596)) (unit-resolution (def-axiom (or $x19938 $x11580)) @x25256 $x11580) $x20596))) +(let ((@x25261 (unit-resolution @x20638 (unit-resolution @x23813 @x25259 @x23427 $x11608) (unit-resolution @x20652 @x25256 $x19932) $x19929))) +(let ((@x25267 (monotonicity (unit-resolution (def-axiom (or $x19980 $x10392)) @x25254 $x10392) (= ?x10372 ?x10190)))) +(let ((@x25272 (trans (monotonicity @x25267 (= ?x10373 ?x10191)) (unit-resolution (def-axiom (or $x20074 $x10192)) (hypothesis $x20077) $x10192) (= ?x10373 v_b_L_H_max_G_1$)))) (let ((?x20724 (+ v_b_SL_H_witness_G_0$ ?x11645))) (let (($x20726 (>= ?x20724 0))) (let (($x20723 (= v_b_SL_H_witness_G_0$ v_b_SL_H_witness_G_1$))) -(let ((@x24788 (mp (unit-resolution (def-axiom (or $x19980 $x10392)) (hypothesis $x19983) $x10392) (symm (commutativity (= $x20723 $x10392)) (= $x10392 $x20723)) $x20723))) -(let ((@x24909 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x20726) (hypothesis $x11647) @x23180 false) (or $x11648 (not $x20726) $x11867)))) -(let ((@x24673 (unit-resolution @x24909 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x20723) $x20726)) @x24788 $x20726) @x23180 $x11648))) -(let ((@x24789 (unit-resolution @x20618 (unit-resolution @x20614 @x24673 (trans @x24897 @x24887 $x10374) $x19413) $x19914))) -(let ((@x20602 (def-axiom (or $x19381 $x15876)))) -(let ((@x24914 (unit-resolution @x20602 (unit-resolution @x20626 @x24789 (unit-resolution @x20630 @x24884 $x19920) $x19386) $x15876))) -(let ((@x24915 (unit-resolution @x24787 @x24914 (unit-resolution @x20626 @x24789 (unit-resolution @x20630 @x24884 $x19920) $x19386) @x23333 (unit-resolution @x24211 @x24171 @x24170 $x24206) (unit-resolution @x25067 (unit-resolution @x25052 @x24047 $x25044) $x25065) @x24735 false))) -(let ((@x24889 (lemma @x24915 (or $x19980 $x19903 (not $x20596) $x11867 $x15893 (not $x20721) $x19935 $x11486 $x19674)))) -(let ((@x24843 (unit-resolution @x24889 @x24499 @x24415 @x24656 @x24314 (or $x19980 (not $x20596) $x15893 (not $x20721) $x19935)))) -(let ((@x24844 (unit-resolution @x24843 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x20719) $x20721)) @x25006 $x20721) @x25299 @x24947 (unit-resolution @x20652 @x24908 $x19932) $x15893))) -(let ((@x20605 (def-axiom (or $x19381 $x20603)))) -(let ((@x25302 (monotonicity (unit-resolution (def-axiom (or $x19980 $x10392)) @x25299 $x10392) (= ?x10372 ?x10190)))) -(let ((@x25305 (trans (monotonicity @x25302 (= ?x10373 ?x10191)) @x24314 (= ?x10373 v_b_L_H_max_G_1$)))) -(let ((@x25306 (trans @x25305 (symm (unit-resolution (def-axiom (or $x19980 $x10391)) @x25299 $x10391) $x20719) $x10374))) -(let ((@x25307 (mp (unit-resolution (def-axiom (or $x19980 $x10392)) @x25299 $x10392) (symm (commutativity (= $x20723 $x10392)) (= $x10392 $x20723)) $x20723))) -(let ((@x25311 (unit-resolution (unit-resolution @x24909 @x24415 (or $x11648 (not $x20726))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x20723) $x20726)) @x25307 $x20726) $x11648))) -(unit-resolution @x20626 (unit-resolution @x20618 (unit-resolution @x20614 @x25311 @x25306 $x19413) $x19914) (unit-resolution @x20605 @x24844 $x19381) (unit-resolution @x20630 @x24954 $x19920) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +(let ((@x25279 (mp (unit-resolution (def-axiom (or $x19980 $x10392)) @x25254 $x10392) (symm (commutativity (= $x20723 $x10392)) (= $x10392 $x20723)) $x20723))) +(let ((@x25229 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x20726) (hypothesis $x11647) @x23180 false) (or $x11648 (not $x20726) $x11867)))) +(let ((@x25284 (unit-resolution @x25229 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x20723) $x20726)) @x25279 $x20726) (unit-resolution (def-axiom (or $x20074 $x11868)) (hypothesis $x20077) $x11868) $x11648))) +(let ((@x25285 (unit-resolution @x20614 @x25284 (trans @x25272 (symm (unit-resolution @x20732 @x25254 $x10391) $x20719) $x10374) $x19413))) +(let ((@x25287 (unit-resolution @x20626 (unit-resolution @x20618 @x25285 $x19914) (unit-resolution @x20630 @x25261 $x19920) $x19386))) +(let ((@x25289 (mp (unit-resolution @x20732 @x25254 $x10391) (symm (commutativity (= $x20719 $x10391)) (= $x10391 $x20719)) $x20719))) +(let ((@x25293 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x24665 $x11515 (not $x20721))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x20719) $x20721)) @x25289 $x20721) (unit-resolution (def-axiom (or $x19980 $x11516)) @x25254 $x11516) $x24665))) +(let ((@x25294 (unit-resolution @x25087 (unit-resolution @x20618 @x25285 $x19914) (unit-resolution @x20652 @x25256 $x19932) (unit-resolution (def-axiom (or $x20074 $x19898)) (hypothesis $x20077) $x19898) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x20719) $x20721)) @x25289 $x20721) @x25293 @x25259 @x23427 $x15893))) +(let ((@x25297 (lemma (unit-resolution @x20605 @x25294 @x25287 false) (or $x20074 $x11486 $x15611 $x15590 $x15593 $x23368 $x24385)))) +(let ((@x24156 (unit-resolution @x25297 @x24155 @x24113 @x24166 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x11570 $x19670)) @x24140 $x11570) @x24136 @x24176 $x24385))) +(let ((?x24715 (+ ?x23287 ?x23622))) +(let ((?x24720 (b_S_ptr$ b_T_T_u1$ ?x24715))) +(let ((?x24697 (b_S_idx$ ?x21983 v_b_L_H_p_G_0$ b_T_T_u1$))) +(let (($x24723 (= ?x24697 ?x24720))) +(let (($x24726 (not $x24723))) +(let (($x24698 (b_S_extent_n_hint$ ?x24697 ?x21983))) +(let (($x24705 (not $x24698))) +(let (($x24729 (or $x24705 $x24726))) +(let (($x24732 (not $x24729))) +(let (($x24735 (or $x22568 $x24732))) +(let (($x24709 (not (= ?x24697 (b_S_ptr$ b_T_T_u1$ (+ ?x23622 (* v_b_L_H_p_G_0$ ?x10045))))))) +(let (($x24711 (not (or $x24705 $x24709)))) +(let (($x24724 (= (= ?x24697 (b_S_ptr$ b_T_T_u1$ (+ ?x23622 (* v_b_L_H_p_G_0$ ?x10045)))) $x24723))) +(let ((@x24714 (monotonicity @x23250 (= (+ ?x23622 (* v_b_L_H_p_G_0$ ?x10045)) (+ ?x23622 ?x23287))))) +(let ((@x24719 (trans @x24714 (rewrite (= (+ ?x23622 ?x23287) ?x24715)) (= (+ ?x23622 (* v_b_L_H_p_G_0$ ?x10045)) ?x24715)))) +(let ((@x24722 (monotonicity @x24719 (= (b_S_ptr$ b_T_T_u1$ (+ ?x23622 (* v_b_L_H_p_G_0$ ?x10045))) ?x24720)))) +(let ((@x24731 (monotonicity (monotonicity (monotonicity @x24722 $x24724) (= $x24709 $x24726)) (= (or $x24705 $x24709) $x24729)))) +(let ((@x24739 (monotonicity (monotonicity @x24731 (= $x24711 $x24732)) (= (or $x22568 $x24711) $x24735)))) +(let ((@x24743 (mp ((_ quant-inst (b_S_ptr$ ?x10076 ?x21014) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x22568 $x24711)) (trans @x24739 (rewrite (= $x24735 $x24735)) (= (or $x22568 $x24711) $x24735)) $x24735))) +(let ((@x24747 (def-axiom (or $x24729 $x24723)))) +(let ((@x23880 (unit-resolution @x24747 (lemma (unit-resolution @x24743 @x18183 (hypothesis $x24729) false) $x24732) $x24723))) +(let ((?x24111 (+ ?x10079 ?x23287))) +(let ((?x24114 (b_S_ptr$ b_T_T_u1$ ?x24111))) +(let (($x23925 (= ?x10320 ?x24114))) +(let (($x23973 (or (not (b_S_extent_n_hint$ ?x10320 ?x10078)) (not $x23925)))) +(let (($x23975 (not $x23973))) +(let (($x23999 (or $x22568 $x23975))) +(let (($x24108 (not (= ?x10320 (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045))))))) +(let (($x24110 (not (or (not (b_S_extent_n_hint$ ?x10320 ?x10078)) $x24108)))) +(let (($x23928 (= (= ?x10320 (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045)))) $x23925))) +(let ((@x23927 (monotonicity (monotonicity @x23250 (= (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045)) ?x24111)) (= (b_S_ptr$ b_T_T_u1$ (+ ?x10079 (* v_b_L_H_p_G_0$ ?x10045))) ?x24114)))) +(let ((@x23972 (monotonicity (monotonicity (monotonicity @x23927 $x23928) (= $x24108 (not $x23925))) (= (or (not (b_S_extent_n_hint$ ?x10320 ?x10078)) $x24108) $x23973)))) +(let ((@x23964 (monotonicity (monotonicity @x23972 (= $x24110 $x23975)) (= (or $x22568 $x24110) $x23999)))) +(let ((@x23967 (mp ((_ quant-inst (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x22568 $x24110)) (trans @x23964 (rewrite (= $x23999 $x23999)) (= (or $x22568 $x24110) $x23999)) $x23999))) +(let ((@x24824 (unit-resolution (def-axiom (or $x23973 $x23925)) (unit-resolution @x23967 @x18183 $x23975) $x23925))) +(let ((?x24252 (+ ?x10079 ?x23287 (* (- 1) (b_S_ref$ ?x24114))))) +(let (($x24242 (= ?x24252 0))) +(let (($x24247 (or $x21152 $x24242))) +(let ((@x24254 (monotonicity (rewrite (= (= (b_S_ref$ ?x24114) ?x24111) $x24242)) (= (or $x21152 (= (b_S_ref$ ?x24114) ?x24111)) $x24247)))) +(let ((@x24256 (trans @x24254 (rewrite (= $x24247 $x24247)) (= (or $x21152 (= (b_S_ref$ ?x24114) ?x24111)) $x24247)))) +(let ((@x24827 (unit-resolution (mp ((_ quant-inst b_T_T_u1$ (+ ?x10079 ?x23287)) (or $x21152 (= (b_S_ref$ ?x24114) ?x24111))) @x24256 $x24247) @x19840 $x24242))) +(let ((@x24831 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x24242) (<= ?x24252 0))) @x24827 (<= ?x24252 0)))) +(let ((@x24834 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x24242) (>= ?x24252 0))) @x24827 (>= ?x24252 0)))) +(let (($x24814 (= ?x24111 ?x24715))) +(let ((?x24815 (* (- 1) ?x24715))) +(let ((?x24818 (+ ?x24111 ?x24815))) +(let (($x24819 (<= ?x24818 0))) +(let ((?x24234 (* (- 1) ?x21014))) +(let ((?x24214 (+ ?x10079 ?x24234))) +(let (($x24215 (<= ?x24214 0))) +(let ((@x24854 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x10079 ?x21014)) $x24215)) (symm (unit-resolution @x21192 @x19840 $x21186) (= ?x10079 ?x21014)) $x24215))) +(let ((?x24751 (* (- 1) ?x23622))) +(let ((?x24752 (+ ?x21014 ?x24751))) +(let (($x24753 (<= ?x24752 0))) +(let ((@x24857 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21014 ?x23622)) $x24753)) (symm (monotonicity @x23670 (= ?x23622 ?x21014)) (= ?x21014 ?x23622)) $x24753))) +(let ((@x24862 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x24819 (not $x24753) (not $x24215))) @x24857 @x24854 $x24819))) +(let (($x24820 (>= ?x24818 0))) +(let (($x24216 (>= ?x24214 0))) +(let ((@x24841 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x10079 ?x21014)) $x24216)) (symm (unit-resolution @x21192 @x19840 $x21186) (= ?x10079 ?x21014)) $x24216))) +(let (($x24754 (>= ?x24752 0))) +(let ((@x24846 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21014 ?x23622)) $x24754)) (symm (monotonicity @x23670 (= ?x23622 ?x21014)) (= ?x21014 ?x23622)) $x24754))) +(let ((@x24851 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x24820 (not $x24754) (not $x24216))) @x24846 @x24841 $x24820))) +(let ((@x24907 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x24814 (not $x24819) (not $x24820))) @x24851 @x24862 $x24814))) +(let ((@x24911 (trans (symm @x24907 (= ?x24715 ?x24111)) ((_ th-lemma arith eq-propagate -1 -1) @x24834 @x24831 (= ?x24111 (b_S_ref$ ?x24114))) (= ?x24715 (b_S_ref$ ?x24114))))) +(let ((@x24912 (trans @x24911 (monotonicity (symm @x24824 (= ?x24114 ?x10320)) (= (b_S_ref$ ?x24114) ?x24147)) (= ?x24715 ?x24147)))) +(let ((@x24915 (trans (monotonicity @x23682 (= ?x24598 ?x24697)) (hypothesis $x24723) (= ?x24598 ?x24720)))) +(let ((@x24917 (monotonicity (trans @x24915 (monotonicity @x24912 (= ?x24720 ?x24169)) (= ?x24598 ?x24169)) (= ?x24302 ?x24320)))) +(let ((@x24920 (trans (monotonicity (symm @x24917 (= ?x24320 ?x24302)) (= ?x24323 ?x24605)) (hypothesis $x24606) (= ?x24323 ?x22595)))) +(let ((@x24924 (trans (monotonicity (trans @x24920 @x23680 (= ?x24323 ?x10080)) (= ?x24331 ?x10082)) @x12043 $x24332))) +(let ((@x24927 (lemma (unit-resolution (hypothesis $x24385) @x24924 false) (or $x24726 $x24332 $x24607)))) +(unit-resolution (unit-resolution @x24927 @x23880 (or $x24332 $x24607)) @x24156 @x24149 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))