# HG changeset patch # User avigad # Date 1121277774 -7200 # Node ID 5c9d597e4cb910d5398acea024451e85dacc0afe # Parent 00d8f9300d13d6418f5c9e6f1e0a479d3dc5bd33 fixed typos in theorem names diff -r 00d8f9300d13 -r 5c9d597e4cb9 src/HOL/Real/RComplete.thy --- a/src/HOL/Real/RComplete.thy Wed Jul 13 19:49:07 2005 +0200 +++ b/src/HOL/Real/RComplete.thy Wed Jul 13 20:02:54 2005 +0200 @@ -831,7 +831,7 @@ apply simp done -lemma le_natfloor_one_eq [simp]: "(1 <= natfloor x) = (1 <= x)" +lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)" apply (case_tac "0 <= x") apply (subst le_natfloor_eq, assumption, simp) apply (rule iffI) @@ -971,13 +971,14 @@ apply (erule natceiling_le) done -lemma natceiling_le_eq2 [simp]: "~ neg((number_of n)::int) ==> 0 <= x ==> - (natceiling x <= number_of n) = (x <= number_of n)" +lemma natceiling_le_eq_number_of [simp]: + "~ neg((number_of n)::int) ==> 0 <= x ==> + (natceiling x <= number_of n) = (x <= number_of n)" apply (subst natceiling_le_eq, assumption) apply simp done -lemma natceiling_one_le_eq: "(natceiling x <= 1) = (x <= 1)" +lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)" apply (case_tac "0 <= x") apply (subst natceiling_le_eq) apply assumption @@ -1017,8 +1018,9 @@ apply simp_all done -lemma natceiling_add2 [simp]: "~ neg ((number_of n)::int) ==> 0 <= x ==> - natceiling (x + number_of n) = natceiling x + number_of n" +lemma natceiling_add_number_of [simp]: + "~ neg ((number_of n)::int) ==> 0 <= x ==> + natceiling (x + number_of n) = natceiling x + number_of n" apply (subst natceiling_add [THEN sym]) apply simp_all done