# HG changeset patch # User huffman # Date 1179647456 -7200 # Node ID 5e40f1e9958a4c1219a5cb15b57f00b9cf9506e9 # Parent 17f7d831efe2204ddfc1828623de658eb8e3458c remove obsolete DERIV_ln lemmas diff -r 17f7d831efe2 -r 5e40f1e9958a src/HOL/Hyperreal/Transcendental.thy --- a/src/HOL/Hyperreal/Transcendental.thy Sun May 20 09:21:04 2007 +0200 +++ b/src/HOL/Hyperreal/Transcendental.thy Sun May 20 09:50:56 2007 +0200 @@ -2115,36 +2115,6 @@ declare real_sqrt_sum_squares_ge_zero [THEN abs_of_nonneg, simp] -subsection{*A Few Theorems Involving Ln, Derivatives, etc.*} - -lemma lemma_DERIV_ln: - "DERIV ln z :> l ==> DERIV (%x. exp (ln x)) z :> exp (ln z) * l" -by (erule DERIV_fun_exp) - -lemma DERIV_exp_ln_one: "0 < z ==> DERIV (%x. exp (ln x)) z :> 1" -apply (simp add: deriv_def) -apply (rule LIM_equal2 [OF _ _ LIM_const], assumption) -apply simp -done - -lemma lemma_DERIV_ln2: - "[| 0 < z; DERIV ln z :> l |] ==> exp (ln z) * l = 1" -apply (rule DERIV_unique) -apply (rule lemma_DERIV_ln) -apply (rule_tac [2] DERIV_exp_ln_one, auto) -done - -lemma lemma_DERIV_ln3: - "[| 0 < z; DERIV ln z :> l |] ==> l = 1/(exp (ln z))" -apply (rule_tac c1 = "exp (ln z)" in real_mult_left_cancel [THEN iffD1]) -apply (auto intro: lemma_DERIV_ln2 simp del: exp_ln) -done - -lemma lemma_DERIV_ln4: "[| 0 < z; DERIV ln z :> l |] ==> l = 1/z" -apply (rule_tac t = z in exp_ln_iff [THEN iffD2, THEN subst]) -apply (auto intro: lemma_DERIV_ln3 simp del: exp_ln) -done - subsection {* Theorems about Limits *} (* need to rename second isCont_inverse *)