# HG changeset patch # User hoelzl # Date 1377607076 -7200 # Node ID 5e47c31c6f7c391a10e4a4df700e68ba7b0917d7 # Parent bae01293f4dd2bcb0d04a1399e14eee08c211388 renamed typeclass dense_linorder to unbounded_dense_linorder diff -r bae01293f4dd -r 5e47c31c6f7c src/HOL/Conditionally_Complete_Lattices.thy --- a/src/HOL/Conditionally_Complete_Lattices.thy Mon Aug 26 23:39:53 2013 +0200 +++ b/src/HOL/Conditionally_Complete_Lattices.thy Tue Aug 27 14:37:56 2013 +0200 @@ -283,22 +283,22 @@ lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \ X \ {} \ Inf X = Min X" using cInf_eq_Inf_fin[of X] Inf_fin_eq_Min[of X] by simp -lemma cSup_lessThan[simp]: "Sup {.. Sup {y<.. Sup {y<.. Sup {y.. Sup {y.. Inf {y<..x::'a::{conditionally_complete_linorder, dense_linorder}} = y" +lemma cInf_greaterThanAtMost[simp]: "y < x \ Inf {y<..x::'a::{conditionally_complete_linorder, unbounded_dense_linorder}} = y" by (auto intro!: cInf_eq intro: dense_ge_bounded) -lemma cInf_greaterThanLessThan[simp]: "y < x \ Inf {y<.. Inf {y<.. y < z} = {} \ \ x < z" @@ -299,7 +299,8 @@ lemmas dlo_simps[no_atp] = order_refl less_irrefl not_less not_le exists_neq le_less neq_iff linear less_not_permute -lemma axiom[no_atp]: "class.dense_linorder (op \) (op <)" by (rule dense_linorder_axioms) +lemma axiom[no_atp]: "class.unbounded_dense_linorder (op \) (op <)" + by (rule unbounded_dense_linorder_axioms) lemma atoms[no_atp]: shows "TERM (less :: 'a \ _)" and "TERM (less_eq :: 'a \ _)" @@ -452,7 +453,7 @@ assumes between_less: "less x y \ less x (between x y) \ less (between x y) y" and between_same: "between x x = x" -sublocale constr_dense_linorder < dlo: dense_linorder +sublocale constr_dense_linorder < dlo: unbounded_dense_linorder apply unfold_locales using gt_ex lt_ex between_less apply auto diff -r bae01293f4dd -r 5e47c31c6f7c src/HOL/Fields.thy --- a/src/HOL/Fields.thy Mon Aug 26 23:39:53 2013 +0200 +++ b/src/HOL/Fields.thy Tue Aug 27 14:37:56 2013 +0200 @@ -842,7 +842,7 @@ lemma gt_half_sum: "a < b ==> (a+b)/(1+1) < b" by (simp add: field_simps zero_less_two) -subclass dense_linorder +subclass unbounded_dense_linorder proof fix x y :: 'a from less_add_one show "\y. x < y" .. diff -r bae01293f4dd -r 5e47c31c6f7c src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Mon Aug 26 23:39:53 2013 +0200 +++ b/src/HOL/Library/Float.thy Tue Aug 27 14:37:56 2013 +0200 @@ -180,7 +180,7 @@ and real_of_float_max: "real (max x y) = max (real x) (real y)" by (simp_all add: min_def max_def) -instance float :: dense_linorder +instance float :: unbounded_dense_linorder proof fix a b :: float show "\c. a < c" diff -r bae01293f4dd -r 5e47c31c6f7c src/HOL/Orderings.thy --- a/src/HOL/Orderings.thy Mon Aug 26 23:39:53 2013 +0200 +++ b/src/HOL/Orderings.thy Tue Aug 27 14:37:56 2013 +0200 @@ -1312,7 +1312,7 @@ class no_bot = order + assumes lt_ex: "\y. y < x" -class dense_linorder = inner_dense_linorder + no_top + no_bot +class unbounded_dense_linorder = inner_dense_linorder + no_top + no_bot subsection {* Wellorders *} diff -r bae01293f4dd -r 5e47c31c6f7c src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Mon Aug 26 23:39:53 2013 +0200 +++ b/src/HOL/Topological_Spaces.thy Tue Aug 27 14:37:56 2013 +0200 @@ -567,7 +567,7 @@ "eventually (\x. (c::_::linorder) \ x) at_top" unfolding eventually_at_top_linorder by auto -lemma eventually_at_top_dense: "eventually P at_top \ (\N::'a::dense_linorder. \n>N. P n)" +lemma eventually_at_top_dense: "eventually P at_top \ (\N::'a::unbounded_dense_linorder. \n>N. P n)" unfolding eventually_at_top_linorder proof safe fix N assume "\n\N. P n" then show "\N. \n>N. P n" by (auto intro!: exI[of _ N]) @@ -578,7 +578,7 @@ qed lemma eventually_gt_at_top: - "eventually (\x. (c::_::dense_linorder) < x) at_top" + "eventually (\x. (c::_::unbounded_dense_linorder) < x) at_top" unfolding eventually_at_top_dense by auto definition at_bot :: "('a::order) filter" @@ -600,7 +600,7 @@ unfolding eventually_at_bot_linorder by auto lemma eventually_at_bot_dense: - fixes P :: "'a::dense_linorder \ bool" shows "eventually P at_bot \ (\N. \n bool" shows "eventually P at_bot \ (\N. \nn\N. P n" then show "\N. \nx. x < (c::_::dense_linorder)) at_bot" + "eventually (\x. x < (c::_::unbounded_dense_linorder)) at_bot" unfolding eventually_at_bot_dense by auto subsection {* Sequentially *} @@ -794,11 +794,11 @@ qed lemma trivial_limit_at_left_real [simp]: - "\ trivial_limit (at_left (x::'a::{no_bot, dense_linorder, linorder_topology}))" + "\ trivial_limit (at_left (x::'a::{no_bot, unbounded_dense_linorder, linorder_topology}))" unfolding trivial_limit_def eventually_at_left by (auto dest: dense) lemma trivial_limit_at_right_real [simp]: - "\ trivial_limit (at_right (x::'a::{no_top, dense_linorder, linorder_topology}))" + "\ trivial_limit (at_right (x::'a::{no_top, unbounded_dense_linorder, linorder_topology}))" unfolding trivial_limit_def eventually_at_right by (auto dest: dense) lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)" @@ -1047,7 +1047,7 @@ by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1) lemma filterlim_at_top_dense: - fixes f :: "'a \ ('b::dense_linorder)" + fixes f :: "'a \ ('b::unbounded_dense_linorder)" shows "(LIM x F. f x :> at_top) \ (\Z. eventually (\x. Z < f x) F)" by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le filterlim_at_top[of f F] filterlim_iff[of f at_top F]) @@ -1084,7 +1084,7 @@ qed lemma filterlim_at_top_gt: - fixes f :: "'a \ ('b::dense_linorder)" and c :: "'b" + fixes f :: "'a \ ('b::unbounded_dense_linorder)" and c :: "'b" shows "(LIM x F. f x :> at_top) \ (\Z>c. eventually (\x. Z \ f x) F)" by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge) @@ -1104,7 +1104,7 @@ qed simp lemma filterlim_at_bot_lt: - fixes f :: "'a \ ('b::dense_linorder)" and c :: "'b" + fixes f :: "'a \ ('b::unbounded_dense_linorder)" and c :: "'b" shows "(LIM x F. f x :> at_bot) \ (\Zx. Z \ f x) F)" by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans) diff -r bae01293f4dd -r 5e47c31c6f7c src/HOL/ex/Dedekind_Real.thy --- a/src/HOL/ex/Dedekind_Real.thy Mon Aug 26 23:39:53 2013 +0200 +++ b/src/HOL/ex/Dedekind_Real.thy Tue Aug 27 14:37:56 2013 +0200 @@ -24,7 +24,7 @@ (\y \ A. ((\z. 0 z \ A) & (\u \ A. y < u))))" lemma interval_empty_iff: - "{y. (x::'a::dense_linorder) < y \ y < z} = {} \ \ x < z" + "{y. (x::'a::unbounded_dense_linorder) < y \ y < z} = {} \ \ x < z" by (auto dest: dense)