# HG changeset patch # User haftmann # Date 1324738392 -3600 # Node ID 5e78c499a7ffa373e22e7147293fec72110086f9 # Parent 2b043ed911acc60b4d910ecf79a63002a610129b reduced to a compatibility layer diff -r 2b043ed911ac -r 5e78c499a7ff src/HOL/Library/Executable_Set.thy --- a/src/HOL/Library/Executable_Set.thy Sat Dec 24 15:53:11 2011 +0100 +++ b/src/HOL/Library/Executable_Set.thy Sat Dec 24 15:53:12 2011 +0100 @@ -3,312 +3,16 @@ Author: Florian Haftmann, TU Muenchen *) -header {* A crude implementation of finite sets by lists -- avoid using this at any cost! *} +header {* A thin compatibility layer *} theory Executable_Set imports More_Set begin -text {* - This is just an ad-hoc hack which will rarely give you what you want. - For the moment, whenever you need executable sets, consider using - type @{text Cset.set} from theory @{text Cset}. -*} - -declare mem_def [code del] -declare Collect_def [code del] -declare insert_code [code del] -declare vimage_code [code del] - -subsection {* Set representation *} - -setup {* - Code.add_type_cmd "set" -*} - -definition Set :: "'a list \ 'a set" where - [simp]: "Set = set" - -definition Coset :: "'a list \ 'a set" where - [simp]: "Coset xs = - set xs" - -setup {* - Code.add_signature_cmd ("Set", "'a list \ 'a set") - #> Code.add_signature_cmd ("Coset", "'a list \ 'a set") - #> Code.add_signature_cmd ("set", "'a list \ 'a set") - #> Code.add_signature_cmd ("op \", "'a \ 'a set \ bool") -*} - -code_datatype Set Coset - - -subsection {* Basic operations *} - -lemma [code]: - "set xs = Set (remdups xs)" - by simp - -lemma [code]: - "x \ Set xs \ List.member xs x" - "x \ Coset xs \ \ List.member xs x" - by (simp_all add: member_def) - -definition is_empty :: "'a set \ bool" where - [simp]: "is_empty A \ A = {}" - -lemma [code_unfold]: - "A = {} \ is_empty A" - by simp - -definition empty :: "'a set" where - [simp]: "empty = {}" - -lemma [code_unfold]: - "{} = empty" - by simp - -lemma - "empty = Set []" - by simp -- {* Otherwise @{text \}-expansion produces funny things. *} - -setup {* - Code.add_signature_cmd ("is_empty", "'a set \ bool") - #> Code.add_signature_cmd ("empty", "'a set") - #> Code.add_signature_cmd ("insert", "'a \ 'a set \ 'a set") - #> Code.add_signature_cmd ("More_Set.remove", "'a \ 'a set \ 'a set") - #> Code.add_signature_cmd ("image", "('a \ 'b) \ 'a set \ 'b set") - #> Code.add_signature_cmd ("More_Set.project", "('a \ bool) \ 'a set \ 'a set") - #> Code.add_signature_cmd ("Ball", "'a set \ ('a \ bool) \ bool") - #> Code.add_signature_cmd ("Bex", "'a set \ ('a \ bool) \ bool") - #> Code.add_signature_cmd ("card", "'a set \ nat") -*} - -lemma is_empty_Set [code]: - "is_empty (Set xs) \ List.null xs" - by (simp add: null_def) - -lemma empty_Set [code]: - "empty = Set []" - by simp - -lemma insert_Set [code]: - "insert x (Set xs) = Set (List.insert x xs)" - "insert x (Coset xs) = Coset (removeAll x xs)" - by simp_all - -lemma remove_Set [code]: - "remove x (Set xs) = Set (removeAll x xs)" - "remove x (Coset xs) = Coset (List.insert x xs)" - by (auto simp add: remove_def) - -lemma image_Set [code]: - "image f (Set xs) = Set (remdups (map f xs))" - by simp - -lemma project_Set [code]: - "project P (Set xs) = Set (filter P xs)" - by (simp add: project_set) - -lemma Ball_Set [code]: - "Ball (Set xs) P \ list_all P xs" - by (simp add: list_all_iff) - -lemma Bex_Set [code]: - "Bex (Set xs) P \ list_ex P xs" - by (simp add: list_ex_iff) - -lemma - [code, code del]: "card S = card S" .. - -lemma card_Set [code]: - "card (Set xs) = length (remdups xs)" -proof - - have "card (set (remdups xs)) = length (remdups xs)" - by (rule distinct_card) simp - then show ?thesis by simp -qed - - -subsection {* Derived operations *} - -definition set_eq :: "'a set \ 'a set \ bool" where - [simp]: "set_eq = op =" - -lemma [code_unfold]: - "op = = set_eq" - by simp - -definition subset_eq :: "'a set \ 'a set \ bool" where - [simp]: "subset_eq = op \" - -lemma [code_unfold]: - "op \ = subset_eq" - by simp - -definition subset :: "'a set \ 'a set \ bool" where - [simp]: "subset = op \" - -lemma [code_unfold]: - "op \ = subset" - by simp - -setup {* - Code.add_signature_cmd ("set_eq", "'a set \ 'a set \ bool") - #> Code.add_signature_cmd ("subset_eq", "'a set \ 'a set \ bool") - #> Code.add_signature_cmd ("subset", "'a set \ 'a set \ bool") -*} +abbreviation Set :: "'a list \ 'a set" where + "Set \ set" -lemma set_eq_subset_eq [code]: - "set_eq A B \ subset_eq A B \ subset_eq B A" - by auto - -lemma subset_eq_forall [code]: - "subset_eq A B \ (\x\A. x \ B)" - by (simp add: subset_eq) - -lemma subset_subset_eq [code]: - "subset A B \ subset_eq A B \ \ subset_eq B A" - by (simp add: subset) - - -subsection {* Functorial operations *} - -definition inter :: "'a set \ 'a set \ 'a set" where - [simp]: "inter = op \" - -lemma [code_unfold]: - "op \ = inter" - by simp - -definition subtract :: "'a set \ 'a set \ 'a set" where - [simp]: "subtract A B = B - A" - -lemma [code_unfold]: - "B - A = subtract A B" - by simp - -definition union :: "'a set \ 'a set \ 'a set" where - [simp]: "union = op \" - -lemma [code_unfold]: - "op \ = union" - by simp - -definition Inf :: "'a::complete_lattice set \ 'a" where - [simp]: "Inf = Complete_Lattices.Inf" - -lemma [code_unfold]: - "Complete_Lattices.Inf = Inf" - by simp - -definition Sup :: "'a::complete_lattice set \ 'a" where - [simp]: "Sup = Complete_Lattices.Sup" - -lemma [code_unfold]: - "Complete_Lattices.Sup = Sup" - by simp - -definition Inter :: "'a set set \ 'a set" where - [simp]: "Inter = Inf" - -lemma [code_unfold]: - "Inf = Inter" - by simp - -definition Union :: "'a set set \ 'a set" where - [simp]: "Union = Sup" - -lemma [code_unfold]: - "Sup = Union" - by simp - -setup {* - Code.add_signature_cmd ("inter", "'a set \ 'a set \ 'a set") - #> Code.add_signature_cmd ("subtract", "'a set \ 'a set \ 'a set") - #> Code.add_signature_cmd ("union", "'a set \ 'a set \ 'a set") - #> Code.add_signature_cmd ("Inf", "'a set \ 'a") - #> Code.add_signature_cmd ("Sup", "'a set \ 'a") - #> Code.add_signature_cmd ("Inter", "'a set set \ 'a set") - #> Code.add_signature_cmd ("Union", "'a set set \ 'a set") -*} - -lemma inter_project [code]: - "inter A (Set xs) = Set (List.filter (\x. x \ A) xs)" - "inter A (Coset xs) = foldr remove xs A" - by (simp add: inter project_def) (simp add: Diff_eq [symmetric] minus_set_foldr) - -lemma subtract_remove [code]: - "subtract (Set xs) A = foldr remove xs A" - "subtract (Coset xs) A = Set (List.filter (\x. x \ A) xs)" - by (auto simp add: minus_set_foldr) - -lemma union_insert [code]: - "union (Set xs) A = foldr insert xs A" - "union (Coset xs) A = Coset (List.filter (\x. x \ A) xs)" - by (auto simp add: union_set_foldr) - -lemma Inf_inf [code]: - "Inf (Set xs) = foldr inf xs (top :: 'a::complete_lattice)" - "Inf (Coset []) = (bot :: 'a::complete_lattice)" - by (simp_all add: Inf_set_foldr) - -lemma Sup_sup [code]: - "Sup (Set xs) = foldr sup xs (bot :: 'a::complete_lattice)" - "Sup (Coset []) = (top :: 'a::complete_lattice)" - by (simp_all add: Sup_set_foldr) - -lemma Inter_inter [code]: - "Inter (Set xs) = foldr inter xs (Coset [])" - "Inter (Coset []) = empty" - unfolding Inter_def Inf_inf by simp_all - -lemma Union_union [code]: - "Union (Set xs) = foldr union xs empty" - "Union (Coset []) = Coset []" - unfolding Union_def Sup_sup by simp_all - -hide_const (open) is_empty empty remove - set_eq subset_eq subset inter union subtract Inf Sup Inter Union - - -subsection {* Operations on relations *} - -text {* Initially contributed by Tjark Weber. *} - -lemma [code]: - "Domain r = fst ` r" - by (fact Domain_fst) - -lemma [code]: - "Range r = snd ` r" - by (fact Range_snd) - -lemma [code]: - "trans r \ (\(x, y1) \ r. \(y2, z) \ r. y1 = y2 \ (x, z) \ r)" - by (fact trans_join) - -lemma [code]: - "irrefl r \ (\(x, y) \ r. x \ y)" - by (fact irrefl_distinct) - -lemma [code]: - "acyclic r \ irrefl (r^+)" - by (fact acyclic_irrefl) - -lemma [code]: - "More_Set.product (Set xs) (Set ys) = Set [(x, y). x \ xs, y \ ys]" - by (unfold Set_def) (fact product_code) - -lemma [code]: - "Id_on (Set xs) = Set [(x, x). x \ xs]" - by (unfold Set_def) (fact Id_on_set) - -lemma [code]: - "Set xys O Set yzs = Set ([(fst xy, snd yz). xy \ xys, yz \ yzs, snd xy = fst yz])" - by (unfold Set_def) (fact set_rel_comp) - -lemma [code]: - "wf (Set xs) = acyclic (Set xs)" - by (unfold Set_def) (fact wf_set) +abbreviation Coset :: "'a list \ 'a set" where + "Coset \ More_Set.coset" end