# HG changeset patch # User huffman # Date 1269317514 25200 # Node ID 5ea16bc10a7a1856146b89ca04183a6f0baac1bb # Parent 91a7311177c437f31b6bf3e015ecde7c5269fcda remove admw predicate diff -r 91a7311177c4 -r 5ea16bc10a7a src/HOLCF/Fix.thy --- a/src/HOLCF/Fix.thy Mon Mar 22 20:54:52 2010 -0700 +++ b/src/HOLCF/Fix.thy Mon Mar 22 21:11:54 2010 -0700 @@ -261,29 +261,4 @@ show "\?x, ?y\ \ z" using z 1 2 by simp qed -subsection {* Weak admissibility *} - -definition - admw :: "('a \ bool) \ bool" where - "admw P = (\F. (\n. P (iterate n\F\\)) \ P (\i. iterate i\F\\))" - -text {* an admissible formula is also weak admissible *} - -lemma adm_impl_admw: "adm P \ admw P" -apply (unfold admw_def) -apply (intro strip) -apply (erule admD) -apply (rule chain_iterate) -apply (erule spec) -done - -text {* computational induction for weak admissible formulae *} - -lemma wfix_ind: "\admw P; \n. P (iterate n\F\\)\ \ P (fix\F)" -by (simp add: fix_def2 admw_def) - -lemma def_wfix_ind: - "\f \ fix\F; admw P; \n. P (iterate n\F\\)\ \ P f" -by (simp, rule wfix_ind) - end