# HG changeset patch # User huffman # Date 1200603393 -3600 # Node ID 5fe4b543512e0b697801c1c950772053b5df62b2 # Parent cb04d05e95fb454d92e61315890fdea0395e3a96 convert lemma lub_mono to rule_format diff -r cb04d05e95fb -r 5fe4b543512e src/HOLCF/Adm.thy --- a/src/HOLCF/Adm.thy Thu Jan 17 21:44:19 2008 +0100 +++ b/src/HOLCF/Adm.thy Thu Jan 17 21:56:33 2008 +0100 @@ -77,7 +77,7 @@ (\i. Y i) = (\i. Y (LEAST j. i \ j \ P (Y j)))" apply (frule (1) adm_disj_lemma1) apply (rule antisym_less) - apply (rule lub_mono [rule_format], assumption+) + apply (rule lub_mono, assumption+) apply (erule chain_mono) apply (simp add: adm_disj_lemma2) apply (rule lub_range_mono, fast, assumption+) @@ -128,7 +128,7 @@ apply (rule lub_mono) apply (erule (1) ch2ch_cont) apply (erule (1) ch2ch_cont) -apply assumption +apply (erule spec) done lemma adm_eq: "\cont u; cont v\ \ adm (\x. u x = v x)" diff -r cb04d05e95fb -r 5fe4b543512e src/HOLCF/Bifinite.thy --- a/src/HOLCF/Bifinite.thy Thu Jan 17 21:44:19 2008 +0100 +++ b/src/HOLCF/Bifinite.thy Thu Jan 17 21:56:33 2008 +0100 @@ -153,7 +153,7 @@ fixes x y :: "'a::bifinite_cpo" shows "(\i. approx i\x \ approx i\y) \ x \ y" apply (subgoal_tac "(\i. approx i\x) \ (\i. approx i\y)", simp) -apply (rule lub_mono [rule_format], simp, simp, simp) +apply (rule lub_mono, simp, simp, simp) done subsection {* Instance for continuous function space *} diff -r cb04d05e95fb -r 5fe4b543512e src/HOLCF/Ffun.thy --- a/src/HOLCF/Ffun.thy Thu Jan 17 21:44:19 2008 +0100 +++ b/src/HOLCF/Ffun.thy Thu Jan 17 21:56:33 2008 +0100 @@ -179,7 +179,7 @@ \ monofun (\i. F i)" apply (rule monofunI) apply (simp add: thelub_fun) -apply (rule lub_mono [rule_format]) +apply (rule lub_mono) apply (erule ch2ch_fun) apply (erule ch2ch_fun) apply (simp add: monofunE) diff -r cb04d05e95fb -r 5fe4b543512e src/HOLCF/IOA/meta_theory/Sequence.thy --- a/src/HOLCF/IOA/meta_theory/Sequence.thy Thu Jan 17 21:44:19 2008 +0100 +++ b/src/HOLCF/IOA/meta_theory/Sequence.thy Thu Jan 17 21:56:33 2008 +0100 @@ -916,7 +916,6 @@ apply (rule lub_mono) apply (rule chain_iterate [THEN ch2ch_Rep_CFunL]) apply (rule chain_iterate [THEN ch2ch_Rep_CFunL]) -apply (rule allI) apply (rule prems [unfolded seq.take_def]) done diff -r cb04d05e95fb -r 5fe4b543512e src/HOLCF/Pcpo.thy --- a/src/HOLCF/Pcpo.thy Thu Jan 17 21:44:19 2008 +0100 +++ b/src/HOLCF/Pcpo.thy Thu Jan 17 21:56:33 2008 +0100 @@ -73,12 +73,12 @@ text {* the @{text "\"} relation between two chains is preserved by their lubs *} lemma lub_mono: - "\chain (X::nat \ 'a::cpo); chain Y; \k. X k \ Y k\ + "\chain (X::nat \ 'a::cpo); chain Y; \i. X i \ Y i\ \ (\i. X i) \ (\i. Y i)" apply (erule is_lub_thelub) apply (rule ub_rangeI) apply (rule trans_less) -apply (erule spec) +apply (erule meta_spec) apply (erule is_ub_thelub) done @@ -123,7 +123,7 @@ assumes 2: "\i. chain (\j. Y i j)" shows "chain (\i. \j. Y i j)" apply (rule chainI) -apply (rule lub_mono [rule_format, OF 2 2]) +apply (rule lub_mono [OF 2 2]) apply (rule chainE [OF 1]) done @@ -151,7 +151,7 @@ apply (rule chain_mono [OF 2 le_maxI2]) done show "(\i. Y i i) \ (\i. \j. Y i j)" - apply (rule lub_mono [rule_format, OF 3 4]) + apply (rule lub_mono [OF 3 4]) apply (rule is_ub_thelub [OF 2]) done qed