# HG changeset patch # User wenzelm # Date 930603919 -7200 # Node ID 60a5ee0ca81db43bb83cc47d36325bf58bddff13 # Parent 80f88b762816584e2a8fb108909857485e6579df updated; diff -r 80f88b762816 -r 60a5ee0ca81d src/HOL/Isar_examples/NatSum.thy --- a/src/HOL/Isar_examples/NatSum.thy Mon Jun 28 23:02:38 1999 +0200 +++ b/src/HOL/Isar_examples/NatSum.thy Mon Jun 28 23:05:19 1999 +0200 @@ -35,10 +35,10 @@ theorem "2 * sum (%i. i) (Suc n) = n * Suc n"; proof same; - refine simp_tac; - refine (induct n); - refine simp_tac; - refine asm_simp_tac; + apply simp_tac; + apply (induct n); + apply simp_tac; + apply asm_simp_tac; qed_with sum_of_naturals; diff -r 80f88b762816 -r 60a5ee0ca81d src/HOL/Isar_examples/Peirce.thy --- a/src/HOL/Isar_examples/Peirce.thy Mon Jun 28 23:02:38 1999 +0200 +++ b/src/HOL/Isar_examples/Peirce.thy Mon Jun 28 23:05:19 1999 +0200 @@ -30,11 +30,9 @@ assume ABA: "(A --> B) --> A"; show A; proof (rule classical); - - assume AB: "A --> B"; + presume AB: "A --> B"; from ABA AB; show A; ..; - - next; + next; assume notA: "~ A"; show "A --> B"; proof;