# HG changeset patch # User paulson # Date 1665677996 -3600 # Node ID 2317e9a192390b003faa707403c7c6d053e3377b # Parent 71bf371a97844d3cd85fd6793faeb80645b70dee# Parent 61640505795152a7652e776be5fdc76f4745ef88 merged diff -r 616405057951 -r 2317e9a19239 NEWS --- a/NEWS Thu Oct 13 17:19:50 2022 +0100 +++ b/NEWS Thu Oct 13 17:19:56 2022 +0100 @@ -9,19 +9,23 @@ *** HOL *** +* Theory "HOL.Fun": + - Renamed lemma inj_on_strict_subset to image_strict_mono. + Minor INCOMPATIBILITY. + * Theory "HOL.Relation": - Strengthened lemma total_on_singleton. Minor INCOMPATIBILITY. - Added lemmas. antisym_if_asymp - antisymp_ge[simp] - antisymp_greater[simp] antisymp_if_asymp - antisymp_le[simp] - antisymp_less[simp] irreflD irreflpD - reflp_ge[simp] - reflp_le[simp] + order.antisymp_ge[simp] + order.antisymp_le[simp] + preorder.antisymp_greater[simp] + preorder.antisymp_less[simp] + preorder.reflp_ge[simp] + preorder.reflp_le[simp] totalp_on_singleton[simp] * Theory "HOL.Wellfounded": @@ -33,7 +37,7 @@ * Theory "HOL-Library.FSet": - Added lemmas. fimage_strict_mono - inj_on_strict_fsubset + wfP_pfsubset New in Isabelle2022 (October 2022) diff -r 616405057951 -r 2317e9a19239 src/HOL/BNF_Wellorder_Constructions.thy --- a/src/HOL/BNF_Wellorder_Constructions.thy Thu Oct 13 17:19:50 2022 +0100 +++ b/src/HOL/BNF_Wellorder_Constructions.thy Thu Oct 13 17:19:56 2022 +0100 @@ -708,7 +708,7 @@ moreover have "inj_on f23 ?A2" using EMB23 0 by (simp add: wo_rel_def embed_inj_on) ultimately - have "f23 ` (f12 ` ?A1) < f23 ` ?A2" by (simp add: inj_on_strict_subset) + have "f23 ` (f12 ` ?A1) < f23 ` ?A2" by (simp add: image_strict_mono) moreover {have "embed r1 r3 (f23 \ f12)" using 1 EMB23 0 by (auto simp add: comp_embed) diff -r 616405057951 -r 2317e9a19239 src/HOL/Fun.thy --- a/src/HOL/Fun.thy Thu Oct 13 17:19:50 2022 +0100 +++ b/src/HOL/Fun.thy Thu Oct 13 17:19:56 2022 +0100 @@ -178,7 +178,7 @@ lemma inj_on_cong: "(\a. a \ A \ f a = g a) \ inj_on f A \ inj_on g A" by (auto simp: inj_on_def) -lemma inj_on_strict_subset: "inj_on f B \ A \ B \ f ` A \ f ` B" +lemma image_strict_mono: "inj_on f B \ A \ B \ f ` A \ f ` B" unfolding inj_on_def by blast lemma inj_compose: "inj f \ inj g \ inj (f \ g)" diff -r 616405057951 -r 2317e9a19239 src/HOL/Library/FSet.thy --- a/src/HOL/Library/FSet.thy Thu Oct 13 17:19:50 2022 +0100 +++ b/src/HOL/Library/FSet.thy Thu Oct 13 17:19:56 2022 +0100 @@ -559,7 +559,7 @@ lemma fimage_strict_mono: assumes "inj_on f (fset B)" and "A |\| B" shows "f |`| A |\| f |`| B" - \ \TODO: Configure transfer framework to lift @{thm Fun.inj_on_strict_subset}.\ + \ \TODO: Configure transfer framework to lift @{thm Fun.image_strict_mono}.\ proof (rule pfsubsetI) from \A |\| B\ have "A |\| B" by (rule pfsubset_imp_fsubset)