# HG changeset patch # User noschinl # Date 1331561484 -3600 # Node ID 6242b4bc05bcb4421d392a9dd5e19999f5ed61aa # Parent bad72cba8a92030ae308f7af689e3acfe4a382fe tuned simpset diff -r bad72cba8a92 -r 6242b4bc05bc src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Sun Mar 11 22:06:13 2012 +0100 +++ b/src/HOL/Complete_Lattices.thy Mon Mar 12 15:11:24 2012 +0100 @@ -579,14 +579,14 @@ definition "\A = (\x. \f\A. f x)" -lemma Inf_apply (* CANDIDATE [simp] *) [code]: +lemma Inf_apply [simp, code]: "(\A) x = (\f\A. f x)" by (simp add: Inf_fun_def) definition "\A = (\x. \f\A. f x)" -lemma Sup_apply (* CANDIDATE [simp] *) [code]: +lemma Sup_apply [simp, code]: "(\A) x = (\f\A. f x)" by (simp add: Sup_fun_def) @@ -595,11 +595,11 @@ end -lemma INF_apply (* CANDIDATE [simp] *): +lemma INF_apply [simp]: "(\y\A. f y) x = (\y\A. f y x)" by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def Inf_apply) -lemma SUP_apply (* CANDIDATE [simp] *): +lemma SUP_apply [simp]: "(\y\A. f y) x = (\y\A. f y x)" by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def Sup_apply) diff -r bad72cba8a92 -r 6242b4bc05bc src/HOL/Lattices.thy --- a/src/HOL/Lattices.thy Sun Mar 11 22:06:13 2012 +0100 +++ b/src/HOL/Lattices.thy Mon Mar 12 15:11:24 2012 +0100 @@ -650,14 +650,14 @@ definition "f \ g = (\x. f x \ g x)" -lemma inf_apply (* CANDIDATE [simp, code] *): +lemma inf_apply [simp] (* CANDIDATE [code] *): "(f \ g) x = f x \ g x" by (simp add: inf_fun_def) definition "f \ g = (\x. f x \ g x)" -lemma sup_apply (* CANDIDATE [simp, code] *): +lemma sup_apply [simp] (* CANDIDATE [code] *): "(f \ g) x = f x \ g x" by (simp add: sup_fun_def) @@ -677,7 +677,7 @@ definition fun_Compl_def: "- A = (\x. - A x)" -lemma uminus_apply (* CANDIDATE [simp, code] *): +lemma uminus_apply [simp] (* CANDIDATE [code] *): "(- A) x = - (A x)" by (simp add: fun_Compl_def) @@ -691,7 +691,7 @@ definition fun_diff_def: "A - B = (\x. A x - B x)" -lemma minus_apply (* CANDIDATE [simp, code] *): +lemma minus_apply [simp] (* CANDIDATE [code] *): "(A - B) x = A x - B x" by (simp add: fun_diff_def) diff -r bad72cba8a92 -r 6242b4bc05bc src/HOL/Orderings.thy --- a/src/HOL/Orderings.thy Sun Mar 11 22:06:13 2012 +0100 +++ b/src/HOL/Orderings.thy Mon Mar 12 15:11:24 2012 +0100 @@ -1299,7 +1299,7 @@ definition "\ = (\x. \)" -lemma bot_apply (* CANDIDATE [simp, code] *): +lemma bot_apply [simp] (* CANDIDATE [code] *): "\ x = \" by (simp add: bot_fun_def) @@ -1315,7 +1315,7 @@ [no_atp]: "\ = (\x. \)" declare top_fun_def_raw [no_atp] -lemma top_apply (* CANDIDATE [simp, code] *): +lemma top_apply [simp] (* CANDIDATE [code] *): "\ x = \" by (simp add: top_fun_def) diff -r bad72cba8a92 -r 6242b4bc05bc src/HOL/Relation.thy --- a/src/HOL/Relation.thy Sun Mar 11 22:06:13 2012 +0100 +++ b/src/HOL/Relation.thy Mon Mar 12 15:11:24 2012 +0100 @@ -10,9 +10,8 @@ text {* A preliminary: classical rules for reasoning on predicates *} -(* CANDIDATE declare predicate1I [Pure.intro!, intro!] *) -declare predicate1D [Pure.dest?, dest?] -(* CANDIDATE declare predicate1D [Pure.dest, dest] *) +declare predicate1I [Pure.intro!, intro!] +declare predicate1D [Pure.dest, dest] declare predicate2I [Pure.intro!, intro!] declare predicate2D [Pure.dest, dest] declare bot1E [elim!] @@ -602,7 +601,7 @@ "R O (S \ T) = (R O S) \ (R O T)" by auto -lemma pred_comp_distrib (* CANDIDATE [simp] *): +lemma pred_comp_distrib [simp]: "R OO (S \ T) = R OO S \ R OO T" by (fact rel_comp_distrib [to_pred]) @@ -610,7 +609,7 @@ "(S \ T) O R = (S O R) \ (T O R)" by auto -lemma pred_comp_distrib2 (* CANDIDATE [simp] *): +lemma pred_comp_distrib2 [simp]: "(S \ T) OO R = S OO R \ T OO R" by (fact rel_comp_distrib2 [to_pred]) @@ -672,7 +671,7 @@ "yx \ r\ \ (\x y. yx = (y, x) \ (x, y) \ r \ P) \ P" by (cases yx) (simp, erule converse.cases, iprover) -lemmas conversepE (* CANDIDATE [elim!] *) = conversep.cases +lemmas conversepE [elim!] = conversep.cases lemma converse_iff [iff]: "(a, b) \ r\ \ (b, a) \ r" @@ -828,10 +827,10 @@ lemma Range_empty_iff: "Range r = {} \ r = {}" by auto -lemma Domain_insert (* CANDIDATE [simp] *): "Domain (insert (a, b) r) = insert a (Domain r)" +lemma Domain_insert [simp]: "Domain (insert (a, b) r) = insert a (Domain r)" by blast -lemma Range_insert (* CANDIDATE [simp] *): "Range (insert (a, b) r) = insert b (Range r)" +lemma Range_insert [simp]: "Range (insert (a, b) r) = insert b (Range r)" by blast lemma Field_insert [simp]: "Field (insert (a, b) r) = {a, b} \ Field r" diff -r bad72cba8a92 -r 6242b4bc05bc src/HOL/Set.thy --- a/src/HOL/Set.thy Sun Mar 11 22:06:13 2012 +0100 +++ b/src/HOL/Set.thy Mon Mar 12 15:11:24 2012 +0100 @@ -124,7 +124,8 @@ qed (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def bot_set_def top_set_def uminus_set_def minus_set_def less_le_not_le inf_compl_bot sup_compl_top sup_inf_distrib1 diff_eq - set_eqI fun_eq_iff) + set_eqI fun_eq_iff + del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply) end diff -r bad72cba8a92 -r 6242b4bc05bc src/HOL/Wellfounded.thy --- a/src/HOL/Wellfounded.thy Sun Mar 11 22:06:13 2012 +0100 +++ b/src/HOL/Wellfounded.thy Mon Mar 12 15:11:24 2012 +0100 @@ -299,8 +299,7 @@ lemma wfP_SUP: "\i. wfP (r i) \ \i j. r i \ r j \ inf (DomainP (r i)) (RangeP (r j)) = bot \ wfP (SUPR UNIV r)" apply (rule wf_UN [where I=UNIV and r="\i. {(x, y). r i x y}", to_pred]) - apply (simp_all add: inf_set_def) - apply auto + apply simp_all done lemma wf_Union: