# HG changeset patch # User huffman # Date 1320835482 -3600 # Node ID 62bc9474d04b9a9e3a2c3d624cccab2cf931d600 # Parent d660c4b9daa6c9bae57d73b2ebe21bc2c60f303a use simproc_setup for some nat_numeral simprocs; add simproc tests diff -r d660c4b9daa6 -r 62bc9474d04b src/HOL/Numeral_Simprocs.thy --- a/src/HOL/Numeral_Simprocs.thy Wed Nov 09 10:58:08 2011 +0100 +++ b/src/HOL/Numeral_Simprocs.thy Wed Nov 09 11:44:42 2011 +0100 @@ -202,6 +202,30 @@ use "Tools/nat_numeral_simprocs.ML" +simproc_setup nateq_cancel_numerals + ("(l::nat) + m = n" | "(l::nat) = m + n" | + "(l::nat) * m = n" | "(l::nat) = m * n" | + "Suc m = n" | "m = Suc n") = + {* fn phi => Nat_Numeral_Simprocs.eq_cancel_numerals *} + +simproc_setup natless_cancel_numerals + ("(l::nat) + m < n" | "(l::nat) < m + n" | + "(l::nat) * m < n" | "(l::nat) < m * n" | + "Suc m < n" | "m < Suc n") = + {* fn phi => Nat_Numeral_Simprocs.less_cancel_numerals *} + +simproc_setup natle_cancel_numerals + ("(l::nat) + m \ n" | "(l::nat) \ m + n" | + "(l::nat) * m \ n" | "(l::nat) \ m * n" | + "Suc m \ n" | "m \ Suc n") = + {* fn phi => Nat_Numeral_Simprocs.le_cancel_numerals *} + +simproc_setup natdiff_cancel_numerals + ("((l::nat) + m) - n" | "(l::nat) - (m + n)" | + "(l::nat) * m - n" | "(l::nat) - m * n" | + "Suc m - n" | "m - Suc n") = + {* fn phi => Nat_Numeral_Simprocs.diff_cancel_numerals *} + declaration {* K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}]) #> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1}, @@ -222,7 +246,12 @@ @{simproc inteq_cancel_numerals}, @{simproc intless_cancel_numerals}, @{simproc intle_cancel_numerals}] - #> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals)) + #> Lin_Arith.add_simprocs + [Nat_Numeral_Simprocs.combine_numerals, + @{simproc nateq_cancel_numerals}, + @{simproc natless_cancel_numerals}, + @{simproc natle_cancel_numerals}, + @{simproc natdiff_cancel_numerals}]) *} end diff -r d660c4b9daa6 -r 62bc9474d04b src/HOL/Tools/nat_numeral_simprocs.ML --- a/src/HOL/Tools/nat_numeral_simprocs.ML Wed Nov 09 10:58:08 2011 +0100 +++ b/src/HOL/Tools/nat_numeral_simprocs.ML Wed Nov 09 11:44:42 2011 +0100 @@ -6,7 +6,10 @@ signature NAT_NUMERAL_SIMPROCS = sig val combine_numerals: simproc - val cancel_numerals: simproc list + val eq_cancel_numerals: simpset -> cterm -> thm option + val less_cancel_numerals: simpset -> cterm -> thm option + val le_cancel_numerals: simpset -> cterm -> thm option + val diff_cancel_numerals: simpset -> cterm -> thm option val cancel_factors: simproc list val cancel_numeral_factors: simproc list end; @@ -195,29 +198,10 @@ val bal_add2 = @{thm nat_diff_add_eq2} RS trans ); - -val cancel_numerals = - map (Numeral_Simprocs.prep_simproc @{theory}) - [("nateq_cancel_numerals", - ["(l::nat) + m = n", "(l::nat) = m + n", - "(l::nat) * m = n", "(l::nat) = m * n", - "Suc m = n", "m = Suc n"], - K EqCancelNumerals.proc), - ("natless_cancel_numerals", - ["(l::nat) + m < n", "(l::nat) < m + n", - "(l::nat) * m < n", "(l::nat) < m * n", - "Suc m < n", "m < Suc n"], - K LessCancelNumerals.proc), - ("natle_cancel_numerals", - ["(l::nat) + m <= n", "(l::nat) <= m + n", - "(l::nat) * m <= n", "(l::nat) <= m * n", - "Suc m <= n", "m <= Suc n"], - K LeCancelNumerals.proc), - ("natdiff_cancel_numerals", - ["((l::nat) + m) - n", "(l::nat) - (m + n)", - "(l::nat) * m - n", "(l::nat) - m * n", - "Suc m - n", "m - Suc n"], - K DiffCancelNumerals.proc)]; +fun eq_cancel_numerals ss ct = EqCancelNumerals.proc ss (term_of ct) +fun less_cancel_numerals ss ct = LessCancelNumerals.proc ss (term_of ct) +fun le_cancel_numerals ss ct = LeCancelNumerals.proc ss (term_of ct) +fun diff_cancel_numerals ss ct = DiffCancelNumerals.proc ss (term_of ct) (*** Applying CombineNumeralsFun ***) @@ -424,7 +408,6 @@ end; -Addsimprocs Nat_Numeral_Simprocs.cancel_numerals; Addsimprocs [Nat_Numeral_Simprocs.combine_numerals]; Addsimprocs Nat_Numeral_Simprocs.cancel_numeral_factors; Addsimprocs Nat_Numeral_Simprocs.cancel_factor; @@ -436,57 +419,6 @@ set simp_trace; fun test s = (Goal s; by (Simp_tac 1)); -(*cancel_numerals*) -test "l +( 2) + (2) + 2 + (l + 2) + (oo + 2) = (uu::nat)"; -test "(2*length xs < 2*length xs + j)"; -test "(2*length xs < length xs * 2 + j)"; -test "2*u = (u::nat)"; -test "2*u = Suc (u)"; -test "(i + j + 12 + (k::nat)) - 15 = y"; -test "(i + j + 12 + (k::nat)) - 5 = y"; -test "Suc u - 2 = y"; -test "Suc (Suc (Suc u)) - 2 = y"; -test "(i + j + 2 + (k::nat)) - 1 = y"; -test "(i + j + 1 + (k::nat)) - 2 = y"; - -test "(2*x + (u*v) + y) - v*3*u = (w::nat)"; -test "(2*x*u*v + 5 + (u*v)*4 + y) - v*u*4 = (w::nat)"; -test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::nat)"; -test "Suc (Suc (2*x*u*v + u*4 + y)) - u = w"; -test "Suc ((u*v)*4) - v*3*u = w"; -test "Suc (Suc ((u*v)*3)) - v*3*u = w"; - -test "(i + j + 12 + (k::nat)) = u + 15 + y"; -test "(i + j + 32 + (k::nat)) - (u + 15 + y) = zz"; -test "(i + j + 12 + (k::nat)) = u + 5 + y"; -(*Suc*) -test "(i + j + 12 + k) = Suc (u + y)"; -test "Suc (Suc (Suc (Suc (Suc (u + y))))) <= ((i + j) + 41 + k)"; -test "(i + j + 5 + k) < Suc (Suc (Suc (Suc (Suc (u + y)))))"; -test "Suc (Suc (Suc (Suc (Suc (u + y))))) - 5 = v"; -test "(i + j + 5 + k) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (u + y)))))))"; -test "2*y + 3*z + 2*u = Suc (u)"; -test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = Suc (u)"; -test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::nat)"; -test "6 + 2*y + 3*z + 4*u = Suc (vv + 2*u + z)"; -test "(2*n*m) < (3*(m*n)) + (u::nat)"; - -test "(Suc (Suc (Suc (Suc (Suc (Suc (case length (f c) of 0 => 0 | Suc k => k)))))) <= Suc 0)"; - -test "Suc (Suc (Suc (Suc (Suc (Suc (length l1 + length l2)))))) <= length l1"; - -test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length l3)))))) <= length (compT P E A ST mxr e))"; - -test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length (compT P E (A Un \ e) ST mxr c))))))) <= length (compT P E A ST mxr e))"; - - -(*negative numerals: FAIL*) -test "(i + j + -23 + (k::nat)) < u + 15 + y"; -test "(i + j + 3 + (k::nat)) < u + -15 + y"; -test "(i + j + -12 + (k::nat)) - 15 = y"; -test "(i + j + 12 + (k::nat)) - -15 = y"; -test "(i + j + -12 + (k::nat)) - -15 = y"; - (*combine_numerals*) test "k + 3*k = (u::nat)"; test "Suc (i + 3) = u"; diff -r d660c4b9daa6 -r 62bc9474d04b src/HOL/ex/Simproc_Tests.thy --- a/src/HOL/ex/Simproc_Tests.thy Wed Nov 09 10:58:08 2011 +0100 +++ b/src/HOL/ex/Simproc_Tests.thy Wed Nov 09 11:44:42 2011 +0100 @@ -380,4 +380,176 @@ apply (tactic {* test [@{simproc field_combine_numerals}] *})? oops -- "FIXME: test fails" +subsection {* @{text nateq_cancel_numerals} *} + +notepad begin + fix i j k l oo u uu vv w y z w' y' z' :: "nat" + { + assume "Suc 0 * u = 0" have "2*u = (u::nat)" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "Suc 0 * u = Suc 0" have "2*u = Suc (u)" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "i + (j + k) = 3 * Suc 0 + (u + y)" + have "(i + j + 12 + k) = u + 15 + y" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "7 * Suc 0 + (i + (j + k)) = u + y" + have "(i + j + 12 + k) = u + 5 + y" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "11 * Suc 0 + (i + (j + k)) = u + y" + have "(i + j + 12 + k) = Suc (u + y)" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "i + (j + k) = 2 * Suc 0 + (u + y)" + have "(i + j + 5 + k) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (u + y)))))))" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "Suc 0 * u + (2 * y + 3 * z) = Suc 0" + have "2*y + 3*z + 2*u = Suc (u)" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "Suc 0 * u + (2 * y + (3 * z + (6 * w + (2 * y + 3 * z)))) = Suc 0" + have "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = Suc (u)" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "Suc 0 * u + (2 * y + (3 * z + (6 * w + (2 * y + 3 * z)))) = + 2 * y' + (3 * z' + (6 * w' + (2 * y' + (3 * z' + vv))))" + have "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = + 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + vv" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + next + assume "2 * u + (2 * z + (5 * Suc 0 + 2 * y)) = vv" + have "6 + 2*y + 3*z + 4*u = Suc (vv + 2*u + z)" + by (tactic {* test [@{simproc nateq_cancel_numerals}] *}) fact + } end + +subsection {* @{text natless_cancel_numerals} *} + +notepad begin + fix length :: "'a \ nat" and l1 l2 xs :: "'a" and f :: "nat \ 'a" + fix c i j k l oo u uu vv w y z w' y' z' :: "nat" + { + assume "0 < j" have "(2*length xs < 2*length xs + j)" + by (tactic {* test [@{simproc natless_cancel_numerals}] *}) fact + next + assume "0 < j" have "(2*length xs < length xs * 2 + j)" + by (tactic {* test [@{simproc natless_cancel_numerals}] *}) fact + next + assume "i + (j + k) < u + y" + have "(i + j + 5 + k) < Suc (Suc (Suc (Suc (Suc (u + y)))))" + by (tactic {* test [@{simproc natless_cancel_numerals}] *}) fact + next + assume "0 < Suc 0 * (m * n) + u" have "(2*n*m) < (3*(m*n)) + u" + by (tactic {* test [@{simproc natless_cancel_numerals}] *}) fact + next + (* FIXME: negative numerals fail + have "(i + j + -23 + (k::nat)) < u + 15 + y" + apply (tactic {* test [@{simproc natless_cancel_numerals}] *})? + sorry + have "(i + j + 3 + (k::nat)) < u + -15 + y" + apply (tactic {* test [@{simproc natless_cancel_numerals}] *})? + sorry*) + } +end + +subsection {* @{text natle_cancel_numerals} *} + +notepad begin + fix length :: "'a \ nat" and l2 l3 :: "'a" and f :: "nat \ 'a" + fix c e i j k l oo u uu vv w y z w' y' z' :: "nat" + { + assume "u + y \ 36 * Suc 0 + (i + (j + k))" + have "Suc (Suc (Suc (Suc (Suc (u + y))))) \ ((i + j) + 41 + k)" + by (tactic {* test [@{simproc natle_cancel_numerals}] *}) fact + next + assume "5 * Suc 0 + (case length (f c) of 0 \ 0 | Suc k \ k) = 0" + have "(Suc (Suc (Suc (Suc (Suc (Suc (case length (f c) of 0 => 0 | Suc k => k)))))) \ Suc 0)" + by (tactic {* test [@{simproc natle_cancel_numerals}] *}) fact + next + assume "6 + length l2 = 0" have "Suc (Suc (Suc (Suc (Suc (Suc (length l1 + length l2)))))) \ length l1" + by (tactic {* test [@{simproc natle_cancel_numerals}] *}) fact + next + assume "5 + length l3 = 0" + have "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length l3)))))) \ length (compT P E A ST mxr e))" + by (tactic {* test [@{simproc natle_cancel_numerals}] *}) fact + next + assume "5 + length (compT P E (A \ A' e) ST mxr c) = 0" + have "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length (compT P E (A Un A' e) ST mxr c))))))) \ length (compT P E A ST mxr e))" + by (tactic {* test [@{simproc natle_cancel_numerals}] *}) fact + } +end + +subsection {* @{text natdiff_cancel_numerals} *} + +notepad begin + fix length :: "'a \ nat" and l2 l3 :: "'a" and f :: "nat \ 'a" + fix c e i j k l oo u uu vv v w x y z zz w' y' z' :: "nat" + { + assume "i + (j + k) - 3 * Suc 0 = y" have "(i + j + 12 + k) - 15 = y" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "7 * Suc 0 + (i + (j + k)) - 0 = y" have "(i + j + 12 + k) - 5 = y" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "u - Suc 0 * Suc 0 = y" have "Suc u - 2 = y" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "Suc 0 * Suc 0 + u - 0 = y" have "Suc (Suc (Suc u)) - 2 = y" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "Suc 0 * Suc 0 + (i + (j + k)) - 0 = y" + have "(i + j + 2 + k) - 1 = y" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "i + (j + k) - Suc 0 * Suc 0 = y" + have "(i + j + 1 + k) - 2 = y" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "2 * x + y - 2 * (u * v) = w" + have "(2*x + (u*v) + y) - v*3*u = w" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "2 * x * u * v + (5 + y) - 0 = w" + have "(2*x*u*v + 5 + (u*v)*4 + y) - v*u*4 = w" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "3 * (u * v) + (2 * x * u * v + y) - 0 = w" + have "(2*x*u*v + (u*v)*4 + y) - v*u = w" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "3 * u + (2 + (2 * x * u * v + y)) - 0 = w" + have "Suc (Suc (2*x*u*v + u*4 + y)) - u = w" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "Suc (Suc 0 * (u * v)) - 0 = w" + have "Suc ((u*v)*4) - v*3*u = w" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "2 - 0 = w" have "Suc (Suc ((u*v)*3)) - v*3*u = w" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "17 * Suc 0 + (i + (j + k)) - (u + y) = zz" + have "(i + j + 32 + k) - (u + 15 + y) = zz" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + assume "u + y - 0 = v" have "Suc (Suc (Suc (Suc (Suc (u + y))))) - 5 = v" + by (tactic {* test [@{simproc natdiff_cancel_numerals}] *}) fact + next + (* FIXME: negative numerals fail + have "(i + j + -12 + k) - 15 = y" + apply (tactic {* test [@{simproc natdiff_cancel_numerals}] *})? + sorry + have "(i + j + 12 + k) - -15 = y" + apply (tactic {* test [@{simproc natdiff_cancel_numerals}] *})? + sorry + have "(i + j + -12 + k) - -15 = y" + apply (tactic {* test [@{simproc natdiff_cancel_numerals}] *})? + sorry*) + } +end + +end