# HG changeset patch # User lcp # Date 799545638 -7200 # Node ID 62bdb9e5722b211dd3c7fbdafd8064df6d9f3d75 # Parent 136b05aa77ed29cc1fd71ef1a993c02a9187f072 Added pattern-matching code from CHOL/Prod.thy. Changed definitions so that split is now defined in terms of fst, snd. Now split is polymorphic. Deleted fsplit, as split(...)::o gives a similar effect -- NOT identical though, as fsplit(P,z) implied that z was a pair, while split(P,z) means only P(fst(z),snd(z)). diff -r 136b05aa77ed -r 62bdb9e5722b src/ZF/ZF.thy --- a/src/ZF/ZF.thy Wed May 03 17:38:27 1995 +0200 +++ b/src/ZF/ZF.thy Thu May 04 02:00:38 1995 +0200 @@ -6,7 +6,7 @@ Zermelo-Fraenkel Set Theory *) -ZF = FOL + +ZF = FOL + Let + types i @@ -49,8 +49,7 @@ Pair :: "[i, i] => i" fst, snd :: "i => i" - split :: "[[i, i] => i, i] => i" - fsplit :: "[[i, i] => o, i] => o" + split :: "[[i, i] => 'a, i] => 'a::logic" (*for pattern-matching*) (* Sigma and Pi Operators *) @@ -83,32 +82,37 @@ types is + pttrns syntax - "" :: "i => is" ("_") - "@Enum" :: "[i, is] => is" ("_,/ _") - "~:" :: "[i, i] => o" (infixl 50) - "@Finset" :: "is => i" ("{(_)}") - "@Tuple" :: "[i, is] => i" ("<(_,/ _)>") - "@Collect" :: "[idt, i, o] => i" ("(1{_: _ ./ _})") - "@Replace" :: "[idt, idt, i, o] => i" ("(1{_ ./ _: _, _})") - "@RepFun" :: "[i, idt, i] => i" ("(1{_ ./ _: _})" [51,0,51]) - "@INTER" :: "[idt, i, i] => i" ("(3INT _:_./ _)" 10) - "@UNION" :: "[idt, i, i] => i" ("(3UN _:_./ _)" 10) - "@PROD" :: "[idt, i, i] => i" ("(3PROD _:_./ _)" 10) - "@SUM" :: "[idt, i, i] => i" ("(3SUM _:_./ _)" 10) - "->" :: "[i, i] => i" (infixr 60) - "*" :: "[i, i] => i" (infixr 80) - "@lam" :: "[idt, i, i] => i" ("(3lam _:_./ _)" 10) - "@Ball" :: "[idt, i, o] => o" ("(3ALL _:_./ _)" 10) - "@Bex" :: "[idt, i, o] => o" ("(3EX _:_./ _)" 10) + "" :: "i => is" ("_") + "@Enum" :: "[i, is] => is" ("_,/ _") + "~:" :: "[i, i] => o" (infixl 50) + "@Finset" :: "is => i" ("{(_)}") + "@Tuple" :: "[i, is] => i" ("<(_,/ _)>") + "@Collect" :: "[pttrn, i, o] => i" ("(1{_: _ ./ _})") + "@Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})") + "@RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _: _})" [51,0,51]) + "@INTER" :: "[pttrn, i, i] => i" ("(3INT _:_./ _)" 10) + "@UNION" :: "[pttrn, i, i] => i" ("(3UN _:_./ _)" 10) + "@PROD" :: "[pttrn, i, i] => i" ("(3PROD _:_./ _)" 10) + "@SUM" :: "[pttrn, i, i] => i" ("(3SUM _:_./ _)" 10) + "->" :: "[i, i] => i" (infixr 60) + "*" :: "[i, i] => i" (infixr 80) + "@lam" :: "[pttrn, i, i] => i" ("(3lam _:_./ _)" 10) + "@Ball" :: "[pttrn, i, o] => o" ("(3ALL _:_./ _)" 10) + "@Bex" :: "[pttrn, i, o] => o" ("(3EX _:_./ _)" 10) + + (** Patterns -- extends pre-defined type "pttrn" used in abstractions **) + + "@pttrn" :: "pttrns => pttrn" ("<_>") + "" :: " pttrn => pttrns" ("_") + "@pttrns" :: "[pttrn,pttrns] => pttrns" ("_,/_") translations "x ~: y" == "~ (x : y)" "{x, xs}" == "cons(x, {xs})" "{x}" == "cons(x, 0)" - "" == ">" - "" == "Pair(x, y)" "{x:A. P}" == "Collect(A, %x. P)" "{y. x:A, Q}" == "Replace(A, %x y. Q)" "{b. x:A}" == "RepFun(A, %x. b)" @@ -122,6 +126,12 @@ "ALL x:A. P" == "Ball(A, %x. P)" "EX x:A. P" == "Bex(A, %x. P)" + "" == ">" + "" == "Pair(x, y)" + "%.b" => "split(%x .b)" + "%.b" => "split(%x y.b)" +(* The <= direction fails if split has more than one argument because + ast-matching fails. Otherwise it would work fine *) defs @@ -191,10 +201,9 @@ (* this "symmetric" definition works better than {{a}, {a,b}} *) Pair_def " == {{a,a}, {a,b}}" - fst_def "fst == split(%x y.x)" - snd_def "snd == split(%x y.y)" - split_def "split(c,p) == THE y. EX a b. p= & y=c(a,b)" - fsplit_def "fsplit(R,z) == EX x y. z= & R(x,y)" + fst_def "fst(p) == THE a. EX b. p=" + snd_def "snd(p) == THE b. EX a. p=" + split_def "split(c,p) == c(fst(p), snd(p))" Sigma_def "Sigma(A,B) == UN x:A. UN y:B(x). {}" (* Operations on relations *) @@ -224,8 +233,32 @@ ML -(* 'Dependent' type operators *) +(* Pattern-matching and 'Dependent' type operators *) + +local open Syntax + +fun pttrn s = const"@pttrn" $ s; +fun pttrns s t = const"@pttrns" $ s $ t; -val print_translation = - [("Pi", dependent_tr' ("@PROD", "op ->")), +fun split2(Abs(x,T,t)) = + let val (pats,u) = split1 t + in (pttrns (Free(x,T)) pats, subst_bounds([free x],u)) end + | split2(Const("split",_) $ r) = + let val (pats,s) = split2(r) + val (pats2,t) = split1(s) + in (pttrns (pttrn pats) pats2, t) end +and split1(Abs(x,T,t)) = (Free(x,T), subst_bounds([free x],t)) + | split1(Const("split",_)$t) = split2(t); + +fun split_tr'(t::args) = + let val (pats,ft) = split2(t) + in list_comb(const"_lambda" $ pttrn pats $ ft, args) end; + +in + +val print_translation = + [("split", split_tr'), + ("Pi", dependent_tr' ("@PROD", "op ->")), ("Sigma", dependent_tr' ("@SUM", "op *"))]; + +end;