# HG changeset patch # User haftmann # Date 1383216260 -3600 # Node ID 63fe59f64578b098dbec416fe82f9931ee4d7697 # Parent 07c0c121a8dce2cb99f86590e3e88089b4eec583 consolidated clone theory diff -r 07c0c121a8dc -r 63fe59f64578 src/HOL/Decision_Procs/Polynomial_List.thy --- a/src/HOL/Decision_Procs/Polynomial_List.thy Thu Oct 31 11:48:45 2013 +0100 +++ b/src/HOL/Decision_Procs/Polynomial_List.thy Thu Oct 31 11:44:20 2013 +0100 @@ -2,371 +2,379 @@ Author: Amine Chaieb *) -header {* Univariate Polynomials as Lists *} +header {* Univariate Polynomials as lists *} theory Polynomial_List -imports Main +imports Complex_Main begin -text{* Application of polynomial as a real function. *} +text{* Application of polynomial as a function. *} -primrec poly :: "'a list \ 'a \ 'a::comm_ring" +primrec (in semiring_0) poly :: "'a list \ 'a \ 'a" where poly_Nil: "poly [] x = 0" -| poly_Cons: "poly (h # t) x = h + x * poly t x" +| poly_Cons: "poly (h#t) x = h + x * poly t x" subsection{*Arithmetic Operations on Polynomials*} text{*addition*} -primrec padd :: "'a list \ 'a list \ 'a::comm_ring_1 list" (infixl "+++" 65) + +primrec (in semiring_0) padd :: "'a list \ 'a list \ 'a list" (infixl "+++" 65) where padd_Nil: "[] +++ l2 = l2" -| padd_Cons: "(h # t) +++ l2 = (if l2 = [] then h # t else (h + hd l2) # (t +++ tl l2))" +| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t else (h + hd l2)#(t +++ tl l2))" text{*Multiplication by a constant*} -primrec cmult :: "'a::comm_ring_1 \ 'a list \ 'a list" (infixl "%*" 70) -where +primrec (in semiring_0) cmult :: "'a \ 'a list \ 'a list" (infixl "%*" 70) where cmult_Nil: "c %* [] = []" -| cmult_Cons: "c %* (h # t) = (c * h) # (c %* t)" +| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" text{*Multiplication by a polynomial*} -primrec pmult :: "'a list \ 'a list \ 'a::comm_ring_1 list" (infixl "***" 70) +primrec (in semiring_0) pmult :: "'a list \ 'a list \ 'a list" (infixl "***" 70) where pmult_Nil: "[] *** l2 = []" -| pmult_Cons: "(h # t) *** l2 = - (if t = [] then h %* l2 else (h %* l2) +++ (0 # (t *** l2)))" +| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2 + else (h %* l2) +++ ((0) # (t *** l2)))" text{*Repeated multiplication by a polynomial*} -primrec mulexp :: "nat \ 'a list \ 'a list \ 'a::comm_ring_1 list" -where +primrec (in semiring_0) mulexp :: "nat \ 'a list \ 'a list \ 'a list" where mulexp_zero: "mulexp 0 p q = q" | mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" text{*Exponential*} -primrec pexp :: "'a list \ nat \ 'a::comm_ring_1 list" (infixl "%^" 80) -where +primrec (in semiring_1) pexp :: "'a list \ nat \ 'a list" (infixl "%^" 80) where pexp_0: "p %^ 0 = [1]" | pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" text{*Quotient related value of dividing a polynomial by x + a*} (* Useful for divisor properties in inductive proofs *) -primrec pquot :: "'a list \ 'a::field \ 'a list" +primrec (in field) "pquot" :: "'a list \ 'a \ 'a list" where - pquot_Nil: "pquot [] a = []" -| pquot_Cons: "pquot (h # t) a = - (if t = [] then [h] else (inverse a * (h - hd (pquot t a))) # pquot t a)" - + pquot_Nil: "pquot [] a= []" +| pquot_Cons: "pquot (h#t) a = + (if t = [] then [h] else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" text{*normalization of polynomials (remove extra 0 coeff)*} -primrec pnormalize :: "'a::comm_ring_1 list \ 'a list" -where +primrec (in semiring_0) pnormalize :: "'a list \ 'a list" where pnormalize_Nil: "pnormalize [] = []" -| pnormalize_Cons: "pnormalize (h # p) = - (if (pnormalize p = []) then (if h = 0 then [] else [h]) - else (h # pnormalize p))" +| pnormalize_Cons: "pnormalize (h#p) = + (if pnormalize p = [] then (if h = 0 then [] else [h]) else h # pnormalize p)" -definition "pnormal p = ((pnormalize p = p) \ p \ [])" -definition "nonconstant p = (pnormal p \ (\x. p \ [x]))" +definition (in semiring_0) "pnormal p = ((pnormalize p = p) \ p \ [])" +definition (in semiring_0) "nonconstant p = (pnormal p \ (\x. p \ [x]))" text{*Other definitions*} -definition poly_minus :: "'a list => ('a :: comm_ring_1) list" ("-- _" [80] 80) +definition (in ring_1) poly_minus :: "'a list \ 'a list" ("-- _" [80] 80) where "-- p = (- 1) %* p" -definition divides :: "'a::comm_ring_1 list \ 'a list \ bool" (infixl "divides" 70) - where "p1 divides p2 = (\q. poly p2 = poly (p1 *** q))" +definition (in semiring_0) divides :: "'a list \ 'a list \ bool" (infixl "divides" 70) + where "p1 divides p2 = (\q. poly p2 = poly(p1 *** q))" + +lemma (in semiring_0) dividesI: + "poly p2 = poly (p1 *** q) \ p1 divides p2" + by (auto simp add: divides_def) -definition order :: "'a::comm_ring_1 \ 'a list \ nat" --{*order of a polynomial*} - where "order a p = (SOME n. ([-a, 1] %^ n) divides p & ~ (([-a, 1] %^ Suc n) divides p))" +lemma (in semiring_0) dividesE: + assumes "p1 divides p2" + obtains q where "poly p2 = poly (p1 *** q)" + using assms by (auto simp add: divides_def) -definition degree :: "'a::comm_ring_1 list \ nat" --{*degree of a polynomial*} + --{*order of a polynomial*} +definition (in ring_1) order :: "'a \ 'a list \ nat" where + "order a p = (SOME n. ([-a, 1] %^ n) divides p \ ~ (([-a, 1] %^ (Suc n)) divides p))" + + --{*degree of a polynomial*} +definition (in semiring_0) degree :: "'a list \ nat" where "degree p = length (pnormalize p) - 1" -definition rsquarefree :: "'a::comm_ring_1 list \ bool" - where --{*squarefree polynomials --- NB with respect to real roots only.*} - "rsquarefree p = (poly p \ poly [] \ (\a. order a p = 0 \ order a p = 1))" + --{*squarefree polynomials --- NB with respect to real roots only.*} +definition (in ring_1) rsquarefree :: "'a list \ bool" + where "rsquarefree p \ poly p \ poly [] \ (\a. order a p = 0 \ order a p = 1)" -lemma padd_Nil2 [simp]: "p +++ [] = p" +context semiring_0 +begin + +lemma padd_Nil2[simp]: "p +++ [] = p" by (induct p) auto lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)" by auto -lemma pminus_Nil [simp]: "-- [] = []" +lemma pminus_Nil: "-- [] = []" by (simp add: poly_minus_def) -lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" - by simp +lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp + +end -lemma poly_ident_mult [simp]: "1 %* t = t" - by (induct t) auto +lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" by (induct t) auto -lemma poly_simple_add_Cons [simp]: "[a] +++ ((0)#t) = (a#t)" +lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ ((0)#t) = (a#t)" by simp text{*Handy general properties*} -lemma padd_commut: "b +++ a = a +++ b" - apply (induct b arbitrary: a) - apply auto - apply (rule padd_Cons [THEN ssubst]) - apply (case_tac aa) - apply auto +lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b" +proof (induct b arbitrary: a) + case Nil + thus ?case by auto +next + case (Cons b bs a) + thus ?case by (cases a) (simp_all add: add_commute) +qed + +lemma (in comm_semiring_0) padd_assoc: "\b c. (a +++ b) +++ c = a +++ (b +++ c)" + apply (induct a) + apply (simp, clarify) + apply (case_tac b, simp_all add: add_ac) done -lemma padd_assoc: "(a +++ b) +++ c = a +++ (b +++ c)" - apply (induct a arbitrary: b c) +lemma (in semiring_0) poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)" + apply (induct p arbitrary: q) apply simp - apply (case_tac b) - apply simp_all + apply (case_tac q, simp_all add: distrib_left) done -lemma poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)" - apply (induct p arbitrary: q) +lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)" + apply (induct t) apply simp - apply (case_tac q) - apply (simp_all add: distrib_left) + apply (auto simp add: padd_commut) + apply (case_tac t, auto) done -lemma pmult_by_x [simp]: "[0, 1] *** t = ((0)#t)" - by (induct t) (auto simp add: padd_commut) - - text{*properties of evaluation of polynomials.*} -lemma poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" - apply (induct p1 arbitrary: p2) - apply auto - apply (case_tac "p2") - apply (auto simp add: distrib_left) - done +lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" +proof(induct p1 arbitrary: p2) + case Nil + thus ?case by simp +next + case (Cons a as p2) + thus ?case + by (cases p2) (simp_all add: add_ac distrib_left) +qed -lemma poly_cmult: "poly (c %* p) x = c * poly p x" +lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x" apply (induct p) - apply simp - apply (cases "x = 0") + apply (case_tac [2] "x = zero") apply (auto simp add: distrib_left mult_ac) done -lemma poly_minus: "poly (-- p) x = - (poly p x)" - by (simp add: poly_minus_def poly_cmult) +lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c*poly p x" + by (induct p) (auto simp add: distrib_left mult_ac) -lemma poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" - apply (induct p1 arbitrary: p2) - apply (case_tac p1) - apply (auto simp add: poly_cmult poly_add distrib_right distrib_left mult_ac) +lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)" + apply (simp add: poly_minus_def) + apply (auto simp add: poly_cmult) done -lemma poly_exp: "poly (p %^ n) (x::'a::comm_ring_1) = (poly p x) ^ n" +lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" +proof (induct p1 arbitrary: p2) + case Nil + thus ?case by simp +next + case (Cons a as p2) + thus ?case by (cases as) + (simp_all add: poly_cmult poly_add distrib_right distrib_left mult_ac) +qed + +class idom_char_0 = idom + ring_char_0 + +subclass (in field_char_0) idom_char_0 .. + +lemma (in comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n" by (induct n) (auto simp add: poly_cmult poly_mult) text{*More Polynomial Evaluation Lemmas*} -lemma poly_add_rzero [simp]: "poly (a +++ []) x = poly a x" +lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x" by simp -lemma poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" +lemma (in comm_semiring_0) poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" by (simp add: poly_mult mult_assoc) -lemma poly_mult_Nil2 [simp]: "poly (p *** []) x = 0" +lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0" by (induct p) auto -lemma poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" +lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" by (induct n) (auto simp add: poly_mult mult_assoc) subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides @{term "p(x)"} *} -lemma poly_linear_rem: "\q r. h # t = [r] +++ [-a, 1] *** q" - apply (induct t arbitrary: h) - apply (rule_tac x = "[]" in exI) - apply (rule_tac x = h in exI) - apply simp - apply (drule_tac x = aa in meta_spec) - apply safe - apply (rule_tac x = "r#q" in exI) - apply (rule_tac x = "a*r + h" in exI) - apply (case_tac q) - apply auto - done +lemma (in comm_ring_1) lemma_poly_linear_rem: "\h. \q r. h#t = [r] +++ [-a, 1] *** q" +proof(induct t) + case Nil + { fix h have "[h] = [h] +++ [- a, 1] *** []" by simp } + thus ?case by blast +next + case (Cons x xs) + { fix h + from Cons.hyps[rule_format, of x] + obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast + have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)" + using qr by (cases q) (simp_all add: algebra_simps) + hence "\q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast} + thus ?case by blast +qed + +lemma (in comm_ring_1) poly_linear_rem: "\q r. h#t = [r] +++ [-a, 1] *** q" + using lemma_poly_linear_rem [where t = t and a = a] by auto + -lemma poly_linear_divides: "poly p a = 0 \ p = [] \ (\q. p = [-a, 1] *** q)" - apply (auto simp add: poly_add poly_cmult distrib_left) - apply (case_tac p) - apply simp - apply (cut_tac h = aa and t = list and a = a in poly_linear_rem) - apply safe - apply (case_tac q) - apply auto - apply (drule_tac x = "[]" in spec) - apply simp - apply (auto simp add: poly_add poly_cmult add_assoc) - apply (drule_tac x = "aa#lista" in spec) - apply auto - done +lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) = ((p = []) | (\q. p = [-a, 1] *** q))" +proof - + { assume p: "p = []" hence ?thesis by simp } + moreover + { + fix x xs assume p: "p = x#xs" + { + fix q assume "p = [-a, 1] *** q" + hence "poly p a = 0" by (simp add: poly_add poly_cmult) + } + moreover + { assume p0: "poly p a = 0" + from poly_linear_rem[of x xs a] obtain q r + where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast + have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp + hence "\q. p = [- a, 1] *** q" + using p qr + apply - + apply (rule exI[where x=q]) + apply auto + apply (cases q) + apply auto + done + } + ultimately have ?thesis using p by blast + } + ultimately show ?thesis by (cases p) auto +qed -lemma lemma_poly_length_mult [simp]: "length (k %* p +++ (h # (a %* p))) = Suc (length p)" - by (induct p arbitrary: h k a) auto +lemma (in semiring_0) lemma_poly_length_mult[simp]: "\h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" + by (induct p) auto -lemma lemma_poly_length_mult2 [simp]: "length (k %* p +++ (h # p)) = Suc (length p)" - by (induct p arbitrary: h k) auto +lemma (in semiring_0) lemma_poly_length_mult2[simp]: "\h k. length (k %* p +++ (h # p)) = Suc (length p)" + by (induct p) auto -lemma poly_length_mult [simp]: "length([-a, 1] *** q) = Suc (length q)" +lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)" by auto - subsection{*Polynomial length*} -lemma poly_cmult_length [simp]: "length (a %* p) = length p" +lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p" by (induct p) auto -lemma poly_add_length: - "length (p1 +++ p2) = (if (length p1 < length p2) then length p2 else length p1)" - by (induct p1 arbitrary: p2) auto +lemma (in semiring_0) poly_add_length: "length (p1 +++ p2) = max (length p1) (length p2)" + by (induct p1 arbitrary: p2) (simp_all, arith) -lemma poly_root_mult_length [simp]: "length ([a, b] *** p) = Suc (length p)" - by simp +lemma (in semiring_0) poly_root_mult_length[simp]: "length([a,b] *** p) = Suc (length p)" + by (simp add: poly_add_length) -lemma poly_mult_not_eq_poly_Nil [simp]: - "poly (p *** q) x \ poly [] x \ poly p x \ poly [] x \ poly q x \ poly [] (x::'a::idom)" +lemma (in idom) poly_mult_not_eq_poly_Nil[simp]: + "poly (p *** q) x \ poly [] x \ poly p x \ poly [] x \ poly q x \ poly [] x" by (auto simp add: poly_mult) -lemma poly_mult_eq_zero_disj: "poly (p *** q) (x::'a::idom) = 0 \ poly p x = 0 \ poly q x = 0" +lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \ poly p x = 0 \ poly q x = 0" by (auto simp add: poly_mult) text{*Normalisation Properties*} -lemma poly_normalized_nil: "pnormalize p = [] \ poly p x = 0" +lemma (in semiring_0) poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)" by (induct p) auto text{*A nontrivial polynomial of degree n has no more than n roots*} +lemma (in idom) poly_roots_index_lemma: + assumes p: "poly p x \ poly [] x" and n: "length p = n" + shows "\i. \x. poly p x = 0 \ (\m\n. x = i m)" + using p n +proof (induct n arbitrary: p x) + case 0 + thus ?case by simp +next + case (Suc n p x) + { + assume C: "\i. \x. poly p x = 0 \ (\m\Suc n. x \ i m)" + from Suc.prems have p0: "poly p x \ 0" "p\ []" by auto + from p0(1)[unfolded poly_linear_divides[of p x]] + have "\q. p \ [- x, 1] *** q" by blast + from C obtain a where a: "poly p a = 0" by blast + from a[unfolded poly_linear_divides[of p a]] p0(2) + obtain q where q: "p = [-a, 1] *** q" by blast + have lg: "length q = n" using q Suc.prems(2) by simp + from q p0 have qx: "poly q x \ poly [] x" + by (auto simp add: poly_mult poly_add poly_cmult) + from Suc.hyps[OF qx lg] obtain i where + i: "\x. poly q x = 0 \ (\m\n. x = i m)" by blast + let ?i = "\m. if m = Suc n then a else i m" + from C[of ?i] obtain y where y: "poly p y = 0" "\m\ Suc n. y \ ?i m" + by blast + from y have "y = a \ poly q y = 0" + by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps) + with i[rule_format, of y] y(1) y(2) have False + apply auto + apply (erule_tac x = "m" in allE) + apply auto + done + } + thus ?case by blast +qed -lemma poly_roots_index_lemma0 [rule_format]: - "\p x. poly p x \ poly [] x & length p = n - --> (\i. \x. (poly p x = (0::'a::idom)) --> (\m. (m \ n & x = i m)))" - apply (induct n) - apply safe - apply (rule ccontr) - apply (subgoal_tac "\a. poly p a = 0") - apply safe - apply (drule poly_linear_divides [THEN iffD1]) - apply safe - apply (drule_tac x = q in spec) - apply (drule_tac x = x in spec) - apply (simp del: poly_Nil pmult_Cons) - apply (erule exE) - apply (drule_tac x = "%m. if m = Suc n then a else i m" in spec) - apply safe - apply (drule poly_mult_eq_zero_disj [THEN iffD1]) - apply safe - apply (drule_tac x = "Suc (length q)" in spec) - apply (auto simp add: field_simps) - apply (drule_tac x = xa in spec) - apply (clarsimp simp add: field_simps) - apply (drule_tac x = m in spec) - apply (auto simp add:field_simps) - done -lemmas poly_roots_index_lemma1 = conjI [THEN poly_roots_index_lemma0] -lemma poly_roots_index_length0: - "poly p (x::'a::idom) \ poly [] x \ - \i. \x. (poly p x = 0) \ (\n. n \ length p & x = i n)" - by (blast intro: poly_roots_index_lemma1) +lemma (in idom) poly_roots_index_length: + "poly p x \ poly [] x \ \i. \x. (poly p x = 0) \ (\n. n \ length p \ x = i n)" + by (blast intro: poly_roots_index_lemma) -lemma poly_roots_finite_lemma: - "poly p (x::'a::idom) \ poly [] x \ - \N i. \x. (poly p x = 0) \ (\n. (n::nat) < N & x = i n)" - apply (drule poly_roots_index_length0) - apply safe +lemma (in idom) poly_roots_finite_lemma1: + "poly p x \ poly [] x \ \N i. \x. (poly p x = 0) \ (\n. (n::nat) < N \ x = i n)" + apply (drule poly_roots_index_length, safe) apply (rule_tac x = "Suc (length p)" in exI) apply (rule_tac x = i in exI) apply (simp add: less_Suc_eq_le) done - -lemma real_finite_lemma: - assumes "\x. P x \ (\n. n < length j & x = j!n)" - shows "finite {(x::'a::idom). P x}" +lemma (in idom) idom_finite_lemma: + assumes P: "\x. P x --> (\n. n < length j \ x = j!n)" + shows "finite {x. P x}" proof - let ?M = "{x. P x}" let ?N = "set j" - have "?M \ ?N" using assms by auto - then show ?thesis using finite_subset by auto + have "?M \ ?N" using P by auto + thus ?thesis using finite_subset by auto qed -lemma poly_roots_index_lemma [rule_format]: - "\p x. poly p x \ poly [] x & length p = n - \ (\i. \x. (poly p x = (0::'a::{idom})) \ x \ set i)" - apply (induct n) - apply safe - apply (rule ccontr) - apply (subgoal_tac "\a. poly p a = 0") - apply safe - apply (drule poly_linear_divides [THEN iffD1]) - apply safe - apply (drule_tac x = q in spec) - apply (drule_tac x = x in spec) - apply (auto simp del: poly_Nil pmult_Cons) - apply (drule_tac x = "a#i" in spec) - apply (auto simp only: poly_mult List.list.size) - apply (drule_tac x = xa in spec) - apply (clarsimp simp add: field_simps) - done - -lemmas poly_roots_index_lemma2 = conjI [THEN poly_roots_index_lemma] - -lemma poly_roots_index_length: - "poly p (x::'a::idom) \ poly [] x \ - \i. \x. (poly p x = 0) --> x \ set i" - by (blast intro: poly_roots_index_lemma2) - -lemma poly_roots_finite_lemma': - "poly p (x::'a::idom) \ poly [] x \ - \i. \x. (poly p x = 0) --> x \ set i" - apply (drule poly_roots_index_length) - apply auto +lemma (in idom) poly_roots_finite_lemma2: + "poly p x \ poly [] x \ \i. \x. poly p x = 0 \ x \ set i" + apply (drule poly_roots_index_length, safe) + apply (rule_tac x="map (\n. i n) [0 ..< Suc (length p)]" in exI) + apply (auto simp add: image_iff) + apply (erule_tac x="x" in allE, clarsimp) + apply (case_tac "n = length p") + apply (auto simp add: order_le_less) done -lemma UNIV_nat_infinite: "\ finite (UNIV :: nat set)" - unfolding finite_conv_nat_seg_image -proof (auto simp add: set_eq_iff image_iff) - fix n::nat and f:: "nat \ nat" - let ?N = "{i. i < n}" - let ?fN = "f ` ?N" - let ?y = "Max ?fN + 1" - from nat_seg_image_imp_finite[of "?fN" "f" n] - have thfN: "finite ?fN" by simp - { assume "n =0" hence "\x. \xa f xa" by auto } - moreover - { assume nz: "n \ 0" - hence thne: "?fN \ {}" by auto - have "\x\ ?fN. Max ?fN \ x" using nz Max_ge_iff[OF thfN thne] by auto - hence "\x\ ?fN. ?y > x" by (auto simp add: less_Suc_eq_le) - hence "?y \ ?fN" by auto - hence "\x. \xa f xa" by auto } - ultimately show "\x. \xa f xa" by blast +lemma (in ring_char_0) UNIV_ring_char_0_infinte: "\ (finite (UNIV:: 'a set))" +proof + assume F: "finite (UNIV :: 'a set)" + have "finite (UNIV :: nat set)" + proof (rule finite_imageD) + have "of_nat ` UNIV \ UNIV" by simp + then show "finite (of_nat ` UNIV :: 'a set)" using F by (rule finite_subset) + show "inj (of_nat :: nat \ 'a)" by (simp add: inj_on_def) + qed + with infinite_UNIV_nat show False .. qed -lemma UNIV_ring_char_0_infinte: "\ finite (UNIV:: ('a::ring_char_0) set)" +lemma (in idom_char_0) poly_roots_finite: "poly p \ poly [] \ finite {x. poly p x = 0}" proof - assume F: "finite (UNIV :: 'a set)" - have th0: "of_nat ` UNIV \ (UNIV :: 'a set)" by simp - from finite_subset[OF th0 F] have th: "finite (of_nat ` UNIV :: 'a set)" . - have th': "inj_on (of_nat::nat \ 'a) UNIV" - unfolding inj_on_def by auto - from finite_imageD[OF th th'] UNIV_nat_infinite - show False by blast -qed - -lemma poly_roots_finite: "poly p \ poly [] \ finite {x. poly p x = (0::'a::{idom,ring_char_0})}" -proof - assume "poly p \ poly []" - then show "finite {x. poly p x = (0::'a)}" + assume H: "poly p \ poly []" + show "finite {x. poly p x = (0::'a)}" + using H apply - - apply (erule contrapos_np) - apply (rule ext) + apply (erule contrapos_np, rule ext) apply (rule ccontr) - apply (clarify dest!: poly_roots_finite_lemma') + apply (clarify dest!: poly_roots_finite_lemma2) using finite_subset proof - fix x i @@ -377,119 +385,145 @@ with finite_subset F show False by auto qed next - assume "finite {x. poly p x = (0\'a)}" - then show "poly p \ poly []" - using UNIV_ring_char_0_infinte by auto + assume F: "finite {x. poly p x = (0\'a)}" + show "poly p \ poly []" using F UNIV_ring_char_0_infinte by auto qed text{*Entirety and Cancellation for polynomials*} -lemma poly_entire_lemma: - "poly (p:: ('a::{idom,ring_char_0}) list) \ poly [] \ poly q \ poly [] \ - poly (p *** q) \ poly []" - by (auto simp add: poly_roots_finite poly_mult Collect_disj_eq) +lemma (in idom_char_0) poly_entire_lemma2: + assumes p0: "poly p \ poly []" + and q0: "poly q \ poly []" + shows "poly (p***q) \ poly []" +proof - + let ?S = "\p. {x. poly p x = 0}" + have "?S (p *** q) = ?S p \ ?S q" by (auto simp add: poly_mult) + with p0 q0 show ?thesis unfolding poly_roots_finite by auto +qed -lemma poly_entire: - "poly (p *** q) = poly ([]::('a::{idom,ring_char_0}) list) \ - (poly p = poly [] \ poly q = poly [])" - apply (auto dest: fun_cong simp add: poly_entire_lemma poly_mult) - apply (blast intro: ccontr dest: poly_entire_lemma poly_mult [THEN subst]) - done +lemma (in idom_char_0) poly_entire: + "poly (p *** q) = poly [] \ poly p = poly [] \ poly q = poly []" + using poly_entire_lemma2[of p q] + by (auto simp add: fun_eq_iff poly_mult) -lemma poly_entire_neg: - "poly (p *** q) \ poly ([]::('a::{idom,ring_char_0}) list) \ - poly p \ poly [] \ poly q \ poly []" +lemma (in idom_char_0) poly_entire_neg: + "poly (p *** q) \ poly [] \ poly p \ poly [] \ poly q \ poly []" by (simp add: poly_entire) lemma fun_eq: "f = g \ (\x. f x = g x)" by auto -lemma poly_add_minus_zero_iff: "poly (p +++ -- q) = poly [] \ poly p = poly q" - by (auto simp add: field_simps poly_add poly_minus_def fun_eq poly_cmult) +lemma (in comm_ring_1) poly_add_minus_zero_iff: + "poly (p +++ -- q) = poly [] \ poly p = poly q" + by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq poly_cmult) -lemma poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" +lemma (in comm_ring_1) poly_add_minus_mult_eq: + "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left) -lemma poly_mult_left_cancel: - "(poly (p *** q) = poly (p *** r)) = - (poly p = poly ([]::('a::{idom,ring_char_0}) list) | poly q = poly r)" - apply (rule_tac p1 = "p *** q" in poly_add_minus_zero_iff [THEN subst]) - apply (auto simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) - done +subclass (in idom_char_0) comm_ring_1 .. -lemma poly_exp_eq_zero [simp]: - "poly (p %^ n) = poly ([]::('a::idom) list) \ poly p = poly [] \ n \ 0" +lemma (in idom_char_0) poly_mult_left_cancel: + "poly (p *** q) = poly (p *** r) \ poly p = poly [] \ poly q = poly r" +proof - + have "poly (p *** q) = poly (p *** r) \ poly (p *** q +++ -- (p *** r)) = poly []" + by (simp only: poly_add_minus_zero_iff) + also have "\ \ poly p = poly [] \ poly q = poly r" + by (auto intro: simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) + finally show ?thesis . +qed + +lemma (in idom) poly_exp_eq_zero[simp]: + "poly (p %^ n) = poly [] \ poly p = poly [] \ n \ 0" apply (simp only: fun_eq add: HOL.all_simps [symmetric]) apply (rule arg_cong [where f = All]) apply (rule ext) - apply (induct_tac n) - apply (auto simp add: poly_mult) + apply (induct n) + apply (auto simp add: poly_exp poly_mult) done -lemma poly_prime_eq_zero [simp]: "poly [a, 1::'a::comm_ring_1] \ poly []" +lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a,1] \ poly []" apply (simp add: fun_eq) - apply (rule_tac x = "1 - a" in exI) + apply (rule_tac x = "minus one a" in exI) + apply (unfold diff_minus) + apply (subst add_commute) + apply (subst add_assoc) apply simp done -lemma poly_exp_prime_eq_zero [simp]: "poly ([a, (1::'a::idom)] %^ n) \ poly []" +lemma (in idom) poly_exp_prime_eq_zero: "poly ([a, 1] %^ n) \ poly []" by auto text{*A more constructive notion of polynomials being trivial*} -lemma poly_zero_lemma': - "poly (h # t) = poly [] \ h = (0::'a::{idom,ring_char_0}) & poly t = poly []" +lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] \ h = 0 \ poly t = poly []" apply (simp add: fun_eq) - apply (case_tac "h = 0") - apply (drule_tac [2] x = 0 in spec) - apply auto - apply (case_tac "poly t = poly []") - apply simp + apply (case_tac "h = zero") + apply (drule_tac [2] x = zero in spec, auto) + apply (cases "poly t = poly []", simp) proof - fix x - assume H: "\x. x = (0\'a) \ poly t x = (0\'a)" and pnz: "poly t \ poly []" + assume H: "\x. x = (0\'a) \ poly t x = (0\'a)" + and pnz: "poly t \ poly []" let ?S = "{x. poly t x = 0}" from H have "\x. x \0 \ poly t x = 0" by blast hence th: "?S \ UNIV - {0}" by auto from poly_roots_finite pnz have th': "finite ?S" by blast - from finite_subset[OF th th'] UNIV_ring_char_0_infinte[where ?'a = 'a] - show "poly t x = (0\'a)" by simp + from finite_subset[OF th th'] UNIV_ring_char_0_infinte show "poly t x = (0\'a)" + by simp qed -lemma poly_zero: "poly p = poly [] \ list_all (\c. c = (0::'a::{idom,ring_char_0})) p" +lemma (in idom_char_0) poly_zero: "(poly p = poly []) = list_all (%c. c = 0) p" apply (induct p) apply simp apply (rule iffI) - apply (drule poly_zero_lemma') - apply auto + apply (drule poly_zero_lemma', auto) done +lemma (in idom_char_0) poly_0: "list_all (\c. c = 0) p \ poly p x = 0" + unfolding poly_zero[symmetric] by simp + + text{*Basics of divisibility.*} -lemma poly_primes: "[a, (1::'a::idom)] divides (p *** q) \ [a, 1] divides p \ [a, 1] divides q" +lemma (in idom) poly_primes: + "[a, 1] divides (p *** q) \ [a, 1] divides p \ [a, 1] divides q" apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric]) - apply (drule_tac x = "-a" in spec) + apply (drule_tac x = "uminus a" in spec) + apply (simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) + apply (cases "p = []") + apply (rule exI[where x="[]"]) + apply simp + apply (cases "q = []") + apply (erule allE[where x="[]"], simp) + + apply clarsimp + apply (cases "\q\'a list. p = a %* q +++ ((0\'a) # q)") + apply (clarsimp simp add: poly_add poly_cmult) + apply (rule_tac x="qa" in exI) + apply (simp add: distrib_right [symmetric]) + apply clarsimp + apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) - apply (rule_tac x = "qa *** q" in exI) - apply (rule_tac [2] x = "p *** qa" in exI) + apply (rule_tac x = "pmult qa q" in exI) + apply (rule_tac [2] x = "pmult p qa" in exI) apply (auto simp add: poly_add poly_mult poly_cmult mult_ac) done -lemma poly_divides_refl [simp]: "p divides p" +lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p" apply (simp add: divides_def) - apply (rule_tac x = "[1]" in exI) + apply (rule_tac x = "[one]" in exI) apply (auto simp add: poly_mult fun_eq) done -lemma poly_divides_trans: "p divides q \ q divides r \ p divides r" - apply (simp add: divides_def) - apply safe - apply (rule_tac x = "qa *** qaa" in exI) +lemma (in comm_semiring_1) poly_divides_trans: "p divides q \ q divides r \ p divides r" + apply (simp add: divides_def, safe) + apply (rule_tac x = "pmult qa qaa" in exI) apply (auto simp add: poly_mult fun_eq mult_assoc) done -lemma poly_divides_exp: "m \ n \ (p %^ m) divides (p %^ n)" +lemma (in comm_semiring_1) poly_divides_exp: "m \ n \ (p %^ m) divides (p %^ n)" apply (auto simp add: le_iff_add) apply (induct_tac k) apply (rule_tac [2] poly_divides_trans) @@ -498,34 +532,37 @@ apply (auto simp add: poly_mult fun_eq mult_ac) done -lemma poly_exp_divides: "(p %^ n) divides q \ m \ n \ (p %^ m) divides q" +lemma (in comm_semiring_1) poly_exp_divides: + "(p %^ n) divides q \ m \ n \ (p %^ m) divides q" by (blast intro: poly_divides_exp poly_divides_trans) -lemma poly_divides_add: "p divides q \ p divides r \ p divides (q +++ r)" - apply (simp add: divides_def) - apply auto - apply (rule_tac x = "qa +++ qaa" in exI) +lemma (in comm_semiring_0) poly_divides_add: + "p divides q \ p divides r \ p divides (q +++ r)" + apply (simp add: divides_def, auto) + apply (rule_tac x = "padd qa qaa" in exI) apply (auto simp add: poly_add fun_eq poly_mult distrib_left) done -lemma poly_divides_diff: "p divides q \ p divides (q +++ r) \ p divides r" - apply (auto simp add: divides_def) - apply (rule_tac x = "qaa +++ -- qa" in exI) +lemma (in comm_ring_1) poly_divides_diff: + "p divides q \ p divides (q +++ r) \ p divides r" + apply (simp add: divides_def, auto) + apply (rule_tac x = "padd qaa (poly_minus qa)" in exI) apply (auto simp add: poly_add fun_eq poly_mult poly_minus algebra_simps) done -lemma poly_divides_diff2: "p divides r \ p divides (q +++ r) \ p divides q" +lemma (in comm_ring_1) poly_divides_diff2: + "p divides r \ p divides (q +++ r) \ p divides q" apply (erule poly_divides_diff) apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac) done -lemma poly_divides_zero: "poly p = poly [] \ q divides p" +lemma (in semiring_0) poly_divides_zero: "poly p = poly [] \ q divides p" apply (simp add: divides_def) - apply (rule exI [where x = "[]"]) + apply (rule exI[where x="[]"]) apply (auto simp add: fun_eq poly_mult) done -lemma poly_divides_zero2 [simp]: "q divides []" +lemma (in semiring_0) poly_divides_zero2 [simp]: "q divides []" apply (simp add: divides_def) apply (rule_tac x = "[]" in exI) apply (auto simp add: fun_eq) @@ -533,195 +570,256 @@ text{*At last, we can consider the order of a root.*} -lemma poly_order_exists_lemma [rule_format]: - "\p. length p = d \ poly p \ poly [] \ - (\n q. p = mulexp n [-a, (1::'a::{idom,ring_char_0})] q & poly q a \ 0)" - apply (induct "d") - apply (simp add: fun_eq) - apply safe - apply (case_tac "poly p a = 0") - apply (drule_tac poly_linear_divides [THEN iffD1]) - apply safe - apply (drule_tac x = q in spec) - apply (drule_tac poly_entire_neg [THEN iffD1]) - apply safe - apply force - apply (rule_tac x = "Suc n" in exI) - apply (rule_tac x = qa in exI) - apply (simp del: pmult_Cons) - apply (rule_tac x = 0 in exI) - apply force - done +lemma (in idom_char_0) poly_order_exists_lemma: + assumes lp: "length p = d" + and p: "poly p \ poly []" + shows "\n q. p = mulexp n [-a, 1] q \ poly q a \ 0" + using lp p +proof (induct d arbitrary: p) + case 0 + thus ?case by simp +next + case (Suc n p) + show ?case + proof (cases "poly p a = 0") + case True + from Suc.prems have h: "length p = Suc n" "poly p \ poly []" by auto + hence pN: "p \ []" by auto + from True[unfolded poly_linear_divides] pN obtain q where q: "p = [-a, 1] *** q" + by blast + from q h True have qh: "length q = n" "poly q \ poly []" + apply - + apply simp + apply (simp only: fun_eq) + apply (rule ccontr) + apply (simp add: fun_eq poly_add poly_cmult) + done + from Suc.hyps[OF qh] obtain m r where mr: "q = mulexp m [-a,1] r" "poly r a \ 0" + by blast + from mr q have "p = mulexp (Suc m) [-a,1] r \ poly r a \ 0" by simp + then show ?thesis by blast + next + case False + then show ?thesis + using Suc.prems + apply simp + apply (rule exI[where x="0::nat"]) + apply simp + done + qed +qed + + +lemma (in comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x" + by (induct n) (auto simp add: poly_mult mult_ac) + +lemma (in comm_semiring_1) divides_left_mult: + assumes d:"(p***q) divides r" shows "p divides r \ q divides r" +proof- + from d obtain t where r:"poly r = poly (p***q *** t)" + unfolding divides_def by blast + hence "poly r = poly (p *** (q *** t))" + "poly r = poly (q *** (p***t))" by(auto simp add: fun_eq poly_mult mult_ac) + thus ?thesis unfolding divides_def by blast +qed + (* FIXME: Tidy up *) -lemma poly_order_exists: - "length p = d \ poly p \ poly [] \ - \n. ([-a, 1] %^ n) divides p \ \ (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)" - apply (drule poly_order_exists_lemma [where a=a]) - apply assumption - apply clarify - apply (rule_tac x = n in exI) - apply safe - apply (unfold divides_def) - apply (rule_tac x = q in exI) - apply (induct_tac n) - apply simp - apply (simp add: poly_add poly_cmult poly_mult distrib_left mult_ac) - apply safe - apply (subgoal_tac "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** qa)") - apply simp - apply (induct_tac n) - apply (simp del: pmult_Cons pexp_Suc) - apply (erule_tac Q = "poly q a = 0" in contrapos_np) - apply (simp add: poly_add poly_cmult) - apply (rule pexp_Suc [THEN ssubst]) - apply (rule ccontr) - apply (simp add: poly_mult_left_cancel poly_mult_assoc del: pmult_Cons pexp_Suc) - done + +lemma (in semiring_1) zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)" + by (induct n) simp_all -lemma poly_one_divides [simp]: "[1] divides p" - by (auto simp: divides_def) +lemma (in idom_char_0) poly_order_exists: + assumes "length p = d" and "poly p \ poly []" + shows "\n. [- a, 1] %^ n divides p \ \ [- a, 1] %^ Suc n divides p" +proof - + from assms have "\n q. p = mulexp n [- a, 1] q \ poly q a \ 0" + by (rule poly_order_exists_lemma) + then obtain n q where p: "p = mulexp n [- a, 1] q" and "poly q a \ 0" by blast + have "[- a, 1] %^ n divides mulexp n [- a, 1] q" + proof (rule dividesI) + show "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ n *** q)" + by (induct n) (simp_all add: poly_add poly_cmult poly_mult distrib_left mult_ac) + qed + moreover have "\ [- a, 1] %^ Suc n divides mulexp n [- a, 1] q" + proof + assume "[- a, 1] %^ Suc n divides mulexp n [- a, 1] q" + then obtain m where "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ Suc n *** m)" + by (rule dividesE) + moreover have "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** m)" + proof (induct n) + case 0 show ?case + proof (rule ccontr) + assume "\ poly (mulexp 0 [- a, 1] q) \ poly ([- a, 1] %^ Suc 0 *** m)" + then have "poly q a = 0" + by (simp add: poly_add poly_cmult) + with `poly q a \ 0` show False by simp + qed + next + case (Suc n) show ?case + by (rule pexp_Suc [THEN ssubst], rule ccontr) + (simp add: poly_mult_left_cancel poly_mult_assoc Suc del: pmult_Cons pexp_Suc) + qed + ultimately show False by simp + qed + ultimately show ?thesis by (auto simp add: p) +qed -lemma poly_order: "poly p \ poly [] \ - \! n. ([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p \ \ (([-a, 1] %^ Suc n) divides p)" +lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p" + by (auto simp add: divides_def) + +lemma (in idom_char_0) poly_order: + "poly p \ poly [] \ \!n. ([-a, 1] %^ n) divides p \ \ (([-a, 1] %^ Suc n) divides p)" apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) apply (cut_tac x = y and y = n in less_linear) apply (drule_tac m = n in poly_exp_divides) apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] - simp del: pmult_Cons pexp_Suc) + simp del: pmult_Cons pexp_Suc) done text{*Order*} -lemma some1_equalityD: "n = (SOME n. P n) \ EX! n. P n \ P n" +lemma some1_equalityD: "n = (SOME n. P n) \ \!n. P n \ P n" by (blast intro: someI2) -lemma order: - "(([-a, (1::'a::{idom,ring_char_0})] %^ n) divides p & - ~(([-a, 1] %^ (Suc n)) divides p)) = - ((n = order a p) & ~(poly p = poly []))" +lemma (in idom_char_0) order: + "(([-a, 1] %^ n) divides p \ + ~(([-a, 1] %^ (Suc n)) divides p)) = + ((n = order a p) \ ~(poly p = poly []))" apply (unfold order_def) apply (rule iffI) apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) apply (blast intro!: poly_order [THEN [2] some1_equalityD]) done -lemma order2: "poly p \ poly [] \ - ([-a, (1::'a::{idom,ring_char_0})] %^ (order a p)) divides p & - ~(([-a, 1] %^ (Suc(order a p))) divides p)" +lemma (in idom_char_0) order2: + "poly p \ poly [] \ + ([-a, 1] %^ (order a p)) divides p \ \ (([-a, 1] %^ (Suc (order a p))) divides p)" by (simp add: order del: pexp_Suc) -lemma order_unique: "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ - \ (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p) \ n = order a p" +lemma (in idom_char_0) order_unique: + "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ ~(([-a, 1] %^ (Suc n)) divides p) \ + n = order a p" using order [of a n p] by auto -lemma order_unique_lemma: - "(poly p \ poly [] \ ([-a, 1] %^ n) divides p \ - \ (([-a, (1::'a::{idom,ring_char_0})] %^ (Suc n)) divides p)) \ +lemma (in idom_char_0) order_unique_lemma: + "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ ~(([-a, 1] %^ (Suc n)) divides p) \ n = order a p" by (blast intro: order_unique) -lemma order_poly: "poly p = poly q ==> order a p = order a q" +lemma (in ring_1) order_poly: "poly p = poly q \ order a p = order a q" by (auto simp add: fun_eq divides_def poly_mult order_def) -lemma pexp_one [simp]: "p %^ (Suc 0) = p" - by (induct p) simp_all +lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p" + by (induct "p") auto + +lemma (in comm_ring_1) lemma_order_root: + "0 < n \ [- a, 1] %^ n divides p \ ~ [- a, 1] %^ (Suc n) divides p \ poly p a = 0" + by (induct n arbitrary: a p) (auto simp add: divides_def poly_mult simp del: pmult_Cons) -lemma lemma_order_root: - "0 < n & [- a, 1] %^ n divides p & ~ [- a, 1] %^ (Suc n) divides p \ poly p a = 0" - apply (induct n arbitrary: p a) - apply blast - apply (auto simp add: divides_def poly_mult simp del: pmult_Cons) +lemma (in idom_char_0) order_root: + "poly p a = 0 \ poly p = poly [] \ order a p \ 0" + apply (cases "poly p = poly []") + apply auto + apply (simp add: poly_linear_divides del: pmult_Cons, safe) + apply (drule_tac [!] a = a in order2) + apply (rule ccontr) + apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) + using neq0_conv + apply (blast intro: lemma_order_root) done -lemma order_root: "poly p a = (0::'a::{idom,ring_char_0}) \ poly p = poly [] \ order a p \ 0" - apply (cases "poly p = poly []") - apply auto - apply (simp add: poly_linear_divides del: pmult_Cons) - apply safe - apply (drule_tac [!] a = a in order2) - apply (rule ccontr) - apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons) - apply blast - using neq0_conv apply (blast intro: lemma_order_root) - done - -lemma order_divides: "([-a, 1::'a::{idom,ring_char_0}] %^ n) divides p \ - poly p = poly [] \ n \ order a p" +lemma (in idom_char_0) order_divides: + "([-a, 1] %^ n) divides p \ poly p = poly [] \ n \ order a p" apply (cases "poly p = poly []") apply auto apply (simp add: divides_def fun_eq poly_mult) apply (rule_tac x = "[]" in exI) - apply (auto dest!: order2 [where a = a] intro: poly_exp_divides simp del: pexp_Suc) + apply (auto dest!: order2 [where a=a] intro: poly_exp_divides simp del: pexp_Suc) done -lemma order_decomp: - "poly p \ poly [] \ - \q. poly p = poly (([-a, 1] %^ (order a p)) *** q) \ - \ ([-a, 1::'a::{idom,ring_char_0}] divides q)" +lemma (in idom_char_0) order_decomp: + "poly p \ poly [] \ \q. poly p = poly (([-a, 1] %^ (order a p)) *** q) \ ~([-a, 1] divides q)" apply (unfold divides_def) apply (drule order2 [where a = a]) - apply (simp add: divides_def del: pexp_Suc pmult_Cons) - apply safe - apply (rule_tac x = q in exI) - apply safe + apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) + apply (rule_tac x = q in exI, safe) apply (drule_tac x = qa in spec) apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons) done text{*Important composition properties of orders.*} - -lemma order_mult: "poly (p *** q) \ poly [] \ - order a (p *** q) = order a p + order (a::'a::{idom,ring_char_0}) q" - apply (cut_tac a = a and p = "p***q" and n = "order a p + order a q" in order) +lemma order_mult: + "poly (p *** q) \ poly [] \ + order a (p *** q) = order a p + order (a::'a::{idom_char_0}) q" + apply (cut_tac a = a and p = "p *** q" and n = "order a p + order a q" in order) apply (auto simp add: poly_entire simp del: pmult_Cons) apply (drule_tac a = a in order2)+ apply safe - apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons) - apply safe + apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) apply (rule_tac x = "qa *** qaa" in exI) apply (simp add: poly_mult mult_ac del: pmult_Cons) apply (drule_tac a = a in order_decomp)+ apply safe - apply (subgoal_tac "[-a, 1] divides (qa *** qaa) ") + apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") apply (simp add: poly_primes del: pmult_Cons) apply (auto simp add: divides_def simp del: pmult_Cons) apply (rule_tac x = qb in exI) - apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = - poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") - apply (drule poly_mult_left_cancel [THEN iffD1]) - apply force - apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = - poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") - apply (drule poly_mult_left_cancel [THEN iffD1]) - apply force + apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") + apply (drule poly_mult_left_cancel [THEN iffD1], force) + apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") + apply (drule poly_mult_left_cancel [THEN iffD1], force) apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) done -lemma order_root2: "poly p \ poly [] \ poly p a = 0 \ order (a::'a::{idom,ring_char_0}) p \ 0" +lemma (in idom_char_0) order_mult: + assumes "poly (p *** q) \ poly []" + shows "order a (p *** q) = order a p + order a q" + using assms + apply (cut_tac a = a and p = "pmult p q" and n = "order a p + order a q" in order) + apply (auto simp add: poly_entire simp del: pmult_Cons) + apply (drule_tac a = a in order2)+ + apply safe + apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) + apply (rule_tac x = "pmult qa qaa" in exI) + apply (simp add: poly_mult mult_ac del: pmult_Cons) + apply (drule_tac a = a in order_decomp)+ + apply safe + apply (subgoal_tac "[uminus a, one] divides pmult qa qaa") + apply (simp add: poly_primes del: pmult_Cons) + apply (auto simp add: divides_def simp del: pmult_Cons) + apply (rule_tac x = qb in exI) + apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa)) = + poly (pmult (pexp [uminus a, one] (?order a p)) (pmult [uminus a, one] qb))") + apply (drule poly_mult_left_cancel [THEN iffD1], force) + apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a q)) + (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa))) = + poly (pmult (pexp [uminus a, one] (order a q)) + (pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb)))") + apply (drule poly_mult_left_cancel [THEN iffD1], force) + apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) + done + +lemma (in idom_char_0) order_root2: "poly p \ poly [] \ poly p a = 0 \ order a p \ 0" by (rule order_root [THEN ssubst]) auto -lemma pmult_one [simp]: "[1] *** p = p" - by auto +lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" by auto -lemma poly_Nil_zero: "poly [] = poly [0]" +lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]" by (simp add: fun_eq) -lemma rsquarefree_decomp: - "rsquarefree p \ poly p a = (0::'a::{idom,ring_char_0}) \ +lemma (in idom_char_0) rsquarefree_decomp: + "rsquarefree p \ poly p a = 0 \ \q. poly p = poly ([-a, 1] *** q) \ poly q a \ 0" - apply (simp add: rsquarefree_def) - apply safe + apply (simp add: rsquarefree_def, safe) apply (frule_tac a = a in order_decomp) apply (drule_tac x = a in spec) apply (drule_tac a = a in order_root2 [symmetric]) apply (auto simp del: pmult_Cons) - apply (rule_tac x = q in exI) - apply safe + apply (rule_tac x = q in exI, safe) apply (simp add: poly_mult fun_eq) apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) - apply (simp add: divides_def del: pmult_Cons) - apply safe + apply (simp add: divides_def del: pmult_Cons, safe) apply (drule_tac x = "[]" in spec) apply (auto simp add: fun_eq) done @@ -729,72 +827,222 @@ text{*Normalization of a polynomial.*} -lemma poly_normalize [simp]: "poly (pnormalize p) = poly p" +lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p" by (induct p) (auto simp add: fun_eq) - text{*The degree of a polynomial.*} -lemma lemma_degree_zero: "list_all (\c. c = 0) p \ pnormalize p = []" +lemma (in semiring_0) lemma_degree_zero: "list_all (%c. c = 0) p \ pnormalize p = []" by (induct p) auto -lemma degree_zero: "poly p = poly ([] :: 'a::{idom,ring_char_0} list) \ degree p = 0" - apply (cases "pnormalize p = []") - apply (simp add: degree_def) - apply (auto simp add: poly_zero lemma_degree_zero) - done +lemma (in idom_char_0) degree_zero: + assumes "poly p = poly []" + shows "degree p = 0" + using assms + by (cases "pnormalize p = []") (auto simp add: degree_def poly_zero lemma_degree_zero) -lemma pnormalize_sing: "pnormalize [x] = [x] \ x \ 0" +lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \ x \ 0" + by simp + +lemma (in semiring_0) pnormalize_pair: "y \ 0 \ (pnormalize [x, y] = [x, y])" by simp -lemma pnormalize_pair: "y \ 0 \ (pnormalize [x, y] = [x, y])" - by simp - -lemma pnormal_cons: "pnormal p \ pnormal (c # p)" +lemma (in semiring_0) pnormal_cons: "pnormal p \ pnormal (c#p)" unfolding pnormal_def by simp -lemma pnormal_tail: "p \ [] \ pnormal (c # p) \ pnormal p" - unfolding pnormal_def - apply (cases "pnormalize p = []") +lemma (in semiring_0) pnormal_tail: "p\[] \ pnormal (c#p) \ pnormal p" + unfolding pnormal_def by(auto split: split_if_asm) + + +lemma (in semiring_0) pnormal_last_nonzero: "pnormal p \ last p \ 0" + by (induct p) (simp_all add: pnormal_def split: split_if_asm) + +lemma (in semiring_0) pnormal_length: "pnormal p \ 0 < length p" + unfolding pnormal_def length_greater_0_conv by blast + +lemma (in semiring_0) pnormal_last_length: "0 < length p \ last p \ 0 \ pnormal p" + by (induct p) (auto simp: pnormal_def split: split_if_asm) + + +lemma (in semiring_0) pnormal_id: "pnormal p \ 0 < length p \ last p \ 0" + using pnormal_last_length pnormal_length pnormal_last_nonzero by blast + +lemma (in idom_char_0) poly_Cons_eq: + "poly (c # cs) = poly (d # ds) \ c = d \ poly cs = poly ds" + (is "?lhs \ ?rhs") +proof + assume eq: ?lhs + hence "\x. poly ((c#cs) +++ -- (d#ds)) x = 0" + by (simp only: poly_minus poly_add algebra_simps) simp + hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add: fun_eq_iff) + hence "c = d \ list_all (\x. x=0) ((cs +++ -- ds))" + unfolding poly_zero by (simp add: poly_minus_def algebra_simps) + hence "c = d \ (\x. poly (cs +++ -- ds) x = 0)" + unfolding poly_zero[symmetric] by simp + then show ?rhs by (simp add: poly_minus poly_add algebra_simps fun_eq_iff) +next + assume ?rhs + then show ?lhs by(simp add:fun_eq_iff) +qed + +lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \ pnormalize p = pnormalize q" +proof (induct q arbitrary: p) + case Nil + thus ?case by (simp only: poly_zero lemma_degree_zero) simp +next + case (Cons c cs p) + thus ?case + proof (induct p) + case Nil + hence "poly [] = poly (c#cs)" by blast + then have "poly (c#cs) = poly [] " by simp + thus ?case by (simp only: poly_zero lemma_degree_zero) simp + next + case (Cons d ds) + hence eq: "poly (d # ds) = poly (c # cs)" by blast + hence eq': "\x. poly (d # ds) x = poly (c # cs) x" by simp + hence "poly (d # ds) 0 = poly (c # cs) 0" by blast + hence dc: "d = c" by auto + with eq have "poly ds = poly cs" + unfolding poly_Cons_eq by simp + with Cons.prems have "pnormalize ds = pnormalize cs" by blast + with dc show ?case by simp + qed +qed + +lemma (in idom_char_0) degree_unique: + assumes pq: "poly p = poly q" + shows "degree p = degree q" + using pnormalize_unique[OF pq] unfolding degree_def by simp + +lemma (in semiring_0) pnormalize_length: + "length (pnormalize p) \ length p" by (induct p) auto + +lemma (in semiring_0) last_linear_mul_lemma: + "last ((a %* p) +++ (x#(b %* p))) = (if p = [] then x else b * last p)" + apply (induct p arbitrary: a x b) apply auto - apply (cases "c = 0") + apply (subgoal_tac "padd (cmult aa p) (times b a # cmult b p) \ []") + apply simp + apply (induct_tac p) apply auto done -lemma pnormal_last_nonzero: "pnormal p \ last p \ 0" - apply (induct p) - apply (auto simp add: pnormal_def) - apply (case_tac "pnormalize p = []") - apply auto - apply (case_tac "a = 0") - apply auto - done +lemma (in semiring_1) last_linear_mul: + assumes p: "p \ []" + shows "last ([a,1] *** p) = last p" +proof - + from p obtain c cs where cs: "p = c#cs" by (cases p) auto + from cs have eq: "[a,1] *** p = (a %* (c#cs)) +++ (0#(1 %* (c#cs)))" + by (simp add: poly_cmult_distr) + show ?thesis using cs + unfolding eq last_linear_mul_lemma by simp +qed + +lemma (in semiring_0) pnormalize_eq: "last p \ 0 \ pnormalize p = p" + by (induct p) (auto split: split_if_asm) + +lemma (in semiring_0) last_pnormalize: "pnormalize p \ [] \ last (pnormalize p) \ 0" + by (induct p) auto + +lemma (in semiring_0) pnormal_degree: "last p \ 0 \ degree p = length p - 1" + using pnormalize_eq[of p] unfolding degree_def by simp -lemma pnormal_length: "pnormal p \ 0 < length p" - unfolding pnormal_def length_greater_0_conv by blast +lemma (in semiring_0) poly_Nil_ext: "poly [] = (\x. 0)" + by (rule ext) simp + +lemma (in idom_char_0) linear_mul_degree: + assumes p: "poly p \ poly []" + shows "degree ([a,1] *** p) = degree p + 1" +proof - + from p have pnz: "pnormalize p \ []" + unfolding poly_zero lemma_degree_zero . + + from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz] + have l0: "last ([a, 1] *** pnormalize p) \ 0" by simp + from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a] + pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz + + have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1" + by simp + + have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)" + by (rule ext) (simp add: poly_mult poly_add poly_cmult) + from degree_unique[OF eqs] th + show ?thesis by (simp add: degree_unique[OF poly_normalize]) +qed -lemma pnormal_last_length: "0 < length p \ last p \ 0 \ pnormal p" - apply (induct p) - apply auto - apply (case_tac "p = []") - apply auto - apply (simp add: pnormal_def) - apply (rule pnormal_cons) - apply auto - done +lemma (in idom_char_0) linear_pow_mul_degree: + "degree([a,1] %^n *** p) = (if poly p = poly [] then 0 else degree p + n)" +proof (induct n arbitrary: a p) + case (0 a p) + show ?case + proof (cases "poly p = poly []") + case True + then show ?thesis + using degree_unique[OF True] by (simp add: degree_def) + next + case False + then show ?thesis by (auto simp add: poly_Nil_ext) + qed +next + case (Suc n a p) + have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1] %^ n *** ([a,1] *** p))" + apply (rule ext) + apply (simp add: poly_mult poly_add poly_cmult) + apply (simp add: mult_ac add_ac distrib_left) + done + note deq = degree_unique[OF eq] + show ?case + proof (cases "poly p = poly []") + case True + with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []" + apply - + apply (rule ext) + apply (simp add: poly_mult poly_cmult poly_add) + done + from degree_unique[OF eq'] True show ?thesis + by (simp add: degree_def) + next + case False + then have ap: "poly ([a,1] *** p) \ poly []" + using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto + have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))" + by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps) + from ap have ap': "(poly ([a,1] *** p) = poly []) = False" + by blast + have th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n" + apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap') + apply simp + done + from degree_unique[OF eq] ap False th0 linear_mul_degree[OF False, of a] + show ?thesis by (auto simp del: poly.simps) + qed +qed -lemma pnormal_id: "pnormal p \ 0 < length p \ last p \ 0" - using pnormal_last_length pnormal_length pnormal_last_nonzero by blast +lemma (in idom_char_0) order_degree: + assumes p0: "poly p \ poly []" + shows "order a p \ degree p" +proof - + from order2[OF p0, unfolded divides_def] + obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast + { + assume "poly q = poly []" + with q p0 have False by (simp add: poly_mult poly_entire) + } + with degree_unique[OF q, unfolded linear_pow_mul_degree] show ?thesis + by auto +qed text{*Tidier versions of finiteness of roots.*} -lemma poly_roots_finite_set: - "poly p \ poly [] \ finite {x::'a::{idom,ring_char_0}. poly p x = 0}" +lemma (in idom_char_0) poly_roots_finite_set: + "poly p \ poly [] \ finite {x. poly p x = 0}" unfolding poly_roots_finite . text{*bound for polynomial.*} -lemma poly_mono: "abs x \ k \ abs (poly p (x::'a::{linordered_idom})) \ poly (map abs p) k" +lemma poly_mono: "abs(x) \ k \ abs(poly p (x::'a::{linordered_idom})) \ poly (map abs p) k" apply (induct p) apply auto apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans) @@ -802,7 +1050,6 @@ apply (auto intro!: mult_mono simp add: abs_mult) done -lemma poly_Sing: "poly [c] x = c" - by simp +lemma (in semiring_0) poly_Sing: "poly [c] x = c" by simp end diff -r 07c0c121a8dc -r 63fe59f64578 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Thu Oct 31 11:48:45 2013 +0100 +++ b/src/HOL/Library/Library.thy Thu Oct 31 11:44:20 2013 +0100 @@ -65,7 +65,6 @@ Sublist Sum_of_Squares Transitive_Closure_Table - Univ_Poly Wfrec While_Combinator Zorn diff -r 07c0c121a8dc -r 63fe59f64578 src/HOL/Library/Univ_Poly.thy --- a/src/HOL/Library/Univ_Poly.thy Thu Oct 31 11:48:45 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1053 +0,0 @@ -(* Title: HOL/Library/Univ_Poly.thy - Author: Amine Chaieb -*) - -header {* Univariate Polynomials *} - -theory Univ_Poly -imports Main -begin - -text{* Application of polynomial as a function. *} - -primrec (in semiring_0) poly :: "'a list \ 'a \ 'a" -where - poly_Nil: "poly [] x = 0" -| poly_Cons: "poly (h#t) x = h + x * poly t x" - - -subsection{*Arithmetic Operations on Polynomials*} - -text{*addition*} - -primrec (in semiring_0) padd :: "'a list \ 'a list \ 'a list" (infixl "+++" 65) -where - padd_Nil: "[] +++ l2 = l2" -| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t else (h + hd l2)#(t +++ tl l2))" - -text{*Multiplication by a constant*} -primrec (in semiring_0) cmult :: "'a \ 'a list \ 'a list" (infixl "%*" 70) where - cmult_Nil: "c %* [] = []" -| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" - -text{*Multiplication by a polynomial*} -primrec (in semiring_0) pmult :: "'a list \ 'a list \ 'a list" (infixl "***" 70) -where - pmult_Nil: "[] *** l2 = []" -| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2 - else (h %* l2) +++ ((0) # (t *** l2)))" - -text{*Repeated multiplication by a polynomial*} -primrec (in semiring_0) mulexp :: "nat \ 'a list \ 'a list \ 'a list" where - mulexp_zero: "mulexp 0 p q = q" -| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" - -text{*Exponential*} -primrec (in semiring_1) pexp :: "'a list \ nat \ 'a list" (infixl "%^" 80) where - pexp_0: "p %^ 0 = [1]" -| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" - -text{*Quotient related value of dividing a polynomial by x + a*} -(* Useful for divisor properties in inductive proofs *) -primrec (in field) "pquot" :: "'a list \ 'a \ 'a list" -where - pquot_Nil: "pquot [] a= []" -| pquot_Cons: "pquot (h#t) a = - (if t = [] then [h] else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" - -text{*normalization of polynomials (remove extra 0 coeff)*} -primrec (in semiring_0) pnormalize :: "'a list \ 'a list" where - pnormalize_Nil: "pnormalize [] = []" -| pnormalize_Cons: "pnormalize (h#p) = - (if pnormalize p = [] then (if h = 0 then [] else [h]) else h # pnormalize p)" - -definition (in semiring_0) "pnormal p = ((pnormalize p = p) \ p \ [])" -definition (in semiring_0) "nonconstant p = (pnormal p \ (\x. p \ [x]))" -text{*Other definitions*} - -definition (in ring_1) poly_minus :: "'a list \ 'a list" ("-- _" [80] 80) - where "-- p = (- 1) %* p" - -definition (in semiring_0) divides :: "'a list \ 'a list \ bool" (infixl "divides" 70) - where "p1 divides p2 = (\q. poly p2 = poly(p1 *** q))" - -lemma (in semiring_0) dividesI: - "poly p2 = poly (p1 *** q) \ p1 divides p2" - by (auto simp add: divides_def) - -lemma (in semiring_0) dividesE: - assumes "p1 divides p2" - obtains q where "poly p2 = poly (p1 *** q)" - using assms by (auto simp add: divides_def) - - --{*order of a polynomial*} -definition (in ring_1) order :: "'a \ 'a list \ nat" where - "order a p = (SOME n. ([-a, 1] %^ n) divides p \ ~ (([-a, 1] %^ (Suc n)) divides p))" - - --{*degree of a polynomial*} -definition (in semiring_0) degree :: "'a list \ nat" - where "degree p = length (pnormalize p) - 1" - - --{*squarefree polynomials --- NB with respect to real roots only.*} -definition (in ring_1) rsquarefree :: "'a list \ bool" - where "rsquarefree p \ poly p \ poly [] \ (\a. order a p = 0 \ order a p = 1)" - -context semiring_0 -begin - -lemma padd_Nil2[simp]: "p +++ [] = p" - by (induct p) auto - -lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)" - by auto - -lemma pminus_Nil: "-- [] = []" - by (simp add: poly_minus_def) - -lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp - -end - -lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" by (induct t) auto - -lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ ((0)#t) = (a#t)" - by simp - -text{*Handy general properties*} - -lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b" -proof (induct b arbitrary: a) - case Nil - thus ?case by auto -next - case (Cons b bs a) - thus ?case by (cases a) (simp_all add: add_commute) -qed - -lemma (in comm_semiring_0) padd_assoc: "\b c. (a +++ b) +++ c = a +++ (b +++ c)" - apply (induct a) - apply (simp, clarify) - apply (case_tac b, simp_all add: add_ac) - done - -lemma (in semiring_0) poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)" - apply (induct p arbitrary: q) - apply simp - apply (case_tac q, simp_all add: distrib_left) - done - -lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)" - apply (induct t) - apply simp - apply (auto simp add: padd_commut) - apply (case_tac t, auto) - done - -text{*properties of evaluation of polynomials.*} - -lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" -proof(induct p1 arbitrary: p2) - case Nil - thus ?case by simp -next - case (Cons a as p2) - thus ?case - by (cases p2) (simp_all add: add_ac distrib_left) -qed - -lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x" - apply (induct p) - apply (case_tac [2] "x = zero") - apply (auto simp add: distrib_left mult_ac) - done - -lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c*poly p x" - by (induct p) (auto simp add: distrib_left mult_ac) - -lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)" - apply (simp add: poly_minus_def) - apply (auto simp add: poly_cmult) - done - -lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" -proof (induct p1 arbitrary: p2) - case Nil - thus ?case by simp -next - case (Cons a as p2) - thus ?case by (cases as) - (simp_all add: poly_cmult poly_add distrib_right distrib_left mult_ac) -qed - -class idom_char_0 = idom + ring_char_0 - -lemma (in comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n" - by (induct n) (auto simp add: poly_cmult poly_mult) - -text{*More Polynomial Evaluation Lemmas*} - -lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x" - by simp - -lemma (in comm_semiring_0) poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" - by (simp add: poly_mult mult_assoc) - -lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0" - by (induct p) auto - -lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" - by (induct n) (auto simp add: poly_mult mult_assoc) - -subsection{*Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides - @{term "p(x)"} *} - -lemma (in comm_ring_1) lemma_poly_linear_rem: "\h. \q r. h#t = [r] +++ [-a, 1] *** q" -proof(induct t) - case Nil - { fix h have "[h] = [h] +++ [- a, 1] *** []" by simp } - thus ?case by blast -next - case (Cons x xs) - { fix h - from Cons.hyps[rule_format, of x] - obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast - have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)" - using qr by (cases q) (simp_all add: algebra_simps) - hence "\q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast} - thus ?case by blast -qed - -lemma (in comm_ring_1) poly_linear_rem: "\q r. h#t = [r] +++ [-a, 1] *** q" - using lemma_poly_linear_rem [where t = t and a = a] by auto - - -lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) = ((p = []) | (\q. p = [-a, 1] *** q))" -proof - - { assume p: "p = []" hence ?thesis by simp } - moreover - { - fix x xs assume p: "p = x#xs" - { - fix q assume "p = [-a, 1] *** q" - hence "poly p a = 0" by (simp add: poly_add poly_cmult) - } - moreover - { assume p0: "poly p a = 0" - from poly_linear_rem[of x xs a] obtain q r - where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast - have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp - hence "\q. p = [- a, 1] *** q" - using p qr - apply - - apply (rule exI[where x=q]) - apply auto - apply (cases q) - apply auto - done - } - ultimately have ?thesis using p by blast - } - ultimately show ?thesis by (cases p) auto -qed - -lemma (in semiring_0) lemma_poly_length_mult[simp]: "\h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" - by (induct p) auto - -lemma (in semiring_0) lemma_poly_length_mult2[simp]: "\h k. length (k %* p +++ (h # p)) = Suc (length p)" - by (induct p) auto - -lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)" - by auto - -subsection{*Polynomial length*} - -lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p" - by (induct p) auto - -lemma (in semiring_0) poly_add_length: "length (p1 +++ p2) = max (length p1) (length p2)" - by (induct p1 arbitrary: p2) (simp_all, arith) - -lemma (in semiring_0) poly_root_mult_length[simp]: "length([a,b] *** p) = Suc (length p)" - by (simp add: poly_add_length) - -lemma (in idom) poly_mult_not_eq_poly_Nil[simp]: - "poly (p *** q) x \ poly [] x \ poly p x \ poly [] x \ poly q x \ poly [] x" - by (auto simp add: poly_mult) - -lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \ poly p x = 0 \ poly q x = 0" - by (auto simp add: poly_mult) - -text{*Normalisation Properties*} - -lemma (in semiring_0) poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)" - by (induct p) auto - -text{*A nontrivial polynomial of degree n has no more than n roots*} -lemma (in idom) poly_roots_index_lemma: - assumes p: "poly p x \ poly [] x" and n: "length p = n" - shows "\i. \x. poly p x = 0 \ (\m\n. x = i m)" - using p n -proof (induct n arbitrary: p x) - case 0 - thus ?case by simp -next - case (Suc n p x) - { - assume C: "\i. \x. poly p x = 0 \ (\m\Suc n. x \ i m)" - from Suc.prems have p0: "poly p x \ 0" "p\ []" by auto - from p0(1)[unfolded poly_linear_divides[of p x]] - have "\q. p \ [- x, 1] *** q" by blast - from C obtain a where a: "poly p a = 0" by blast - from a[unfolded poly_linear_divides[of p a]] p0(2) - obtain q where q: "p = [-a, 1] *** q" by blast - have lg: "length q = n" using q Suc.prems(2) by simp - from q p0 have qx: "poly q x \ poly [] x" - by (auto simp add: poly_mult poly_add poly_cmult) - from Suc.hyps[OF qx lg] obtain i where - i: "\x. poly q x = 0 \ (\m\n. x = i m)" by blast - let ?i = "\m. if m = Suc n then a else i m" - from C[of ?i] obtain y where y: "poly p y = 0" "\m\ Suc n. y \ ?i m" - by blast - from y have "y = a \ poly q y = 0" - by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps) - with i[rule_format, of y] y(1) y(2) have False - apply auto - apply (erule_tac x = "m" in allE) - apply auto - done - } - thus ?case by blast -qed - - -lemma (in idom) poly_roots_index_length: - "poly p x \ poly [] x \ \i. \x. (poly p x = 0) \ (\n. n \ length p \ x = i n)" - by (blast intro: poly_roots_index_lemma) - -lemma (in idom) poly_roots_finite_lemma1: - "poly p x \ poly [] x \ \N i. \x. (poly p x = 0) \ (\n. (n::nat) < N \ x = i n)" - apply (drule poly_roots_index_length, safe) - apply (rule_tac x = "Suc (length p)" in exI) - apply (rule_tac x = i in exI) - apply (simp add: less_Suc_eq_le) - done - -lemma (in idom) idom_finite_lemma: - assumes P: "\x. P x --> (\n. n < length j \ x = j!n)" - shows "finite {x. P x}" -proof - - let ?M = "{x. P x}" - let ?N = "set j" - have "?M \ ?N" using P by auto - thus ?thesis using finite_subset by auto -qed - -lemma (in idom) poly_roots_finite_lemma2: - "poly p x \ poly [] x \ \i. \x. poly p x = 0 \ x \ set i" - apply (drule poly_roots_index_length, safe) - apply (rule_tac x="map (\n. i n) [0 ..< Suc (length p)]" in exI) - apply (auto simp add: image_iff) - apply (erule_tac x="x" in allE, clarsimp) - apply (case_tac "n = length p") - apply (auto simp add: order_le_less) - done - -lemma (in ring_char_0) UNIV_ring_char_0_infinte: "\ (finite (UNIV:: 'a set))" -proof - assume F: "finite (UNIV :: 'a set)" - have "finite (UNIV :: nat set)" - proof (rule finite_imageD) - have "of_nat ` UNIV \ UNIV" by simp - then show "finite (of_nat ` UNIV :: 'a set)" using F by (rule finite_subset) - show "inj (of_nat :: nat \ 'a)" by (simp add: inj_on_def) - qed - with infinite_UNIV_nat show False .. -qed - -lemma (in idom_char_0) poly_roots_finite: "poly p \ poly [] \ finite {x. poly p x = 0}" -proof - assume H: "poly p \ poly []" - show "finite {x. poly p x = (0::'a)}" - using H - apply - - apply (erule contrapos_np, rule ext) - apply (rule ccontr) - apply (clarify dest!: poly_roots_finite_lemma2) - using finite_subset - proof - - fix x i - assume F: "\ finite {x. poly p x = (0\'a)}" - and P: "\x. poly p x = (0\'a) \ x \ set i" - let ?M= "{x. poly p x = (0\'a)}" - from P have "?M \ set i" by auto - with finite_subset F show False by auto - qed -next - assume F: "finite {x. poly p x = (0\'a)}" - show "poly p \ poly []" using F UNIV_ring_char_0_infinte by auto -qed - -text{*Entirety and Cancellation for polynomials*} - -lemma (in idom_char_0) poly_entire_lemma2: - assumes p0: "poly p \ poly []" - and q0: "poly q \ poly []" - shows "poly (p***q) \ poly []" -proof - - let ?S = "\p. {x. poly p x = 0}" - have "?S (p *** q) = ?S p \ ?S q" by (auto simp add: poly_mult) - with p0 q0 show ?thesis unfolding poly_roots_finite by auto -qed - -lemma (in idom_char_0) poly_entire: - "poly (p *** q) = poly [] \ poly p = poly [] \ poly q = poly []" - using poly_entire_lemma2[of p q] - by (auto simp add: fun_eq_iff poly_mult) - -lemma (in idom_char_0) poly_entire_neg: - "poly (p *** q) \ poly [] \ poly p \ poly [] \ poly q \ poly []" - by (simp add: poly_entire) - -lemma fun_eq: "f = g \ (\x. f x = g x)" - by auto - -lemma (in comm_ring_1) poly_add_minus_zero_iff: - "poly (p +++ -- q) = poly [] \ poly p = poly q" - by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq poly_cmult) - -lemma (in comm_ring_1) poly_add_minus_mult_eq: - "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" - by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult distrib_left) - -subclass (in idom_char_0) comm_ring_1 .. - -lemma (in idom_char_0) poly_mult_left_cancel: - "poly (p *** q) = poly (p *** r) \ poly p = poly [] \ poly q = poly r" -proof - - have "poly (p *** q) = poly (p *** r) \ poly (p *** q +++ -- (p *** r)) = poly []" - by (simp only: poly_add_minus_zero_iff) - also have "\ \ poly p = poly [] \ poly q = poly r" - by (auto intro: simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) - finally show ?thesis . -qed - -lemma (in idom) poly_exp_eq_zero[simp]: - "poly (p %^ n) = poly [] \ poly p = poly [] \ n \ 0" - apply (simp only: fun_eq add: HOL.all_simps [symmetric]) - apply (rule arg_cong [where f = All]) - apply (rule ext) - apply (induct n) - apply (auto simp add: poly_exp poly_mult) - done - -lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a,1] \ poly []" - apply (simp add: fun_eq) - apply (rule_tac x = "minus one a" in exI) - apply (unfold diff_minus) - apply (subst add_commute) - apply (subst add_assoc) - apply simp - done - -lemma (in idom) poly_exp_prime_eq_zero: "poly ([a, 1] %^ n) \ poly []" - by auto - -text{*A more constructive notion of polynomials being trivial*} - -lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] \ h = 0 \ poly t = poly []" - apply (simp add: fun_eq) - apply (case_tac "h = zero") - apply (drule_tac [2] x = zero in spec, auto) - apply (cases "poly t = poly []", simp) -proof - - fix x - assume H: "\x. x = (0\'a) \ poly t x = (0\'a)" - and pnz: "poly t \ poly []" - let ?S = "{x. poly t x = 0}" - from H have "\x. x \0 \ poly t x = 0" by blast - hence th: "?S \ UNIV - {0}" by auto - from poly_roots_finite pnz have th': "finite ?S" by blast - from finite_subset[OF th th'] UNIV_ring_char_0_infinte show "poly t x = (0\'a)" - by simp -qed - -lemma (in idom_char_0) poly_zero: "(poly p = poly []) = list_all (%c. c = 0) p" - apply (induct p) - apply simp - apply (rule iffI) - apply (drule poly_zero_lemma', auto) - done - -lemma (in idom_char_0) poly_0: "list_all (\c. c = 0) p \ poly p x = 0" - unfolding poly_zero[symmetric] by simp - - - -text{*Basics of divisibility.*} - -lemma (in idom) poly_primes: - "[a, 1] divides (p *** q) \ [a, 1] divides p \ [a, 1] divides q" - apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric]) - apply (drule_tac x = "uminus a" in spec) - apply (simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) - apply (cases "p = []") - apply (rule exI[where x="[]"]) - apply simp - apply (cases "q = []") - apply (erule allE[where x="[]"], simp) - - apply clarsimp - apply (cases "\q\'a list. p = a %* q +++ ((0\'a) # q)") - apply (clarsimp simp add: poly_add poly_cmult) - apply (rule_tac x="qa" in exI) - apply (simp add: distrib_right [symmetric]) - apply clarsimp - - apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) - apply (rule_tac x = "pmult qa q" in exI) - apply (rule_tac [2] x = "pmult p qa" in exI) - apply (auto simp add: poly_add poly_mult poly_cmult mult_ac) - done - -lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p" - apply (simp add: divides_def) - apply (rule_tac x = "[one]" in exI) - apply (auto simp add: poly_mult fun_eq) - done - -lemma (in comm_semiring_1) poly_divides_trans: "p divides q \ q divides r \ p divides r" - apply (simp add: divides_def, safe) - apply (rule_tac x = "pmult qa qaa" in exI) - apply (auto simp add: poly_mult fun_eq mult_assoc) - done - -lemma (in comm_semiring_1) poly_divides_exp: "m \ n \ (p %^ m) divides (p %^ n)" - apply (auto simp add: le_iff_add) - apply (induct_tac k) - apply (rule_tac [2] poly_divides_trans) - apply (auto simp add: divides_def) - apply (rule_tac x = p in exI) - apply (auto simp add: poly_mult fun_eq mult_ac) - done - -lemma (in comm_semiring_1) poly_exp_divides: - "(p %^ n) divides q \ m \ n \ (p %^ m) divides q" - by (blast intro: poly_divides_exp poly_divides_trans) - -lemma (in comm_semiring_0) poly_divides_add: - "p divides q \ p divides r \ p divides (q +++ r)" - apply (simp add: divides_def, auto) - apply (rule_tac x = "padd qa qaa" in exI) - apply (auto simp add: poly_add fun_eq poly_mult distrib_left) - done - -lemma (in comm_ring_1) poly_divides_diff: - "p divides q \ p divides (q +++ r) \ p divides r" - apply (simp add: divides_def, auto) - apply (rule_tac x = "padd qaa (poly_minus qa)" in exI) - apply (auto simp add: poly_add fun_eq poly_mult poly_minus algebra_simps) - done - -lemma (in comm_ring_1) poly_divides_diff2: - "p divides r \ p divides (q +++ r) \ p divides q" - apply (erule poly_divides_diff) - apply (auto simp add: poly_add fun_eq poly_mult divides_def add_ac) - done - -lemma (in semiring_0) poly_divides_zero: "poly p = poly [] \ q divides p" - apply (simp add: divides_def) - apply (rule exI[where x="[]"]) - apply (auto simp add: fun_eq poly_mult) - done - -lemma (in semiring_0) poly_divides_zero2 [simp]: "q divides []" - apply (simp add: divides_def) - apply (rule_tac x = "[]" in exI) - apply (auto simp add: fun_eq) - done - -text{*At last, we can consider the order of a root.*} - -lemma (in idom_char_0) poly_order_exists_lemma: - assumes lp: "length p = d" - and p: "poly p \ poly []" - shows "\n q. p = mulexp n [-a, 1] q \ poly q a \ 0" - using lp p -proof (induct d arbitrary: p) - case 0 - thus ?case by simp -next - case (Suc n p) - show ?case - proof (cases "poly p a = 0") - case True - from Suc.prems have h: "length p = Suc n" "poly p \ poly []" by auto - hence pN: "p \ []" by auto - from True[unfolded poly_linear_divides] pN obtain q where q: "p = [-a, 1] *** q" - by blast - from q h True have qh: "length q = n" "poly q \ poly []" - apply - - apply simp - apply (simp only: fun_eq) - apply (rule ccontr) - apply (simp add: fun_eq poly_add poly_cmult) - done - from Suc.hyps[OF qh] obtain m r where mr: "q = mulexp m [-a,1] r" "poly r a \ 0" - by blast - from mr q have "p = mulexp (Suc m) [-a,1] r \ poly r a \ 0" by simp - then show ?thesis by blast - next - case False - then show ?thesis - using Suc.prems - apply simp - apply (rule exI[where x="0::nat"]) - apply simp - done - qed -qed - - -lemma (in comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x" - by (induct n) (auto simp add: poly_mult mult_ac) - -lemma (in comm_semiring_1) divides_left_mult: - assumes d:"(p***q) divides r" shows "p divides r \ q divides r" -proof- - from d obtain t where r:"poly r = poly (p***q *** t)" - unfolding divides_def by blast - hence "poly r = poly (p *** (q *** t))" - "poly r = poly (q *** (p***t))" by(auto simp add: fun_eq poly_mult mult_ac) - thus ?thesis unfolding divides_def by blast -qed - - -(* FIXME: Tidy up *) - -lemma (in semiring_1) zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)" - by (induct n) simp_all - -lemma (in idom_char_0) poly_order_exists: - assumes "length p = d" and "poly p \ poly []" - shows "\n. [- a, 1] %^ n divides p \ \ [- a, 1] %^ Suc n divides p" -proof - - from assms have "\n q. p = mulexp n [- a, 1] q \ poly q a \ 0" - by (rule poly_order_exists_lemma) - then obtain n q where p: "p = mulexp n [- a, 1] q" and "poly q a \ 0" by blast - have "[- a, 1] %^ n divides mulexp n [- a, 1] q" - proof (rule dividesI) - show "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ n *** q)" - by (induct n) (simp_all add: poly_add poly_cmult poly_mult distrib_left mult_ac) - qed - moreover have "\ [- a, 1] %^ Suc n divides mulexp n [- a, 1] q" - proof - assume "[- a, 1] %^ Suc n divides mulexp n [- a, 1] q" - then obtain m where "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ Suc n *** m)" - by (rule dividesE) - moreover have "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** m)" - proof (induct n) - case 0 show ?case - proof (rule ccontr) - assume "\ poly (mulexp 0 [- a, 1] q) \ poly ([- a, 1] %^ Suc 0 *** m)" - then have "poly q a = 0" - by (simp add: poly_add poly_cmult) - with `poly q a \ 0` show False by simp - qed - next - case (Suc n) show ?case - by (rule pexp_Suc [THEN ssubst], rule ccontr) - (simp add: poly_mult_left_cancel poly_mult_assoc Suc del: pmult_Cons pexp_Suc) - qed - ultimately show False by simp - qed - ultimately show ?thesis by (auto simp add: p) -qed - -lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p" - by (auto simp add: divides_def) - -lemma (in idom_char_0) poly_order: - "poly p \ poly [] \ \!n. ([-a, 1] %^ n) divides p \ \ (([-a, 1] %^ Suc n) divides p)" - apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) - apply (cut_tac x = y and y = n in less_linear) - apply (drule_tac m = n in poly_exp_divides) - apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] - simp del: pmult_Cons pexp_Suc) - done - -text{*Order*} - -lemma some1_equalityD: "n = (SOME n. P n) \ \!n. P n \ P n" - by (blast intro: someI2) - -lemma (in idom_char_0) order: - "(([-a, 1] %^ n) divides p \ - ~(([-a, 1] %^ (Suc n)) divides p)) = - ((n = order a p) \ ~(poly p = poly []))" - apply (unfold order_def) - apply (rule iffI) - apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) - apply (blast intro!: poly_order [THEN [2] some1_equalityD]) - done - -lemma (in idom_char_0) order2: - "poly p \ poly [] \ - ([-a, 1] %^ (order a p)) divides p \ \ (([-a, 1] %^ (Suc (order a p))) divides p)" - by (simp add: order del: pexp_Suc) - -lemma (in idom_char_0) order_unique: - "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ ~(([-a, 1] %^ (Suc n)) divides p) \ - n = order a p" - using order [of a n p] by auto - -lemma (in idom_char_0) order_unique_lemma: - "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ ~(([-a, 1] %^ (Suc n)) divides p) \ - n = order a p" - by (blast intro: order_unique) - -lemma (in ring_1) order_poly: "poly p = poly q \ order a p = order a q" - by (auto simp add: fun_eq divides_def poly_mult order_def) - -lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p" - by (induct "p") auto - -lemma (in comm_ring_1) lemma_order_root: - "0 < n \ [- a, 1] %^ n divides p \ ~ [- a, 1] %^ (Suc n) divides p \ poly p a = 0" - by (induct n arbitrary: a p) (auto simp add: divides_def poly_mult simp del: pmult_Cons) - -lemma (in idom_char_0) order_root: - "poly p a = 0 \ poly p = poly [] \ order a p \ 0" - apply (cases "poly p = poly []") - apply auto - apply (simp add: poly_linear_divides del: pmult_Cons, safe) - apply (drule_tac [!] a = a in order2) - apply (rule ccontr) - apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) - using neq0_conv - apply (blast intro: lemma_order_root) - done - -lemma (in idom_char_0) order_divides: - "([-a, 1] %^ n) divides p \ poly p = poly [] \ n \ order a p" - apply (cases "poly p = poly []") - apply auto - apply (simp add: divides_def fun_eq poly_mult) - apply (rule_tac x = "[]" in exI) - apply (auto dest!: order2 [where a=a] intro: poly_exp_divides simp del: pexp_Suc) - done - -lemma (in idom_char_0) order_decomp: - "poly p \ poly [] \ \q. poly p = poly (([-a, 1] %^ (order a p)) *** q) \ ~([-a, 1] divides q)" - apply (unfold divides_def) - apply (drule order2 [where a = a]) - apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) - apply (rule_tac x = q in exI, safe) - apply (drule_tac x = qa in spec) - apply (auto simp add: poly_mult fun_eq poly_exp mult_ac simp del: pmult_Cons) - done - -text{*Important composition properties of orders.*} -lemma order_mult: - "poly (p *** q) \ poly [] \ - order a (p *** q) = order a p + order (a::'a::{idom_char_0}) q" - apply (cut_tac a = a and p = "p *** q" and n = "order a p + order a q" in order) - apply (auto simp add: poly_entire simp del: pmult_Cons) - apply (drule_tac a = a in order2)+ - apply safe - apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) - apply (rule_tac x = "qa *** qaa" in exI) - apply (simp add: poly_mult mult_ac del: pmult_Cons) - apply (drule_tac a = a in order_decomp)+ - apply safe - apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") - apply (simp add: poly_primes del: pmult_Cons) - apply (auto simp add: divides_def simp del: pmult_Cons) - apply (rule_tac x = qb in exI) - apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") - apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") - apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) - done - -lemma (in idom_char_0) order_mult: - assumes "poly (p *** q) \ poly []" - shows "order a (p *** q) = order a p + order a q" - using assms - apply (cut_tac a = a and p = "pmult p q" and n = "order a p + order a q" in order) - apply (auto simp add: poly_entire simp del: pmult_Cons) - apply (drule_tac a = a in order2)+ - apply safe - apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) - apply (rule_tac x = "pmult qa qaa" in exI) - apply (simp add: poly_mult mult_ac del: pmult_Cons) - apply (drule_tac a = a in order_decomp)+ - apply safe - apply (subgoal_tac "[uminus a, one] divides pmult qa qaa") - apply (simp add: poly_primes del: pmult_Cons) - apply (auto simp add: divides_def simp del: pmult_Cons) - apply (rule_tac x = qb in exI) - apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa)) = - poly (pmult (pexp [uminus a, one] (?order a p)) (pmult [uminus a, one] qb))") - apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a q)) - (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa))) = - poly (pmult (pexp [uminus a, one] (order a q)) - (pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb)))") - apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (simp add: fun_eq poly_exp_add poly_mult mult_ac del: pmult_Cons) - done - -lemma (in idom_char_0) order_root2: "poly p \ poly [] \ poly p a = 0 \ order a p \ 0" - by (rule order_root [THEN ssubst]) auto - -lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" by auto - -lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]" - by (simp add: fun_eq) - -lemma (in idom_char_0) rsquarefree_decomp: - "rsquarefree p \ poly p a = 0 \ - \q. poly p = poly ([-a, 1] *** q) \ poly q a \ 0" - apply (simp add: rsquarefree_def, safe) - apply (frule_tac a = a in order_decomp) - apply (drule_tac x = a in spec) - apply (drule_tac a = a in order_root2 [symmetric]) - apply (auto simp del: pmult_Cons) - apply (rule_tac x = q in exI, safe) - apply (simp add: poly_mult fun_eq) - apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) - apply (simp add: divides_def del: pmult_Cons, safe) - apply (drule_tac x = "[]" in spec) - apply (auto simp add: fun_eq) - done - - -text{*Normalization of a polynomial.*} - -lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p" - by (induct p) (auto simp add: fun_eq) - -text{*The degree of a polynomial.*} - -lemma (in semiring_0) lemma_degree_zero: "list_all (%c. c = 0) p \ pnormalize p = []" - by (induct p) auto - -lemma (in idom_char_0) degree_zero: - assumes "poly p = poly []" - shows "degree p = 0" - using assms - by (cases "pnormalize p = []") (auto simp add: degree_def poly_zero lemma_degree_zero) - -lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \ x \ 0" - by simp - -lemma (in semiring_0) pnormalize_pair: "y \ 0 \ (pnormalize [x, y] = [x, y])" - by simp - -lemma (in semiring_0) pnormal_cons: "pnormal p \ pnormal (c#p)" - unfolding pnormal_def by simp - -lemma (in semiring_0) pnormal_tail: "p\[] \ pnormal (c#p) \ pnormal p" - unfolding pnormal_def by(auto split: split_if_asm) - - -lemma (in semiring_0) pnormal_last_nonzero: "pnormal p \ last p \ 0" - by (induct p) (simp_all add: pnormal_def split: split_if_asm) - -lemma (in semiring_0) pnormal_length: "pnormal p \ 0 < length p" - unfolding pnormal_def length_greater_0_conv by blast - -lemma (in semiring_0) pnormal_last_length: "0 < length p \ last p \ 0 \ pnormal p" - by (induct p) (auto simp: pnormal_def split: split_if_asm) - - -lemma (in semiring_0) pnormal_id: "pnormal p \ 0 < length p \ last p \ 0" - using pnormal_last_length pnormal_length pnormal_last_nonzero by blast - -lemma (in idom_char_0) poly_Cons_eq: - "poly (c # cs) = poly (d # ds) \ c = d \ poly cs = poly ds" - (is "?lhs \ ?rhs") -proof - assume eq: ?lhs - hence "\x. poly ((c#cs) +++ -- (d#ds)) x = 0" - by (simp only: poly_minus poly_add algebra_simps) simp - hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add: fun_eq_iff) - hence "c = d \ list_all (\x. x=0) ((cs +++ -- ds))" - unfolding poly_zero by (simp add: poly_minus_def algebra_simps) - hence "c = d \ (\x. poly (cs +++ -- ds) x = 0)" - unfolding poly_zero[symmetric] by simp - then show ?rhs by (simp add: poly_minus poly_add algebra_simps fun_eq_iff) -next - assume ?rhs - then show ?lhs by(simp add:fun_eq_iff) -qed - -lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \ pnormalize p = pnormalize q" -proof (induct q arbitrary: p) - case Nil - thus ?case by (simp only: poly_zero lemma_degree_zero) simp -next - case (Cons c cs p) - thus ?case - proof (induct p) - case Nil - hence "poly [] = poly (c#cs)" by blast - then have "poly (c#cs) = poly [] " by simp - thus ?case by (simp only: poly_zero lemma_degree_zero) simp - next - case (Cons d ds) - hence eq: "poly (d # ds) = poly (c # cs)" by blast - hence eq': "\x. poly (d # ds) x = poly (c # cs) x" by simp - hence "poly (d # ds) 0 = poly (c # cs) 0" by blast - hence dc: "d = c" by auto - with eq have "poly ds = poly cs" - unfolding poly_Cons_eq by simp - with Cons.prems have "pnormalize ds = pnormalize cs" by blast - with dc show ?case by simp - qed -qed - -lemma (in idom_char_0) degree_unique: - assumes pq: "poly p = poly q" - shows "degree p = degree q" - using pnormalize_unique[OF pq] unfolding degree_def by simp - -lemma (in semiring_0) pnormalize_length: - "length (pnormalize p) \ length p" by (induct p) auto - -lemma (in semiring_0) last_linear_mul_lemma: - "last ((a %* p) +++ (x#(b %* p))) = (if p = [] then x else b * last p)" - apply (induct p arbitrary: a x b) - apply auto - apply (subgoal_tac "padd (cmult aa p) (times b a # cmult b p) \ []") - apply simp - apply (induct_tac p) - apply auto - done - -lemma (in semiring_1) last_linear_mul: - assumes p: "p \ []" - shows "last ([a,1] *** p) = last p" -proof - - from p obtain c cs where cs: "p = c#cs" by (cases p) auto - from cs have eq: "[a,1] *** p = (a %* (c#cs)) +++ (0#(1 %* (c#cs)))" - by (simp add: poly_cmult_distr) - show ?thesis using cs - unfolding eq last_linear_mul_lemma by simp -qed - -lemma (in semiring_0) pnormalize_eq: "last p \ 0 \ pnormalize p = p" - by (induct p) (auto split: split_if_asm) - -lemma (in semiring_0) last_pnormalize: "pnormalize p \ [] \ last (pnormalize p) \ 0" - by (induct p) auto - -lemma (in semiring_0) pnormal_degree: "last p \ 0 \ degree p = length p - 1" - using pnormalize_eq[of p] unfolding degree_def by simp - -lemma (in semiring_0) poly_Nil_ext: "poly [] = (\x. 0)" - by (rule ext) simp - -lemma (in idom_char_0) linear_mul_degree: - assumes p: "poly p \ poly []" - shows "degree ([a,1] *** p) = degree p + 1" -proof - - from p have pnz: "pnormalize p \ []" - unfolding poly_zero lemma_degree_zero . - - from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz] - have l0: "last ([a, 1] *** pnormalize p) \ 0" by simp - from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a] - pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz - - have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1" - by simp - - have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)" - by (rule ext) (simp add: poly_mult poly_add poly_cmult) - from degree_unique[OF eqs] th - show ?thesis by (simp add: degree_unique[OF poly_normalize]) -qed - -lemma (in idom_char_0) linear_pow_mul_degree: - "degree([a,1] %^n *** p) = (if poly p = poly [] then 0 else degree p + n)" -proof (induct n arbitrary: a p) - case (0 a p) - show ?case - proof (cases "poly p = poly []") - case True - then show ?thesis - using degree_unique[OF True] by (simp add: degree_def) - next - case False - then show ?thesis by (auto simp add: poly_Nil_ext) - qed -next - case (Suc n a p) - have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1] %^ n *** ([a,1] *** p))" - apply (rule ext) - apply (simp add: poly_mult poly_add poly_cmult) - apply (simp add: mult_ac add_ac distrib_left) - done - note deq = degree_unique[OF eq] - show ?case - proof (cases "poly p = poly []") - case True - with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []" - apply - - apply (rule ext) - apply (simp add: poly_mult poly_cmult poly_add) - done - from degree_unique[OF eq'] True show ?thesis - by (simp add: degree_def) - next - case False - then have ap: "poly ([a,1] *** p) \ poly []" - using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto - have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))" - by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps) - from ap have ap': "(poly ([a,1] *** p) = poly []) = False" - by blast - have th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n" - apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap') - apply simp - done - from degree_unique[OF eq] ap False th0 linear_mul_degree[OF False, of a] - show ?thesis by (auto simp del: poly.simps) - qed -qed - -lemma (in idom_char_0) order_degree: - assumes p0: "poly p \ poly []" - shows "order a p \ degree p" -proof - - from order2[OF p0, unfolded divides_def] - obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast - { - assume "poly q = poly []" - with q p0 have False by (simp add: poly_mult poly_entire) - } - with degree_unique[OF q, unfolded linear_pow_mul_degree] show ?thesis - by auto -qed - -text{*Tidier versions of finiteness of roots.*} - -lemma (in idom_char_0) poly_roots_finite_set: - "poly p \ poly [] \ finite {x. poly p x = 0}" - unfolding poly_roots_finite . - -text{*bound for polynomial.*} - -lemma poly_mono: "abs(x) \ k \ abs(poly p (x::'a::{linordered_idom})) \ poly (map abs p) k" - apply (induct p) - apply auto - apply (rule_tac y = "abs a + abs (x * poly p x)" in order_trans) - apply (rule abs_triangle_ineq) - apply (auto intro!: mult_mono simp add: abs_mult) - done - -lemma (in semiring_0) poly_Sing: "poly [c] x = c" by simp - -end