# HG changeset patch # User wenzelm # Date 1278004494 -7200 # Node ID 645eb9fec7940d1db4ce035168a5182f7850890d # Parent fa53d267dab348a15b3074d215bbdf1521738ba3 avoid Old_Number_Theory; more precise dependencies; diff -r fa53d267dab3 -r 645eb9fec794 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Thu Jul 01 18:31:46 2010 +0200 +++ b/src/HOL/IsaMakefile Thu Jul 01 19:14:54 2010 +0200 @@ -1012,7 +1012,8 @@ Isar_Examples/Puzzle.thy Isar_Examples/Summation.thy \ Isar_Examples/ROOT.ML Isar_Examples/document/proof.sty \ Isar_Examples/document/root.bib Isar_Examples/document/root.tex \ - Isar_Examples/document/style.tex Hoare/hoare_tac.ML + Isar_Examples/document/style.tex Hoare/hoare_tac.ML \ + Number_Theory/Primes.thy @$(ISABELLE_TOOL) usedir $(OUT)/HOL Isar_Examples diff -r fa53d267dab3 -r 645eb9fec794 src/HOL/Isar_Examples/Fibonacci.thy --- a/src/HOL/Isar_Examples/Fibonacci.thy Thu Jul 01 18:31:46 2010 +0200 +++ b/src/HOL/Isar_Examples/Fibonacci.thy Thu Jul 01 19:14:54 2010 +0200 @@ -15,7 +15,7 @@ header {* Fib and Gcd commute *} theory Fibonacci -imports "../Old_Number_Theory/Primes" +imports "../Number_Theory/Primes" begin text_raw {* \footnote{Isar version by Gertrud Bauer. Original tactic @@ -23,6 +23,9 @@ \cite{Concrete-Math}.} *} +declare One_nat_def [simp] + + subsection {* Fibonacci numbers *} fun fib :: "nat \ nat" where @@ -30,7 +33,7 @@ | "fib (Suc 0) = 1" | "fib (Suc (Suc x)) = fib x + fib (Suc x)" -lemma [simp]: "0 < fib (Suc n)" +lemma [simp]: "fib (Suc n) > 0" by (induct n rule: fib.induct) simp_all @@ -74,20 +77,21 @@ fix n have "fib (n + 2 + 1) = fib (n + 1) + fib (n + 2)" by simp + also have "... = fib (n + 2) + fib (n + 1)" by simp also have "gcd (fib (n + 2)) ... = gcd (fib (n + 2)) (fib (n + 1))" - by (simp only: gcd_add2') + by (rule gcd_add2_nat) also have "... = gcd (fib (n + 1)) (fib (n + 1 + 1))" - by (simp add: gcd_commute) + by (simp add: gcd_commute_nat) also assume "... = 1" finally show "?P (n + 2)" . qed -lemma gcd_mult_add: "0 < n ==> gcd (n * k + m) n = gcd m n" +lemma gcd_mult_add: "(0::nat) < n ==> gcd (n * k + m) n = gcd m n" proof - assume "0 < n" then have "gcd (n * k + m) n = gcd n (m mod n)" - by (simp add: gcd_non_0 add_commute) - also from `0 < n` have "... = gcd m n" by (simp add: gcd_non_0) + by (simp add: gcd_non_0_nat add_commute) + also from `0 < n` have "... = gcd m n" by (simp add: gcd_non_0_nat) finally show ?thesis . qed @@ -98,16 +102,16 @@ next case (Suc k) then have "gcd (fib m) (fib (n + m)) = gcd (fib (n + k + 1)) (fib (k + 1))" - by (simp add: gcd_commute) + by (simp add: gcd_commute_nat) also have "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" by (rule fib_add) also have "gcd ... (fib (k + 1)) = gcd (fib k * fib n) (fib (k + 1))" by (simp add: gcd_mult_add) also have "... = gcd (fib n) (fib (k + 1))" - by (simp only: gcd_fib_Suc_eq_1 gcd_mult_cancel) + by (simp only: gcd_fib_Suc_eq_1 gcd_mult_cancel_nat) also have "... = gcd (fib m) (fib n)" - using Suc by (simp add: gcd_commute) + using Suc by (simp add: gcd_commute_nat) finally show ?thesis . qed @@ -149,13 +153,13 @@ qed theorem fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" (is "?P m n") -proof (induct m n rule: gcd_induct) +proof (induct m n rule: gcd_nat_induct) fix m show "fib (gcd m 0) = gcd (fib m) (fib 0)" by simp fix n :: nat assume n: "0 < n" - then have "gcd m n = gcd n (m mod n)" by (rule gcd_non_0) + then have "gcd m n = gcd n (m mod n)" by (simp add: gcd_non_0_nat) also assume hyp: "fib ... = gcd (fib n) (fib (m mod n))" also from n have "... = gcd (fib n) (fib m)" by (rule gcd_fib_mod) - also have "... = gcd (fib m) (fib n)" by (rule gcd_commute) + also have "... = gcd (fib m) (fib n)" by (rule gcd_commute_nat) finally show "fib (gcd m n) = gcd (fib m) (fib n)" . qed diff -r fa53d267dab3 -r 645eb9fec794 src/HOL/Isar_Examples/ROOT.ML --- a/src/HOL/Isar_Examples/ROOT.ML Thu Jul 01 18:31:46 2010 +0200 +++ b/src/HOL/Isar_Examples/ROOT.ML Thu Jul 01 19:14:54 2010 +0200 @@ -1,6 +1,6 @@ (* Miscellaneous Isabelle/Isar examples for Higher-Order Logic. *) -no_document use_thys ["../Old_Number_Theory/Primes", "../Old_Number_Theory/Fibonacci"]; +no_document use_thys ["../Number_Theory/Primes"]; use_thys [ "Basic_Logic",