# HG changeset patch # User wenzelm # Date 933335069 -7200 # Node ID 64c9f2364dae267a32a7bc33c3817d049de5afe6 # Parent 5c31d06ead04e1b75506988e58f9927d8b949b6a renamed 'same' to '-'; diff -r 5c31d06ead04 -r 64c9f2364dae src/HOL/Isar_examples/BasicLogic.thy --- a/src/HOL/Isar_examples/BasicLogic.thy Fri Jul 30 13:43:26 1999 +0200 +++ b/src/HOL/Isar_examples/BasicLogic.thy Fri Jul 30 13:44:29 1999 +0200 @@ -145,7 +145,7 @@ context again later. *}; theorem conjE: "A & B ==> (A ==> B ==> C) ==> C"; -proof same; +proof -; assume ab: "A & B"; assume ab_c: "A ==> B ==> C"; show C; diff -r 5c31d06ead04 -r 64c9f2364dae src/HOL/Isar_examples/Group.thy --- a/src/HOL/Isar_examples/Group.thy Fri Jul 30 13:43:26 1999 +0200 +++ b/src/HOL/Isar_examples/Group.thy Fri Jul 30 13:44:29 1999 +0200 @@ -32,7 +32,7 @@ *}; theorem group_right_inverse: "x * inv x = (one::'a::group)"; -proof same; +proof -; have "x * inv x = one * (x * inv x)"; by (simp only: group_left_unit); also; have "... = (one * x) * inv x"; @@ -58,7 +58,7 @@ *}; theorem group_right_unit: "x * one = (x::'a::group)"; -proof same; +proof -; have "x * one = x * (inv x * x)"; by (simp only: group_left_inverse); also; have "... = x * inv x * x"; @@ -85,7 +85,7 @@ *}; theorem "x * one = (x::'a::group)"; -proof same; +proof -; have "x * one = x * (inv x * x)"; by (simp only: group_left_inverse); diff -r 5c31d06ead04 -r 64c9f2364dae src/HOL/Isar_examples/KnasterTarski.thy --- a/src/HOL/Isar_examples/KnasterTarski.thy Fri Jul 30 13:43:26 1999 +0200 +++ b/src/HOL/Isar_examples/KnasterTarski.thy Fri Jul 30 13:44:29 1999 +0200 @@ -25,7 +25,7 @@ assume mono: "mono f"; show "f ??a = ??a"; - proof same; + proof -; {{; fix x; assume mem: "x : ??H"; diff -r 5c31d06ead04 -r 64c9f2364dae src/HOL/Isar_examples/NatSum.thy --- a/src/HOL/Isar_examples/NatSum.thy Fri Jul 30 13:43:26 1999 +0200 +++ b/src/HOL/Isar_examples/NatSum.thy Fri Jul 30 13:44:29 1999 +0200 @@ -34,7 +34,7 @@ *) theorem sum_of_naturals: "2 * sum (%i. i) (Suc n) = n * Suc n"; -proof same; +proof -; apply simp_tac; apply (induct n); apply simp_tac;