# HG changeset patch # User paulson # Date 1004964948 -3600 # Node ID 650f854b73107ef9370a745be099df3f870f8366 # Parent 6934c005aec4f145978f1bd3394ebe369ae27cc3 new Sqrt example diff -r 6934c005aec4 -r 650f854b7310 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Sun Nov 04 21:12:03 2001 +0100 +++ b/src/HOL/IsaMakefile Mon Nov 05 13:55:48 2001 +0100 @@ -154,7 +154,8 @@ HOL-Real-ex: HOL-Real $(LOG)/HOL-Real-ex.gz $(LOG)/HOL-Real-ex.gz: $(OUT)/HOL-Real Real/ex/ROOT.ML \ - Real/ex/BinEx.thy Real/ex/document/root.tex Real/ex/Sqrt_Irrational.thy + Real/ex/BinEx.thy Real/ex/document/root.tex Real/ex/Sqrt_Irrational.thy\ + Real/ex/Sqrt_Script.thy @cd Real; $(ISATOOL) usedir $(OUT)/HOL-Real ex diff -r 6934c005aec4 -r 650f854b7310 src/HOL/Real/ex/Sqrt_Script.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Real/ex/Sqrt_Script.thy Mon Nov 05 13:55:48 2001 +0100 @@ -0,0 +1,81 @@ +(* Title: HOL/Real/ex/Sqrt_Script.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 2001 University of Cambridge +*) + +header {* Square roots of primes are irrational *} + +text {* + \medskip Contrast this linear Isar script with Markus Wenzel's + more mathematical version. +*} + +theory Sqrt_Script = Primes + Real: + +section {* Preliminaries *} + +lemma prime_nonzero: "p \ prime \ p\0" +by (force simp add: prime_def) + +lemma prime_dvd_other_side: "\n*n = p*(k*k); p \ prime\ \ p dvd n" +apply (subgoal_tac "p dvd n*n", blast dest: prime_dvd_mult) +apply (rule_tac j="k*k" in dvd_mult_left, simp) +done + +lemma reduction: "\p \ prime; 0 < k; k*k = p*(j*j)\ \ k < p*j & 0 < j" +apply (rule ccontr) +apply (simp add: linorder_not_less) +apply (erule disjE) + apply (frule mult_le_mono, assumption) + apply auto +apply (force simp add: prime_def) +done + +lemma rearrange: "(j::nat) * (p*j) = k*k \ k*k = p*(j*j)" +by (simp add: mult_ac) + +lemma prime_not_square [rule_format]: + "p \ prime \ \k. 0 m*m \ p*(k*k)" +apply (induct_tac m rule: nat_less_induct) +apply clarify +apply (frule prime_dvd_other_side, assumption) +apply (erule dvdE) +apply (simp add: nat_mult_eq_cancel_disj prime_nonzero) +apply (blast dest: rearrange reduction) +done + + +section {* The set of rational numbers [Borrowed from Markus Wenzel] *} + +constdefs + rationals :: "real set" ("\") + "\ \ {x. \m n. n \ 0 \ \x\ = real (m::nat) / real (n::nat)}" + + +section {* Main theorem *} + +text {* + \tweakskip The square root of any prime number (including @{text 2}) + is irrational. +*} + +theorem prime_sqrt_irrational: "\p \ prime; x*x = real p; 0 \ x\ \ x \ \" +apply (simp add: rationals_def real_abs_def) +apply clarify +apply (erule_tac P="real m / real n * ?x = ?y" in rev_mp) +apply (simp del: real_of_nat_mult + add: real_divide_eq_eq prime_not_square + real_of_nat_mult [THEN sym]) +done + +lemma two_is_prime: "2 \ prime" +apply (auto simp add: prime_def) +apply (case_tac "m") +apply (auto dest!: dvd_imp_le) +apply arith +done + +lemmas two_sqrt_irrational = prime_sqrt_irrational [OF two_is_prime] + +end