# HG changeset patch # User paulson # Date 1556466619 -3600 # Node ID 65b3bfc565b531610b42619143c82a8dc6590a66 # Parent 373eb0aa97e302dc86687edb6a5fed436f3aaccc removal of ASCII connectives; some de-applying diff -r 373eb0aa97e3 -r 65b3bfc565b5 src/HOL/Nonstandard_Analysis/HTranscendental.thy --- a/src/HOL/Nonstandard_Analysis/HTranscendental.thy Sat Apr 27 21:56:59 2019 +0100 +++ b/src/HOL/Nonstandard_Analysis/HTranscendental.thy Sun Apr 28 16:50:19 2019 +0100 @@ -8,229 +8,161 @@ section\Nonstandard Extensions of Transcendental Functions\ theory HTranscendental -imports Complex_Main HSeries HDeriv +imports Complex_Main HSeries HDeriv Sketch_and_Explore begin + +sledgehammer_params [timeout = 90] + definition - exphr :: "real => hypreal" where + exphr :: "real \ hypreal" where \ \define exponential function using standard part\ - "exphr x = st(sumhr (0, whn, %n. inverse (fact n) * (x ^ n)))" + "exphr x \ st(sumhr (0, whn, \n. inverse (fact n) * (x ^ n)))" definition - sinhr :: "real => hypreal" where - "sinhr x = st(sumhr (0, whn, %n. sin_coeff n * x ^ n))" + sinhr :: "real \ hypreal" where + "sinhr x \ st(sumhr (0, whn, \n. sin_coeff n * x ^ n))" definition - coshr :: "real => hypreal" where - "coshr x = st(sumhr (0, whn, %n. cos_coeff n * x ^ n))" + coshr :: "real \ hypreal" where + "coshr x \ st(sumhr (0, whn, \n. cos_coeff n * x ^ n))" subsection\Nonstandard Extension of Square Root Function\ lemma STAR_sqrt_zero [simp]: "( *f* sqrt) 0 = 0" -by (simp add: starfun star_n_zero_num) + by (simp add: starfun star_n_zero_num) lemma STAR_sqrt_one [simp]: "( *f* sqrt) 1 = 1" -by (simp add: starfun star_n_one_num) + by (simp add: starfun star_n_one_num) lemma hypreal_sqrt_pow2_iff: "(( *f* sqrt)(x) ^ 2 = x) = (0 \ x)" -apply (cases x) -apply (auto simp add: star_n_le star_n_zero_num starfun hrealpow star_n_eq_iff - simp del: hpowr_Suc power_Suc) -done - -lemma hypreal_sqrt_gt_zero_pow2: "!!x. 0 < x ==> ( *f* sqrt) (x) ^ 2 = x" -by (transfer, simp) +proof (cases x) + case (star_n X) + then show ?thesis + by (simp add: star_n_le star_n_zero_num starfun hrealpow star_n_eq_iff del: hpowr_Suc power_Suc) +qed -lemma hypreal_sqrt_pow2_gt_zero: "0 < x ==> 0 < ( *f* sqrt) (x) ^ 2" -by (frule hypreal_sqrt_gt_zero_pow2, auto) +lemma hypreal_sqrt_gt_zero_pow2: "\x. 0 < x \ ( *f* sqrt) (x) ^ 2 = x" + by transfer simp -lemma hypreal_sqrt_not_zero: "0 < x ==> ( *f* sqrt) (x) \ 0" -apply (frule hypreal_sqrt_pow2_gt_zero) -apply (auto simp add: numeral_2_eq_2) -done +lemma hypreal_sqrt_pow2_gt_zero: "0 < x \ 0 < ( *f* sqrt) (x) ^ 2" + by (frule hypreal_sqrt_gt_zero_pow2, auto) + +lemma hypreal_sqrt_not_zero: "0 < x \ ( *f* sqrt) (x) \ 0" + using hypreal_sqrt_gt_zero_pow2 by fastforce lemma hypreal_inverse_sqrt_pow2: - "0 < x ==> inverse (( *f* sqrt)(x)) ^ 2 = inverse x" -apply (cut_tac n = 2 and a = "( *f* sqrt) x" in power_inverse [symmetric]) -apply (auto dest: hypreal_sqrt_gt_zero_pow2) -done + "0 < x \ inverse (( *f* sqrt)(x)) ^ 2 = inverse x" + by (simp add: hypreal_sqrt_gt_zero_pow2 power_inverse) lemma hypreal_sqrt_mult_distrib: - "!!x y. [|0 < x; 0 + "\x y. \0 < x; 0 \ ( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)" -apply transfer -apply (auto intro: real_sqrt_mult) -done + by transfer (auto intro: real_sqrt_mult) lemma hypreal_sqrt_mult_distrib2: - "[|0\x; 0\y |] ==> - ( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)" + "\0\x; 0\y\ \ ( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)" by (auto intro: hypreal_sqrt_mult_distrib simp add: order_le_less) lemma hypreal_sqrt_approx_zero [simp]: - "0 < x ==> (( *f* sqrt)(x) \ 0) = (x \ 0)" -apply (auto simp add: mem_infmal_iff [symmetric]) -apply (rule hypreal_sqrt_gt_zero_pow2 [THEN subst]) -apply (auto intro: Infinitesimal_mult - dest!: hypreal_sqrt_gt_zero_pow2 [THEN ssubst] - simp add: numeral_2_eq_2) -done + assumes "0 < x" + shows "(( *f* sqrt) x \ 0) \ (x \ 0)" +proof - + have "( *f* sqrt) x \ Infinitesimal \ ((*f* sqrt) x)\<^sup>2 \ Infinitesimal" + by (metis Infinitesimal_hrealpow pos2 power2_eq_square Infinitesimal_square_iff) + also have "... \ x \ Infinitesimal" + by (simp add: assms hypreal_sqrt_gt_zero_pow2) + finally show ?thesis + using mem_infmal_iff by blast +qed lemma hypreal_sqrt_approx_zero2 [simp]: - "0 \ x ==> (( *f* sqrt)(x) \ 0) = (x \ 0)" -by (auto simp add: order_le_less) + "0 \ x \ (( *f* sqrt)(x) \ 0) = (x \ 0)" + by (auto simp add: order_le_less) -lemma hypreal_sqrt_sum_squares [simp]: - "(( *f* sqrt)(x*x + y*y + z*z) \ 0) = (x*x + y*y + z*z \ 0)" -apply (rule hypreal_sqrt_approx_zero2) -apply (rule add_nonneg_nonneg)+ -apply (auto) -done +lemma hypreal_sqrt_gt_zero: "\x. 0 < x \ 0 < ( *f* sqrt)(x)" + by transfer (simp add: real_sqrt_gt_zero) -lemma hypreal_sqrt_sum_squares2 [simp]: - "(( *f* sqrt)(x*x + y*y) \ 0) = (x*x + y*y \ 0)" -apply (rule hypreal_sqrt_approx_zero2) -apply (rule add_nonneg_nonneg) -apply (auto) -done +lemma hypreal_sqrt_ge_zero: "0 \ x \ 0 \ ( *f* sqrt)(x)" + by (auto intro: hypreal_sqrt_gt_zero simp add: order_le_less) -lemma hypreal_sqrt_gt_zero: "!!x. 0 < x ==> 0 < ( *f* sqrt)(x)" -apply transfer -apply (auto intro: real_sqrt_gt_zero) -done +lemma hypreal_sqrt_hrabs [simp]: "\x. ( *f* sqrt)(x\<^sup>2) = \x\" + by transfer simp -lemma hypreal_sqrt_ge_zero: "0 \ x ==> 0 \ ( *f* sqrt)(x)" -by (auto intro: hypreal_sqrt_gt_zero simp add: order_le_less) - -lemma hypreal_sqrt_hrabs [simp]: "!!x. ( *f* sqrt)(x\<^sup>2) = \x\" -by (transfer, simp) - -lemma hypreal_sqrt_hrabs2 [simp]: "!!x. ( *f* sqrt)(x*x) = \x\" -by (transfer, simp) +lemma hypreal_sqrt_hrabs2 [simp]: "\x. ( *f* sqrt)(x*x) = \x\" + by transfer simp lemma hypreal_sqrt_hyperpow_hrabs [simp]: - "!!x. ( *f* sqrt)(x pow (hypnat_of_nat 2)) = \x\" -by (transfer, simp) + "\x. ( *f* sqrt)(x pow (hypnat_of_nat 2)) = \x\" + by transfer simp lemma star_sqrt_HFinite: "\x \ HFinite; 0 \ x\ \ ( *f* sqrt) x \ HFinite" -apply (rule HFinite_square_iff [THEN iffD1]) -apply (simp only: hypreal_sqrt_mult_distrib2 [symmetric], simp) -done + by (metis HFinite_square_iff hypreal_sqrt_pow2_iff power2_eq_square) lemma st_hypreal_sqrt: - "[| x \ HFinite; 0 \ x |] ==> st(( *f* sqrt) x) = ( *f* sqrt)(st x)" -apply (rule power_inject_base [where n=1]) -apply (auto intro!: st_zero_le hypreal_sqrt_ge_zero) -apply (rule st_mult [THEN subst]) -apply (rule_tac [3] hypreal_sqrt_mult_distrib2 [THEN subst]) -apply (rule_tac [5] hypreal_sqrt_mult_distrib2 [THEN subst]) -apply (auto simp add: st_hrabs st_zero_le star_sqrt_HFinite) -done + assumes "x \ HFinite" "0 \ x" + shows "st(( *f* sqrt) x) = ( *f* sqrt)(st x)" +proof (rule power_inject_base) + show "st ((*f* sqrt) x) ^ Suc 1 = (*f* sqrt) (st x) ^ Suc 1" + using assms hypreal_sqrt_pow2_iff [of x] + by (metis HFinite_square_iff hypreal_sqrt_hrabs2 power2_eq_square st_hrabs st_mult) + show "0 \ st ((*f* sqrt) x)" + by (simp add: assms hypreal_sqrt_ge_zero st_zero_le star_sqrt_HFinite) + show "0 \ (*f* sqrt) (st x)" + by (simp add: assms hypreal_sqrt_ge_zero st_zero_le) +qed -lemma hypreal_sqrt_sum_squares_ge1 [simp]: "!!x y. x \ ( *f* sqrt)(x\<^sup>2 + y\<^sup>2)" -by transfer (rule real_sqrt_sum_squares_ge1) - -lemma HFinite_hypreal_sqrt: - "[| 0 \ x; x \ HFinite |] ==> ( *f* sqrt) x \ HFinite" -apply (auto simp add: order_le_less) -apply (rule HFinite_square_iff [THEN iffD1]) -apply (drule hypreal_sqrt_gt_zero_pow2) -apply (simp add: numeral_2_eq_2) -done +lemma hypreal_sqrt_sum_squares_ge1 [simp]: "\x y. x \ ( *f* sqrt)(x\<^sup>2 + y\<^sup>2)" + by transfer (rule real_sqrt_sum_squares_ge1) lemma HFinite_hypreal_sqrt_imp_HFinite: - "[| 0 \ x; ( *f* sqrt) x \ HFinite |] ==> x \ HFinite" -apply (auto simp add: order_le_less) -apply (drule HFinite_square_iff [THEN iffD2]) -apply (drule hypreal_sqrt_gt_zero_pow2) -apply (simp add: numeral_2_eq_2 del: HFinite_square_iff) -done + "\0 \ x; ( *f* sqrt) x \ HFinite\ \ x \ HFinite" + by (metis HFinite_mult hrealpow_two hypreal_sqrt_pow2_iff numeral_2_eq_2) lemma HFinite_hypreal_sqrt_iff [simp]: - "0 \ x ==> (( *f* sqrt) x \ HFinite) = (x \ HFinite)" -by (blast intro: HFinite_hypreal_sqrt HFinite_hypreal_sqrt_imp_HFinite) - -lemma HFinite_sqrt_sum_squares [simp]: - "(( *f* sqrt)(x*x + y*y) \ HFinite) = (x*x + y*y \ HFinite)" -apply (rule HFinite_hypreal_sqrt_iff) -apply (rule add_nonneg_nonneg) -apply (auto) -done + "0 \ x \ (( *f* sqrt) x \ HFinite) = (x \ HFinite)" + by (blast intro: star_sqrt_HFinite HFinite_hypreal_sqrt_imp_HFinite) lemma Infinitesimal_hypreal_sqrt: - "[| 0 \ x; x \ Infinitesimal |] ==> ( *f* sqrt) x \ Infinitesimal" -apply (auto simp add: order_le_less) -apply (rule Infinitesimal_square_iff [THEN iffD2]) -apply (drule hypreal_sqrt_gt_zero_pow2) -apply (simp add: numeral_2_eq_2) -done + "\0 \ x; x \ Infinitesimal\ \ ( *f* sqrt) x \ Infinitesimal" + by (simp add: mem_infmal_iff) lemma Infinitesimal_hypreal_sqrt_imp_Infinitesimal: - "[| 0 \ x; ( *f* sqrt) x \ Infinitesimal |] ==> x \ Infinitesimal" -apply (auto simp add: order_le_less) -apply (drule Infinitesimal_square_iff [THEN iffD1]) -apply (drule hypreal_sqrt_gt_zero_pow2) -apply (simp add: numeral_2_eq_2 del: Infinitesimal_square_iff [symmetric]) -done + "\0 \ x; ( *f* sqrt) x \ Infinitesimal\ \ x \ Infinitesimal" + using hypreal_sqrt_approx_zero2 mem_infmal_iff by blast lemma Infinitesimal_hypreal_sqrt_iff [simp]: - "0 \ x ==> (( *f* sqrt) x \ Infinitesimal) = (x \ Infinitesimal)" + "0 \ x \ (( *f* sqrt) x \ Infinitesimal) = (x \ Infinitesimal)" by (blast intro: Infinitesimal_hypreal_sqrt_imp_Infinitesimal Infinitesimal_hypreal_sqrt) -lemma Infinitesimal_sqrt_sum_squares [simp]: - "(( *f* sqrt)(x*x + y*y) \ Infinitesimal) = (x*x + y*y \ Infinitesimal)" -apply (rule Infinitesimal_hypreal_sqrt_iff) -apply (rule add_nonneg_nonneg) -apply (auto) -done - lemma HInfinite_hypreal_sqrt: - "[| 0 \ x; x \ HInfinite |] ==> ( *f* sqrt) x \ HInfinite" -apply (auto simp add: order_le_less) -apply (rule HInfinite_square_iff [THEN iffD1]) -apply (drule hypreal_sqrt_gt_zero_pow2) -apply (simp add: numeral_2_eq_2) -done + "\0 \ x; x \ HInfinite\ \ ( *f* sqrt) x \ HInfinite" + by (simp add: HInfinite_HFinite_iff) lemma HInfinite_hypreal_sqrt_imp_HInfinite: - "[| 0 \ x; ( *f* sqrt) x \ HInfinite |] ==> x \ HInfinite" -apply (auto simp add: order_le_less) -apply (drule HInfinite_square_iff [THEN iffD2]) -apply (drule hypreal_sqrt_gt_zero_pow2) -apply (simp add: numeral_2_eq_2 del: HInfinite_square_iff) -done + "\0 \ x; ( *f* sqrt) x \ HInfinite\ \ x \ HInfinite" + using HFinite_hypreal_sqrt_iff HInfinite_HFinite_iff by blast lemma HInfinite_hypreal_sqrt_iff [simp]: - "0 \ x ==> (( *f* sqrt) x \ HInfinite) = (x \ HInfinite)" + "0 \ x \ (( *f* sqrt) x \ HInfinite) = (x \ HInfinite)" by (blast intro: HInfinite_hypreal_sqrt HInfinite_hypreal_sqrt_imp_HInfinite) -lemma HInfinite_sqrt_sum_squares [simp]: - "(( *f* sqrt)(x*x + y*y) \ HInfinite) = (x*x + y*y \ HInfinite)" -apply (rule HInfinite_hypreal_sqrt_iff) -apply (rule add_nonneg_nonneg) -apply (auto) -done - lemma HFinite_exp [simp]: - "sumhr (0, whn, %n. inverse (fact n) * x ^ n) \ HFinite" -unfolding sumhr_app -apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan) -apply (rule NSBseqD2) -apply (rule NSconvergent_NSBseq) -apply (rule convergent_NSconvergent_iff [THEN iffD1]) -apply (rule summable_iff_convergent [THEN iffD1]) -apply (rule summable_exp) -done + "sumhr (0, whn, \n. inverse (fact n) * x ^ n) \ HFinite" + unfolding sumhr_app star_zero_def starfun2_star_of atLeast0LessThan + by (metis NSBseqD2 NSconvergent_NSBseq convergent_NSconvergent_iff summable_iff_convergent summable_exp) lemma exphr_zero [simp]: "exphr 0 = 1" -apply (simp add: exphr_def sumhr_split_add [OF hypnat_one_less_hypnat_omega, symmetric]) -apply (rule st_unique, simp) -apply (rule subst [where P="\x. 1 \ x", OF _ approx_refl]) -apply (rule rev_mp [OF hypnat_one_less_hypnat_omega]) -apply (rule_tac x="whn" in spec) -apply (unfold sumhr_app, transfer, simp add: power_0_left) -done +proof - + have "\x>1. 1 = sumhr (0, 1, \n. inverse (fact n) * 0 ^ n) + sumhr (1, x, \n. inverse (fact n) * 0 ^ n)" + unfolding sumhr_app by transfer (simp add: power_0_left) + then have "sumhr (0, 1, \n. inverse (fact n) * 0 ^ n) + sumhr (1, whn, \n. inverse (fact n) * 0 ^ n) \ 1" + by auto + then show ?thesis + unfolding exphr_def + using sumhr_split_add [OF hypnat_one_less_hypnat_omega] st_unique by auto +qed lemma coshr_zero [simp]: "coshr 0 = 1" apply (simp add: coshr_def sumhr_split_add @@ -247,7 +179,7 @@ apply (transfer, simp) done -lemma STAR_exp_Infinitesimal: "x \ Infinitesimal ==> ( *f* exp) (x::hypreal) \ 1" +lemma STAR_exp_Infinitesimal: "x \ Infinitesimal \ ( *f* exp) (x::hypreal) \ 1" apply (case_tac "x = 0") apply (cut_tac [2] x = 0 in DERIV_exp) apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) @@ -279,64 +211,64 @@ apply (rule HNatInfinite_whn) done -lemma starfun_exp_ge_add_one_self [simp]: "!!x::hypreal. 0 \ x ==> (1 + x) \ ( *f* exp) x" +lemma starfun_exp_ge_add_one_self [simp]: "\x::hypreal. 0 \ x \ (1 + x) \ ( *f* exp) x" by transfer (rule exp_ge_add_one_self_aux) (* exp (oo) is infinite *) lemma starfun_exp_HInfinite: - "[| x \ HInfinite; 0 \ x |] ==> ( *f* exp) (x::hypreal) \ HInfinite" + "\x \ HInfinite; 0 \ x\ \ ( *f* exp) (x::hypreal) \ HInfinite" apply (frule starfun_exp_ge_add_one_self) apply (rule HInfinite_ge_HInfinite, assumption) apply (rule order_trans [of _ "1+x"], auto) done lemma starfun_exp_minus: - "!!x::'a:: {banach,real_normed_field} star. ( *f* exp) (-x) = inverse(( *f* exp) x)" + "\x::'a:: {banach,real_normed_field} star. ( *f* exp) (-x) = inverse(( *f* exp) x)" by transfer (rule exp_minus) (* exp (-oo) is infinitesimal *) lemma starfun_exp_Infinitesimal: - "[| x \ HInfinite; x \ 0 |] ==> ( *f* exp) (x::hypreal) \ Infinitesimal" + "\x \ HInfinite; x \ 0\ \ ( *f* exp) (x::hypreal) \ Infinitesimal" apply (subgoal_tac "\y. x = - y") apply (rule_tac [2] x = "- x" in exI) apply (auto intro!: HInfinite_inverse_Infinitesimal starfun_exp_HInfinite simp add: starfun_exp_minus HInfinite_minus_iff) done -lemma starfun_exp_gt_one [simp]: "!!x::hypreal. 0 < x ==> 1 < ( *f* exp) x" +lemma starfun_exp_gt_one [simp]: "\x::hypreal. 0 < x \ 1 < ( *f* exp) x" by transfer (rule exp_gt_one) abbreviation real_ln :: "real \ real" where "real_ln \ ln" -lemma starfun_ln_exp [simp]: "!!x. ( *f* real_ln) (( *f* exp) x) = x" +lemma starfun_ln_exp [simp]: "\x. ( *f* real_ln) (( *f* exp) x) = x" by transfer (rule ln_exp) -lemma starfun_exp_ln_iff [simp]: "!!x. (( *f* exp)(( *f* real_ln) x) = x) = (0 < x)" +lemma starfun_exp_ln_iff [simp]: "\x. (( *f* exp)(( *f* real_ln) x) = x) = (0 < x)" by transfer (rule exp_ln_iff) -lemma starfun_exp_ln_eq: "!!u x. ( *f* exp) u = x ==> ( *f* real_ln) x = u" +lemma starfun_exp_ln_eq: "!!u x. ( *f* exp) u = x \ ( *f* real_ln) x = u" by transfer (rule ln_unique) -lemma starfun_ln_less_self [simp]: "!!x. 0 < x ==> ( *f* real_ln) x < x" +lemma starfun_ln_less_self [simp]: "\x. 0 < x \ ( *f* real_ln) x < x" by transfer (rule ln_less_self) -lemma starfun_ln_ge_zero [simp]: "!!x. 1 \ x ==> 0 \ ( *f* real_ln) x" +lemma starfun_ln_ge_zero [simp]: "\x. 1 \ x \ 0 \ ( *f* real_ln) x" by transfer (rule ln_ge_zero) -lemma starfun_ln_gt_zero [simp]: "!!x .1 < x ==> 0 < ( *f* real_ln) x" +lemma starfun_ln_gt_zero [simp]: "\x .1 < x \ 0 < ( *f* real_ln) x" by transfer (rule ln_gt_zero) -lemma starfun_ln_not_eq_zero [simp]: "!!x. [| 0 < x; x \ 1 |] ==> ( *f* real_ln) x \ 0" +lemma starfun_ln_not_eq_zero [simp]: "\x. \0 < x; x \ 1\ \ ( *f* real_ln) x \ 0" by transfer simp -lemma starfun_ln_HFinite: "[| x \ HFinite; 1 \ x |] ==> ( *f* real_ln) x \ HFinite" +lemma starfun_ln_HFinite: "\x \ HFinite; 1 \ x\ \ ( *f* real_ln) x \ HFinite" apply (rule HFinite_bounded) apply assumption apply (simp_all add: starfun_ln_less_self order_less_imp_le) done -lemma starfun_ln_inverse: "!!x. 0 < x ==> ( *f* real_ln) (inverse x) = -( *f* ln) x" +lemma starfun_ln_inverse: "\x. 0 < x \ ( *f* real_ln) (inverse x) = -( *f* ln) x" by transfer (rule ln_inverse) lemma starfun_abs_exp_cancel: "\x. \( *f* exp) (x::hypreal)\ = ( *f* exp) x" @@ -345,7 +277,7 @@ lemma starfun_exp_less_mono: "\x y::hypreal. x < y \ ( *f* exp) x < ( *f* exp) y" by transfer (rule exp_less_mono) -lemma starfun_exp_HFinite: "x \ HFinite ==> ( *f* exp) (x::hypreal) \ HFinite" +lemma starfun_exp_HFinite: "x \ HFinite \ ( *f* exp) (x::hypreal) \ HFinite" apply (auto simp add: HFinite_def, rename_tac u) apply (rule_tac x="( *f* exp) u" in rev_bexI) apply (simp add: Reals_eq_Standard) @@ -354,7 +286,7 @@ done lemma starfun_exp_add_HFinite_Infinitesimal_approx: - "[|x \ Infinitesimal; z \ HFinite |] ==> ( *f* exp) (z + x::hypreal) \ ( *f* exp) z" + "\x \ Infinitesimal; z \ HFinite\ \ ( *f* exp) (z + x::hypreal) \ ( *f* exp) z" apply (simp add: STAR_exp_add) apply (frule STAR_exp_Infinitesimal) apply (drule approx_mult2) @@ -363,7 +295,7 @@ (* using previous result to get to result *) lemma starfun_ln_HInfinite: - "[| x \ HInfinite; 0 < x |] ==> ( *f* real_ln) x \ HInfinite" + "\x \ HInfinite; 0 < x\ \ ( *f* real_ln) x \ HInfinite" apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) apply (drule starfun_exp_HFinite) apply (simp add: starfun_exp_ln_iff [THEN iffD2] HFinite_HInfinite_iff) @@ -377,7 +309,7 @@ (* check out this proof!!! *) lemma starfun_ln_HFinite_not_Infinitesimal: - "[| x \ HFinite - Infinitesimal; 0 < x |] ==> ( *f* real_ln) x \ HFinite" + "\x \ HFinite - Infinitesimal; 0 < x\ \ ( *f* real_ln) x \ HFinite" apply (rule ccontr, drule HInfinite_HFinite_iff [THEN iffD2]) apply (drule starfun_exp_HInfinite_Infinitesimal_disj) apply (simp add: starfun_exp_ln_iff [symmetric] HInfinite_HFinite_iff @@ -386,30 +318,30 @@ (* we do proof by considering ln of 1/x *) lemma starfun_ln_Infinitesimal_HInfinite: - "[| x \ Infinitesimal; 0 < x |] ==> ( *f* real_ln) x \ HInfinite" + "\x \ Infinitesimal; 0 < x\ \ ( *f* real_ln) x \ HInfinite" apply (drule Infinitesimal_inverse_HInfinite) apply (frule positive_imp_inverse_positive) apply (drule_tac [2] starfun_ln_HInfinite) apply (auto simp add: starfun_ln_inverse HInfinite_minus_iff) done -lemma starfun_ln_less_zero: "!!x. [| 0 < x; x < 1 |] ==> ( *f* real_ln) x < 0" +lemma starfun_ln_less_zero: "\x. \0 < x; x < 1\ \ ( *f* real_ln) x < 0" by transfer (rule ln_less_zero) lemma starfun_ln_Infinitesimal_less_zero: - "[| x \ Infinitesimal; 0 < x |] ==> ( *f* real_ln) x < 0" + "\x \ Infinitesimal; 0 < x\ \ ( *f* real_ln) x < 0" by (auto intro!: starfun_ln_less_zero simp add: Infinitesimal_def) lemma starfun_ln_HInfinite_gt_zero: - "[| x \ HInfinite; 0 < x |] ==> 0 < ( *f* real_ln) x" + "\x \ HInfinite; 0 < x\ \ 0 < ( *f* real_ln) x" by (auto intro!: starfun_ln_gt_zero simp add: HInfinite_def) (* -Goalw [NSLIM_def] "(%h. ((x powr h) - 1) / h) \0\\<^sub>N\<^sub>S ln x" +Goalw [NSLIM_def] "(\h. ((x powr h) - 1) / h) \0\\<^sub>N\<^sub>S ln x" *) -lemma HFinite_sin [simp]: "sumhr (0, whn, %n. sin_coeff n * x ^ n) \ HFinite" +lemma HFinite_sin [simp]: "sumhr (0, whn, \n. sin_coeff n * x ^ n) \ HFinite" unfolding sumhr_app apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan) apply (rule NSBseqD2) @@ -425,7 +357,7 @@ lemma STAR_sin_Infinitesimal [simp]: fixes x :: "'a::{real_normed_field,banach} star" - shows "x \ Infinitesimal ==> ( *f* sin) x \ x" + shows "x \ Infinitesimal \ ( *f* sin) x \ x" apply (case_tac "x = 0") apply (cut_tac [2] x = 0 in DERIV_sin) apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) @@ -435,7 +367,7 @@ simp add: mult.assoc) done -lemma HFinite_cos [simp]: "sumhr (0, whn, %n. cos_coeff n * x ^ n) \ HFinite" +lemma HFinite_cos [simp]: "sumhr (0, whn, \n. cos_coeff n * x ^ n) \ HFinite" unfolding sumhr_app apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan) apply (rule NSBseqD2) @@ -451,7 +383,7 @@ lemma STAR_cos_Infinitesimal [simp]: fixes x :: "'a::{real_normed_field,banach} star" - shows "x \ Infinitesimal ==> ( *f* cos) x \ 1" + shows "x \ Infinitesimal \ ( *f* cos) x \ 1" apply (case_tac "x = 0") apply (cut_tac [2] x = 0 in DERIV_cos) apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) @@ -467,7 +399,7 @@ lemma STAR_tan_zero [simp]: "( *f* tan) 0 = 0" by transfer (rule tan_zero) -lemma STAR_tan_Infinitesimal: "x \ Infinitesimal ==> ( *f* tan) x \ x" +lemma STAR_tan_Infinitesimal: "x \ Infinitesimal \ ( *f* tan) x \ x" apply (case_tac "x = 0") apply (cut_tac [2] x = 0 in DERIV_tan) apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) @@ -479,7 +411,7 @@ lemma STAR_sin_cos_Infinitesimal_mult: fixes x :: "'a::{real_normed_field,banach} star" - shows "x \ Infinitesimal ==> ( *f* sin) x * ( *f* cos) x \ x" + shows "x \ Infinitesimal \ ( *f* sin) x * ( *f* cos) x \ x" using approx_mult_HFinite [of "( *f* sin) x" _ "( *f* cos) x" 1] by (simp add: Infinitesimal_subset_HFinite [THEN subsetD]) @@ -490,13 +422,13 @@ lemma lemma_split_hypreal_of_real: "N \ HNatInfinite - ==> hypreal_of_real a = + \ hypreal_of_real a = hypreal_of_hypnat N * (inverse(hypreal_of_hypnat N) * hypreal_of_real a)" by (simp add: mult.assoc [symmetric] zero_less_HNatInfinite) lemma STAR_sin_Infinitesimal_divide: fixes x :: "'a::{real_normed_field,banach} star" - shows "[|x \ Infinitesimal; x \ 0 |] ==> ( *f* sin) x/x \ 1" + shows "\x \ Infinitesimal; x \ 0\ \ ( *f* sin) x/x \ 1" using DERIV_sin [of "0::'a"] by (simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def) @@ -506,32 +438,32 @@ lemma lemma_sin_pi: "n \ HNatInfinite - ==> ( *f* sin) (inverse (hypreal_of_hypnat n))/(inverse (hypreal_of_hypnat n)) \ 1" + \ ( *f* sin) (inverse (hypreal_of_hypnat n))/(inverse (hypreal_of_hypnat n)) \ 1" apply (rule STAR_sin_Infinitesimal_divide) apply (auto simp add: zero_less_HNatInfinite) done lemma STAR_sin_inverse_HNatInfinite: "n \ HNatInfinite - ==> ( *f* sin) (inverse (hypreal_of_hypnat n)) * hypreal_of_hypnat n \ 1" + \ ( *f* sin) (inverse (hypreal_of_hypnat n)) * hypreal_of_hypnat n \ 1" apply (frule lemma_sin_pi) apply (simp add: divide_inverse) done lemma Infinitesimal_pi_divide_HNatInfinite: "N \ HNatInfinite - ==> hypreal_of_real pi/(hypreal_of_hypnat N) \ Infinitesimal" + \ hypreal_of_real pi/(hypreal_of_hypnat N) \ Infinitesimal" apply (simp add: divide_inverse) apply (auto intro: Infinitesimal_HFinite_mult2) done lemma pi_divide_HNatInfinite_not_zero [simp]: - "N \ HNatInfinite ==> hypreal_of_real pi/(hypreal_of_hypnat N) \ 0" + "N \ HNatInfinite \ hypreal_of_real pi/(hypreal_of_hypnat N) \ 0" by (simp add: zero_less_HNatInfinite) lemma STAR_sin_pi_divide_HNatInfinite_approx_pi: "n \ HNatInfinite - ==> ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) * hypreal_of_hypnat n + \ ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) * hypreal_of_hypnat n \ hypreal_of_real pi" apply (frule STAR_sin_Infinitesimal_divide [OF Infinitesimal_pi_divide_HNatInfinite @@ -543,7 +475,7 @@ lemma STAR_sin_pi_divide_HNatInfinite_approx_pi2: "n \ HNatInfinite - ==> hypreal_of_hypnat n * + \ hypreal_of_hypnat n * ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) \ hypreal_of_real pi" apply (rule mult.commute [THEN subst]) @@ -551,14 +483,14 @@ done lemma starfunNat_pi_divide_n_Infinitesimal: - "N \ HNatInfinite ==> ( *f* (%x. pi / real x)) N \ Infinitesimal" + "N \ HNatInfinite \ ( *f* (\x. pi / real x)) N \ Infinitesimal" by (auto intro!: Infinitesimal_HFinite_mult2 simp add: starfun_mult [symmetric] divide_inverse starfun_inverse [symmetric] starfunNat_real_of_nat) lemma STAR_sin_pi_divide_n_approx: - "N \ HNatInfinite ==> - ( *f* sin) (( *f* (%x. pi / real x)) N) \ + "N \ HNatInfinite \ + ( *f* sin) (( *f* (\x. pi / real x)) N) \ hypreal_of_real pi/(hypreal_of_hypnat N)" apply (simp add: starfunNat_real_of_nat [symmetric]) apply (rule STAR_sin_Infinitesimal) @@ -569,7 +501,7 @@ apply simp done -lemma NSLIMSEQ_sin_pi: "(%n. real n * sin (pi / real n)) \\<^sub>N\<^sub>S pi" +lemma NSLIMSEQ_sin_pi: "(\n. real n * sin (pi / real n)) \\<^sub>N\<^sub>S pi" apply (auto simp add: NSLIMSEQ_def starfun_mult [symmetric] starfunNat_real_of_nat) apply (rule_tac f1 = sin in starfun_o2 [THEN subst]) apply (auto simp add: starfun_mult [symmetric] starfunNat_real_of_nat divide_inverse) @@ -578,7 +510,7 @@ simp add: starfunNat_real_of_nat mult.commute divide_inverse) done -lemma NSLIMSEQ_cos_one: "(%n. cos (pi / real n))\\<^sub>N\<^sub>S 1" +lemma NSLIMSEQ_cos_one: "(\n. cos (pi / real n))\\<^sub>N\<^sub>S 1" apply (simp add: NSLIMSEQ_def, auto) apply (rule_tac f1 = cos in starfun_o2 [THEN subst]) apply (rule STAR_cos_Infinitesimal) @@ -588,7 +520,7 @@ done lemma NSLIMSEQ_sin_cos_pi: - "(%n. real n * sin (pi / real n) * cos (pi / real n)) \\<^sub>N\<^sub>S pi" + "(\n. real n * sin (pi / real n) * cos (pi / real n)) \\<^sub>N\<^sub>S pi" by (insert NSLIMSEQ_mult [OF NSLIMSEQ_sin_pi NSLIMSEQ_cos_one], simp) @@ -596,7 +528,7 @@ lemma STAR_cos_Infinitesimal_approx: fixes x :: "'a::{real_normed_field,banach} star" - shows "x \ Infinitesimal ==> ( *f* cos) x \ 1 - x\<^sup>2" + shows "x \ Infinitesimal \ ( *f* cos) x \ 1 - x\<^sup>2" apply (rule STAR_cos_Infinitesimal [THEN approx_trans]) apply (auto simp add: Infinitesimal_approx_minus [symmetric] add.assoc [symmetric] numeral_2_eq_2) @@ -604,7 +536,7 @@ lemma STAR_cos_Infinitesimal_approx2: fixes x :: hypreal \ \perhaps could be generalised, like many other hypreal results\ - shows "x \ Infinitesimal ==> ( *f* cos) x \ 1 - (x\<^sup>2)/2" + shows "x \ Infinitesimal \ ( *f* cos) x \ 1 - (x\<^sup>2)/2" apply (rule STAR_cos_Infinitesimal [THEN approx_trans]) apply (auto intro: Infinitesimal_SReal_divide Infinitesimal_mult simp add: Infinitesimal_approx_minus [symmetric] numeral_2_eq_2)