# HG changeset patch # User paulson # Date 1614621557 0 # Node ID 65c45cba3f54eb81ab0ca5d4c7fb818933235a67 # Parent da4334257742d4609cb4c057cd288907a82f4efb reverted simprule status on a new lemma diff -r da4334257742 -r 65c45cba3f54 src/HOL/Algebra/Free_Abelian_Groups.thy --- a/src/HOL/Algebra/Free_Abelian_Groups.thy Mon Mar 01 14:47:08 2021 +0000 +++ b/src/HOL/Algebra/Free_Abelian_Groups.thy Mon Mar 01 17:59:17 2021 +0000 @@ -682,7 +682,7 @@ by (auto simp: PiE_def Pi_def in_keys_iff) then show "(\i\I. Abs_poly_mapping (?f i)) \ {x \ \\<^sub>E i\I. {c. Poly_Mapping.keys c \ S i}. finite {i \ I. x i \ 0}}" - using fin unfolding J_def by (simp add: eq in_keys_iff cong: conj_cong) + using fin unfolding J_def by (force simp add: eq in_keys_iff cong: conj_cong) qed qed then show "carrier ?H \ ?h ` carrier ?G" diff -r da4334257742 -r 65c45cba3f54 src/HOL/Library/FuncSet.thy --- a/src/HOL/Library/FuncSet.thy Mon Mar 01 14:47:08 2021 +0000 +++ b/src/HOL/Library/FuncSet.thy Mon Mar 01 17:59:17 2021 +0000 @@ -73,7 +73,7 @@ lemma Pi_eq_empty[simp]: "(\ x \ A. B x) = {} \ (\x\A. B x = {})" proof - - have "\x\A. B x = {}" if "\f. \y. y \ A \ f y \ B y" + have "\x\A. B x = {}" if "\f. \y. y \ A \ f y \ B y" using that [of "\u. SOME y. y \ B u"] some_in_eq by blast then show ?thesis by force @@ -432,7 +432,7 @@ lemma PiE_iff: "f \ Pi\<^sub>E I X \ (\i\I. f i \ X i) \ f \ extensional I" by (simp add: PiE_def Pi_iff) -lemma restrict_PiE_iff [simp]: "restrict f I \ Pi\<^sub>E I X \ (\i \ I. f i \ X i)" +lemma restrict_PiE_iff: "restrict f I \ Pi\<^sub>E I X \ (\i \ I. f i \ X i)" by (simp add: PiE_iff) lemma ext_funcset_to_sing_iff [simp]: "A \\<^sub>E {a} = {\x\A. a}" @@ -537,7 +537,7 @@ by auto qed -lemma PiE_singleton: +lemma PiE_singleton: assumes "f \ extensional A" shows "PiE A (\x. {f x}) = {f}" proof -