# HG changeset patch # User nipkow # Date 1362738500 -3600 # Node ID 65f4284d3f1a57d1a14cc29214025c4166c5592b # Parent 197ad6b8f7630b80662245a1b2cc0158270707d5# Parent d315e9a9ee72ab549a46dae48be51b056983346c merged diff -r 197ad6b8f763 -r 65f4284d3f1a src/HOL/IMP/Abs_Int1.thy --- a/src/HOL/IMP/Abs_Int1.thy Fri Mar 08 09:34:38 2013 +0100 +++ b/src/HOL/IMP/Abs_Int1.thy Fri Mar 08 11:28:20 2013 +0100 @@ -197,7 +197,6 @@ locale Measure1 = fixes m :: "'av::order \ nat" fixes h :: "nat" -assumes m1: "x \ y \ m x \ m y" assumes h: "m x \ h" begin @@ -208,31 +207,12 @@ by(simp add: L_st_def m_s_def) (metis nat_mult_commute of_nat_id setsum_bounded[OF h]) -lemma m_s1: "S1 \ S2 \ m_s S1 \ m_s S2" -proof(auto simp add: less_eq_st_def m_s_def) - assume "\x\dom S2. fun S1 x \ fun S2 x" - hence "\x\dom S2. m(fun S1 x) \ m(fun S2 x)" by (metis m1) - thus "(\x\dom S2. m (fun S2 x)) \ (\x\dom S2. m (fun S1 x))" - by (metis setsum_mono) -qed - definition m_o :: "nat \ 'av st option \ nat" ("m\<^isub>o") where "m_o d opt = (case opt of None \ h*d+1 | Some S \ m_s S)" lemma m_o_h: "ost \ L X \ finite X \ m_o (card X) ost \ (h*card X + 1)" by(auto simp add: m_o_def m_s_h split: option.split dest!:m_s_h) -lemma m_o1: "finite X \ o1 \ L X \ o2 \ L X \ - o1 \ o2 \ m_o (card X) o1 \ m_o (card X) o2" -proof(induction o1 o2 rule: less_eq_option.induct) - case 1 thus ?case by (simp add: m_o_def)(metis m_s1) -next - case 2 thus ?case - by(simp add: L_option_def m_o_def le_SucI m_s_h split: option.splits) -next - case 3 thus ?case by simp -qed - definition m_c :: "'av st option acom \ nat" ("m\<^isub>c") where "m_c C = (\i m x > m y" begin +lemma m1: "x \ y \ m x \ m y" +by(auto simp: le_less m2) + lemma m_s2: "finite(dom S1) \ S1 < S2 \ m_s S1 > m_s S2" proof(auto simp add: less_st_def less_eq_st_def m_s_def) assume "finite(dom S2)" and 0: "\x\dom S2. fun S1 x \ fun S2 x" @@ -277,7 +260,10 @@ case 3 thus ?case by (auto simp: less_option_def) qed -find_theorems "(_<_) = _" +lemma m_o1: "finite X \ o1 \ L X \ o2 \ L X \ + o1 \ o2 \ m_o (card X) o1 \ m_o (card X) o2" +by(auto simp: le_less m_o2) + lemma m_c2: "C1 \ L(vars(strip C1)) \ C2 \ L(vars(strip C2)) \ C1 < C2 \ m_c C1 > m_c C2" proof(auto simp add: le_iff_le_annos m_c_def size_annos_same[of C1 C2] less_acom_def L_acom_def) diff -r 197ad6b8f763 -r 65f4284d3f1a src/HOL/IMP/Abs_Int1_const.thy --- a/src/HOL/IMP/Abs_Int1_const.thy Fri Mar 08 09:34:38 2013 +0100 +++ b/src/HOL/IMP/Abs_Int1_const.thy Fri Mar 08 11:28:20 2013 +0100 @@ -143,9 +143,7 @@ proof case goal1 thus ?case by(auto simp: m_const_def split: const.splits) next - case goal2 thus ?case by(auto simp: m_const_def split: const.splits) -next - case goal3 thus ?case by(auto simp: m_const_def less_const_def split: const.splits) + case goal2 thus ?case by(auto simp: m_const_def less_const_def split: const.splits) qed thm AI_Some_measure diff -r 197ad6b8f763 -r 65f4284d3f1a src/HOL/IMP/Abs_Int1_parity.thy --- a/src/HOL/IMP/Abs_Int1_parity.thy Fri Mar 08 09:34:38 2013 +0100 +++ b/src/HOL/IMP/Abs_Int1_parity.thy Fri Mar 08 11:28:20 2013 +0100 @@ -173,9 +173,7 @@ proof case goal1 thus ?case by(auto simp add: m_parity_def less_eq_parity_def) next - case goal2 thus ?case by(auto simp add: m_parity_def less_eq_parity_def) -next - case goal3 thus ?case by(auto simp add: m_parity_def less_eq_parity_def less_parity_def) + case goal2 thus ?case by(auto simp add: m_parity_def less_eq_parity_def less_parity_def) qed thm AI_Some_measure diff -r 197ad6b8f763 -r 65f4284d3f1a src/HOL/IMP/Abs_Int3.thy --- a/src/HOL/IMP/Abs_Int3.thy Fri Mar 08 09:34:38 2013 +0100 +++ b/src/HOL/IMP/Abs_Int3.thy Fri Mar 08 11:28:20 2013 +0100 @@ -426,18 +426,27 @@ locale Measure_WN = Measure1 where m=m for m :: "'av::WN \ nat" + fixes n :: "'av \ nat" +assumes m_anti_mono: "x \ y \ m x \ m y" assumes m_widen: "~ y \ x \ m(x \ y) < m x" assumes n_mono: "x \ y \ n x \ n y" assumes n_narrow: "y \ x \ ~ x \ x \ y \ n(x \ y) < n x" begin +lemma m_s_anti_mono: "S1 \ S2 \ m_s S1 \ m_s S2" +proof(auto simp add: less_eq_st_def m_s_def) + assume "\x\dom S2. fun S1 x \ fun S2 x" + hence "\x\dom S2. m(fun S1 x) \ m(fun S2 x)" by (metis m_anti_mono) + thus "(\x\dom S2. m (fun S2 x)) \ (\x\dom S2. m (fun S1 x))" + by (metis setsum_mono) +qed + lemma m_s_widen: "S1 \ L X \ S2 \ L X \ finite X \ ~ S2 \ S1 \ m_s(S1 \ S2) < m_s S1" proof(auto simp add: less_eq_st_def m_s_def L_st_def widen_st_def) assume "finite(dom S1)" have 1: "\x\dom S1. m(fun S1 x) \ m(fun S1 x \ fun S2 x)" - by (metis m1 WN_class.widen1) + by (metis m_anti_mono WN_class.widen1) fix x assume "x \ dom S1" "\ fun S2 x \ fun S1 x" hence 2: "EX x : dom S1. m(fun S1 x) > m(fun S1 x \ fun S2 x)" using m_widen by blast @@ -445,6 +454,17 @@ show "(\x\dom S1. m (fun S1 x \ fun S2 x)) < (\x\dom S1. m (fun S1 x))" . qed +lemma m_o_anti_mono: "finite X \ o1 \ L X \ o2 \ L X \ + o1 \ o2 \ m_o (card X) o1 \ m_o (card X) o2" +proof(induction o1 o2 rule: less_eq_option.induct) + case 1 thus ?case by (simp add: m_o_def)(metis m_s_anti_mono) +next + case 2 thus ?case + by(simp add: L_option_def m_o_def le_SucI m_s_h split: option.splits) +next + case 3 thus ?case by simp +qed + lemma m_o_widen: "\ S1 \ L X; S2 \ L X; finite X; \ S2 \ S1 \ \ m_o (card X) (S1 \ S2) < m_o (card X) S1" by(auto simp: m_o_def L_st_def m_s_h less_Suc_eq_le m_s_widen split: option.split) @@ -458,7 +478,7 @@ apply(rule setsum_strict_mono_ex1) apply simp apply (clarsimp) -apply(simp add: m_o1 finite_cvars widen1[where c = "strip C2"]) +apply(simp add: m_o_anti_mono finite_cvars widen1[where c = "strip C2"]) apply(auto simp: le_iff_le_annos listrel_iff_nth) apply(rule_tac x=i in bexI) prefer 2 apply simp @@ -622,9 +642,9 @@ and filter_plus' = filter_plus_ivl and filter_less' = filter_less_ivl and m = m_ivl and n = n_ivl and h = 3 proof - case goal1 thus ?case by(rule m_ivl_anti_mono) + case goal2 thus ?case by(rule m_ivl_anti_mono) next - case goal2 thus ?case by(rule m_ivl_height) + case goal1 thus ?case by(rule m_ivl_height) next case goal3 thus ?case by(rule m_ivl_widen) next