# HG changeset patch # User huffman # Date 1181538606 -7200 # Node ID 678ee30499d281e29be2c63deee3a9999397c5c1 # Parent 95a01ddfb024eb0cf9d5a9ceef13c2c25883125b remove references to constant int::nat=>int diff -r 95a01ddfb024 -r 678ee30499d2 src/HOL/Library/Parity.thy --- a/src/HOL/Library/Parity.thy Mon Jun 11 06:14:32 2007 +0200 +++ b/src/HOL/Library/Parity.thy Mon Jun 11 07:10:06 2007 +0200 @@ -20,7 +20,7 @@ even_def: "even x \<equiv> x mod 2 = 0" .. instance nat :: even_odd - even_nat_def: "even x \<equiv> even (int x)" .. + even_nat_def: "even x \<equiv> even (int_of_nat x)" .. subsection {* Even and odd are mutually exclusive *} @@ -135,7 +135,7 @@ by (simp add: even_nat_def) lemma even_nat_product: "even((x::nat) * y) = (even x | even y)" - by (simp add: even_nat_def int_mult) + by (simp add: even_nat_def) lemma even_nat_sum: "even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))" @@ -143,16 +143,16 @@ lemma even_nat_difference: "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" - apply (auto simp add: even_nat_def zdiff_int [symmetric]) - apply (case_tac "x < y", auto simp add: zdiff_int [symmetric]) - apply (case_tac "x < y", auto simp add: zdiff_int [symmetric]) + apply (auto simp add: even_nat_def) + apply (case_tac "x < y", auto) + apply (case_tac "x < y", auto) done lemma even_nat_Suc: "even (Suc x) = odd x" by (simp add: even_nat_def) lemma even_nat_power: "even ((x::nat)^y) = (even x & 0 < y)" - by (simp add: even_nat_def int_power) + by (simp add: even_nat_def of_nat_power) lemma even_nat_zero: "even (0::nat)" by (simp add: even_nat_def) diff -r 95a01ddfb024 -r 678ee30499d2 src/HOL/Real/RComplete.thy --- a/src/HOL/Real/RComplete.thy Mon Jun 11 06:14:32 2007 +0200 +++ b/src/HOL/Real/RComplete.thy Mon Jun 11 07:10:06 2007 +0200 @@ -480,36 +480,34 @@ lemma floor_real_of_nat_zero [simp]: "floor (real (0::nat)) = 0" by auto -lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n" +lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int_of_nat n" apply (simp only: floor_def) apply (rule Least_equality) -apply (drule_tac [2] real_of_int_real_of_nat [THEN ssubst]) +apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst]) apply (drule_tac [2] real_of_int_less_iff [THEN iffD1]) -apply (simp_all add: real_of_int_real_of_nat) +apply simp_all done -lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n" +lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int_of_nat n" apply (simp only: floor_def) apply (rule Least_equality) -apply (drule_tac [2] real_of_int_real_of_nat [THEN ssubst]) +apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst]) apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst]) apply (drule_tac [2] real_of_int_less_iff [THEN iffD1]) -apply (simp_all add: real_of_int_real_of_nat) +apply simp_all done lemma floor_real_of_int [simp]: "floor (real (n::int)) = n" apply (simp only: floor_def) apply (rule Least_equality) -apply (drule_tac [2] real_of_int_real_of_nat [THEN ssubst]) -apply (drule_tac [2] real_of_int_less_iff [THEN iffD1], auto) +apply auto done lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n" apply (simp only: floor_def) apply (rule Least_equality) apply (drule_tac [2] real_of_int_minus [THEN sym, THEN subst]) -apply (drule_tac [2] real_of_int_real_of_nat [THEN ssubst]) -apply (drule_tac [2] real_of_int_less_iff [THEN iffD1], auto) +apply auto done lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)" @@ -755,7 +753,7 @@ lemma ceiling_zero [simp]: "ceiling 0 = 0" by (simp add: ceiling_def) -lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n" +lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int_of_nat n" by (simp add: ceiling_def) lemma ceiling_real_of_nat_zero [simp]: "ceiling (real (0::nat)) = 0" @@ -1045,9 +1043,9 @@ lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a" apply (unfold natfloor_def) - apply (subgoal_tac "real a = real (int a)") + apply (subgoal_tac "real a = real (int_of_nat a)") apply (erule ssubst) - apply (simp add: nat_add_distrib) + apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq) apply simp done @@ -1067,9 +1065,9 @@ lemma natfloor_subtract [simp]: "real a <= x ==> natfloor(x - real a) = natfloor x - a" apply (unfold natfloor_def) - apply (subgoal_tac "real a = real (int a)") + apply (subgoal_tac "real a = real (int_of_nat a)") apply (erule ssubst) - apply simp + apply (simp del: real_of_int_of_nat_eq) apply simp done @@ -1178,9 +1176,9 @@ lemma natceiling_add [simp]: "0 <= x ==> natceiling (x + real a) = natceiling x + a" apply (unfold natceiling_def) - apply (subgoal_tac "real a = real (int a)") + apply (subgoal_tac "real a = real (int_of_nat a)") apply (erule ssubst) - apply simp + apply (simp del: real_of_int_of_nat_eq) apply (subst nat_add_distrib) apply (subgoal_tac "0 = ceiling 0") apply (erule ssubst) @@ -1204,9 +1202,9 @@ lemma natceiling_subtract [simp]: "real a <= x ==> natceiling(x - real a) = natceiling x - a" apply (unfold natceiling_def) - apply (subgoal_tac "real a = real (int a)") + apply (subgoal_tac "real a = real (int_of_nat a)") apply (erule ssubst) - apply simp + apply (simp del: real_of_int_of_nat_eq) apply simp done