# HG changeset patch # User huffman # Date 1395353635 25200 # Node ID 67a5f004583da890fb2136e64981e9b2cb5573b2 # Parent 29fd6bd9228e7cf554db6adcce0200f7d9bbec25 generalize more theorems diff -r 29fd6bd9228e -r 67a5f004583d src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Thu Mar 20 09:21:39 2014 -0700 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Thu Mar 20 15:13:55 2014 -0700 @@ -888,7 +888,7 @@ text {* In particular. *} lemma has_derivative_zero_constant: - fixes f :: "real \ real" + fixes f :: "'a::real_normed_vector \ 'b::real_inner" assumes "convex s" and "\x\s. (f has_derivative (\h. 0)) (at x within s)" shows "\c. \x\s. f x = c" @@ -914,7 +914,7 @@ qed lemma has_derivative_zero_unique: - fixes f :: "real \ real" + fixes f :: "'a::real_normed_vector \ 'b::real_inner" assumes "convex s" and "a \ s" and "f a = c" @@ -1184,7 +1184,7 @@ text {* See Sussmann: "Multidifferential calculus", Theorem 2.1.1 *} lemma sussmann_open_mapping: - fixes f :: "'a::euclidean_space \ 'b::euclidean_space" + fixes f :: "'a::real_normed_vector \ 'b::euclidean_space" assumes "open s" and "continuous_on s f" and "x \ s"