# HG changeset patch # User wenzelm # Date 1026141847 -7200 # Node ID 685499c7321590aa384ed80debcf9fc32ef9da6c # Parent 84b9de3cbc9177ced0394d71ceb528808de0e929 tuned; diff -r 84b9de3cbc91 -r 685499c73215 src/ZF/Constructible/MetaExists.thy --- a/src/ZF/Constructible/MetaExists.thy Mon Jul 08 15:56:39 2002 +0200 +++ b/src/ZF/Constructible/MetaExists.thy Mon Jul 08 17:24:07 2002 +0200 @@ -13,20 +13,15 @@ "?? " :: "[idts, o] => o" ("(3\_./ _)" [0, 0] 0) lemma meta_exI: "PROP P(x) ==> (?? x. PROP P(x))" -proof - +proof (unfold ex_def) assume P: "PROP P(x)" - show "?? x. PROP P(x)" - apply (unfold ex_def) - proof - - fix Q - assume PQ: "\x. PROP P(x) \ PROP Q" - from P show "PROP Q" by (rule PQ) - qed + fix Q + assume PQ: "\x. PROP P(x) \ PROP Q" + from P show "PROP Q" by (rule PQ) qed lemma meta_exE: "[| ?? x. PROP P(x); !!x. PROP P(x) ==> PROP R |] ==> PROP R" -apply (unfold ex_def) -proof - +proof (unfold ex_def) assume QPQ: "\Q. (\x. PROP P(x) \ PROP Q) \ PROP Q" assume PR: "\x. PROP P(x) \ PROP R" from PR show "PROP R" by (rule QPQ)