# HG changeset patch # User hoelzl # Date 1306411920 -7200 # Node ID 685df9c0626de46fc471f3e041489e980a966144 # Parent fa0ac7bee9ac1e5301ec286b3c914b667605491c use abbrevitation events == sets M diff -r fa0ac7bee9ac -r 685df9c0626d src/HOL/Probability/Independent_Family.thy --- a/src/HOL/Probability/Independent_Family.thy Thu May 26 14:11:58 2011 +0200 +++ b/src/HOL/Probability/Independent_Family.thy Thu May 26 14:12:00 2011 +0200 @@ -9,14 +9,14 @@ begin definition (in prob_space) - "indep_events A I \ (A`I \ sets M) \ + "indep_events A I \ (A`I \ events) \ (\J\I. J \ {} \ finite J \ prob (\j\J. A j) = (\j\J. prob (A j)))" definition (in prob_space) "indep_event A B \ indep_events (bool_case A B) UNIV" definition (in prob_space) - "indep_sets F I \ (\i\I. F i \ sets M) \ + "indep_sets F I \ (\i\I. F i \ events) \ (\J\I. J \ {} \ finite J \ (\A\Pi J F. prob (\j\J. A j) = (\j\J. prob (A j))))" definition (in prob_space) @@ -97,8 +97,8 @@ lemma (in prob_space) assumes indep: "indep_set A B" - shows indep_setD_ev1: "A \ sets M" - and indep_setD_ev2: "B \ sets M" + shows indep_setD_ev1: "A \ events" + and indep_setD_ev2: "B \ events" using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto lemma dynkin_systemI': @@ -356,7 +356,7 @@ proof - let "?E j" = "{\k\K. E' k| E' K. finite K \ K \ {} \ K \ I j \ (\k\K. E' k \ E k) }" - from indep have E: "\j i. j \ J \ i \ I j \ E i \ sets M" + from indep have E: "\j i. j \ J \ i \ I j \ E i \ events" unfolding indep_sets_def by auto { fix j let ?S = "sigma \ space = space M, sets = (\i\I j. E i) \" @@ -451,16 +451,16 @@ "terminal_events A = (\n. sigma_sets (space M) (UNION {n..} A))" lemma (in prob_space) terminal_events_sets: - assumes A: "\i. A i \ sets M" + assumes A: "\i. A i \ events" assumes "\i::nat. sigma_algebra \space = space M, sets = A i\" assumes X: "X \ terminal_events A" - shows "X \ sets M" + shows "X \ events" proof - let ?A = "(\n. sigma_sets (space M) (UNION {n..} A))" interpret A: sigma_algebra "\space = space M, sets = A i\" for i by fact from X have "\n. X \ sigma_sets (space M) (UNION {n..} A)" by (auto simp: terminal_events_def) from this[of 0] have "X \ sigma_sets (space M) (UNION UNIV A)" by simp - then show "X \ sets M" + then show "X \ events" by induct (insert A, auto) qed @@ -484,19 +484,19 @@ lemma (in prob_space) kolmogorov_0_1_law: fixes A :: "nat \ 'a set set" - assumes A: "\i. A i \ sets M" + assumes A: "\i. A i \ events" assumes "\i::nat. sigma_algebra \space = space M, sets = A i\" assumes indep: "indep_sets A UNIV" and X: "X \ terminal_events A" shows "prob X = 0 \ prob X = 1" proof - - let ?D = "\ space = space M, sets = {D \ sets M. prob (X \ D) = prob X * prob D} \" + let ?D = "\ space = space M, sets = {D \ events. prob (X \ D) = prob X * prob D} \" interpret A: sigma_algebra "\space = space M, sets = A i\" for i by fact interpret T: sigma_algebra "\ space = space M, sets = terminal_events A \" by (rule sigma_algebra_terminal_events) fact have "X \ space M" using T.space_closed X by auto - have X_in: "X \ sets M" + have X_in: "X \ events" by (rule terminal_events_sets) fact+ interpret D: dynkin_system ?D