# HG changeset patch # User nipkow # Date 1440426340 -7200 # Node ID 6890d5875bc7d09ac52a3c6bc10f0c4ec96e9115 # Parent 40a0a40771268733235e36b24782606f669a4c25 typos diff -r 40a0a4077126 -r 6890d5875bc7 src/Doc/Prog_Prove/Isar.thy --- a/src/Doc/Prog_Prove/Isar.thy Mon Aug 24 16:19:47 2015 +0200 +++ b/src/Doc/Prog_Prove/Isar.thy Mon Aug 24 16:25:40 2015 +0200 @@ -1068,7 +1068,7 @@ The form of the @{text IH} shows us that internally the lemma was expanded as explained above: \noquotes{@{prop[source]"ev x \ x = Suc m \ \ ev m"}}. \item -The goal @{prop"\ ev (Suc n)"} may suprise. The expanded version of the lemma +The goal @{prop"\ ev (Suc n)"} may surprise. The expanded version of the lemma would suggest that we have a \isacom{fix} @{text m} \isacom{assume} @{prop"Suc(Suc n) = Suc m"} and need to show @{prop"\ ev m"}. What happened is that Isabelle immediately simplified @{prop"Suc(Suc n) = Suc m"} to @{prop"Suc n = m"} and could then eliminate @@ -1104,7 +1104,7 @@ \begin{exercise} Give a structured proof of @{prop "\ ev(Suc(Suc(Suc 0)))"} by rule inversions. If there are no cases to be proved you can close -a proof immediateley with \isacom{qed}. +a proof immediately with \isacom{qed}. \end{exercise} \begin{exercise}