# HG changeset patch # User boehmes # Date 1398977858 -7200 # Node ID 689a3eeb6f9e63bc8d981e3907f54fa6d0beffe6 # Parent 0a08878f8b37a5573b3da1ba37f5f5f822734e03 use SMT2 for Boogie examples diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/ROOT --- a/src/HOL/ROOT Thu May 01 22:57:36 2014 +0200 +++ b/src/HOL/ROOT Thu May 01 22:57:38 2014 +0200 @@ -775,12 +775,12 @@ theories [condition = ISABELLE_FULL_TEST] SMT_Tests files - "Boogie_Dijkstra.certs" - "Boogie_Max.certs" + "Boogie_Dijkstra.certs2" + "Boogie_Max.certs2" "SMT_Examples.certs" "SMT_Examples.certs2" "SMT_Word_Examples.certs2" - "VCC_Max.certs" + "VCC_Max.certs2" session "HOL-SPARK" (main) in "SPARK" = "HOL-Word" + options [document = false] diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/Boogie.thy --- a/src/HOL/SMT_Examples/Boogie.thy Thu May 01 22:57:36 2014 +0200 +++ b/src/HOL/SMT_Examples/Boogie.thy Thu May 01 22:57:38 2014 +0200 @@ -51,22 +51,22 @@ section {* Verification condition proofs *} -declare [[smt_oracle = false]] -declare [[smt_read_only_certificates = true]] +declare [[smt2_oracle = false]] +declare [[smt2_read_only_certificates = true]] -declare [[smt_certificates = "Boogie_Max.certs"]] +declare [[smt2_certificates = "Boogie_Max.certs2"]] boogie_file Boogie_Max -declare [[smt_certificates = "Boogie_Dijkstra.certs"]] +declare [[smt2_certificates = "Boogie_Dijkstra.certs2"]] boogie_file Boogie_Dijkstra -declare [[z3_with_extensions = true]] -declare [[smt_certificates = "VCC_Max.certs"]] +declare [[z3_new_extensions = true]] +declare [[smt2_certificates = "VCC_Max.certs2"]] boogie_file VCC_Max diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/Boogie_Dijkstra.certs --- a/src/HOL/SMT_Examples/Boogie_Dijkstra.certs Thu May 01 22:57:36 2014 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,6137 +0,0 @@ -5d68fa8702e4a020dc142c33743a5a5445fcba10 6136 0 -#2 := false -#53 := 0::Int -decl f30 :: (-> S2 Int) -decl ?v1!7 :: (-> S2 S2) -decl ?v0!20 :: S2 -#2123 := ?v0!20 -#5431 := (?v1!7 ?v0!20) -#18254 := (f30 #5431) -#1012 := -1::Int -#17799 := (* -1::Int #18254) -decl f15 :: (-> S4 Int) -decl f5 :: (-> S5 S2 S4) -decl f6 :: (-> S6 S2 S5) -decl f7 :: S6 -#8 := f7 -#5439 := (f6 f7 #5431) -#5440 := (f5 #5439 ?v0!20) -#5441 := (f15 #5440) -#5442 := (* -1::Int #5441) -#18528 := (+ #5442 #17799) -#2126 := (f30 ?v0!20) -#18529 := (+ #2126 #18528) -#15418 := (>= #18529 0::Int) -decl f19 :: (-> S11 S2 Int) -decl f20 :: S11 -#109 := f20 -#5432 := (f19 f20 #5431) -#5433 := (* -1::Int #5432) -#5443 := (+ #5433 #5442) -#5169 := (f19 f20 ?v0!20) -#5444 := (+ #5169 #5443) -#11830 := (>= #5444 0::Int) -#5445 := (= #5444 0::Int) -#5446 := (not #5445) -decl f1 :: S1 -#3 := f1 -decl f9 :: (-> S7 S2 S1) -decl f21 :: S7 -#115 := f21 -#5436 := (f9 f21 #5431) -#5437 := (= #5436 f1) -#5438 := (not #5437) -#5434 := (+ #5169 #5433) -#5435 := (<= #5434 0::Int) -#5447 := (or #5435 #5438 #5446) -#5448 := (not #5447) -#5194 := (* -1::Int #5169) -decl f14 :: Int -#54 := f14 -#5429 := (+ f14 #5194) -#5430 := (<= #5429 0::Int) -#17547 := (not #5430) -#5195 := (+ #2126 #5194) -#17503 := (>= #5195 0::Int) -#5176 := (= #2126 #5169) -decl f28 :: S2 -#186 := f28 -#19609 := (= f28 ?v0!20) -#19613 := (not #19609) -#14451 := (= ?v0!20 f28) -#15274 := (not #14451) -#16593 := (iff #15274 #19613) -#15457 := (iff #14451 #19609) -#14873 := (iff #19609 #14451) -#7691 := [commutativity]: #14873 -#16696 := [symm #7691]: #15457 -#14829 := [monotonicity #16696]: #16593 -#5398 := (f9 f21 ?v0!20) -#5399 := (= #5398 f1) -#14460 := (or #14451 #5399) -#15350 := (not #14460) -decl f10 :: (-> S8 S1 S7) -decl f11 :: (-> S9 S2 S8) -decl f12 :: (-> S10 S7 S9) -decl f13 :: S10 -#27 := f13 -#196 := (f12 f13 f21) -#197 := (f11 #196 f28) -#198 := (f10 #197 f1) -#14446 := (f9 #198 ?v0!20) -#14450 := (= #14446 f1) -#14478 := (iff #14450 #14460) -#11 := (:var 0 S2) -#42 := (:var 1 S1) -#40 := (:var 2 S2) -#38 := (:var 3 S7) -#39 := (f12 f13 #38) -#41 := (f11 #39 #40) -#43 := (f10 #41 #42) -#44 := (f9 #43 #11) -#3717 := (pattern #44) -#48 := (f9 #38 #11) -#49 := (= #48 f1) -#47 := (= #42 f1) -#46 := (= #11 #40) -#50 := (if #46 #47 #49) -#45 := (= #44 f1) -#51 := (iff #45 #50) -#3718 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1) (?v3 S2)) (:pat #3717) #51) -#52 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1) (?v3 S2)) #51) -#3721 := (iff #52 #3718) -#3719 := (iff #51 #51) -#3720 := [refl]: #3719 -#3722 := [quant-intro #3720]: #3721 -#1579 := (~ #52 #52) -#1609 := (~ #51 #51) -#1610 := [refl]: #1609 -#1580 := [nnf-pos #1610]: #1579 -#322 := [asserted]: #52 -#1611 := [mp~ #322 #1580]: #52 -#3723 := [mp #1611 #3722]: #3718 -#7628 := (not #3718) -#15363 := (or #7628 #14478) -#4146 := (= f1 f1) -#14455 := (if #14451 #4146 #5399) -#14456 := (iff #14450 #14455) -#15337 := (or #7628 #14456) -#15318 := (iff #15337 #15363) -#15276 := (iff #15363 #15363) -#15289 := [rewrite]: #15276 -#14479 := (iff #14456 #14478) -#14476 := (iff #14455 #14460) -#1 := true -#14457 := (if #14451 true #5399) -#14461 := (iff #14457 #14460) -#14475 := [rewrite]: #14461 -#14458 := (iff #14455 #14457) -#4148 := (iff #4146 true) -#4149 := [rewrite]: #4148 -#14459 := [monotonicity #4149]: #14458 -#14477 := [trans #14459 #14475]: #14476 -#14480 := [monotonicity #14477]: #14479 -#15256 := [monotonicity #14480]: #15318 -#15235 := [trans #15256 #15289]: #15318 -#15310 := [quant-inst #115 #186 #3 #2123]: #15337 -#15352 := [mp #15310 #15235]: #15363 -#16371 := [unit-resolution #15352 #3723]: #14478 -#15284 := (not #14450) -decl f29 :: S7 -#195 := f29 -#4622 := (f9 f29 ?v0!20) -#4623 := (= #4622 f1) -#4630 := (not #4623) -#15122 := (iff #4630 #15284) -#15124 := (iff #4623 #14450) -#16582 := (iff #14450 #4623) -#16482 := (= #14446 #4622) -#9268 := (= #198 f29) -#199 := (= f29 #198) -#91 := (f6 f7 #11) -#3782 := (pattern #91) -#217 := (f9 f29 #11) -#3943 := (pattern #217) -#207 := (f30 #11) -#3918 := (pattern #207) -#2136 := (f5 #91 ?v0!20) -#2137 := (f15 #2136) -#2127 := (* -1::Int #2126) -#2472 := (+ #2127 #2137) -#2473 := (+ #207 #2472) -#2476 := (= #2473 0::Int) -#3030 := (not #2476) -#218 := (= #217 f1) -#225 := (not #218) -#2133 := (+ #207 #2127) -#2134 := (>= #2133 0::Int) -#3031 := (or #2134 #225 #3030) -#3977 := (forall (vars (?v1 S2)) (:pat #3918 #3943 #3782) #3031) -#3982 := (not #3977) -#2128 := (+ f14 #2127) -#2129 := (<= #2128 0::Int) -decl f16 :: S2 -#65 := f16 -#2124 := (= ?v0!20 f16) -#9 := (:var 1 S2) -#92 := (f5 #91 #9) -#3773 := (pattern #92) -#229 := (f30 #9) -#1275 := (* -1::Int #229) -#1276 := (+ #207 #1275) -#93 := (f15 #92) -#1296 := (+ #93 #1276) -#1294 := (>= #1296 0::Int) -#1027 := (* -1::Int #93) -#1028 := (+ f14 #1027) -#1029 := (<= #1028 0::Int) -#3022 := (or #225 #1029 #1294) -#3969 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #3022) -#3974 := (not #3969) -#3985 := (or #3974 #2124 #2129 #3982) -#3988 := (not #3985) -decl ?v0!19 :: S2 -#2092 := ?v0!19 -#2105 := (f30 ?v0!19) -#2106 := (* -1::Int #2105) -decl ?v1!18 :: S2 -#2091 := ?v1!18 -#2104 := (f30 ?v1!18) -#2107 := (+ #2104 #2106) -#2095 := (f6 f7 ?v1!18) -#2096 := (f5 #2095 ?v0!19) -#2097 := (f15 #2096) -#2108 := (+ #2097 #2107) -#2109 := (>= #2108 0::Int) -#2098 := (* -1::Int #2097) -#2099 := (+ f14 #2098) -#2100 := (<= #2099 0::Int) -#2093 := (f9 f29 ?v1!18) -#2094 := (= #2093 f1) -#2985 := (not #2094) -#3000 := (or #2985 #2100 #2109) -#3005 := (not #3000) -#3991 := (or #3005 #3988) -#3994 := (not #3991) -#3960 := (pattern #207 #229) -#1274 := (>= #1276 0::Int) -#226 := (f9 f29 #9) -#227 := (= #226 f1) -#2962 := (not #227) -#2977 := (or #218 #2962 #1274) -#3961 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3960) #2977) -#3966 := (not #3961) -#3997 := (or #3966 #3994) -#4000 := (not #3997) -decl ?v0!17 :: S2 -#2065 := ?v0!17 -#2074 := (f30 ?v0!17) -#2075 := (* -1::Int #2074) -decl ?v1!16 :: S2 -#2064 := ?v1!16 -#2073 := (f30 ?v1!16) -#2076 := (+ #2073 #2075) -#2077 := (>= #2076 0::Int) -#2069 := (f9 f29 ?v0!17) -#2070 := (= #2069 f1) -#2939 := (not #2070) -#2066 := (f9 f29 ?v1!16) -#2067 := (= #2066 f1) -#2954 := (or #2067 #2939 #2077) -#2959 := (not #2954) -#4003 := (or #2959 #4000) -#4006 := (not #4003) -#1265 := (>= #207 0::Int) -#3952 := (forall (vars (?v0 S2)) (:pat #3918) #1265) -#3957 := (not #3952) -#4009 := (or #3957 #4006) -#4012 := (not #4009) -decl ?v0!15 :: S2 -#2049 := ?v0!15 -#2050 := (f30 ?v0!15) -#2051 := (>= #2050 0::Int) -#2052 := (not #2051) -#4015 := (or #2052 #4012) -#4018 := (not #4015) -#221 := (f30 f16) -#222 := (= #221 0::Int) -#713 := (not #222) -#4021 := (or #713 #4018) -#4024 := (not #4021) -#4027 := (or #713 #4024) -#4030 := (not #4027) -#112 := (f19 f20 #11) -#3805 := (pattern #112) -#212 := (= #207 #112) -#603 := (or #225 #212) -#3944 := (forall (vars (?v0 S2)) (:pat #3943 #3918 #3805) #603) -#3949 := (not #3944) -#4033 := (or #3949 #4030) -#4036 := (not #4033) -decl ?v0!14 :: S2 -#2024 := ?v0!14 -#2029 := (f19 f20 ?v0!14) -#2028 := (f30 ?v0!14) -#2030 := (= #2028 #2029) -#2025 := (f9 f29 ?v0!14) -#2026 := (= #2025 f1) -#2027 := (not #2026) -#2031 := (or #2027 #2030) -#2032 := (not #2031) -#4039 := (or #2032 #4036) -#4042 := (not #4039) -#1255 := (* -1::Int #207) -#1256 := (+ #112 #1255) -#1254 := (>= #1256 0::Int) -#3935 := (forall (vars (?v0 S2)) (:pat #3805 #3918) #1254) -#3940 := (not #3935) -#4045 := (or #3940 #4042) -#4048 := (not #4045) -decl ?v0!13 :: S2 -#2006 := ?v0!13 -#2008 := (f30 ?v0!13) -#2009 := (* -1::Int #2008) -#2007 := (f19 f20 ?v0!13) -#2010 := (+ #2007 #2009) -#2011 := (>= #2010 0::Int) -#2012 := (not #2011) -#4051 := (or #2012 #4048) -#4054 := (not #4051) -#200 := (f6 f7 f28) -#201 := (f5 #200 #11) -#3917 := (pattern #201) -#202 := (f15 #201) -#1229 := (* -1::Int #202) -#190 := (f19 f20 f28) -#1235 := (* -1::Int #190) -#1236 := (+ #1235 #1229) -#1237 := (+ #112 #1236) -#1238 := (<= #1237 0::Int) -#1230 := (+ f14 #1229) -#1231 := (<= #1230 0::Int) -#2911 := (or #1231 #1238) -#2912 := (not #2911) -#2933 := (or #2912 #212) -#3927 := (forall (vars (?v0 S2)) (:pat #3917 #3805 #3918) #2933) -#3932 := (not #3927) -#1385 := (+ #202 #1255) -#1386 := (+ #190 #1385) -#1383 := (= #1386 0::Int) -#2925 := (or #1231 #1238 #1383) -#3919 := (forall (vars (?v0 S2)) (:pat #3917 #3805 #3918) #2925) -#3924 := (not #3919) -#778 := (not #199) -#116 := (f9 f21 #11) -#3839 := (pattern #116) -#1398 := (+ #112 #1235) -#1397 := (>= #1398 0::Int) -#117 := (= #116 f1) -#1401 := (or #117 #1397) -#3909 := (forall (vars (?v0 S2)) (:pat #3839 #3805) #1401) -#3914 := (not #3909) -#1410 := (+ f14 #1235) -#1411 := (<= #1410 0::Int) -#187 := (f9 f21 f28) -#188 := (= #187 f1) -decl ?v0!12 :: S2 -#1961 := ?v0!12 -#1965 := (f19 f20 ?v0!12) -#1966 := (* -1::Int #1965) -#1967 := (+ f14 #1966) -#1968 := (<= #1967 0::Int) -#1962 := (f9 f21 ?v0!12) -#1963 := (= #1962 f1) -#4057 := (or #1963 #1968 #188 #1411 #3914 #778 #3924 #3932 #4054) -#4060 := (not #4057) -decl f25 :: S11 -#148 := f25 -#168 := (f19 f25 f16) -#169 := (= #168 0::Int) -#156 := (f19 f25 #9) -#1149 := (* -1::Int #156) -#153 := (f19 f25 #11) -#1150 := (+ #153 #1149) -#1156 := (+ #93 #1150) -#1179 := (>= #1156 0::Int) -#1136 := (* -1::Int #153) -#1137 := (+ f14 #1136) -#1138 := (<= #1137 0::Int) -#2865 := (or #1138 #1029 #1179) -#3871 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2865) -#3876 := (not #3871) -#3879 := (or #3876 #169) -#3882 := (not #3879) -decl ?v0!11 :: S2 -#1905 := ?v0!11 -#1920 := (f19 f25 ?v0!11) -#1921 := (* -1::Int #1920) -decl ?v1!10 :: S2 -#1904 := ?v1!10 -#1911 := (f6 f7 ?v1!10) -#1912 := (f5 #1911 ?v0!11) -#1913 := (f15 #1912) -#2441 := (+ #1913 #1921) -#1906 := (f19 f25 ?v1!10) -#2442 := (+ #1906 #2441) -#2445 := (>= #2442 0::Int) -#1914 := (* -1::Int #1913) -#1915 := (+ f14 #1914) -#1916 := (<= #1915 0::Int) -#1907 := (* -1::Int #1906) -#1908 := (+ f14 #1907) -#1909 := (<= #1908 0::Int) -#2843 := (or #1909 #1916 #2445) -#2848 := (not #2843) -#3885 := (or #2848 #3882) -#3888 := (not #3885) -#3848 := (pattern #153) -decl ?v1!9 :: (-> S2 S2) -#1880 := (?v1!9 #11) -#1885 := (f6 f7 #1880) -#1886 := (f5 #1885 #11) -#1887 := (f15 #1886) -#2424 := (* -1::Int #1887) -#1881 := (f19 f25 #1880) -#2407 := (* -1::Int #1881) -#2425 := (+ #2407 #2424) -#2426 := (+ #153 #2425) -#2427 := (= #2426 0::Int) -#2813 := (not #2427) -#2408 := (+ #153 #2407) -#2409 := (<= #2408 0::Int) -#2814 := (or #2409 #2813) -#2815 := (not #2814) -#66 := (= #11 f16) -#2821 := (or #66 #1138 #2815) -#3863 := (forall (vars (?v0 S2)) (:pat #3848) #2821) -#3868 := (not #3863) -#3891 := (or #3868 #3888) -#3894 := (not #3891) -decl ?v0!8 :: S2 -#1840 := ?v0!8 -#1853 := (f5 #91 ?v0!8) -#1854 := (f15 #1853) -#1843 := (f19 f25 ?v0!8) -#1844 := (* -1::Int #1843) -#2377 := (+ #1844 #1854) -#2378 := (+ #153 #2377) -#2381 := (= #2378 0::Int) -#2777 := (not #2381) -#1850 := (+ #153 #1844) -#1851 := (>= #1850 0::Int) -#2778 := (or #1851 #2777) -#3849 := (forall (vars (?v1 S2)) (:pat #3848 #3782) #2778) -#3854 := (not #3849) -#1845 := (+ f14 #1844) -#1846 := (<= #1845 0::Int) -#1841 := (= ?v0!8 f16) -#3857 := (or #1841 #1846 #3854) -#3860 := (not #3857) -#3897 := (or #3860 #3894) -#3900 := (not #3897) -decl f27 :: S11 -#151 := f27 -decl f26 :: S11 -#150 := f26 -#152 := (= f26 f27) -#522 := (not #152) -#149 := (= f25 f20) -#531 := (not #149) -decl f24 :: S2 -#146 := f24 -decl f23 :: S2 -#145 := f23 -#147 := (= f23 f24) -#540 := (not #147) -decl f22 :: S7 -#143 := f22 -#144 := (= f22 f21) -#549 := (not #144) -#1091 := (* -1::Int #112) -#1092 := (+ f14 #1091) -#1093 := (<= #1092 0::Int) -#2763 := (or #117 #1093) -#3840 := (forall (vars (?v0 S2)) (:pat #3839 #3805) #2763) -#3845 := (not #3840) -#3903 := (or #3845 #549 #540 #531 #522 #3900) -#3906 := (not #3903) -#4063 := (or #3906 #4060) -#4066 := (not #4063) -#1796 := (?v1!7 #11) -#1803 := (f6 f7 #1796) -#1804 := (f5 #1803 #11) -#1805 := (f15 #1804) -#2350 := (* -1::Int #1805) -#1797 := (f19 f20 #1796) -#2333 := (* -1::Int #1797) -#2351 := (+ #2333 #2350) -#2352 := (+ #112 #2351) -#2353 := (= #2352 0::Int) -#2747 := (not #2353) -#1801 := (f9 f21 #1796) -#1802 := (= #1801 f1) -#2746 := (not #1802) -#2334 := (+ #112 #2333) -#2335 := (<= #2334 0::Int) -#2748 := (or #2335 #2746 #2747) -#2749 := (not #2748) -#2755 := (or #66 #1093 #2749) -#3831 := (forall (vars (?v0 S2)) (:pat #3805) #2755) -#3836 := (not #3831) -#122 := (f19 f20 #9) -#1105 := (* -1::Int #122) -#1106 := (+ #112 #1105) -#1107 := (+ #93 #1106) -#1460 := (>= #1107 0::Int) -#118 := (not #117) -#2727 := (or #118 #1029 #1460) -#3823 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2727) -#3828 := (not #3823) -#119 := (f9 f21 #9) -#3814 := (pattern #116 #119) -#1109 := (>= #1106 0::Int) -#120 := (= #119 f1) -#2690 := (not #120) -#2705 := (or #117 #2690 #1109) -#3815 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3814) #2705) -#3820 := (not #3815) -#1483 := (>= #112 0::Int) -#3806 := (forall (vars (?v0 S2)) (:pat #3805) #1483) -#3811 := (not #3806) -#110 := (f19 f20 f16) -#111 := (= #110 0::Int) -#878 := (not #111) -decl f17 :: (-> S2 Int) -#67 := (f17 #11) -#3736 := (pattern #67) -decl ?v1!6 :: (-> S2 S2) -#1743 := (?v1!6 #11) -#1750 := (f6 f7 #1743) -#1751 := (f5 #1750 #11) -#1752 := (f15 #1751) -#2308 := (* -1::Int #1752) -#1744 := (f17 #1743) -#2291 := (* -1::Int #1744) -#2309 := (+ #2291 #2308) -#2310 := (+ #67 #2309) -#2311 := (= #2310 0::Int) -#2674 := (not #2311) -decl f18 :: S7 -#75 := f18 -#1748 := (f9 f18 #1743) -#1749 := (= #1748 f1) -#2673 := (not #1749) -#2292 := (+ #67 #2291) -#2293 := (<= #2292 0::Int) -#2675 := (or #2293 #2673 #2674) -#2676 := (not #2675) -#1053 := (* -1::Int #67) -#1054 := (+ f14 #1053) -#1055 := (<= #1054 0::Int) -#2682 := (or #66 #1055 #2676) -#3797 := (forall (vars (?v0 S2)) (:pat #3736) #2682) -#3802 := (not #3797) -#4069 := (or #3802 #878 #3811 #3820 #3828 #3836 #4066) -#4072 := (not #4069) -#76 := (f9 f18 #11) -#3749 := (pattern #76) -decl ?v0!5 :: S2 -#1702 := ?v0!5 -#1715 := (f5 #91 ?v0!5) -#1716 := (f15 #1715) -#1705 := (f17 ?v0!5) -#1706 := (* -1::Int #1705) -#1717 := (+ #1706 #1716) -#1718 := (+ #67 #1717) -#1719 := (= #1718 0::Int) -#2637 := (not #1719) -#77 := (= #76 f1) -#78 := (not #77) -#1712 := (+ #67 #1706) -#1713 := (>= #1712 0::Int) -#2638 := (or #1713 #78 #2637) -#3783 := (forall (vars (?v1 S2)) (:pat #3736 #3749 #3782) #2638) -#3788 := (not #3783) -#1707 := (+ f14 #1706) -#1708 := (<= #1707 0::Int) -#1703 := (= ?v0!5 f16) -#3791 := (or #1703 #1708 #3788) -#6181 := (= f14 #1705) -#6178 := (= #1705 f14) -#6207 := (iff #6178 #6181) -#6203 := (iff #6181 #6178) -#6186 := [commutativity]: #6203 -#6185 := [symm #6186]: #6207 -#1704 := (not #1703) -#3794 := (not #3791) -#6196 := [hypothesis]: #3794 -#3351 := (or #3791 #1704) -#3352 := [def-axiom]: #3351 -#6201 := [unit-resolution #3352 #6196]: #1704 -#72 := (= #67 f14) -#364 := (or #66 #72) -#3743 := (forall (vars (?v0 S2)) (:pat #3736) #364) -#367 := (forall (vars (?v0 S2)) #364) -#3746 := (iff #367 #3743) -#3744 := (iff #364 #364) -#3745 := [refl]: #3744 -#3747 := [quant-intro #3745]: #3746 -#1589 := (~ #367 #367) -#1619 := (~ #364 #364) -#1620 := [refl]: #1619 -#1590 := [nnf-pos #1620]: #1589 -#1318 := (= #1296 0::Int) -#1321 := (not #1274) -#1330 := (and #1321 #218 #1318) -#1335 := (exists (vars (?v1 S2)) #1330) -#1307 := (+ f14 #1255) -#1308 := (<= #1307 0::Int) -#1309 := (not #1308) -#71 := (not #66) -#1312 := (and #71 #1309) -#1315 := (not #1312) -#1338 := (or #1315 #1335) -#1341 := (forall (vars (?v0 S2)) #1338) -#1030 := (not #1029) -#1288 := (and #218 #1030) -#1291 := (not #1288) -#1298 := (or #1291 #1294) -#1301 := (forall (vars (?v0 S2) (?v1 S2)) #1298) -#1304 := (not #1301) -#1344 := (or #1304 #1341) -#1347 := (and #1301 #1344) -#228 := (and #225 #227) -#609 := (not #228) -#1279 := (or #609 #1274) -#1282 := (forall (vars (?v0 S2) (?v1 S2)) #1279) -#1285 := (not #1282) -#1350 := (or #1285 #1347) -#1353 := (and #1282 #1350) -#1268 := (forall (vars (?v0 S2)) #1265) -#1271 := (not #1268) -#1356 := (or #1271 #1353) -#1359 := (and #1268 #1356) -#1362 := (or #713 #1359) -#1365 := (and #222 #1362) -#606 := (forall (vars (?v0 S2)) #603) -#736 := (not #606) -#1368 := (or #736 #1365) -#1371 := (and #606 #1368) -#1259 := (forall (vars (?v0 S2)) #1254) -#1262 := (not #1259) -#1374 := (or #1262 #1371) -#1377 := (and #1259 #1374) -#1239 := (not #1238) -#1232 := (not #1231) -#1242 := (and #1232 #1239) -#1245 := (or #1242 #212) -#1248 := (forall (vars (?v0 S2)) #1245) -#1251 := (not #1248) -#1380 := (not #1242) -#1388 := (or #1380 #1383) -#1391 := (forall (vars (?v0 S2)) #1388) -#1394 := (not #1391) -#1404 := (forall (vars (?v0 S2)) #1401) -#1407 := (not #1404) -#1094 := (not #1093) -#1203 := (and #118 #1094) -#1206 := (exists (vars (?v0 S2)) #1203) -#1422 := (not #1206) -#1446 := (or #1422 #188 #1411 #1407 #778 #1394 #1251 #1377) -#1139 := (not #1138) -#1173 := (and #1139 #1030) -#1176 := (not #1173) -#1182 := (or #1176 #1179) -#1185 := (forall (vars (?v0 S2) (?v1 S2)) #1182) -#1188 := (not #1185) -#1191 := (or #1188 #169) -#1194 := (and #1185 #1191) -#1154 := (= #1156 0::Int) -#1148 := (>= #1150 0::Int) -#1151 := (not #1148) -#1158 := (and #1151 #1154) -#1161 := (exists (vars (?v1 S2)) #1158) -#1142 := (and #71 #1139) -#1145 := (not #1142) -#1164 := (or #1145 #1161) -#1167 := (forall (vars (?v0 S2)) #1164) -#1170 := (not #1167) -#1197 := (or #1170 #1194) -#1200 := (and #1167 #1197) -#1224 := (or #1206 #549 #540 #531 #522 #1200) -#1451 := (and #1224 #1446) -#1103 := (= #1107 0::Int) -#1110 := (not #1109) -#1119 := (and #1110 #117 #1103) -#1124 := (exists (vars (?v1 S2)) #1119) -#1097 := (and #71 #1094) -#1100 := (not #1097) -#1127 := (or #1100 #1124) -#1130 := (forall (vars (?v0 S2)) #1127) -#1133 := (not #1130) -#1454 := (and #117 #1030) -#1457 := (not #1454) -#1463 := (or #1457 #1460) -#1466 := (forall (vars (?v0 S2) (?v1 S2)) #1463) -#1469 := (not #1466) -#121 := (and #118 #120) -#391 := (not #121) -#1474 := (or #391 #1109) -#1477 := (forall (vars (?v0 S2) (?v1 S2)) #1474) -#1480 := (not #1477) -#1486 := (forall (vars (?v0 S2)) #1483) -#1489 := (not #1486) -#87 := (f17 #9) -#1015 := (* -1::Int #87) -#1042 := (+ #1015 #93) -#1043 := (+ #67 #1042) -#1065 := (= #1043 0::Int) -#1016 := (+ #67 #1015) -#1014 := (>= #1016 0::Int) -#1068 := (not #1014) -#1077 := (and #1068 #77 #1065) -#1082 := (exists (vars (?v1 S2)) #1077) -#1056 := (not #1055) -#1059 := (and #71 #1056) -#1062 := (not #1059) -#1085 := (or #1062 #1082) -#1088 := (forall (vars (?v0 S2)) #1085) -#1492 := (not #1088) -#1513 := (or #1492 #878 #1489 #1480 #1469 #1133 #1451) -#1518 := (and #1088 #1513) -#1040 := (>= #1043 0::Int) -#1033 := (and #77 #1030) -#1036 := (not #1033) -#1044 := (or #1036 #1040) -#1047 := (forall (vars (?v0 S2) (?v1 S2)) #1044) -#1050 := (not #1047) -#1521 := (or #1050 #1518) -#1524 := (and #1047 #1521) -#84 := (f9 f18 #9) -#85 := (= #84 f1) -#86 := (and #78 #85) -#370 := (not #86) -#1018 := (or #370 #1014) -#1021 := (forall (vars (?v0 S2) (?v1 S2)) #1018) -#1024 := (not #1021) -#1527 := (or #1024 #1524) -#1530 := (and #1021 #1527) -#1005 := (>= #67 0::Int) -#1006 := (forall (vars (?v0 S2)) #1005) -#1009 := (not #1006) -#1533 := (or #1009 #1530) -#1536 := (and #1006 #1533) -#80 := (f17 f16) -#81 := (= #80 0::Int) -#946 := (not #81) -#1539 := (or #946 #1536) -#1542 := (and #81 #1539) -#79 := (forall (vars (?v0 S2)) #78) -#965 := (not #79) -#974 := (not #367) -#68 := (= #67 0::Int) -#358 := (or #71 #68) -#361 := (forall (vars (?v0 S2)) #358) -#983 := (not #361) -#1554 := (or #983 #974 #965 #1542) -#1559 := (not #1554) -#247 := (implies false true) -#234 := (+ #207 #93) -#241 := (= #229 #234) -#242 := (and #218 #241) -#240 := (< #207 #229) -#243 := (and #240 #242) -#244 := (exists (vars (?v1 S2)) #243) -#238 := (< #207 f14) -#239 := (and #71 #238) -#245 := (implies #239 #244) -#246 := (forall (vars (?v0 S2)) #245) -#248 := (implies #246 #247) -#249 := (and #246 #248) -#235 := (<= #229 #234) -#94 := (< #93 f14) -#233 := (and #218 #94) -#236 := (implies #233 #235) -#237 := (forall (vars (?v0 S2) (?v1 S2)) #236) -#250 := (implies #237 #249) -#251 := (and #237 #250) -#230 := (<= #229 #207) -#231 := (implies #228 #230) -#232 := (forall (vars (?v0 S2) (?v1 S2)) #231) -#252 := (implies #232 #251) -#253 := (and #232 #252) -#223 := (<= 0::Int #207) -#224 := (forall (vars (?v0 S2)) #223) -#254 := (implies #224 #253) -#255 := (and #224 #254) -#256 := (implies #222 #255) -#257 := (and #222 #256) -#258 := (implies true #257) -#259 := (implies true #258) -#219 := (implies #218 #212) -#220 := (forall (vars (?v0 S2)) #219) -#260 := (implies #220 #259) -#261 := (and #220 #260) -#215 := (<= #207 #112) -#216 := (forall (vars (?v0 S2)) #215) -#262 := (implies #216 #261) -#263 := (and #216 #262) -#204 := (+ #190 #202) -#205 := (< #204 #112) -#203 := (< #202 f14) -#206 := (and #203 #205) -#211 := (not #206) -#213 := (implies #211 #212) -#214 := (forall (vars (?v0 S2)) #213) -#264 := (implies #214 #263) -#208 := (= #207 #204) -#209 := (implies #206 #208) -#210 := (forall (vars (?v0 S2)) #209) -#265 := (implies #210 #264) -#266 := (implies #199 #265) -#192 := (<= #190 #112) -#193 := (implies #118 #192) -#194 := (forall (vars (?v0 S2)) #193) -#267 := (implies #194 #266) -#191 := (< #190 f14) -#268 := (implies #191 #267) -#189 := (not #188) -#269 := (implies #189 #268) -#131 := (< #112 f14) -#140 := (and #118 #131) -#141 := (exists (vars (?v0 S2)) #140) -#270 := (implies #141 #269) -#271 := (implies true #270) -#272 := (implies true #271) -#170 := (implies #169 true) -#171 := (and #169 #170) -#158 := (+ #153 #93) -#165 := (<= #156 #158) -#154 := (< #153 f14) -#164 := (and #154 #94) -#166 := (implies #164 #165) -#167 := (forall (vars (?v0 S2) (?v1 S2)) #166) -#172 := (implies #167 #171) -#173 := (and #167 #172) -#159 := (= #156 #158) -#157 := (< #153 #156) -#160 := (and #157 #159) -#161 := (exists (vars (?v1 S2)) #160) -#155 := (and #71 #154) -#162 := (implies #155 #161) -#163 := (forall (vars (?v0 S2)) #162) -#174 := (implies #163 #173) -#175 := (and #163 #174) -#176 := (implies true #175) -#177 := (implies #152 #176) -#178 := (implies #149 #177) -#179 := (implies #147 #178) -#180 := (implies #144 #179) -#181 := (implies true #180) -#182 := (implies true #181) -#142 := (not #141) -#183 := (implies #142 #182) -#184 := (implies true #183) -#185 := (implies true #184) -#273 := (and #185 #272) -#274 := (implies true #273) -#127 := (+ #112 #93) -#134 := (= #122 #127) -#135 := (and #117 #134) -#133 := (< #112 #122) -#136 := (and #133 #135) -#137 := (exists (vars (?v1 S2)) #136) -#132 := (and #71 #131) -#138 := (implies #132 #137) -#139 := (forall (vars (?v0 S2)) #138) -#275 := (implies #139 #274) -#128 := (<= #122 #127) -#126 := (and #117 #94) -#129 := (implies #126 #128) -#130 := (forall (vars (?v0 S2) (?v1 S2)) #129) -#276 := (implies #130 #275) -#123 := (<= #122 #112) -#124 := (implies #121 #123) -#125 := (forall (vars (?v0 S2) (?v1 S2)) #124) -#277 := (implies #125 #276) -#113 := (<= 0::Int #112) -#114 := (forall (vars (?v0 S2)) #113) -#278 := (implies #114 #277) -#279 := (implies #111 #278) -#280 := (implies true #279) -#281 := (implies true #280) -#96 := (+ #67 #93) -#103 := (= #87 #96) -#104 := (and #77 #103) -#102 := (< #67 #87) -#105 := (and #102 #104) -#106 := (exists (vars (?v1 S2)) #105) -#100 := (< #67 f14) -#101 := (and #71 #100) -#107 := (implies #101 #106) -#108 := (forall (vars (?v0 S2)) #107) -#282 := (implies #108 #281) -#283 := (and #108 #282) -#97 := (<= #87 #96) -#95 := (and #77 #94) -#98 := (implies #95 #97) -#99 := (forall (vars (?v0 S2) (?v1 S2)) #98) -#284 := (implies #99 #283) -#285 := (and #99 #284) -#88 := (<= #87 #67) -#89 := (implies #86 #88) -#90 := (forall (vars (?v0 S2) (?v1 S2)) #89) -#286 := (implies #90 #285) -#287 := (and #90 #286) -#82 := (<= 0::Int #67) -#83 := (forall (vars (?v0 S2)) #82) -#288 := (implies #83 #287) -#289 := (and #83 #288) -#290 := (implies #81 #289) -#291 := (and #81 #290) -#292 := (implies true #291) -#293 := (implies #79 #292) -#73 := (implies #71 #72) -#74 := (forall (vars (?v0 S2)) #73) -#294 := (implies #74 #293) -#69 := (implies #66 #68) -#70 := (forall (vars (?v0 S2)) #69) -#295 := (implies #70 #294) -#296 := (implies true #295) -#297 := (implies true #296) -#298 := (not #297) -#1562 := (iff #298 #1559) -#616 := (+ #93 #207) -#634 := (= #229 #616) -#637 := (and #218 #634) -#640 := (and #240 #637) -#643 := (exists (vars (?v1 S2)) #640) -#649 := (not #239) -#650 := (or #649 #643) -#655 := (forall (vars (?v0 S2)) #650) -#619 := (<= #229 #616) -#625 := (not #233) -#626 := (or #625 #619) -#631 := (forall (vars (?v0 S2) (?v1 S2)) #626) -#677 := (not #631) -#678 := (or #677 #655) -#683 := (and #631 #678) -#610 := (or #609 #230) -#613 := (forall (vars (?v0 S2) (?v1 S2)) #610) -#689 := (not #613) -#690 := (or #689 #683) -#695 := (and #613 #690) -#701 := (not #224) -#702 := (or #701 #695) -#707 := (and #224 #702) -#714 := (or #713 #707) -#719 := (and #222 #714) -#737 := (or #736 #719) -#742 := (and #606 #737) -#748 := (not #216) -#749 := (or #748 #742) -#754 := (and #216 #749) -#597 := (or #206 #212) -#600 := (forall (vars (?v0 S2)) #597) -#760 := (not #600) -#761 := (or #760 #754) -#591 := (or #211 #208) -#594 := (forall (vars (?v0 S2)) #591) -#769 := (not #594) -#770 := (or #769 #761) -#779 := (or #778 #770) -#585 := (or #117 #192) -#588 := (forall (vars (?v0 S2)) #585) -#787 := (not #588) -#788 := (or #787 #779) -#796 := (not #191) -#797 := (or #796 #788) -#805 := (or #188 #797) -#813 := (or #142 #805) -#440 := (+ #93 #153) -#464 := (<= #156 #440) -#470 := (not #164) -#471 := (or #470 #464) -#476 := (forall (vars (?v0 S2) (?v1 S2)) #471) -#491 := (not #476) -#492 := (or #491 #169) -#497 := (and #476 #492) -#443 := (= #156 #440) -#446 := (and #157 #443) -#449 := (exists (vars (?v1 S2)) #446) -#455 := (not #155) -#456 := (or #455 #449) -#461 := (forall (vars (?v0 S2)) #456) -#503 := (not #461) -#504 := (or #503 #497) -#509 := (and #461 #504) -#523 := (or #522 #509) -#532 := (or #531 #523) -#541 := (or #540 #532) -#550 := (or #549 #541) -#569 := (or #141 #550) -#829 := (and #569 #813) -#398 := (+ #93 #112) -#416 := (= #122 #398) -#419 := (and #117 #416) -#422 := (and #133 #419) -#425 := (exists (vars (?v1 S2)) #422) -#431 := (not #132) -#432 := (or #431 #425) -#437 := (forall (vars (?v0 S2)) #432) -#842 := (not #437) -#843 := (or #842 #829) -#401 := (<= #122 #398) -#407 := (not #126) -#408 := (or #407 #401) -#413 := (forall (vars (?v0 S2) (?v1 S2)) #408) -#851 := (not #413) -#852 := (or #851 #843) -#392 := (or #391 #123) -#395 := (forall (vars (?v0 S2) (?v1 S2)) #392) -#860 := (not #395) -#861 := (or #860 #852) -#869 := (not #114) -#870 := (or #869 #861) -#879 := (or #878 #870) -#384 := (not #101) -#385 := (or #384 #106) -#388 := (forall (vars (?v0 S2)) #385) -#898 := (not #388) -#899 := (or #898 #879) -#904 := (and #388 #899) -#377 := (not #95) -#378 := (or #377 #97) -#381 := (forall (vars (?v0 S2) (?v1 S2)) #378) -#910 := (not #381) -#911 := (or #910 #904) -#916 := (and #381 #911) -#371 := (or #370 #88) -#374 := (forall (vars (?v0 S2) (?v1 S2)) #371) -#922 := (not #374) -#923 := (or #922 #916) -#928 := (and #374 #923) -#934 := (not #83) -#935 := (or #934 #928) -#940 := (and #83 #935) -#947 := (or #946 #940) -#952 := (and #81 #947) -#966 := (or #965 #952) -#975 := (or #974 #966) -#984 := (or #983 #975) -#1000 := (not #984) -#1560 := (iff #1000 #1559) -#1557 := (iff #984 #1554) -#1545 := (or #965 #1542) -#1548 := (or #974 #1545) -#1551 := (or #983 #1548) -#1555 := (iff #1551 #1554) -#1556 := [rewrite]: #1555 -#1552 := (iff #984 #1551) -#1549 := (iff #975 #1548) -#1546 := (iff #966 #1545) -#1543 := (iff #952 #1542) -#1540 := (iff #947 #1539) -#1537 := (iff #940 #1536) -#1534 := (iff #935 #1533) -#1531 := (iff #928 #1530) -#1528 := (iff #923 #1527) -#1525 := (iff #916 #1524) -#1522 := (iff #911 #1521) -#1519 := (iff #904 #1518) -#1516 := (iff #899 #1513) -#1495 := (or #1133 #1451) -#1498 := (or #1469 #1495) -#1501 := (or #1480 #1498) -#1504 := (or #1489 #1501) -#1507 := (or #878 #1504) -#1510 := (or #1492 #1507) -#1514 := (iff #1510 #1513) -#1515 := [rewrite]: #1514 -#1511 := (iff #899 #1510) -#1508 := (iff #879 #1507) -#1505 := (iff #870 #1504) -#1502 := (iff #861 #1501) -#1499 := (iff #852 #1498) -#1496 := (iff #843 #1495) -#1452 := (iff #829 #1451) -#1449 := (iff #813 #1446) -#1425 := (or #1251 #1377) -#1428 := (or #1394 #1425) -#1431 := (or #778 #1428) -#1434 := (or #1407 #1431) -#1437 := (or #1411 #1434) -#1440 := (or #188 #1437) -#1443 := (or #1422 #1440) -#1447 := (iff #1443 #1446) -#1448 := [rewrite]: #1447 -#1444 := (iff #813 #1443) -#1441 := (iff #805 #1440) -#1438 := (iff #797 #1437) -#1435 := (iff #788 #1434) -#1432 := (iff #779 #1431) -#1429 := (iff #770 #1428) -#1426 := (iff #761 #1425) -#1378 := (iff #754 #1377) -#1375 := (iff #749 #1374) -#1372 := (iff #742 #1371) -#1369 := (iff #737 #1368) -#1366 := (iff #719 #1365) -#1363 := (iff #714 #1362) -#1360 := (iff #707 #1359) -#1357 := (iff #702 #1356) -#1354 := (iff #695 #1353) -#1351 := (iff #690 #1350) -#1348 := (iff #683 #1347) -#1345 := (iff #678 #1344) -#1342 := (iff #655 #1341) -#1339 := (iff #650 #1338) -#1336 := (iff #643 #1335) -#1333 := (iff #640 #1330) -#1324 := (and #218 #1318) -#1327 := (and #1321 #1324) -#1331 := (iff #1327 #1330) -#1332 := [rewrite]: #1331 -#1328 := (iff #640 #1327) -#1325 := (iff #637 #1324) -#1319 := (iff #634 #1318) -#1320 := [rewrite]: #1319 -#1326 := [monotonicity #1320]: #1325 -#1322 := (iff #240 #1321) -#1323 := [rewrite]: #1322 -#1329 := [monotonicity #1323 #1326]: #1328 -#1334 := [trans #1329 #1332]: #1333 -#1337 := [quant-intro #1334]: #1336 -#1316 := (iff #649 #1315) -#1313 := (iff #239 #1312) -#1310 := (iff #238 #1309) -#1311 := [rewrite]: #1310 -#1314 := [monotonicity #1311]: #1313 -#1317 := [monotonicity #1314]: #1316 -#1340 := [monotonicity #1317 #1337]: #1339 -#1343 := [quant-intro #1340]: #1342 -#1305 := (iff #677 #1304) -#1302 := (iff #631 #1301) -#1299 := (iff #626 #1298) -#1295 := (iff #619 #1294) -#1297 := [rewrite]: #1295 -#1292 := (iff #625 #1291) -#1289 := (iff #233 #1288) -#1031 := (iff #94 #1030) -#1032 := [rewrite]: #1031 -#1290 := [monotonicity #1032]: #1289 -#1293 := [monotonicity #1290]: #1292 -#1300 := [monotonicity #1293 #1297]: #1299 -#1303 := [quant-intro #1300]: #1302 -#1306 := [monotonicity #1303]: #1305 -#1346 := [monotonicity #1306 #1343]: #1345 -#1349 := [monotonicity #1303 #1346]: #1348 -#1286 := (iff #689 #1285) -#1283 := (iff #613 #1282) -#1280 := (iff #610 #1279) -#1277 := (iff #230 #1274) -#1278 := [rewrite]: #1277 -#1281 := [monotonicity #1278]: #1280 -#1284 := [quant-intro #1281]: #1283 -#1287 := [monotonicity #1284]: #1286 -#1352 := [monotonicity #1287 #1349]: #1351 -#1355 := [monotonicity #1284 #1352]: #1354 -#1272 := (iff #701 #1271) -#1269 := (iff #224 #1268) -#1266 := (iff #223 #1265) -#1267 := [rewrite]: #1266 -#1270 := [quant-intro #1267]: #1269 -#1273 := [monotonicity #1270]: #1272 -#1358 := [monotonicity #1273 #1355]: #1357 -#1361 := [monotonicity #1270 #1358]: #1360 -#1364 := [monotonicity #1361]: #1363 -#1367 := [monotonicity #1364]: #1366 -#1370 := [monotonicity #1367]: #1369 -#1373 := [monotonicity #1370]: #1372 -#1263 := (iff #748 #1262) -#1260 := (iff #216 #1259) -#1257 := (iff #215 #1254) -#1258 := [rewrite]: #1257 -#1261 := [quant-intro #1258]: #1260 -#1264 := [monotonicity #1261]: #1263 -#1376 := [monotonicity #1264 #1373]: #1375 -#1379 := [monotonicity #1261 #1376]: #1378 -#1252 := (iff #760 #1251) -#1249 := (iff #600 #1248) -#1246 := (iff #597 #1245) -#1243 := (iff #206 #1242) -#1240 := (iff #205 #1239) -#1241 := [rewrite]: #1240 -#1233 := (iff #203 #1232) -#1234 := [rewrite]: #1233 -#1244 := [monotonicity #1234 #1241]: #1243 -#1247 := [monotonicity #1244]: #1246 -#1250 := [quant-intro #1247]: #1249 -#1253 := [monotonicity #1250]: #1252 -#1427 := [monotonicity #1253 #1379]: #1426 -#1395 := (iff #769 #1394) -#1392 := (iff #594 #1391) -#1389 := (iff #591 #1388) -#1384 := (iff #208 #1383) -#1387 := [rewrite]: #1384 -#1381 := (iff #211 #1380) -#1382 := [monotonicity #1244]: #1381 -#1390 := [monotonicity #1382 #1387]: #1389 -#1393 := [quant-intro #1390]: #1392 -#1396 := [monotonicity #1393]: #1395 -#1430 := [monotonicity #1396 #1427]: #1429 -#1433 := [monotonicity #1430]: #1432 -#1408 := (iff #787 #1407) -#1405 := (iff #588 #1404) -#1402 := (iff #585 #1401) -#1399 := (iff #192 #1397) -#1400 := [rewrite]: #1399 -#1403 := [monotonicity #1400]: #1402 -#1406 := [quant-intro #1403]: #1405 -#1409 := [monotonicity #1406]: #1408 -#1436 := [monotonicity #1409 #1433]: #1435 -#1420 := (iff #796 #1411) -#1412 := (not #1411) -#1415 := (not #1412) -#1418 := (iff #1415 #1411) -#1419 := [rewrite]: #1418 -#1416 := (iff #796 #1415) -#1413 := (iff #191 #1412) -#1414 := [rewrite]: #1413 -#1417 := [monotonicity #1414]: #1416 -#1421 := [trans #1417 #1419]: #1420 -#1439 := [monotonicity #1421 #1436]: #1438 -#1442 := [monotonicity #1439]: #1441 -#1423 := (iff #142 #1422) -#1207 := (iff #141 #1206) -#1204 := (iff #140 #1203) -#1095 := (iff #131 #1094) -#1096 := [rewrite]: #1095 -#1205 := [monotonicity #1096]: #1204 -#1208 := [quant-intro #1205]: #1207 -#1424 := [monotonicity #1208]: #1423 -#1445 := [monotonicity #1424 #1442]: #1444 -#1450 := [trans #1445 #1448]: #1449 -#1227 := (iff #569 #1224) -#1209 := (or #522 #1200) -#1212 := (or #531 #1209) -#1215 := (or #540 #1212) -#1218 := (or #549 #1215) -#1221 := (or #1206 #1218) -#1225 := (iff #1221 #1224) -#1226 := [rewrite]: #1225 -#1222 := (iff #569 #1221) -#1219 := (iff #550 #1218) -#1216 := (iff #541 #1215) -#1213 := (iff #532 #1212) -#1210 := (iff #523 #1209) -#1201 := (iff #509 #1200) -#1198 := (iff #504 #1197) -#1195 := (iff #497 #1194) -#1192 := (iff #492 #1191) -#1189 := (iff #491 #1188) -#1186 := (iff #476 #1185) -#1183 := (iff #471 #1182) -#1180 := (iff #464 #1179) -#1181 := [rewrite]: #1180 -#1177 := (iff #470 #1176) -#1174 := (iff #164 #1173) -#1140 := (iff #154 #1139) -#1141 := [rewrite]: #1140 -#1175 := [monotonicity #1141 #1032]: #1174 -#1178 := [monotonicity #1175]: #1177 -#1184 := [monotonicity #1178 #1181]: #1183 -#1187 := [quant-intro #1184]: #1186 -#1190 := [monotonicity #1187]: #1189 -#1193 := [monotonicity #1190]: #1192 -#1196 := [monotonicity #1187 #1193]: #1195 -#1171 := (iff #503 #1170) -#1168 := (iff #461 #1167) -#1165 := (iff #456 #1164) -#1162 := (iff #449 #1161) -#1159 := (iff #446 #1158) -#1155 := (iff #443 #1154) -#1157 := [rewrite]: #1155 -#1152 := (iff #157 #1151) -#1153 := [rewrite]: #1152 -#1160 := [monotonicity #1153 #1157]: #1159 -#1163 := [quant-intro #1160]: #1162 -#1146 := (iff #455 #1145) -#1143 := (iff #155 #1142) -#1144 := [monotonicity #1141]: #1143 -#1147 := [monotonicity #1144]: #1146 -#1166 := [monotonicity #1147 #1163]: #1165 -#1169 := [quant-intro #1166]: #1168 -#1172 := [monotonicity #1169]: #1171 -#1199 := [monotonicity #1172 #1196]: #1198 -#1202 := [monotonicity #1169 #1199]: #1201 -#1211 := [monotonicity #1202]: #1210 -#1214 := [monotonicity #1211]: #1213 -#1217 := [monotonicity #1214]: #1216 -#1220 := [monotonicity #1217]: #1219 -#1223 := [monotonicity #1208 #1220]: #1222 -#1228 := [trans #1223 #1226]: #1227 -#1453 := [monotonicity #1228 #1450]: #1452 -#1134 := (iff #842 #1133) -#1131 := (iff #437 #1130) -#1128 := (iff #432 #1127) -#1125 := (iff #425 #1124) -#1122 := (iff #422 #1119) -#1113 := (and #117 #1103) -#1116 := (and #1110 #1113) -#1120 := (iff #1116 #1119) -#1121 := [rewrite]: #1120 -#1117 := (iff #422 #1116) -#1114 := (iff #419 #1113) -#1104 := (iff #416 #1103) -#1108 := [rewrite]: #1104 -#1115 := [monotonicity #1108]: #1114 -#1111 := (iff #133 #1110) -#1112 := [rewrite]: #1111 -#1118 := [monotonicity #1112 #1115]: #1117 -#1123 := [trans #1118 #1121]: #1122 -#1126 := [quant-intro #1123]: #1125 -#1101 := (iff #431 #1100) -#1098 := (iff #132 #1097) -#1099 := [monotonicity #1096]: #1098 -#1102 := [monotonicity #1099]: #1101 -#1129 := [monotonicity #1102 #1126]: #1128 -#1132 := [quant-intro #1129]: #1131 -#1135 := [monotonicity #1132]: #1134 -#1497 := [monotonicity #1135 #1453]: #1496 -#1470 := (iff #851 #1469) -#1467 := (iff #413 #1466) -#1464 := (iff #408 #1463) -#1461 := (iff #401 #1460) -#1462 := [rewrite]: #1461 -#1458 := (iff #407 #1457) -#1455 := (iff #126 #1454) -#1456 := [monotonicity #1032]: #1455 -#1459 := [monotonicity #1456]: #1458 -#1465 := [monotonicity #1459 #1462]: #1464 -#1468 := [quant-intro #1465]: #1467 -#1471 := [monotonicity #1468]: #1470 -#1500 := [monotonicity #1471 #1497]: #1499 -#1481 := (iff #860 #1480) -#1478 := (iff #395 #1477) -#1475 := (iff #392 #1474) -#1472 := (iff #123 #1109) -#1473 := [rewrite]: #1472 -#1476 := [monotonicity #1473]: #1475 -#1479 := [quant-intro #1476]: #1478 -#1482 := [monotonicity #1479]: #1481 -#1503 := [monotonicity #1482 #1500]: #1502 -#1490 := (iff #869 #1489) -#1487 := (iff #114 #1486) -#1484 := (iff #113 #1483) -#1485 := [rewrite]: #1484 -#1488 := [quant-intro #1485]: #1487 -#1491 := [monotonicity #1488]: #1490 -#1506 := [monotonicity #1491 #1503]: #1505 -#1509 := [monotonicity #1506]: #1508 -#1493 := (iff #898 #1492) -#1089 := (iff #388 #1088) -#1086 := (iff #385 #1085) -#1083 := (iff #106 #1082) -#1080 := (iff #105 #1077) -#1071 := (and #77 #1065) -#1074 := (and #1068 #1071) -#1078 := (iff #1074 #1077) -#1079 := [rewrite]: #1078 -#1075 := (iff #105 #1074) -#1072 := (iff #104 #1071) -#1066 := (iff #103 #1065) -#1067 := [rewrite]: #1066 -#1073 := [monotonicity #1067]: #1072 -#1069 := (iff #102 #1068) -#1070 := [rewrite]: #1069 -#1076 := [monotonicity #1070 #1073]: #1075 -#1081 := [trans #1076 #1079]: #1080 -#1084 := [quant-intro #1081]: #1083 -#1063 := (iff #384 #1062) -#1060 := (iff #101 #1059) -#1057 := (iff #100 #1056) -#1058 := [rewrite]: #1057 -#1061 := [monotonicity #1058]: #1060 -#1064 := [monotonicity #1061]: #1063 -#1087 := [monotonicity #1064 #1084]: #1086 -#1090 := [quant-intro #1087]: #1089 -#1494 := [monotonicity #1090]: #1493 -#1512 := [monotonicity #1494 #1509]: #1511 -#1517 := [trans #1512 #1515]: #1516 -#1520 := [monotonicity #1090 #1517]: #1519 -#1051 := (iff #910 #1050) -#1048 := (iff #381 #1047) -#1045 := (iff #378 #1044) -#1039 := (iff #97 #1040) -#1041 := [rewrite]: #1039 -#1037 := (iff #377 #1036) -#1034 := (iff #95 #1033) -#1035 := [monotonicity #1032]: #1034 -#1038 := [monotonicity #1035]: #1037 -#1046 := [monotonicity #1038 #1041]: #1045 -#1049 := [quant-intro #1046]: #1048 -#1052 := [monotonicity #1049]: #1051 -#1523 := [monotonicity #1052 #1520]: #1522 -#1526 := [monotonicity #1049 #1523]: #1525 -#1025 := (iff #922 #1024) -#1022 := (iff #374 #1021) -#1019 := (iff #371 #1018) -#1013 := (iff #88 #1014) -#1017 := [rewrite]: #1013 -#1020 := [monotonicity #1017]: #1019 -#1023 := [quant-intro #1020]: #1022 -#1026 := [monotonicity #1023]: #1025 -#1529 := [monotonicity #1026 #1526]: #1528 -#1532 := [monotonicity #1023 #1529]: #1531 -#1010 := (iff #934 #1009) -#1007 := (iff #83 #1006) -#1003 := (iff #82 #1005) -#1004 := [rewrite]: #1003 -#1008 := [quant-intro #1004]: #1007 -#1011 := [monotonicity #1008]: #1010 -#1535 := [monotonicity #1011 #1532]: #1534 -#1538 := [monotonicity #1008 #1535]: #1537 -#1541 := [monotonicity #1538]: #1540 -#1544 := [monotonicity #1541]: #1543 -#1547 := [monotonicity #1544]: #1546 -#1550 := [monotonicity #1547]: #1549 -#1553 := [monotonicity #1550]: #1552 -#1558 := [trans #1553 #1556]: #1557 -#1561 := [monotonicity #1558]: #1560 -#1001 := (iff #298 #1000) -#998 := (iff #297 #984) -#989 := (implies true #984) -#992 := (iff #989 #984) -#993 := [rewrite]: #992 -#996 := (iff #297 #989) -#994 := (iff #296 #984) -#990 := (iff #296 #989) -#987 := (iff #295 #984) -#980 := (implies #361 #975) -#985 := (iff #980 #984) -#986 := [rewrite]: #985 -#981 := (iff #295 #980) -#978 := (iff #294 #975) -#971 := (implies #367 #966) -#976 := (iff #971 #975) -#977 := [rewrite]: #976 -#972 := (iff #294 #971) -#969 := (iff #293 #966) -#962 := (implies #79 #952) -#967 := (iff #962 #966) -#968 := [rewrite]: #967 -#963 := (iff #293 #962) -#960 := (iff #292 #952) -#955 := (implies true #952) -#958 := (iff #955 #952) -#959 := [rewrite]: #958 -#956 := (iff #292 #955) -#953 := (iff #291 #952) -#950 := (iff #290 #947) -#943 := (implies #81 #940) -#948 := (iff #943 #947) -#949 := [rewrite]: #948 -#944 := (iff #290 #943) -#941 := (iff #289 #940) -#938 := (iff #288 #935) -#931 := (implies #83 #928) -#936 := (iff #931 #935) -#937 := [rewrite]: #936 -#932 := (iff #288 #931) -#929 := (iff #287 #928) -#926 := (iff #286 #923) -#919 := (implies #374 #916) -#924 := (iff #919 #923) -#925 := [rewrite]: #924 -#920 := (iff #286 #919) -#917 := (iff #285 #916) -#914 := (iff #284 #911) -#907 := (implies #381 #904) -#912 := (iff #907 #911) -#913 := [rewrite]: #912 -#908 := (iff #284 #907) -#905 := (iff #283 #904) -#902 := (iff #282 #899) -#895 := (implies #388 #879) -#900 := (iff #895 #899) -#901 := [rewrite]: #900 -#896 := (iff #282 #895) -#893 := (iff #281 #879) -#884 := (implies true #879) -#887 := (iff #884 #879) -#888 := [rewrite]: #887 -#891 := (iff #281 #884) -#889 := (iff #280 #879) -#885 := (iff #280 #884) -#882 := (iff #279 #879) -#875 := (implies #111 #870) -#880 := (iff #875 #879) -#881 := [rewrite]: #880 -#876 := (iff #279 #875) -#873 := (iff #278 #870) -#866 := (implies #114 #861) -#871 := (iff #866 #870) -#872 := [rewrite]: #871 -#867 := (iff #278 #866) -#864 := (iff #277 #861) -#857 := (implies #395 #852) -#862 := (iff #857 #861) -#863 := [rewrite]: #862 -#858 := (iff #277 #857) -#855 := (iff #276 #852) -#848 := (implies #413 #843) -#853 := (iff #848 #852) -#854 := [rewrite]: #853 -#849 := (iff #276 #848) -#846 := (iff #275 #843) -#839 := (implies #437 #829) -#844 := (iff #839 #843) -#845 := [rewrite]: #844 -#840 := (iff #275 #839) -#837 := (iff #274 #829) -#832 := (implies true #829) -#835 := (iff #832 #829) -#836 := [rewrite]: #835 -#833 := (iff #274 #832) -#830 := (iff #273 #829) -#827 := (iff #272 #813) -#818 := (implies true #813) -#821 := (iff #818 #813) -#822 := [rewrite]: #821 -#825 := (iff #272 #818) -#823 := (iff #271 #813) -#819 := (iff #271 #818) -#816 := (iff #270 #813) -#810 := (implies #141 #805) -#814 := (iff #810 #813) -#815 := [rewrite]: #814 -#811 := (iff #270 #810) -#808 := (iff #269 #805) -#802 := (implies #189 #797) -#806 := (iff #802 #805) -#807 := [rewrite]: #806 -#803 := (iff #269 #802) -#800 := (iff #268 #797) -#793 := (implies #191 #788) -#798 := (iff #793 #797) -#799 := [rewrite]: #798 -#794 := (iff #268 #793) -#791 := (iff #267 #788) -#784 := (implies #588 #779) -#789 := (iff #784 #788) -#790 := [rewrite]: #789 -#785 := (iff #267 #784) -#782 := (iff #266 #779) -#775 := (implies #199 #770) -#780 := (iff #775 #779) -#781 := [rewrite]: #780 -#776 := (iff #266 #775) -#773 := (iff #265 #770) -#766 := (implies #594 #761) -#771 := (iff #766 #770) -#772 := [rewrite]: #771 -#767 := (iff #265 #766) -#764 := (iff #264 #761) -#757 := (implies #600 #754) -#762 := (iff #757 #761) -#763 := [rewrite]: #762 -#758 := (iff #264 #757) -#755 := (iff #263 #754) -#752 := (iff #262 #749) -#745 := (implies #216 #742) -#750 := (iff #745 #749) -#751 := [rewrite]: #750 -#746 := (iff #262 #745) -#743 := (iff #261 #742) -#740 := (iff #260 #737) -#733 := (implies #606 #719) -#738 := (iff #733 #737) -#739 := [rewrite]: #738 -#734 := (iff #260 #733) -#731 := (iff #259 #719) -#722 := (implies true #719) -#725 := (iff #722 #719) -#726 := [rewrite]: #725 -#729 := (iff #259 #722) -#727 := (iff #258 #719) -#723 := (iff #258 #722) -#720 := (iff #257 #719) -#717 := (iff #256 #714) -#710 := (implies #222 #707) -#715 := (iff #710 #714) -#716 := [rewrite]: #715 -#711 := (iff #256 #710) -#708 := (iff #255 #707) -#705 := (iff #254 #702) -#698 := (implies #224 #695) -#703 := (iff #698 #702) -#704 := [rewrite]: #703 -#699 := (iff #254 #698) -#696 := (iff #253 #695) -#693 := (iff #252 #690) -#686 := (implies #613 #683) -#691 := (iff #686 #690) -#692 := [rewrite]: #691 -#687 := (iff #252 #686) -#684 := (iff #251 #683) -#681 := (iff #250 #678) -#674 := (implies #631 #655) -#679 := (iff #674 #678) -#680 := [rewrite]: #679 -#675 := (iff #250 #674) -#672 := (iff #249 #655) -#667 := (and #655 true) -#670 := (iff #667 #655) -#671 := [rewrite]: #670 -#668 := (iff #249 #667) -#665 := (iff #248 true) -#660 := (implies #655 true) -#663 := (iff #660 true) -#664 := [rewrite]: #663 -#661 := (iff #248 #660) -#658 := (iff #247 true) -#659 := [rewrite]: #658 -#656 := (iff #246 #655) -#653 := (iff #245 #650) -#646 := (implies #239 #643) -#651 := (iff #646 #650) -#652 := [rewrite]: #651 -#647 := (iff #245 #646) -#644 := (iff #244 #643) -#641 := (iff #243 #640) -#638 := (iff #242 #637) -#635 := (iff #241 #634) -#617 := (= #234 #616) -#618 := [rewrite]: #617 -#636 := [monotonicity #618]: #635 -#639 := [monotonicity #636]: #638 -#642 := [monotonicity #639]: #641 -#645 := [quant-intro #642]: #644 -#648 := [monotonicity #645]: #647 -#654 := [trans #648 #652]: #653 -#657 := [quant-intro #654]: #656 -#662 := [monotonicity #657 #659]: #661 -#666 := [trans #662 #664]: #665 -#669 := [monotonicity #657 #666]: #668 -#673 := [trans #669 #671]: #672 -#632 := (iff #237 #631) -#629 := (iff #236 #626) -#622 := (implies #233 #619) -#627 := (iff #622 #626) -#628 := [rewrite]: #627 -#623 := (iff #236 #622) -#620 := (iff #235 #619) -#621 := [monotonicity #618]: #620 -#624 := [monotonicity #621]: #623 -#630 := [trans #624 #628]: #629 -#633 := [quant-intro #630]: #632 -#676 := [monotonicity #633 #673]: #675 -#682 := [trans #676 #680]: #681 -#685 := [monotonicity #633 #682]: #684 -#614 := (iff #232 #613) -#611 := (iff #231 #610) -#612 := [rewrite]: #611 -#615 := [quant-intro #612]: #614 -#688 := [monotonicity #615 #685]: #687 -#694 := [trans #688 #692]: #693 -#697 := [monotonicity #615 #694]: #696 -#700 := [monotonicity #697]: #699 -#706 := [trans #700 #704]: #705 -#709 := [monotonicity #706]: #708 -#712 := [monotonicity #709]: #711 -#718 := [trans #712 #716]: #717 -#721 := [monotonicity #718]: #720 -#724 := [monotonicity #721]: #723 -#728 := [trans #724 #726]: #727 -#730 := [monotonicity #728]: #729 -#732 := [trans #730 #726]: #731 -#607 := (iff #220 #606) -#604 := (iff #219 #603) -#605 := [rewrite]: #604 -#608 := [quant-intro #605]: #607 -#735 := [monotonicity #608 #732]: #734 -#741 := [trans #735 #739]: #740 -#744 := [monotonicity #608 #741]: #743 -#747 := [monotonicity #744]: #746 -#753 := [trans #747 #751]: #752 -#756 := [monotonicity #753]: #755 -#601 := (iff #214 #600) -#598 := (iff #213 #597) -#599 := [rewrite]: #598 -#602 := [quant-intro #599]: #601 -#759 := [monotonicity #602 #756]: #758 -#765 := [trans #759 #763]: #764 -#595 := (iff #210 #594) -#592 := (iff #209 #591) -#593 := [rewrite]: #592 -#596 := [quant-intro #593]: #595 -#768 := [monotonicity #596 #765]: #767 -#774 := [trans #768 #772]: #773 -#777 := [monotonicity #774]: #776 -#783 := [trans #777 #781]: #782 -#589 := (iff #194 #588) -#586 := (iff #193 #585) -#587 := [rewrite]: #586 -#590 := [quant-intro #587]: #589 -#786 := [monotonicity #590 #783]: #785 -#792 := [trans #786 #790]: #791 -#795 := [monotonicity #792]: #794 -#801 := [trans #795 #799]: #800 -#804 := [monotonicity #801]: #803 -#809 := [trans #804 #807]: #808 -#812 := [monotonicity #809]: #811 -#817 := [trans #812 #815]: #816 -#820 := [monotonicity #817]: #819 -#824 := [trans #820 #822]: #823 -#826 := [monotonicity #824]: #825 -#828 := [trans #826 #822]: #827 -#583 := (iff #185 #569) -#574 := (implies true #569) -#577 := (iff #574 #569) -#578 := [rewrite]: #577 -#581 := (iff #185 #574) -#579 := (iff #184 #569) -#575 := (iff #184 #574) -#572 := (iff #183 #569) -#566 := (implies #142 #550) -#570 := (iff #566 #569) -#571 := [rewrite]: #570 -#567 := (iff #183 #566) -#564 := (iff #182 #550) -#555 := (implies true #550) -#558 := (iff #555 #550) -#559 := [rewrite]: #558 -#562 := (iff #182 #555) -#560 := (iff #181 #550) -#556 := (iff #181 #555) -#553 := (iff #180 #550) -#546 := (implies #144 #541) -#551 := (iff #546 #550) -#552 := [rewrite]: #551 -#547 := (iff #180 #546) -#544 := (iff #179 #541) -#537 := (implies #147 #532) -#542 := (iff #537 #541) -#543 := [rewrite]: #542 -#538 := (iff #179 #537) -#535 := (iff #178 #532) -#528 := (implies #149 #523) -#533 := (iff #528 #532) -#534 := [rewrite]: #533 -#529 := (iff #178 #528) -#526 := (iff #177 #523) -#519 := (implies #152 #509) -#524 := (iff #519 #523) -#525 := [rewrite]: #524 -#520 := (iff #177 #519) -#517 := (iff #176 #509) -#512 := (implies true #509) -#515 := (iff #512 #509) -#516 := [rewrite]: #515 -#513 := (iff #176 #512) -#510 := (iff #175 #509) -#507 := (iff #174 #504) -#500 := (implies #461 #497) -#505 := (iff #500 #504) -#506 := [rewrite]: #505 -#501 := (iff #174 #500) -#498 := (iff #173 #497) -#495 := (iff #172 #492) -#488 := (implies #476 #169) -#493 := (iff #488 #492) -#494 := [rewrite]: #493 -#489 := (iff #172 #488) -#486 := (iff #171 #169) -#481 := (and #169 true) -#484 := (iff #481 #169) -#485 := [rewrite]: #484 -#482 := (iff #171 #481) -#479 := (iff #170 true) -#480 := [rewrite]: #479 -#483 := [monotonicity #480]: #482 -#487 := [trans #483 #485]: #486 -#477 := (iff #167 #476) -#474 := (iff #166 #471) -#467 := (implies #164 #464) -#472 := (iff #467 #471) -#473 := [rewrite]: #472 -#468 := (iff #166 #467) -#465 := (iff #165 #464) -#441 := (= #158 #440) -#442 := [rewrite]: #441 -#466 := [monotonicity #442]: #465 -#469 := [monotonicity #466]: #468 -#475 := [trans #469 #473]: #474 -#478 := [quant-intro #475]: #477 -#490 := [monotonicity #478 #487]: #489 -#496 := [trans #490 #494]: #495 -#499 := [monotonicity #478 #496]: #498 -#462 := (iff #163 #461) -#459 := (iff #162 #456) -#452 := (implies #155 #449) -#457 := (iff #452 #456) -#458 := [rewrite]: #457 -#453 := (iff #162 #452) -#450 := (iff #161 #449) -#447 := (iff #160 #446) -#444 := (iff #159 #443) -#445 := [monotonicity #442]: #444 -#448 := [monotonicity #445]: #447 -#451 := [quant-intro #448]: #450 -#454 := [monotonicity #451]: #453 -#460 := [trans #454 #458]: #459 -#463 := [quant-intro #460]: #462 -#502 := [monotonicity #463 #499]: #501 -#508 := [trans #502 #506]: #507 -#511 := [monotonicity #463 #508]: #510 -#514 := [monotonicity #511]: #513 -#518 := [trans #514 #516]: #517 -#521 := [monotonicity #518]: #520 -#527 := [trans #521 #525]: #526 -#530 := [monotonicity #527]: #529 -#536 := [trans #530 #534]: #535 -#539 := [monotonicity #536]: #538 -#545 := [trans #539 #543]: #544 -#548 := [monotonicity #545]: #547 -#554 := [trans #548 #552]: #553 -#557 := [monotonicity #554]: #556 -#561 := [trans #557 #559]: #560 -#563 := [monotonicity #561]: #562 -#565 := [trans #563 #559]: #564 -#568 := [monotonicity #565]: #567 -#573 := [trans #568 #571]: #572 -#576 := [monotonicity #573]: #575 -#580 := [trans #576 #578]: #579 -#582 := [monotonicity #580]: #581 -#584 := [trans #582 #578]: #583 -#831 := [monotonicity #584 #828]: #830 -#834 := [monotonicity #831]: #833 -#838 := [trans #834 #836]: #837 -#438 := (iff #139 #437) -#435 := (iff #138 #432) -#428 := (implies #132 #425) -#433 := (iff #428 #432) -#434 := [rewrite]: #433 -#429 := (iff #138 #428) -#426 := (iff #137 #425) -#423 := (iff #136 #422) -#420 := (iff #135 #419) -#417 := (iff #134 #416) -#399 := (= #127 #398) -#400 := [rewrite]: #399 -#418 := [monotonicity #400]: #417 -#421 := [monotonicity #418]: #420 -#424 := [monotonicity #421]: #423 -#427 := [quant-intro #424]: #426 -#430 := [monotonicity #427]: #429 -#436 := [trans #430 #434]: #435 -#439 := [quant-intro #436]: #438 -#841 := [monotonicity #439 #838]: #840 -#847 := [trans #841 #845]: #846 -#414 := (iff #130 #413) -#411 := (iff #129 #408) -#404 := (implies #126 #401) -#409 := (iff #404 #408) -#410 := [rewrite]: #409 -#405 := (iff #129 #404) -#402 := (iff #128 #401) -#403 := [monotonicity #400]: #402 -#406 := [monotonicity #403]: #405 -#412 := [trans #406 #410]: #411 -#415 := [quant-intro #412]: #414 -#850 := [monotonicity #415 #847]: #849 -#856 := [trans #850 #854]: #855 -#396 := (iff #125 #395) -#393 := (iff #124 #392) -#394 := [rewrite]: #393 -#397 := [quant-intro #394]: #396 -#859 := [monotonicity #397 #856]: #858 -#865 := [trans #859 #863]: #864 -#868 := [monotonicity #865]: #867 -#874 := [trans #868 #872]: #873 -#877 := [monotonicity #874]: #876 -#883 := [trans #877 #881]: #882 -#886 := [monotonicity #883]: #885 -#890 := [trans #886 #888]: #889 -#892 := [monotonicity #890]: #891 -#894 := [trans #892 #888]: #893 -#389 := (iff #108 #388) -#386 := (iff #107 #385) -#387 := [rewrite]: #386 -#390 := [quant-intro #387]: #389 -#897 := [monotonicity #390 #894]: #896 -#903 := [trans #897 #901]: #902 -#906 := [monotonicity #390 #903]: #905 -#382 := (iff #99 #381) -#379 := (iff #98 #378) -#380 := [rewrite]: #379 -#383 := [quant-intro #380]: #382 -#909 := [monotonicity #383 #906]: #908 -#915 := [trans #909 #913]: #914 -#918 := [monotonicity #383 #915]: #917 -#375 := (iff #90 #374) -#372 := (iff #89 #371) -#373 := [rewrite]: #372 -#376 := [quant-intro #373]: #375 -#921 := [monotonicity #376 #918]: #920 -#927 := [trans #921 #925]: #926 -#930 := [monotonicity #376 #927]: #929 -#933 := [monotonicity #930]: #932 -#939 := [trans #933 #937]: #938 -#942 := [monotonicity #939]: #941 -#945 := [monotonicity #942]: #944 -#951 := [trans #945 #949]: #950 -#954 := [monotonicity #951]: #953 -#957 := [monotonicity #954]: #956 -#961 := [trans #957 #959]: #960 -#964 := [monotonicity #961]: #963 -#970 := [trans #964 #968]: #969 -#368 := (iff #74 #367) -#365 := (iff #73 #364) -#366 := [rewrite]: #365 -#369 := [quant-intro #366]: #368 -#973 := [monotonicity #369 #970]: #972 -#979 := [trans #973 #977]: #978 -#362 := (iff #70 #361) -#359 := (iff #69 #358) -#360 := [rewrite]: #359 -#363 := [quant-intro #360]: #362 -#982 := [monotonicity #363 #979]: #981 -#988 := [trans #982 #986]: #987 -#991 := [monotonicity #988]: #990 -#995 := [trans #991 #993]: #994 -#997 := [monotonicity #995]: #996 -#999 := [trans #997 #993]: #998 -#1002 := [monotonicity #999]: #1001 -#1563 := [trans #1002 #1561]: #1562 -#357 := [asserted]: #298 -#1564 := [mp #357 #1563]: #1559 -#1566 := [not-or-elim #1564]: #367 -#1621 := [mp~ #1566 #1590]: #367 -#3748 := [mp #1621 #3747]: #3743 -#3348 := (not #3743) -#6198 := (or #3348 #1703 #6178) -#6194 := (or #1703 #6178) -#6199 := (or #3348 #6194) -#6202 := (iff #6199 #6198) -#6174 := [rewrite]: #6202 -#6200 := [quant-inst #1702]: #6199 -#6180 := [mp #6200 #6174]: #6198 -#6206 := [unit-resolution #6180 #3748 #6201]: #6178 -#6208 := [mp #6206 #6185]: #6181 -#6219 := (not #6181) -#1709 := (not #1708) -#3684 := (or #3791 #1709) -#3685 := [def-axiom]: #3684 -#6197 := [unit-resolution #3685 #6196]: #1709 -#6214 := (or #6219 #1708) -#6220 := [th-lemma arith triangle-eq]: #6214 -#6221 := [unit-resolution #6220 #6197]: #6219 -#6209 := [unit-resolution #6221 #6208]: false -#6210 := [lemma #6209]: #3791 -#4075 := (or #3794 #4072) -#4078 := (not #4075) -#2629 := (or #78 #1029 #1040) -#3774 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2629) -#3779 := (not #3774) -#4081 := (or #3779 #4078) -#4084 := (not #4081) -decl ?v0!4 :: S2 -#1671 := ?v0!4 -#1684 := (f17 ?v0!4) -#1685 := (* -1::Int #1684) -decl ?v1!3 :: S2 -#1670 := ?v1!3 -#1683 := (f17 ?v1!3) -#2262 := (+ #1683 #1685) -#1674 := (f6 f7 ?v1!3) -#1675 := (f5 #1674 ?v0!4) -#1676 := (f15 #1675) -#2263 := (+ #1676 #2262) -#2266 := (>= #2263 0::Int) -#1677 := (* -1::Int #1676) -#1678 := (+ f14 #1677) -#1679 := (<= #1678 0::Int) -#1672 := (f9 f18 ?v1!3) -#1673 := (= #1672 f1) -#2592 := (not #1673) -#2607 := (or #2592 #1679 #2266) -#2612 := (not #2607) -#4087 := (or #2612 #4084) -#4090 := (not #4087) -#3764 := (pattern #67 #87) -#1760 := (not #85) -#2584 := (or #77 #1760 #1014) -#3765 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3764) #2584) -#3770 := (not #3765) -#4093 := (or #3770 #4090) -#4096 := (not #4093) -decl ?v0!2 :: S2 -#1644 := ?v0!2 -#1653 := (f17 ?v0!2) -#1654 := (* -1::Int #1653) -decl ?v1!1 :: S2 -#1643 := ?v1!1 -#1652 := (f17 ?v1!1) -#1655 := (+ #1652 #1654) -#1656 := (>= #1655 0::Int) -#1648 := (f9 f18 ?v0!2) -#1649 := (= #1648 f1) -#2035 := (not #1649) -#1645 := (f9 f18 ?v1!1) -#1646 := (= #1645 f1) -#2083 := (or #1646 #2035 #1656) -#5518 := [hypothesis]: #1649 -#3750 := (forall (vars (?v0 S2)) (:pat #3749) #78) -#3753 := (iff #79 #3750) -#3751 := (iff #78 #78) -#3752 := [refl]: #3751 -#3754 := [quant-intro #3752]: #3753 -#1591 := (~ #79 #79) -#1622 := (~ #78 #78) -#1623 := [refl]: #1622 -#1592 := [nnf-pos #1623]: #1591 -#1567 := [not-or-elim #1564]: #79 -#1624 := [mp~ #1567 #1592]: #79 -#3755 := [mp #1624 #3754]: #3750 -#7029 := (not #3750) -#4457 := (or #7029 #2035) -#4481 := [quant-inst #1644]: #4457 -#5558 := [unit-resolution #4481 #3755 #5518]: false -#6078 := [lemma #5558]: #2035 -#3275 := (or #2083 #1649) -#3361 := [def-axiom]: #3275 -#7086 := [unit-resolution #3361 #6078]: #2083 -#1634 := (not #2083) -#4099 := (or #1634 #4096) -#4102 := (not #4099) -#3756 := (forall (vars (?v0 S2)) (:pat #3736) #1005) -#3761 := (not #3756) -#4105 := (or #3761 #4102) -#4108 := (not #4105) -decl ?v0!0 :: S2 -#1628 := ?v0!0 -#1629 := (f17 ?v0!0) -#1630 := (>= #1629 0::Int) -#1631 := (not #1630) -#3358 := [hypothesis]: #1631 -#3357 := (<= #1629 0::Int) -#4162 := (or #3357 #1630) -#4163 := [th-lemma arith farkas 1 1]: #4162 -#4164 := [unit-resolution #4163 #3358]: #3357 -#4139 := (not #3357) -#4158 := (or #4139 #1630) -#3325 := (= f14 #1629) -#3384 := (= #1629 f14) -#4135 := (iff #3384 #3325) -#3302 := (iff #3325 #3384) -#4134 := [commutativity]: #3302 -#4136 := [symm #4134]: #4135 -#3398 := (= ?v0!0 f16) -#3392 := (not #3398) -#3393 := (= #1629 0::Int) -#3356 := (not #3393) -#3312 := (or #3356 #1630) -#3311 := [th-lemma arith triangle-eq]: #3312 -#3317 := [unit-resolution #3311 #3358]: #3356 -#3737 := (forall (vars (?v0 S2)) (:pat #3736) #358) -#3740 := (iff #361 #3737) -#3738 := (iff #358 #358) -#3739 := [refl]: #3738 -#3741 := [quant-intro #3739]: #3740 -#1587 := (~ #361 #361) -#1616 := (~ #358 #358) -#1617 := [refl]: #1616 -#1588 := [nnf-pos #1617]: #1587 -#1565 := [not-or-elim #1564]: #361 -#1618 := [mp~ #1565 #1588]: #361 -#3742 := [mp #1618 #3741]: #3737 -#3375 := (not #3737) -#3379 := (or #3375 #3392 #3393) -#3383 := (or #3392 #3393) -#3370 := (or #3375 #3383) -#3380 := (iff #3370 #3379) -#3347 := [rewrite]: #3380 -#3378 := [quant-inst #1628]: #3370 -#3349 := [mp #3378 #3347]: #3379 -#3292 := [unit-resolution #3349 #3742 #3317]: #3392 -#3359 := (or #3348 #3398 #3384) -#3394 := (or #3398 #3384) -#3342 := (or #3348 #3394) -#3335 := (iff #3342 #3359) -#3333 := [rewrite]: #3335 -#3334 := [quant-inst #1628]: #3342 -#3336 := [mp #3334 #3333]: #3359 -#3297 := [unit-resolution #3336 #3748 #3292]: #3384 -#4137 := [mp #3297 #4136]: #3325 -#3405 := (* -1::Int #1629) -#3337 := (+ f14 #3405) -#3313 := (<= #3337 0::Int) -#4133 := (not #3313) -#326 := (<= f14 0::Int) -#327 := (not #326) -#55 := (< 0::Int f14) -#328 := (iff #55 #327) -#329 := [rewrite]: #328 -#323 := [asserted]: #55 -#330 := [mp #323 #329]: #327 -#4138 := [hypothesis]: #3357 -#4140 := (or #4133 #326 #4139) -#4141 := [th-lemma arith assign-bounds 1 1]: #4140 -#4142 := [unit-resolution #4141 #4138 #330]: #4133 -#4143 := (not #3325) -#4157 := (or #4143 #3313) -#4159 := [th-lemma arith triangle-eq]: #4157 -#4160 := [unit-resolution #4159 #4142 #4137]: false -#4161 := [lemma #4160]: #4158 -#4165 := [unit-resolution #4161 #4164 #3358]: false -#4166 := [lemma #4165]: #1630 -#4111 := (or #1631 #4108) -#4114 := (not #4111) -#4117 := (or #946 #4114) -#4120 := (not #4117) -#4240 := [hypothesis]: #946 -#4232 := (or #3375 #81) -#6915 := (= f16 f16) -#6988 := (not #6915) -#4242 := (or #6988 #81) -#4233 := (or #3375 #4242) -#4235 := (iff #4233 #4232) -#4234 := (iff #4232 #4232) -#4237 := [rewrite]: #4234 -#4248 := (iff #4242 #81) -#4214 := (or false #81) -#4243 := (iff #4214 #81) -#4247 := [rewrite]: #4243 -#4244 := (iff #4242 #4214) -#6996 := (iff #6988 false) -#6991 := (not true) -#6994 := (iff #6991 false) -#6995 := [rewrite]: #6994 -#6992 := (iff #6988 #6991) -#6918 := (iff #6915 true) -#6919 := [rewrite]: #6918 -#6993 := [monotonicity #6919]: #6992 -#6997 := [trans #6993 #6995]: #6996 -#4245 := [monotonicity #6997]: #4244 -#4246 := [trans #4245 #4247]: #4248 -#4236 := [monotonicity #4246]: #4235 -#4238 := [trans #4236 #4237]: #4235 -#4249 := [quant-inst #65]: #4233 -#4231 := [mp #4249 #4238]: #4232 -#4241 := [unit-resolution #4231 #3742 #4240]: false -#4239 := [lemma #4241]: #81 -#4123 := (or #946 #4120) -#3042 := (forall (vars (?v1 S2)) #3031) -#3049 := (not #3042) -#3027 := (forall (vars (?v0 S2) (?v1 S2)) #3022) -#3048 := (not #3027) -#3050 := (or #3048 #2124 #2129 #3049) -#3051 := (not #3050) -#3056 := (or #3005 #3051) -#3063 := (not #3056) -#2982 := (forall (vars (?v0 S2) (?v1 S2)) #2977) -#3062 := (not #2982) -#3064 := (or #3062 #3063) -#3065 := (not #3064) -#3070 := (or #2959 #3065) -#3076 := (not #3070) -#3077 := (or #1271 #3076) -#3078 := (not #3077) -#3083 := (or #2052 #3078) -#3089 := (not #3083) -#3090 := (or #713 #3089) -#3091 := (not #3090) -#3096 := (or #713 #3091) -#3102 := (not #3096) -#3103 := (or #736 #3102) -#3104 := (not #3103) -#3109 := (or #2032 #3104) -#3115 := (not #3109) -#3116 := (or #1262 #3115) -#3117 := (not #3116) -#3122 := (or #2012 #3117) -#3130 := (not #3122) -#2936 := (forall (vars (?v0 S2)) #2933) -#3129 := (not #2936) -#2930 := (forall (vars (?v0 S2)) #2925) -#3128 := (not #2930) -#3131 := (or #1963 #1968 #188 #1411 #1407 #778 #3128 #3129 #3130) -#3132 := (not #3131) -#2870 := (forall (vars (?v0 S2) (?v1 S2)) #2865) -#2876 := (not #2870) -#2877 := (or #2876 #169) -#2878 := (not #2877) -#2883 := (or #2848 #2878) -#2890 := (not #2883) -#2826 := (forall (vars (?v0 S2)) #2821) -#2889 := (not #2826) -#2891 := (or #2889 #2890) -#2892 := (not #2891) -#2789 := (forall (vars (?v1 S2)) #2778) -#2795 := (not #2789) -#2796 := (or #1841 #1846 #2795) -#2797 := (not #2796) -#2897 := (or #2797 #2892) -#2904 := (not #2897) -#2774 := (forall (vars (?v0 S2)) #2763) -#2903 := (not #2774) -#2905 := (or #2903 #549 #540 #531 #522 #2904) -#2906 := (not #2905) -#3137 := (or #2906 #3132) -#3147 := (not #3137) -#2760 := (forall (vars (?v0 S2)) #2755) -#3146 := (not #2760) -#2732 := (forall (vars (?v0 S2) (?v1 S2)) #2727) -#3145 := (not #2732) -#2710 := (forall (vars (?v0 S2) (?v1 S2)) #2705) -#3144 := (not #2710) -#2687 := (forall (vars (?v0 S2)) #2682) -#3143 := (not #2687) -#3148 := (or #3143 #878 #1489 #3144 #3145 #3146 #3147) -#3149 := (not #3148) -#2649 := (forall (vars (?v1 S2)) #2638) -#2655 := (not #2649) -#2656 := (or #1703 #1708 #2655) -#2657 := (not #2656) -#3154 := (or #2657 #3149) -#3161 := (not #3154) -#2634 := (forall (vars (?v0 S2) (?v1 S2)) #2629) -#3160 := (not #2634) -#3162 := (or #3160 #3161) -#3163 := (not #3162) -#3168 := (or #2612 #3163) -#3175 := (not #3168) -#2589 := (forall (vars (?v0 S2) (?v1 S2)) #2584) -#3174 := (not #2589) -#3176 := (or #3174 #3175) -#3177 := (not #3176) -#3182 := (or #1634 #3177) -#3188 := (not #3182) -#3189 := (or #1009 #3188) -#3190 := (not #3189) -#3195 := (or #1631 #3190) -#3201 := (not #3195) -#3202 := (or #946 #3201) -#3203 := (not #3202) -#3208 := (or #946 #3203) -#4124 := (iff #3208 #4123) -#4121 := (iff #3203 #4120) -#4118 := (iff #3202 #4117) -#4115 := (iff #3201 #4114) -#4112 := (iff #3195 #4111) -#4109 := (iff #3190 #4108) -#4106 := (iff #3189 #4105) -#4103 := (iff #3188 #4102) -#4100 := (iff #3182 #4099) -#4097 := (iff #3177 #4096) -#4094 := (iff #3176 #4093) -#4091 := (iff #3175 #4090) -#4088 := (iff #3168 #4087) -#4085 := (iff #3163 #4084) -#4082 := (iff #3162 #4081) -#4079 := (iff #3161 #4078) -#4076 := (iff #3154 #4075) -#4073 := (iff #3149 #4072) -#4070 := (iff #3148 #4069) -#4067 := (iff #3147 #4066) -#4064 := (iff #3137 #4063) -#4061 := (iff #3132 #4060) -#4058 := (iff #3131 #4057) -#4055 := (iff #3130 #4054) -#4052 := (iff #3122 #4051) -#4049 := (iff #3117 #4048) -#4046 := (iff #3116 #4045) -#4043 := (iff #3115 #4042) -#4040 := (iff #3109 #4039) -#4037 := (iff #3104 #4036) -#4034 := (iff #3103 #4033) -#4031 := (iff #3102 #4030) -#4028 := (iff #3096 #4027) -#4025 := (iff #3091 #4024) -#4022 := (iff #3090 #4021) -#4019 := (iff #3089 #4018) -#4016 := (iff #3083 #4015) -#4013 := (iff #3078 #4012) -#4010 := (iff #3077 #4009) -#4007 := (iff #3076 #4006) -#4004 := (iff #3070 #4003) -#4001 := (iff #3065 #4000) -#3998 := (iff #3064 #3997) -#3995 := (iff #3063 #3994) -#3992 := (iff #3056 #3991) -#3989 := (iff #3051 #3988) -#3986 := (iff #3050 #3985) -#3983 := (iff #3049 #3982) -#3980 := (iff #3042 #3977) -#3978 := (iff #3031 #3031) -#3979 := [refl]: #3978 -#3981 := [quant-intro #3979]: #3980 -#3984 := [monotonicity #3981]: #3983 -#3975 := (iff #3048 #3974) -#3972 := (iff #3027 #3969) -#3970 := (iff #3022 #3022) -#3971 := [refl]: #3970 -#3973 := [quant-intro #3971]: #3972 -#3976 := [monotonicity #3973]: #3975 -#3987 := [monotonicity #3976 #3984]: #3986 -#3990 := [monotonicity #3987]: #3989 -#3993 := [monotonicity #3990]: #3992 -#3996 := [monotonicity #3993]: #3995 -#3967 := (iff #3062 #3966) -#3964 := (iff #2982 #3961) -#3962 := (iff #2977 #2977) -#3963 := [refl]: #3962 -#3965 := [quant-intro #3963]: #3964 -#3968 := [monotonicity #3965]: #3967 -#3999 := [monotonicity #3968 #3996]: #3998 -#4002 := [monotonicity #3999]: #4001 -#4005 := [monotonicity #4002]: #4004 -#4008 := [monotonicity #4005]: #4007 -#3958 := (iff #1271 #3957) -#3955 := (iff #1268 #3952) -#3953 := (iff #1265 #1265) -#3954 := [refl]: #3953 -#3956 := [quant-intro #3954]: #3955 -#3959 := [monotonicity #3956]: #3958 -#4011 := [monotonicity #3959 #4008]: #4010 -#4014 := [monotonicity #4011]: #4013 -#4017 := [monotonicity #4014]: #4016 -#4020 := [monotonicity #4017]: #4019 -#4023 := [monotonicity #4020]: #4022 -#4026 := [monotonicity #4023]: #4025 -#4029 := [monotonicity #4026]: #4028 -#4032 := [monotonicity #4029]: #4031 -#3950 := (iff #736 #3949) -#3947 := (iff #606 #3944) -#3945 := (iff #603 #603) -#3946 := [refl]: #3945 -#3948 := [quant-intro #3946]: #3947 -#3951 := [monotonicity #3948]: #3950 -#4035 := [monotonicity #3951 #4032]: #4034 -#4038 := [monotonicity #4035]: #4037 -#4041 := [monotonicity #4038]: #4040 -#4044 := [monotonicity #4041]: #4043 -#3941 := (iff #1262 #3940) -#3938 := (iff #1259 #3935) -#3936 := (iff #1254 #1254) -#3937 := [refl]: #3936 -#3939 := [quant-intro #3937]: #3938 -#3942 := [monotonicity #3939]: #3941 -#4047 := [monotonicity #3942 #4044]: #4046 -#4050 := [monotonicity #4047]: #4049 -#4053 := [monotonicity #4050]: #4052 -#4056 := [monotonicity #4053]: #4055 -#3933 := (iff #3129 #3932) -#3930 := (iff #2936 #3927) -#3928 := (iff #2933 #2933) -#3929 := [refl]: #3928 -#3931 := [quant-intro #3929]: #3930 -#3934 := [monotonicity #3931]: #3933 -#3925 := (iff #3128 #3924) -#3922 := (iff #2930 #3919) -#3920 := (iff #2925 #2925) -#3921 := [refl]: #3920 -#3923 := [quant-intro #3921]: #3922 -#3926 := [monotonicity #3923]: #3925 -#3915 := (iff #1407 #3914) -#3912 := (iff #1404 #3909) -#3910 := (iff #1401 #1401) -#3911 := [refl]: #3910 -#3913 := [quant-intro #3911]: #3912 -#3916 := [monotonicity #3913]: #3915 -#4059 := [monotonicity #3916 #3926 #3934 #4056]: #4058 -#4062 := [monotonicity #4059]: #4061 -#3907 := (iff #2906 #3906) -#3904 := (iff #2905 #3903) -#3901 := (iff #2904 #3900) -#3898 := (iff #2897 #3897) -#3895 := (iff #2892 #3894) -#3892 := (iff #2891 #3891) -#3889 := (iff #2890 #3888) -#3886 := (iff #2883 #3885) -#3883 := (iff #2878 #3882) -#3880 := (iff #2877 #3879) -#3877 := (iff #2876 #3876) -#3874 := (iff #2870 #3871) -#3872 := (iff #2865 #2865) -#3873 := [refl]: #3872 -#3875 := [quant-intro #3873]: #3874 -#3878 := [monotonicity #3875]: #3877 -#3881 := [monotonicity #3878]: #3880 -#3884 := [monotonicity #3881]: #3883 -#3887 := [monotonicity #3884]: #3886 -#3890 := [monotonicity #3887]: #3889 -#3869 := (iff #2889 #3868) -#3866 := (iff #2826 #3863) -#3864 := (iff #2821 #2821) -#3865 := [refl]: #3864 -#3867 := [quant-intro #3865]: #3866 -#3870 := [monotonicity #3867]: #3869 -#3893 := [monotonicity #3870 #3890]: #3892 -#3896 := [monotonicity #3893]: #3895 -#3861 := (iff #2797 #3860) -#3858 := (iff #2796 #3857) -#3855 := (iff #2795 #3854) -#3852 := (iff #2789 #3849) -#3850 := (iff #2778 #2778) -#3851 := [refl]: #3850 -#3853 := [quant-intro #3851]: #3852 -#3856 := [monotonicity #3853]: #3855 -#3859 := [monotonicity #3856]: #3858 -#3862 := [monotonicity #3859]: #3861 -#3899 := [monotonicity #3862 #3896]: #3898 -#3902 := [monotonicity #3899]: #3901 -#3846 := (iff #2903 #3845) -#3843 := (iff #2774 #3840) -#3841 := (iff #2763 #2763) -#3842 := [refl]: #3841 -#3844 := [quant-intro #3842]: #3843 -#3847 := [monotonicity #3844]: #3846 -#3905 := [monotonicity #3847 #3902]: #3904 -#3908 := [monotonicity #3905]: #3907 -#4065 := [monotonicity #3908 #4062]: #4064 -#4068 := [monotonicity #4065]: #4067 -#3837 := (iff #3146 #3836) -#3834 := (iff #2760 #3831) -#3832 := (iff #2755 #2755) -#3833 := [refl]: #3832 -#3835 := [quant-intro #3833]: #3834 -#3838 := [monotonicity #3835]: #3837 -#3829 := (iff #3145 #3828) -#3826 := (iff #2732 #3823) -#3824 := (iff #2727 #2727) -#3825 := [refl]: #3824 -#3827 := [quant-intro #3825]: #3826 -#3830 := [monotonicity #3827]: #3829 -#3821 := (iff #3144 #3820) -#3818 := (iff #2710 #3815) -#3816 := (iff #2705 #2705) -#3817 := [refl]: #3816 -#3819 := [quant-intro #3817]: #3818 -#3822 := [monotonicity #3819]: #3821 -#3812 := (iff #1489 #3811) -#3809 := (iff #1486 #3806) -#3807 := (iff #1483 #1483) -#3808 := [refl]: #3807 -#3810 := [quant-intro #3808]: #3809 -#3813 := [monotonicity #3810]: #3812 -#3803 := (iff #3143 #3802) -#3800 := (iff #2687 #3797) -#3798 := (iff #2682 #2682) -#3799 := [refl]: #3798 -#3801 := [quant-intro #3799]: #3800 -#3804 := [monotonicity #3801]: #3803 -#4071 := [monotonicity #3804 #3813 #3822 #3830 #3838 #4068]: #4070 -#4074 := [monotonicity #4071]: #4073 -#3795 := (iff #2657 #3794) -#3792 := (iff #2656 #3791) -#3789 := (iff #2655 #3788) -#3786 := (iff #2649 #3783) -#3784 := (iff #2638 #2638) -#3785 := [refl]: #3784 -#3787 := [quant-intro #3785]: #3786 -#3790 := [monotonicity #3787]: #3789 -#3793 := [monotonicity #3790]: #3792 -#3796 := [monotonicity #3793]: #3795 -#4077 := [monotonicity #3796 #4074]: #4076 -#4080 := [monotonicity #4077]: #4079 -#3780 := (iff #3160 #3779) -#3777 := (iff #2634 #3774) -#3775 := (iff #2629 #2629) -#3776 := [refl]: #3775 -#3778 := [quant-intro #3776]: #3777 -#3781 := [monotonicity #3778]: #3780 -#4083 := [monotonicity #3781 #4080]: #4082 -#4086 := [monotonicity #4083]: #4085 -#4089 := [monotonicity #4086]: #4088 -#4092 := [monotonicity #4089]: #4091 -#3771 := (iff #3174 #3770) -#3768 := (iff #2589 #3765) -#3766 := (iff #2584 #2584) -#3767 := [refl]: #3766 -#3769 := [quant-intro #3767]: #3768 -#3772 := [monotonicity #3769]: #3771 -#4095 := [monotonicity #3772 #4092]: #4094 -#4098 := [monotonicity #4095]: #4097 -#4101 := [monotonicity #4098]: #4100 -#4104 := [monotonicity #4101]: #4103 -#3762 := (iff #1009 #3761) -#3759 := (iff #1006 #3756) -#3757 := (iff #1005 #1005) -#3758 := [refl]: #3757 -#3760 := [quant-intro #3758]: #3759 -#3763 := [monotonicity #3760]: #3762 -#4107 := [monotonicity #3763 #4104]: #4106 -#4110 := [monotonicity #4107]: #4109 -#4113 := [monotonicity #4110]: #4112 -#4116 := [monotonicity #4113]: #4115 -#4119 := [monotonicity #4116]: #4118 -#4122 := [monotonicity #4119]: #4121 -#4125 := [monotonicity #4122]: #4124 -#2135 := (not #2134) -#2479 := (and #2135 #218 #2476) -#2482 := (not #2479) -#2485 := (forall (vars (?v1 S2)) #2482) -#2130 := (not #2129) -#2125 := (not #2124) -#2494 := (and #1301 #2125 #2130 #2485) -#2101 := (not #2100) -#2102 := (and #2094 #2101) -#2103 := (not #2102) -#2110 := (or #2103 #2109) -#2111 := (not #2110) -#2499 := (or #2111 #2494) -#2502 := (and #1282 #2499) -#2068 := (not #2067) -#2071 := (and #2068 #2070) -#2072 := (not #2071) -#2078 := (or #2072 #2077) -#2079 := (not #2078) -#2505 := (or #2079 #2502) -#2508 := (and #1268 #2505) -#2511 := (or #2052 #2508) -#2514 := (and #222 #2511) -#2517 := (or #713 #2514) -#2520 := (and #606 #2517) -#2523 := (or #2032 #2520) -#2526 := (and #1259 #2523) -#2529 := (or #2012 #2526) -#1969 := (not #1968) -#1964 := (not #1963) -#2535 := (and #1964 #1969 #189 #1412 #1404 #199 #1391 #1248 #2529) -#1938 := (not #169) -#1941 := (and #1185 #1938) -#1917 := (not #1916) -#1910 := (not #1909) -#1918 := (and #1910 #1917) -#1919 := (not #1918) -#2448 := (or #1919 #2445) -#2451 := (not #2448) -#2454 := (or #2451 #1941) -#2414 := (not #2409) -#2432 := (and #2414 #2427) -#2435 := (or #1145 #2432) -#2438 := (forall (vars (?v0 S2)) #2435) -#2457 := (and #2438 #2454) -#1852 := (not #1851) -#2384 := (and #1852 #2381) -#2387 := (not #2384) -#2390 := (forall (vars (?v1 S2)) #2387) -#1847 := (not #1846) -#1842 := (not #1841) -#2396 := (and #1842 #1847 #2390) -#2460 := (or #2396 #2457) -#1822 := (not #1203) -#1825 := (forall (vars (?v0 S2)) #1822) -#2463 := (and #1825 #144 #147 #149 #152 #2460) -#2540 := (or #2463 #2535) -#2340 := (not #2335) -#2358 := (and #2340 #1802 #2353) -#2361 := (or #1100 #2358) -#2364 := (forall (vars (?v0 S2)) #2361) -#2298 := (not #2293) -#2316 := (and #2298 #1749 #2311) -#2319 := (or #1062 #2316) -#2322 := (forall (vars (?v0 S2)) #2319) -#2543 := (and #2322 #111 #1486 #1477 #1466 #2364 #2540) -#1714 := (not #1713) -#1720 := (and #1714 #77 #1719) -#1729 := (not #1720) -#1732 := (forall (vars (?v1 S2)) #1729) -#2280 := (and #1704 #1709 #1732) -#2546 := (or #2280 #2543) -#2549 := (and #1047 #2546) -#1680 := (not #1679) -#1681 := (and #1673 #1680) -#1682 := (not #1681) -#2269 := (or #1682 #2266) -#2272 := (not #2269) -#2552 := (or #2272 #2549) -#2555 := (and #1021 #2552) -#1647 := (not #1646) -#1650 := (and #1647 #1649) -#1651 := (not #1650) -#1657 := (or #1651 #1656) -#1658 := (not #1657) -#2558 := (or #1658 #2555) -#2561 := (and #1006 #2558) -#2564 := (or #1631 #2561) -#2567 := (and #81 #2564) -#2570 := (or #946 #2567) -#3209 := (iff #2570 #3208) -#3206 := (iff #2567 #3203) -#3198 := (and #81 #3195) -#3204 := (iff #3198 #3203) -#3205 := [rewrite]: #3204 -#3199 := (iff #2567 #3198) -#3196 := (iff #2564 #3195) -#3193 := (iff #2561 #3190) -#3185 := (and #1006 #3182) -#3191 := (iff #3185 #3190) -#3192 := [rewrite]: #3191 -#3186 := (iff #2561 #3185) -#3183 := (iff #2558 #3182) -#3180 := (iff #2555 #3177) -#3171 := (and #2589 #3168) -#3178 := (iff #3171 #3177) -#3179 := [rewrite]: #3178 -#3172 := (iff #2555 #3171) -#3169 := (iff #2552 #3168) -#3166 := (iff #2549 #3163) -#3157 := (and #2634 #3154) -#3164 := (iff #3157 #3163) -#3165 := [rewrite]: #3164 -#3158 := (iff #2549 #3157) -#3155 := (iff #2546 #3154) -#3152 := (iff #2543 #3149) -#3140 := (and #2687 #111 #1486 #2710 #2732 #2760 #3137) -#3150 := (iff #3140 #3149) -#3151 := [rewrite]: #3150 -#3141 := (iff #2543 #3140) -#3138 := (iff #2540 #3137) -#3135 := (iff #2535 #3132) -#3125 := (and #1964 #1969 #189 #1412 #1404 #199 #2930 #2936 #3122) -#3133 := (iff #3125 #3132) -#3134 := [rewrite]: #3133 -#3126 := (iff #2535 #3125) -#3123 := (iff #2529 #3122) -#3120 := (iff #2526 #3117) -#3112 := (and #1259 #3109) -#3118 := (iff #3112 #3117) -#3119 := [rewrite]: #3118 -#3113 := (iff #2526 #3112) -#3110 := (iff #2523 #3109) -#3107 := (iff #2520 #3104) -#3099 := (and #606 #3096) -#3105 := (iff #3099 #3104) -#3106 := [rewrite]: #3105 -#3100 := (iff #2520 #3099) -#3097 := (iff #2517 #3096) -#3094 := (iff #2514 #3091) -#3086 := (and #222 #3083) -#3092 := (iff #3086 #3091) -#3093 := [rewrite]: #3092 -#3087 := (iff #2514 #3086) -#3084 := (iff #2511 #3083) -#3081 := (iff #2508 #3078) -#3073 := (and #1268 #3070) -#3079 := (iff #3073 #3078) -#3080 := [rewrite]: #3079 -#3074 := (iff #2508 #3073) -#3071 := (iff #2505 #3070) -#3068 := (iff #2502 #3065) -#3059 := (and #2982 #3056) -#3066 := (iff #3059 #3065) -#3067 := [rewrite]: #3066 -#3060 := (iff #2502 #3059) -#3057 := (iff #2499 #3056) -#3054 := (iff #2494 #3051) -#3045 := (and #3027 #2125 #2130 #3042) -#3052 := (iff #3045 #3051) -#3053 := [rewrite]: #3052 -#3046 := (iff #2494 #3045) -#3043 := (iff #2485 #3042) -#3040 := (iff #2482 #3031) -#3032 := (not #3031) -#3035 := (not #3032) -#3038 := (iff #3035 #3031) -#3039 := [rewrite]: #3038 -#3036 := (iff #2482 #3035) -#3033 := (iff #2479 #3032) -#3034 := [rewrite]: #3033 -#3037 := [monotonicity #3034]: #3036 -#3041 := [trans #3037 #3039]: #3040 -#3044 := [quant-intro #3041]: #3043 -#3028 := (iff #1301 #3027) -#3025 := (iff #1298 #3022) -#3008 := (or #225 #1029) -#3019 := (or #3008 #1294) -#3023 := (iff #3019 #3022) -#3024 := [rewrite]: #3023 -#3020 := (iff #1298 #3019) -#3017 := (iff #1291 #3008) -#3009 := (not #3008) -#3012 := (not #3009) -#3015 := (iff #3012 #3008) -#3016 := [rewrite]: #3015 -#3013 := (iff #1291 #3012) -#3010 := (iff #1288 #3009) -#3011 := [rewrite]: #3010 -#3014 := [monotonicity #3011]: #3013 -#3018 := [trans #3014 #3016]: #3017 -#3021 := [monotonicity #3018]: #3020 -#3026 := [trans #3021 #3024]: #3025 -#3029 := [quant-intro #3026]: #3028 -#3047 := [monotonicity #3029 #3044]: #3046 -#3055 := [trans #3047 #3053]: #3054 -#3006 := (iff #2111 #3005) -#3003 := (iff #2110 #3000) -#2986 := (or #2985 #2100) -#2997 := (or #2986 #2109) -#3001 := (iff #2997 #3000) -#3002 := [rewrite]: #3001 -#2998 := (iff #2110 #2997) -#2995 := (iff #2103 #2986) -#2987 := (not #2986) -#2990 := (not #2987) -#2993 := (iff #2990 #2986) -#2994 := [rewrite]: #2993 -#2991 := (iff #2103 #2990) -#2988 := (iff #2102 #2987) -#2989 := [rewrite]: #2988 -#2992 := [monotonicity #2989]: #2991 -#2996 := [trans #2992 #2994]: #2995 -#2999 := [monotonicity #2996]: #2998 -#3004 := [trans #2999 #3002]: #3003 -#3007 := [monotonicity #3004]: #3006 -#3058 := [monotonicity #3007 #3055]: #3057 -#2983 := (iff #1282 #2982) -#2980 := (iff #1279 #2977) -#2963 := (or #218 #2962) -#2974 := (or #2963 #1274) -#2978 := (iff #2974 #2977) -#2979 := [rewrite]: #2978 -#2975 := (iff #1279 #2974) -#2972 := (iff #609 #2963) -#2964 := (not #2963) -#2967 := (not #2964) -#2970 := (iff #2967 #2963) -#2971 := [rewrite]: #2970 -#2968 := (iff #609 #2967) -#2965 := (iff #228 #2964) -#2966 := [rewrite]: #2965 -#2969 := [monotonicity #2966]: #2968 -#2973 := [trans #2969 #2971]: #2972 -#2976 := [monotonicity #2973]: #2975 -#2981 := [trans #2976 #2979]: #2980 -#2984 := [quant-intro #2981]: #2983 -#3061 := [monotonicity #2984 #3058]: #3060 -#3069 := [trans #3061 #3067]: #3068 -#2960 := (iff #2079 #2959) -#2957 := (iff #2078 #2954) -#2940 := (or #2067 #2939) -#2951 := (or #2940 #2077) -#2955 := (iff #2951 #2954) -#2956 := [rewrite]: #2955 -#2952 := (iff #2078 #2951) -#2949 := (iff #2072 #2940) -#2941 := (not #2940) -#2944 := (not #2941) -#2947 := (iff #2944 #2940) -#2948 := [rewrite]: #2947 -#2945 := (iff #2072 #2944) -#2942 := (iff #2071 #2941) -#2943 := [rewrite]: #2942 -#2946 := [monotonicity #2943]: #2945 -#2950 := [trans #2946 #2948]: #2949 -#2953 := [monotonicity #2950]: #2952 -#2958 := [trans #2953 #2956]: #2957 -#2961 := [monotonicity #2958]: #2960 -#3072 := [monotonicity #2961 #3069]: #3071 -#3075 := [monotonicity #3072]: #3074 -#3082 := [trans #3075 #3080]: #3081 -#3085 := [monotonicity #3082]: #3084 -#3088 := [monotonicity #3085]: #3087 -#3095 := [trans #3088 #3093]: #3094 -#3098 := [monotonicity #3095]: #3097 -#3101 := [monotonicity #3098]: #3100 -#3108 := [trans #3101 #3106]: #3107 -#3111 := [monotonicity #3108]: #3110 -#3114 := [monotonicity #3111]: #3113 -#3121 := [trans #3114 #3119]: #3120 -#3124 := [monotonicity #3121]: #3123 -#2937 := (iff #1248 #2936) -#2934 := (iff #1245 #2933) -#2913 := (iff #1242 #2912) -#2914 := [rewrite]: #2913 -#2935 := [monotonicity #2914]: #2934 -#2938 := [quant-intro #2935]: #2937 -#2931 := (iff #1391 #2930) -#2928 := (iff #1388 #2925) -#2922 := (or #2911 #1383) -#2926 := (iff #2922 #2925) -#2927 := [rewrite]: #2926 -#2923 := (iff #1388 #2922) -#2920 := (iff #1380 #2911) -#2915 := (not #2912) -#2918 := (iff #2915 #2911) -#2919 := [rewrite]: #2918 -#2916 := (iff #1380 #2915) -#2917 := [monotonicity #2914]: #2916 -#2921 := [trans #2917 #2919]: #2920 -#2924 := [monotonicity #2921]: #2923 -#2929 := [trans #2924 #2927]: #2928 -#2932 := [quant-intro #2929]: #2931 -#3127 := [monotonicity #2932 #2938 #3124]: #3126 -#3136 := [trans #3127 #3134]: #3135 -#2909 := (iff #2463 #2906) -#2900 := (and #2774 #144 #147 #149 #152 #2897) -#2907 := (iff #2900 #2906) -#2908 := [rewrite]: #2907 -#2901 := (iff #2463 #2900) -#2898 := (iff #2460 #2897) -#2895 := (iff #2457 #2892) -#2886 := (and #2826 #2883) -#2893 := (iff #2886 #2892) -#2894 := [rewrite]: #2893 -#2887 := (iff #2457 #2886) -#2884 := (iff #2454 #2883) -#2881 := (iff #1941 #2878) -#2873 := (and #2870 #1938) -#2879 := (iff #2873 #2878) -#2880 := [rewrite]: #2879 -#2874 := (iff #1941 #2873) -#2871 := (iff #1185 #2870) -#2868 := (iff #1182 #2865) -#2851 := (or #1138 #1029) -#2862 := (or #2851 #1179) -#2866 := (iff #2862 #2865) -#2867 := [rewrite]: #2866 -#2863 := (iff #1182 #2862) -#2860 := (iff #1176 #2851) -#2852 := (not #2851) -#2855 := (not #2852) -#2858 := (iff #2855 #2851) -#2859 := [rewrite]: #2858 -#2856 := (iff #1176 #2855) -#2853 := (iff #1173 #2852) -#2854 := [rewrite]: #2853 -#2857 := [monotonicity #2854]: #2856 -#2861 := [trans #2857 #2859]: #2860 -#2864 := [monotonicity #2861]: #2863 -#2869 := [trans #2864 #2867]: #2868 -#2872 := [quant-intro #2869]: #2871 -#2875 := [monotonicity #2872]: #2874 -#2882 := [trans #2875 #2880]: #2881 -#2849 := (iff #2451 #2848) -#2846 := (iff #2448 #2843) -#2829 := (or #1909 #1916) -#2840 := (or #2829 #2445) -#2844 := (iff #2840 #2843) -#2845 := [rewrite]: #2844 -#2841 := (iff #2448 #2840) -#2838 := (iff #1919 #2829) -#2830 := (not #2829) -#2833 := (not #2830) -#2836 := (iff #2833 #2829) -#2837 := [rewrite]: #2836 -#2834 := (iff #1919 #2833) -#2831 := (iff #1918 #2830) -#2832 := [rewrite]: #2831 -#2835 := [monotonicity #2832]: #2834 -#2839 := [trans #2835 #2837]: #2838 -#2842 := [monotonicity #2839]: #2841 -#2847 := [trans #2842 #2845]: #2846 -#2850 := [monotonicity #2847]: #2849 -#2885 := [monotonicity #2850 #2882]: #2884 -#2827 := (iff #2438 #2826) -#2824 := (iff #2435 #2821) -#2802 := (or #66 #1138) -#2818 := (or #2802 #2815) -#2822 := (iff #2818 #2821) -#2823 := [rewrite]: #2822 -#2819 := (iff #2435 #2818) -#2816 := (iff #2432 #2815) -#2817 := [rewrite]: #2816 -#2811 := (iff #1145 #2802) -#2803 := (not #2802) -#2806 := (not #2803) -#2809 := (iff #2806 #2802) -#2810 := [rewrite]: #2809 -#2807 := (iff #1145 #2806) -#2804 := (iff #1142 #2803) -#2805 := [rewrite]: #2804 -#2808 := [monotonicity #2805]: #2807 -#2812 := [trans #2808 #2810]: #2811 -#2820 := [monotonicity #2812 #2817]: #2819 -#2825 := [trans #2820 #2823]: #2824 -#2828 := [quant-intro #2825]: #2827 -#2888 := [monotonicity #2828 #2885]: #2887 -#2896 := [trans #2888 #2894]: #2895 -#2800 := (iff #2396 #2797) -#2792 := (and #1842 #1847 #2789) -#2798 := (iff #2792 #2797) -#2799 := [rewrite]: #2798 -#2793 := (iff #2396 #2792) -#2790 := (iff #2390 #2789) -#2787 := (iff #2387 #2778) -#2779 := (not #2778) -#2782 := (not #2779) -#2785 := (iff #2782 #2778) -#2786 := [rewrite]: #2785 -#2783 := (iff #2387 #2782) -#2780 := (iff #2384 #2779) -#2781 := [rewrite]: #2780 -#2784 := [monotonicity #2781]: #2783 -#2788 := [trans #2784 #2786]: #2787 -#2791 := [quant-intro #2788]: #2790 -#2794 := [monotonicity #2791]: #2793 -#2801 := [trans #2794 #2799]: #2800 -#2899 := [monotonicity #2801 #2896]: #2898 -#2775 := (iff #1825 #2774) -#2772 := (iff #1822 #2763) -#2764 := (not #2763) -#2767 := (not #2764) -#2770 := (iff #2767 #2763) -#2771 := [rewrite]: #2770 -#2768 := (iff #1822 #2767) -#2765 := (iff #1203 #2764) -#2766 := [rewrite]: #2765 -#2769 := [monotonicity #2766]: #2768 -#2773 := [trans #2769 #2771]: #2772 -#2776 := [quant-intro #2773]: #2775 -#2902 := [monotonicity #2776 #2899]: #2901 -#2910 := [trans #2902 #2908]: #2909 -#3139 := [monotonicity #2910 #3136]: #3138 -#2761 := (iff #2364 #2760) -#2758 := (iff #2361 #2755) -#2735 := (or #66 #1093) -#2752 := (or #2735 #2749) -#2756 := (iff #2752 #2755) -#2757 := [rewrite]: #2756 -#2753 := (iff #2361 #2752) -#2750 := (iff #2358 #2749) -#2751 := [rewrite]: #2750 -#2744 := (iff #1100 #2735) -#2736 := (not #2735) -#2739 := (not #2736) -#2742 := (iff #2739 #2735) -#2743 := [rewrite]: #2742 -#2740 := (iff #1100 #2739) -#2737 := (iff #1097 #2736) -#2738 := [rewrite]: #2737 -#2741 := [monotonicity #2738]: #2740 -#2745 := [trans #2741 #2743]: #2744 -#2754 := [monotonicity #2745 #2751]: #2753 -#2759 := [trans #2754 #2757]: #2758 -#2762 := [quant-intro #2759]: #2761 -#2733 := (iff #1466 #2732) -#2730 := (iff #1463 #2727) -#2713 := (or #118 #1029) -#2724 := (or #2713 #1460) -#2728 := (iff #2724 #2727) -#2729 := [rewrite]: #2728 -#2725 := (iff #1463 #2724) -#2722 := (iff #1457 #2713) -#2714 := (not #2713) -#2717 := (not #2714) -#2720 := (iff #2717 #2713) -#2721 := [rewrite]: #2720 -#2718 := (iff #1457 #2717) -#2715 := (iff #1454 #2714) -#2716 := [rewrite]: #2715 -#2719 := [monotonicity #2716]: #2718 -#2723 := [trans #2719 #2721]: #2722 -#2726 := [monotonicity #2723]: #2725 -#2731 := [trans #2726 #2729]: #2730 -#2734 := [quant-intro #2731]: #2733 -#2711 := (iff #1477 #2710) -#2708 := (iff #1474 #2705) -#2691 := (or #117 #2690) -#2702 := (or #2691 #1109) -#2706 := (iff #2702 #2705) -#2707 := [rewrite]: #2706 -#2703 := (iff #1474 #2702) -#2700 := (iff #391 #2691) -#2692 := (not #2691) -#2695 := (not #2692) -#2698 := (iff #2695 #2691) -#2699 := [rewrite]: #2698 -#2696 := (iff #391 #2695) -#2693 := (iff #121 #2692) -#2694 := [rewrite]: #2693 -#2697 := [monotonicity #2694]: #2696 -#2701 := [trans #2697 #2699]: #2700 -#2704 := [monotonicity #2701]: #2703 -#2709 := [trans #2704 #2707]: #2708 -#2712 := [quant-intro #2709]: #2711 -#2688 := (iff #2322 #2687) -#2685 := (iff #2319 #2682) -#2662 := (or #66 #1055) -#2679 := (or #2662 #2676) -#2683 := (iff #2679 #2682) -#2684 := [rewrite]: #2683 -#2680 := (iff #2319 #2679) -#2677 := (iff #2316 #2676) -#2678 := [rewrite]: #2677 -#2671 := (iff #1062 #2662) -#2663 := (not #2662) -#2666 := (not #2663) -#2669 := (iff #2666 #2662) -#2670 := [rewrite]: #2669 -#2667 := (iff #1062 #2666) -#2664 := (iff #1059 #2663) -#2665 := [rewrite]: #2664 -#2668 := [monotonicity #2665]: #2667 -#2672 := [trans #2668 #2670]: #2671 -#2681 := [monotonicity #2672 #2678]: #2680 -#2686 := [trans #2681 #2684]: #2685 -#2689 := [quant-intro #2686]: #2688 -#3142 := [monotonicity #2689 #2712 #2734 #2762 #3139]: #3141 -#3153 := [trans #3142 #3151]: #3152 -#2660 := (iff #2280 #2657) -#2652 := (and #1704 #1709 #2649) -#2658 := (iff #2652 #2657) -#2659 := [rewrite]: #2658 -#2653 := (iff #2280 #2652) -#2650 := (iff #1732 #2649) -#2647 := (iff #1729 #2638) -#2639 := (not #2638) -#2642 := (not #2639) -#2645 := (iff #2642 #2638) -#2646 := [rewrite]: #2645 -#2643 := (iff #1729 #2642) -#2640 := (iff #1720 #2639) -#2641 := [rewrite]: #2640 -#2644 := [monotonicity #2641]: #2643 -#2648 := [trans #2644 #2646]: #2647 -#2651 := [quant-intro #2648]: #2650 -#2654 := [monotonicity #2651]: #2653 -#2661 := [trans #2654 #2659]: #2660 -#3156 := [monotonicity #2661 #3153]: #3155 -#2635 := (iff #1047 #2634) -#2632 := (iff #1044 #2629) -#2615 := (or #78 #1029) -#2626 := (or #2615 #1040) -#2630 := (iff #2626 #2629) -#2631 := [rewrite]: #2630 -#2627 := (iff #1044 #2626) -#2624 := (iff #1036 #2615) -#2616 := (not #2615) -#2619 := (not #2616) -#2622 := (iff #2619 #2615) -#2623 := [rewrite]: #2622 -#2620 := (iff #1036 #2619) -#2617 := (iff #1033 #2616) -#2618 := [rewrite]: #2617 -#2621 := [monotonicity #2618]: #2620 -#2625 := [trans #2621 #2623]: #2624 -#2628 := [monotonicity #2625]: #2627 -#2633 := [trans #2628 #2631]: #2632 -#2636 := [quant-intro #2633]: #2635 -#3159 := [monotonicity #2636 #3156]: #3158 -#3167 := [trans #3159 #3165]: #3166 -#2613 := (iff #2272 #2612) -#2610 := (iff #2269 #2607) -#2593 := (or #2592 #1679) -#2604 := (or #2593 #2266) -#2608 := (iff #2604 #2607) -#2609 := [rewrite]: #2608 -#2605 := (iff #2269 #2604) -#2602 := (iff #1682 #2593) -#2594 := (not #2593) -#2597 := (not #2594) -#2600 := (iff #2597 #2593) -#2601 := [rewrite]: #2600 -#2598 := (iff #1682 #2597) -#2595 := (iff #1681 #2594) -#2596 := [rewrite]: #2595 -#2599 := [monotonicity #2596]: #2598 -#2603 := [trans #2599 #2601]: #2602 -#2606 := [monotonicity #2603]: #2605 -#2611 := [trans #2606 #2609]: #2610 -#2614 := [monotonicity #2611]: #2613 -#3170 := [monotonicity #2614 #3167]: #3169 -#2590 := (iff #1021 #2589) -#2587 := (iff #1018 #2584) -#1661 := (or #77 #1760) -#2581 := (or #1661 #1014) -#2585 := (iff #2581 #2584) -#2586 := [rewrite]: #2585 -#2582 := (iff #1018 #2581) -#2579 := (iff #370 #1661) -#1662 := (not #1661) -#2574 := (not #1662) -#2577 := (iff #2574 #1661) -#2578 := [rewrite]: #2577 -#2575 := (iff #370 #2574) -#2259 := (iff #86 #1662) -#2573 := [rewrite]: #2259 -#2576 := [monotonicity #2573]: #2575 -#2580 := [trans #2576 #2578]: #2579 -#2583 := [monotonicity #2580]: #2582 -#2588 := [trans #2583 #2586]: #2587 -#2591 := [quant-intro #2588]: #2590 -#3173 := [monotonicity #2591 #3170]: #3172 -#3181 := [trans #3173 #3179]: #3180 -#1635 := (iff #1658 #1634) -#1973 := (iff #1657 #2083) -#2036 := (or #1646 #2035) -#2114 := (or #2036 #1656) -#2015 := (iff #2114 #2083) -#2016 := [rewrite]: #2015 -#2115 := (iff #1657 #2114) -#1811 := (iff #1651 #2036) -#1893 := (not #2036) -#1694 := (not #1893) -#1929 := (iff #1694 #2036) -#1930 := [rewrite]: #1929 -#2055 := (iff #1651 #1694) -#1894 := (iff #1650 #1893) -#1693 := [rewrite]: #1894 -#2056 := [monotonicity #1693]: #2055 -#1812 := [trans #2056 #1930]: #1811 -#2082 := [monotonicity #1812]: #2115 -#1974 := [trans #2082 #2016]: #1973 -#1759 := [monotonicity #1974]: #1635 -#3184 := [monotonicity #1759 #3181]: #3183 -#3187 := [monotonicity #3184]: #3186 -#3194 := [trans #3187 #3192]: #3193 -#3197 := [monotonicity #3194]: #3196 -#3200 := [monotonicity #3197]: #3199 -#3207 := [trans #3200 #3205]: #3206 -#3210 := [monotonicity #3207]: #3209 -#2138 := (+ #2137 #2133) -#2139 := (= #2138 0::Int) -#2140 := (and #2135 #218 #2139) -#2150 := (not #2140) -#2153 := (forall (vars (?v1 S2)) #2150) -#2131 := (and #2125 #2130) -#2132 := (not #2131) -#2147 := (not #2132) -#2157 := (and #2147 #2153) -#2162 := (and #1301 #2157) -#2166 := (or #2111 #2162) -#2170 := (and #1282 #2166) -#2174 := (or #2079 #2170) -#2178 := (and #1268 #2174) -#2182 := (or #2052 #2178) -#2046 := (not #713) -#2186 := (and #2046 #2182) -#2190 := (or #713 #2186) -#2194 := (and #606 #2190) -#2198 := (or #2032 #2194) -#2202 := (and #1259 #2198) -#2206 := (or #2012 #2202) -#1989 := (not #778) -#1970 := (and #1964 #1969) -#2210 := (and #1970 #189 #1412 #1404 #1989 #1391 #1248 #2206) -#1922 := (+ #1906 #1921) -#1923 := (+ #1913 #1922) -#1924 := (>= #1923 0::Int) -#1925 := (or #1919 #1924) -#1926 := (not #1925) -#1945 := (or #1926 #1941) -#1882 := (+ #1881 #1136) -#1888 := (+ #1887 #1882) -#1889 := (= #1888 0::Int) -#1883 := (>= #1882 0::Int) -#1884 := (not #1883) -#1890 := (and #1884 #1889) -#1895 := (or #1145 #1890) -#1898 := (forall (vars (?v0 S2)) #1895) -#1949 := (and #1898 #1945) -#1855 := (+ #1854 #1850) -#1856 := (= #1855 0::Int) -#1857 := (and #1852 #1856) -#1866 := (not #1857) -#1869 := (forall (vars (?v1 S2)) #1866) -#1848 := (and #1842 #1847) -#1849 := (not #1848) -#1863 := (not #1849) -#1873 := (and #1863 #1869) -#1953 := (or #1873 #1949) -#1837 := (not #522) -#1834 := (not #531) -#1831 := (not #540) -#1828 := (not #549) -#1957 := (and #1825 #1828 #1831 #1834 #1837 #1953) -#2214 := (or #1957 #2210) -#1798 := (+ #1797 #1091) -#1806 := (+ #1805 #1798) -#1807 := (= #1806 0::Int) -#1799 := (>= #1798 0::Int) -#1800 := (not #1799) -#1808 := (and #1800 #1802 #1807) -#1813 := (or #1100 #1808) -#1816 := (forall (vars (?v0 S2)) #1813) -#1770 := (not #878) -#1753 := (+ #1053 #1752) -#1754 := (+ #1744 #1753) -#1755 := (= #1754 0::Int) -#1745 := (+ #1744 #1053) -#1746 := (>= #1745 0::Int) -#1747 := (not #1746) -#1756 := (and #1747 #1749 #1755) -#1761 := (or #1062 #1756) -#1764 := (forall (vars (?v0 S2)) #1761) -#2218 := (and #1764 #1770 #1486 #1477 #1466 #1816 #2214) -#1710 := (and #1704 #1709) -#1711 := (not #1710) -#1726 := (not #1711) -#1736 := (and #1726 #1732) -#2222 := (or #1736 #2218) -#2226 := (and #1047 #2222) -#1686 := (+ #1685 #1676) -#1687 := (+ #1683 #1686) -#1688 := (>= #1687 0::Int) -#1689 := (or #1682 #1688) -#1690 := (not #1689) -#2230 := (or #1690 #2226) -#2234 := (and #1021 #2230) -#2238 := (or #1658 #2234) -#2242 := (and #1006 #2238) -#2246 := (or #1631 #2242) -#1593 := (not #946) -#2250 := (and #1593 #2246) -#2254 := (or #946 #2250) -#2571 := (iff #2254 #2570) -#2568 := (iff #2250 #2567) -#2565 := (iff #2246 #2564) -#2562 := (iff #2242 #2561) -#2559 := (iff #2238 #2558) -#2556 := (iff #2234 #2555) -#2553 := (iff #2230 #2552) -#2550 := (iff #2226 #2549) -#2547 := (iff #2222 #2546) -#2544 := (iff #2218 #2543) -#2541 := (iff #2214 #2540) -#2538 := (iff #2210 #2535) -#2532 := (and #1970 #189 #1412 #1404 #199 #1391 #1248 #2529) -#2536 := (iff #2532 #2535) -#2537 := [rewrite]: #2536 -#2533 := (iff #2210 #2532) -#2530 := (iff #2206 #2529) -#2527 := (iff #2202 #2526) -#2524 := (iff #2198 #2523) -#2521 := (iff #2194 #2520) -#2518 := (iff #2190 #2517) -#2515 := (iff #2186 #2514) -#2512 := (iff #2182 #2511) -#2509 := (iff #2178 #2508) -#2506 := (iff #2174 #2505) -#2503 := (iff #2170 #2502) -#2500 := (iff #2166 #2499) -#2497 := (iff #2162 #2494) -#2488 := (and #2131 #2485) -#2491 := (and #1301 #2488) -#2495 := (iff #2491 #2494) -#2496 := [rewrite]: #2495 -#2492 := (iff #2162 #2491) -#2489 := (iff #2157 #2488) -#2486 := (iff #2153 #2485) -#2483 := (iff #2150 #2482) -#2480 := (iff #2140 #2479) -#2477 := (iff #2139 #2476) -#2474 := (= #2138 #2473) -#2475 := [rewrite]: #2474 -#2478 := [monotonicity #2475]: #2477 -#2481 := [monotonicity #2478]: #2480 -#2484 := [monotonicity #2481]: #2483 -#2487 := [quant-intro #2484]: #2486 -#2470 := (iff #2147 #2131) -#2471 := [rewrite]: #2470 -#2490 := [monotonicity #2471 #2487]: #2489 -#2493 := [monotonicity #2490]: #2492 -#2498 := [trans #2493 #2496]: #2497 -#2501 := [monotonicity #2498]: #2500 -#2504 := [monotonicity #2501]: #2503 -#2507 := [monotonicity #2504]: #2506 -#2510 := [monotonicity #2507]: #2509 -#2513 := [monotonicity #2510]: #2512 -#2468 := (iff #2046 #222) -#2469 := [rewrite]: #2468 -#2516 := [monotonicity #2469 #2513]: #2515 -#2519 := [monotonicity #2516]: #2518 -#2522 := [monotonicity #2519]: #2521 -#2525 := [monotonicity #2522]: #2524 -#2528 := [monotonicity #2525]: #2527 -#2531 := [monotonicity #2528]: #2530 -#2466 := (iff #1989 #199) -#2467 := [rewrite]: #2466 -#2534 := [monotonicity #2467 #2531]: #2533 -#2539 := [trans #2534 #2537]: #2538 -#2464 := (iff #1957 #2463) -#2461 := (iff #1953 #2460) -#2458 := (iff #1949 #2457) -#2455 := (iff #1945 #2454) -#2452 := (iff #1926 #2451) -#2449 := (iff #1925 #2448) -#2446 := (iff #1924 #2445) -#2443 := (= #1923 #2442) -#2444 := [rewrite]: #2443 -#2447 := [monotonicity #2444]: #2446 -#2450 := [monotonicity #2447]: #2449 -#2453 := [monotonicity #2450]: #2452 -#2456 := [monotonicity #2453]: #2455 -#2439 := (iff #1898 #2438) -#2436 := (iff #1895 #2435) -#2433 := (iff #1890 #2432) -#2430 := (iff #1889 #2427) -#2417 := (+ #1881 #1887) -#2418 := (+ #1136 #2417) -#2421 := (= #2418 0::Int) -#2428 := (iff #2421 #2427) -#2429 := [rewrite]: #2428 -#2422 := (iff #1889 #2421) -#2419 := (= #1888 #2418) -#2420 := [rewrite]: #2419 -#2423 := [monotonicity #2420]: #2422 -#2431 := [trans #2423 #2429]: #2430 -#2415 := (iff #1884 #2414) -#2412 := (iff #1883 #2409) -#2401 := (+ #1136 #1881) -#2404 := (>= #2401 0::Int) -#2410 := (iff #2404 #2409) -#2411 := [rewrite]: #2410 -#2405 := (iff #1883 #2404) -#2402 := (= #1882 #2401) -#2403 := [rewrite]: #2402 -#2406 := [monotonicity #2403]: #2405 -#2413 := [trans #2406 #2411]: #2412 -#2416 := [monotonicity #2413]: #2415 -#2434 := [monotonicity #2416 #2431]: #2433 -#2437 := [monotonicity #2434]: #2436 -#2440 := [quant-intro #2437]: #2439 -#2459 := [monotonicity #2440 #2456]: #2458 -#2399 := (iff #1873 #2396) -#2393 := (and #1848 #2390) -#2397 := (iff #2393 #2396) -#2398 := [rewrite]: #2397 -#2394 := (iff #1873 #2393) -#2391 := (iff #1869 #2390) -#2388 := (iff #1866 #2387) -#2385 := (iff #1857 #2384) -#2382 := (iff #1856 #2381) -#2379 := (= #1855 #2378) -#2380 := [rewrite]: #2379 -#2383 := [monotonicity #2380]: #2382 -#2386 := [monotonicity #2383]: #2385 -#2389 := [monotonicity #2386]: #2388 -#2392 := [quant-intro #2389]: #2391 -#2375 := (iff #1863 #1848) -#2376 := [rewrite]: #2375 -#2395 := [monotonicity #2376 #2392]: #2394 -#2400 := [trans #2395 #2398]: #2399 -#2462 := [monotonicity #2400 #2459]: #2461 -#2373 := (iff #1837 #152) -#2374 := [rewrite]: #2373 -#2371 := (iff #1834 #149) -#2372 := [rewrite]: #2371 -#2369 := (iff #1831 #147) -#2370 := [rewrite]: #2369 -#2367 := (iff #1828 #144) -#2368 := [rewrite]: #2367 -#2465 := [monotonicity #2368 #2370 #2372 #2374 #2462]: #2464 -#2542 := [monotonicity #2465 #2539]: #2541 -#2365 := (iff #1816 #2364) -#2362 := (iff #1813 #2361) -#2359 := (iff #1808 #2358) -#2356 := (iff #1807 #2353) -#2343 := (+ #1797 #1805) -#2344 := (+ #1091 #2343) -#2347 := (= #2344 0::Int) -#2354 := (iff #2347 #2353) -#2355 := [rewrite]: #2354 -#2348 := (iff #1807 #2347) -#2345 := (= #1806 #2344) -#2346 := [rewrite]: #2345 -#2349 := [monotonicity #2346]: #2348 -#2357 := [trans #2349 #2355]: #2356 -#2341 := (iff #1800 #2340) -#2338 := (iff #1799 #2335) -#2327 := (+ #1091 #1797) -#2330 := (>= #2327 0::Int) -#2336 := (iff #2330 #2335) -#2337 := [rewrite]: #2336 -#2331 := (iff #1799 #2330) -#2328 := (= #1798 #2327) -#2329 := [rewrite]: #2328 -#2332 := [monotonicity #2329]: #2331 -#2339 := [trans #2332 #2337]: #2338 -#2342 := [monotonicity #2339]: #2341 -#2360 := [monotonicity #2342 #2357]: #2359 -#2363 := [monotonicity #2360]: #2362 -#2366 := [quant-intro #2363]: #2365 -#2325 := (iff #1770 #111) -#2326 := [rewrite]: #2325 -#2323 := (iff #1764 #2322) -#2320 := (iff #1761 #2319) -#2317 := (iff #1756 #2316) -#2314 := (iff #1755 #2311) -#2301 := (+ #1744 #1752) -#2302 := (+ #1053 #2301) -#2305 := (= #2302 0::Int) -#2312 := (iff #2305 #2311) -#2313 := [rewrite]: #2312 -#2306 := (iff #1755 #2305) -#2303 := (= #1754 #2302) -#2304 := [rewrite]: #2303 -#2307 := [monotonicity #2304]: #2306 -#2315 := [trans #2307 #2313]: #2314 -#2299 := (iff #1747 #2298) -#2296 := (iff #1746 #2293) -#2285 := (+ #1053 #1744) -#2288 := (>= #2285 0::Int) -#2294 := (iff #2288 #2293) -#2295 := [rewrite]: #2294 -#2289 := (iff #1746 #2288) -#2286 := (= #1745 #2285) -#2287 := [rewrite]: #2286 -#2290 := [monotonicity #2287]: #2289 -#2297 := [trans #2290 #2295]: #2296 -#2300 := [monotonicity #2297]: #2299 -#2318 := [monotonicity #2300 #2315]: #2317 -#2321 := [monotonicity #2318]: #2320 -#2324 := [quant-intro #2321]: #2323 -#2545 := [monotonicity #2324 #2326 #2366 #2542]: #2544 -#2283 := (iff #1736 #2280) -#2277 := (and #1710 #1732) -#2281 := (iff #2277 #2280) -#2282 := [rewrite]: #2281 -#2278 := (iff #1736 #2277) -#2275 := (iff #1726 #1710) -#2276 := [rewrite]: #2275 -#2279 := [monotonicity #2276]: #2278 -#2284 := [trans #2279 #2282]: #2283 -#2548 := [monotonicity #2284 #2545]: #2547 -#2551 := [monotonicity #2548]: #2550 -#2273 := (iff #1690 #2272) -#2270 := (iff #1689 #2269) -#2267 := (iff #1688 #2266) -#2264 := (= #1687 #2263) -#2265 := [rewrite]: #2264 -#2268 := [monotonicity #2265]: #2267 -#2271 := [monotonicity #2268]: #2270 -#2274 := [monotonicity #2271]: #2273 -#2554 := [monotonicity #2274 #2551]: #2553 -#2557 := [monotonicity #2554]: #2556 -#2560 := [monotonicity #2557]: #2559 -#2563 := [monotonicity #2560]: #2562 -#2566 := [monotonicity #2563]: #2565 -#2260 := (iff #1593 #81) -#2261 := [rewrite]: #2260 -#2569 := [monotonicity #2261 #2566]: #2568 -#2572 := [monotonicity #2569]: #2571 -#1568 := (not #1542) -#2255 := (~ #1568 #2254) -#2251 := (not #1539) -#2252 := (~ #2251 #2250) -#2247 := (not #1536) -#2248 := (~ #2247 #2246) -#2243 := (not #1533) -#2244 := (~ #2243 #2242) -#2239 := (not #1530) -#2240 := (~ #2239 #2238) -#2235 := (not #1527) -#2236 := (~ #2235 #2234) -#2231 := (not #1524) -#2232 := (~ #2231 #2230) -#2227 := (not #1521) -#2228 := (~ #2227 #2226) -#2223 := (not #1518) -#2224 := (~ #2223 #2222) -#2219 := (not #1513) -#2220 := (~ #2219 #2218) -#2215 := (not #1451) -#2216 := (~ #2215 #2214) -#2211 := (not #1446) -#2212 := (~ #2211 #2210) -#2207 := (not #1377) -#2208 := (~ #2207 #2206) -#2203 := (not #1374) -#2204 := (~ #2203 #2202) -#2199 := (not #1371) -#2200 := (~ #2199 #2198) -#2195 := (not #1368) -#2196 := (~ #2195 #2194) -#2191 := (not #1365) -#2192 := (~ #2191 #2190) -#2187 := (not #1362) -#2188 := (~ #2187 #2186) -#2183 := (not #1359) -#2184 := (~ #2183 #2182) -#2179 := (not #1356) -#2180 := (~ #2179 #2178) -#2175 := (not #1353) -#2176 := (~ #2175 #2174) -#2171 := (not #1350) -#2172 := (~ #2171 #2170) -#2167 := (not #1347) -#2168 := (~ #2167 #2166) -#2163 := (not #1344) -#2164 := (~ #2163 #2162) -#2144 := (not #1341) -#2160 := (~ #2144 #2157) -#2141 := (exists (vars (?v1 S2)) #2140) -#2142 := (or #2132 #2141) -#2143 := (not #2142) -#2158 := (~ #2143 #2157) -#2154 := (not #2141) -#2155 := (~ #2154 #2153) -#2151 := (~ #2150 #2150) -#2152 := [refl]: #2151 -#2156 := [nnf-neg #2152]: #2155 -#2148 := (~ #2147 #2147) -#2149 := [refl]: #2148 -#2159 := [nnf-neg #2149 #2156]: #2158 -#2145 := (~ #2144 #2143) -#2146 := [sk]: #2145 -#2161 := [trans #2146 #2159]: #2160 -#2120 := (not #1304) -#2121 := (~ #2120 #1301) -#2118 := (~ #1301 #1301) -#2116 := (~ #1298 #1298) -#2117 := [refl]: #2116 -#2119 := [nnf-pos #2117]: #2118 -#2122 := [nnf-neg #2119]: #2121 -#2165 := [nnf-neg #2122 #2161]: #2164 -#2112 := (~ #1304 #2111) -#2113 := [sk]: #2112 -#2169 := [nnf-neg #2113 #2165]: #2168 -#2088 := (not #1285) -#2089 := (~ #2088 #1282) -#2086 := (~ #1282 #1282) -#2084 := (~ #1279 #1279) -#2085 := [refl]: #2084 -#2087 := [nnf-pos #2085]: #2086 -#2090 := [nnf-neg #2087]: #2089 -#2173 := [nnf-neg #2090 #2169]: #2172 -#2080 := (~ #1285 #2079) -#2081 := [sk]: #2080 -#2177 := [nnf-neg #2081 #2173]: #2176 -#2061 := (not #1271) -#2062 := (~ #2061 #1268) -#2059 := (~ #1268 #1268) -#2057 := (~ #1265 #1265) -#2058 := [refl]: #2057 -#2060 := [nnf-pos #2058]: #2059 -#2063 := [nnf-neg #2060]: #2062 -#2181 := [nnf-neg #2063 #2177]: #2180 -#2053 := (~ #1271 #2052) -#2054 := [sk]: #2053 -#2185 := [nnf-neg #2054 #2181]: #2184 -#2047 := (~ #2046 #2046) -#2048 := [refl]: #2047 -#2189 := [nnf-neg #2048 #2185]: #2188 -#2044 := (~ #713 #713) -#2045 := [refl]: #2044 -#2193 := [nnf-neg #2045 #2189]: #2192 -#2041 := (not #736) -#2042 := (~ #2041 #606) -#2039 := (~ #606 #606) -#2037 := (~ #603 #603) -#2038 := [refl]: #2037 -#2040 := [nnf-pos #2038]: #2039 -#2043 := [nnf-neg #2040]: #2042 -#2197 := [nnf-neg #2043 #2193]: #2196 -#2033 := (~ #736 #2032) -#2034 := [sk]: #2033 -#2201 := [nnf-neg #2034 #2197]: #2200 -#2021 := (not #1262) -#2022 := (~ #2021 #1259) -#2019 := (~ #1259 #1259) -#2017 := (~ #1254 #1254) -#2018 := [refl]: #2017 -#2020 := [nnf-pos #2018]: #2019 -#2023 := [nnf-neg #2020]: #2022 -#2205 := [nnf-neg #2023 #2201]: #2204 -#2013 := (~ #1262 #2012) -#2014 := [sk]: #2013 -#2209 := [nnf-neg #2014 #2205]: #2208 -#2003 := (not #1251) -#2004 := (~ #2003 #1248) -#2001 := (~ #1248 #1248) -#1999 := (~ #1245 #1245) -#2000 := [refl]: #1999 -#2002 := [nnf-pos #2000]: #2001 -#2005 := [nnf-neg #2002]: #2004 -#1996 := (not #1394) -#1997 := (~ #1996 #1391) -#1994 := (~ #1391 #1391) -#1992 := (~ #1388 #1388) -#1993 := [refl]: #1992 -#1995 := [nnf-pos #1993]: #1994 -#1998 := [nnf-neg #1995]: #1997 -#1990 := (~ #1989 #1989) -#1991 := [refl]: #1990 -#1986 := (not #1407) -#1987 := (~ #1986 #1404) -#1984 := (~ #1404 #1404) -#1982 := (~ #1401 #1401) -#1983 := [refl]: #1982 -#1985 := [nnf-pos #1983]: #1984 -#1988 := [nnf-neg #1985]: #1987 -#1980 := (~ #1412 #1412) -#1981 := [refl]: #1980 -#1978 := (~ #189 #189) -#1979 := [refl]: #1978 -#1975 := (not #1422) -#1976 := (~ #1975 #1970) -#1971 := (~ #1206 #1970) -#1972 := [sk]: #1971 -#1977 := [nnf-neg #1972]: #1976 -#2213 := [nnf-neg #1977 #1979 #1981 #1988 #1991 #1998 #2005 #2209]: #2212 -#1958 := (not #1224) -#1959 := (~ #1958 #1957) -#1954 := (not #1200) -#1955 := (~ #1954 #1953) -#1950 := (not #1197) -#1951 := (~ #1950 #1949) -#1946 := (not #1194) -#1947 := (~ #1946 #1945) -#1942 := (not #1191) -#1943 := (~ #1942 #1941) -#1939 := (~ #1938 #1938) -#1940 := [refl]: #1939 -#1935 := (not #1188) -#1936 := (~ #1935 #1185) -#1933 := (~ #1185 #1185) -#1931 := (~ #1182 #1182) -#1932 := [refl]: #1931 -#1934 := [nnf-pos #1932]: #1933 -#1937 := [nnf-neg #1934]: #1936 -#1944 := [nnf-neg #1937 #1940]: #1943 -#1927 := (~ #1188 #1926) -#1928 := [sk]: #1927 -#1948 := [nnf-neg #1928 #1944]: #1947 -#1901 := (not #1170) -#1902 := (~ #1901 #1898) -#1899 := (~ #1167 #1898) -#1896 := (~ #1164 #1895) -#1891 := (~ #1161 #1890) -#1892 := [sk]: #1891 -#1878 := (~ #1145 #1145) -#1879 := [refl]: #1878 -#1897 := [monotonicity #1879 #1892]: #1896 -#1900 := [nnf-pos #1897]: #1899 -#1903 := [nnf-neg #1900]: #1902 -#1952 := [nnf-neg #1903 #1948]: #1951 -#1876 := (~ #1170 #1873) -#1858 := (exists (vars (?v1 S2)) #1857) -#1859 := (or #1849 #1858) -#1860 := (not #1859) -#1874 := (~ #1860 #1873) -#1870 := (not #1858) -#1871 := (~ #1870 #1869) -#1867 := (~ #1866 #1866) -#1868 := [refl]: #1867 -#1872 := [nnf-neg #1868]: #1871 -#1864 := (~ #1863 #1863) -#1865 := [refl]: #1864 -#1875 := [nnf-neg #1865 #1872]: #1874 -#1861 := (~ #1170 #1860) -#1862 := [sk]: #1861 -#1877 := [trans #1862 #1875]: #1876 -#1956 := [nnf-neg #1877 #1952]: #1955 -#1838 := (~ #1837 #1837) -#1839 := [refl]: #1838 -#1835 := (~ #1834 #1834) -#1836 := [refl]: #1835 -#1832 := (~ #1831 #1831) -#1833 := [refl]: #1832 -#1829 := (~ #1828 #1828) -#1830 := [refl]: #1829 -#1826 := (~ #1422 #1825) -#1823 := (~ #1822 #1822) -#1824 := [refl]: #1823 -#1827 := [nnf-neg #1824]: #1826 -#1960 := [nnf-neg #1827 #1830 #1833 #1836 #1839 #1956]: #1959 -#2217 := [nnf-neg #1960 #2213]: #2216 -#1819 := (not #1133) -#1820 := (~ #1819 #1816) -#1817 := (~ #1130 #1816) -#1814 := (~ #1127 #1813) -#1809 := (~ #1124 #1808) -#1810 := [sk]: #1809 -#1794 := (~ #1100 #1100) -#1795 := [refl]: #1794 -#1815 := [monotonicity #1795 #1810]: #1814 -#1818 := [nnf-pos #1815]: #1817 -#1821 := [nnf-neg #1818]: #1820 -#1791 := (not #1469) -#1792 := (~ #1791 #1466) -#1789 := (~ #1466 #1466) -#1787 := (~ #1463 #1463) -#1788 := [refl]: #1787 -#1790 := [nnf-pos #1788]: #1789 -#1793 := [nnf-neg #1790]: #1792 -#1784 := (not #1480) -#1785 := (~ #1784 #1477) -#1782 := (~ #1477 #1477) -#1780 := (~ #1474 #1474) -#1781 := [refl]: #1780 -#1783 := [nnf-pos #1781]: #1782 -#1786 := [nnf-neg #1783]: #1785 -#1777 := (not #1489) -#1778 := (~ #1777 #1486) -#1775 := (~ #1486 #1486) -#1773 := (~ #1483 #1483) -#1774 := [refl]: #1773 -#1776 := [nnf-pos #1774]: #1775 -#1779 := [nnf-neg #1776]: #1778 -#1771 := (~ #1770 #1770) -#1772 := [refl]: #1771 -#1767 := (not #1492) -#1768 := (~ #1767 #1764) -#1765 := (~ #1088 #1764) -#1762 := (~ #1085 #1761) -#1757 := (~ #1082 #1756) -#1758 := [sk]: #1757 -#1741 := (~ #1062 #1062) -#1742 := [refl]: #1741 -#1763 := [monotonicity #1742 #1758]: #1762 -#1766 := [nnf-pos #1763]: #1765 -#1769 := [nnf-neg #1766]: #1768 -#2221 := [nnf-neg #1769 #1772 #1779 #1786 #1793 #1821 #2217]: #2220 -#1739 := (~ #1492 #1736) -#1721 := (exists (vars (?v1 S2)) #1720) -#1722 := (or #1711 #1721) -#1723 := (not #1722) -#1737 := (~ #1723 #1736) -#1733 := (not #1721) -#1734 := (~ #1733 #1732) -#1730 := (~ #1729 #1729) -#1731 := [refl]: #1730 -#1735 := [nnf-neg #1731]: #1734 -#1727 := (~ #1726 #1726) -#1728 := [refl]: #1727 -#1738 := [nnf-neg #1728 #1735]: #1737 -#1724 := (~ #1492 #1723) -#1725 := [sk]: #1724 -#1740 := [trans #1725 #1738]: #1739 -#2225 := [nnf-neg #1740 #2221]: #2224 -#1699 := (not #1050) -#1700 := (~ #1699 #1047) -#1697 := (~ #1047 #1047) -#1695 := (~ #1044 #1044) -#1696 := [refl]: #1695 -#1698 := [nnf-pos #1696]: #1697 -#1701 := [nnf-neg #1698]: #1700 -#2229 := [nnf-neg #1701 #2225]: #2228 -#1691 := (~ #1050 #1690) -#1692 := [sk]: #1691 -#2233 := [nnf-neg #1692 #2229]: #2232 -#1667 := (not #1024) -#1668 := (~ #1667 #1021) -#1665 := (~ #1021 #1021) -#1663 := (~ #1018 #1018) -#1664 := [refl]: #1663 -#1666 := [nnf-pos #1664]: #1665 -#1669 := [nnf-neg #1666]: #1668 -#2237 := [nnf-neg #1669 #2233]: #2236 -#1659 := (~ #1024 #1658) -#1660 := [sk]: #1659 -#2241 := [nnf-neg #1660 #2237]: #2240 -#1640 := (not #1009) -#1641 := (~ #1640 #1006) -#1638 := (~ #1006 #1006) -#1636 := (~ #1005 #1005) -#1637 := [refl]: #1636 -#1639 := [nnf-pos #1637]: #1638 -#1642 := [nnf-neg #1639]: #1641 -#2245 := [nnf-neg #1642 #2241]: #2244 -#1632 := (~ #1009 #1631) -#1633 := [sk]: #1632 -#2249 := [nnf-neg #1633 #2245]: #2248 -#1594 := (~ #1593 #1593) -#1627 := [refl]: #1594 -#2253 := [nnf-neg #1627 #2249]: #2252 -#1625 := (~ #946 #946) -#1626 := [refl]: #1625 -#2256 := [nnf-neg #1626 #2253]: #2255 -#1569 := [not-or-elim #1564]: #1568 -#2257 := [mp~ #1569 #2256]: #2254 -#2258 := [mp #2257 #2572]: #2570 -#3211 := [mp #2258 #3210]: #3208 -#4126 := [mp #3211 #4125]: #4123 -#7087 := [unit-resolution #4126 #4239]: #4120 -#3450 := (or #4117 #4111) -#3440 := [def-axiom]: #3450 -#7088 := [unit-resolution #3440 #7087]: #4111 -#3446 := (or #4114 #1631 #4108) -#3448 := [def-axiom]: #3446 -#7089 := [unit-resolution #3448 #7088 #4166]: #4108 -#3444 := (or #4105 #4099) -#3447 := [def-axiom]: #3444 -#7090 := [unit-resolution #3447 #7089]: #4099 -#3306 := (or #4102 #1634 #4096) -#3464 := [def-axiom]: #3306 -#7091 := [unit-resolution #3464 #7090]: #4099 -#7092 := [unit-resolution #7091 #7086]: #4096 -#3486 := (or #4093 #4087) -#3456 := [def-axiom]: #3486 -#7093 := [unit-resolution #3456 #7092]: #4087 -#7095 := (or #4090 #4084) -#6151 := [hypothesis]: #1673 -#4285 := (or #7029 #2592) -#4289 := [quant-inst #1670]: #4285 -#6152 := [unit-resolution #4289 #3755 #6151]: false -#6170 := [lemma #6152]: #2592 -#3366 := (or #2607 #1673) -#3363 := [def-axiom]: #3366 -#7094 := [unit-resolution #3363 #6170]: #2607 -#3483 := (or #4090 #2612 #4084) -#3484 := [def-axiom]: #3483 -#7096 := [unit-resolution #3484 #7094]: #7095 -#7097 := [unit-resolution #7096 #7093]: #4084 -#3467 := (or #4081 #4075) -#3474 := [def-axiom]: #3467 -#7098 := [unit-resolution #3474 #7097]: #4075 -#3504 := (or #4078 #3794 #4072) -#3489 := [def-axiom]: #3504 -#7099 := [unit-resolution #3489 #7098 #6210]: #4072 -#3496 := (or #4069 #4063) -#3497 := [def-axiom]: #3496 -#8263 := [unit-resolution #3497 #7099]: #4063 -#6420 := (f19 f20 ?v0!8) -#6418 := (* -1::Int #6420) -#6421 := (+ f14 #6418) -#6440 := (<= #6421 0::Int) -#6559 := (?v1!7 ?v0!8) -#6669 := (f6 f7 #6559) -#6677 := (f5 #6669 ?v0!8) -#6678 := (f15 #6677) -#6676 := (* -1::Int #6678) -#6561 := (f19 f20 #6559) -#6563 := (* -1::Int #6561) -#6673 := (+ #6563 #6676) -#6661 := (+ #6420 #6673) -#6662 := (= #6661 0::Int) -#6715 := (not #6662) -#6565 := (f9 f21 #6559) -#6571 := (= #6565 f1) -#6660 := (not #6571) -#6564 := (+ #6420 #6563) -#6562 := (<= #6564 0::Int) -#6716 := (or #6562 #6660 #6715) -#7070 := [hypothesis]: #3906 -#3648 := (or #3903 #149) -#3643 := [def-axiom]: #3648 -#7106 := [unit-resolution #3643 #7070]: #149 -#3491 := (or #3903 #3897) -#3492 := [def-axiom]: #3491 -#7107 := [unit-resolution #3492 #7070]: #3897 -#3520 := (or #4069 #111) -#3521 := [def-axiom]: #3520 -#7324 := [unit-resolution #3521 #7099]: #111 -#4279 := (or #531 #169 #878) -#4208 := [hypothesis]: #111 -#4276 := (= #168 #110) -#4275 := [hypothesis]: #149 -#4274 := [monotonicity #4275]: #4276 -#4277 := [trans #4274 #4208]: #169 -#4174 := [hypothesis]: #1938 -#4278 := [unit-resolution #4174 #4277]: false -#4292 := [lemma #4278]: #4279 -#7108 := [unit-resolution #4292 #7106 #7324]: #169 -#3387 := (or #3879 #1938) -#3388 := [def-axiom]: #3387 -#7066 := [unit-resolution #3388 #7108]: #3879 -#3644 := (or #3903 #3840) -#3645 := [def-axiom]: #3644 -#7069 := [unit-resolution #3645 #7070]: #3840 -#7013 := (or #2843 #3845 #531) -#6412 := (f19 f20 ?v0!11) -#6414 := (* -1::Int #6412) -#6787 := (+ #1920 #6414) -#6788 := (<= #6787 0::Int) -#6785 := (= #1920 #6412) -#6862 := (= #6412 #1920) -#6860 := (= f20 f25) -#6861 := [symm #4275]: #6860 -#6895 := [monotonicity #6861]: #6862 -#6896 := [symm #6895]: #6785 -#6897 := (not #6785) -#6898 := (or #6897 #6788) -#6854 := [th-lemma arith triangle-eq]: #6898 -#6855 := [unit-resolution #6854 #6896]: #6788 -#6195 := (f19 f20 ?v1!10) -#6193 := (* -1::Int #6195) -#6285 := (+ #1906 #6193) -#6781 := (>= #6285 0::Int) -#6295 := (= #1906 #6195) -#6853 := (= #6195 #1906) -#6856 := [monotonicity #6861]: #6853 -#6857 := [symm #6856]: #6295 -#6852 := (not #6295) -#4251 := (or #6852 #6781) -#4280 := [th-lemma arith triangle-eq]: #4251 -#4281 := [unit-resolution #4280 #6857]: #6781 -#3675 := (not #2445) -#4345 := [hypothesis]: #2848 -#3673 := (or #2843 #3675) -#3676 := [def-axiom]: #3673 -#4346 := [unit-resolution #3676 #4345]: #3675 -#7082 := [hypothesis]: #3840 -#3314 := (or #2843 #1917) -#3315 := [def-axiom]: #3314 -#4379 := [unit-resolution #3315 #4345]: #1917 -#6179 := (+ f14 #6193) -#6184 := (<= #6179 0::Int) -#7080 := (not #6184) -#3672 := (or #2843 #1910) -#3674 := [def-axiom]: #3672 -#4380 := [unit-resolution #3674 #4345]: #1910 -#7076 := (not #6781) -#4409 := (or #7080 #1909 #7076) -#4410 := [th-lemma arith assign-bounds -1 -1]: #4409 -#7011 := [unit-resolution #4410 #4380 #4281]: #7080 -#7075 := (not #6788) -#7104 := (or #6184 #1916 #3845 #2445 #7076 #7075) -#6667 := (+ #6195 #6414) -#6670 := (+ #1913 #6667) -#6694 := (>= #6670 0::Int) -#7074 := (not #6694) -#7071 := [hypothesis]: #6788 -#7072 := [hypothesis]: #6781 -#7073 := [hypothesis]: #3675 -#7077 := (or #7074 #7075 #2445 #7076) -#7078 := [th-lemma arith assign-bounds -1 -1 1]: #7077 -#7079 := [unit-resolution #7078 #7073 #7072 #7071]: #7074 -#6164 := (f9 f21 ?v1!10) -#4586 := (= #6164 f1) -#7081 := [hypothesis]: #7080 -#6183 := (or #4586 #6184) -#6211 := (or #3845 #4586 #6184) -#6212 := (or #3845 #6183) -#6286 := (iff #6212 #6211) -#6287 := [rewrite]: #6286 -#6280 := [quant-inst #1904]: #6212 -#6288 := [mp #6280 #6287]: #6211 -#7083 := [unit-resolution #6288 #7082]: #6183 -#7084 := [unit-resolution #7083 #7081]: #4586 -#6476 := (not #4586) -#7101 := (or #6476 #6694) -#7085 := [hypothesis]: #1917 -#3488 := (or #4069 #3823) -#3493 := [def-axiom]: #3488 -#7100 := [unit-resolution #3493 #7099]: #3823 -#6719 := (or #3828 #6476 #1916 #6694) -#6695 := (or #6476 #1916 #6694) -#6714 := (or #3828 #6695) -#6721 := (iff #6714 #6719) -#6722 := [rewrite]: #6721 -#6720 := [quant-inst #1905 #1904]: #6714 -#6723 := [mp #6720 #6722]: #6719 -#7102 := [unit-resolution #6723 #7100 #7085]: #7101 -#7103 := [unit-resolution #7102 #7084 #7079]: false -#7105 := [lemma #7103]: #7104 -#7012 := [unit-resolution #7105 #7011 #4379 #7082 #4346 #4281 #6855]: false -#7019 := [lemma #7012]: #7013 -#7109 := [unit-resolution #7019 #7069 #7106]: #2843 -#3660 := (or #3888 #2848 #3882) -#3657 := [def-axiom]: #3660 -#7110 := [unit-resolution #3657 #7109 #7066]: #3888 -#3372 := (or #3891 #3885) -#3373 := [def-axiom]: #3372 -#7111 := [unit-resolution #3373 #7110]: #3891 -#3651 := (or #3900 #3860 #3894) -#3655 := [def-axiom]: #3651 -#7112 := [unit-resolution #3655 #7111 #7107]: #3860 -#3323 := (or #3857 #3849) -#3664 := [def-axiom]: #3323 -#7113 := [unit-resolution #3664 #7112]: #3849 -#7512 := (or #6716 #3854 #531) -#6821 := (f19 f25 #6559) -#7034 := (* -1::Int #6821) -#7035 := (+ #1843 #7034) -#7036 := (<= #7035 0::Int) -#7057 := (+ #6676 #7034) -#7058 := (+ #1843 #7057) -#7059 := (= #7058 0::Int) -#7307 := (+ #6561 #7034) -#7253 := (>= #7307 0::Int) -#7306 := (= #6561 #6821) -#7446 := (= #6821 #6561) -#7447 := [monotonicity #4275]: #7446 -#7448 := [symm #7447]: #7306 -#7449 := (not #7306) -#7450 := (or #7449 #7253) -#7451 := [th-lemma arith triangle-eq]: #7450 -#7452 := [unit-resolution #7451 #7448]: #7253 -#6279 := (+ #1843 #6418) -#6798 := (>= #6279 0::Int) -#5095 := (= #1843 #6420) -#7453 := (= #6420 #1843) -#7438 := [monotonicity #6861]: #7453 -#7439 := [symm #7438]: #5095 -#7437 := (not #5095) -#7440 := (or #7437 #6798) -#7441 := [th-lemma arith triangle-eq]: #7440 -#7442 := [unit-resolution #7441 #7439]: #6798 -#6767 := (>= #6661 0::Int) -#6490 := (not #6716) -#7455 := [hypothesis]: #6490 -#6120 := (or #6716 #6662) -#6113 := [def-axiom]: #6120 -#7456 := [unit-resolution #6113 #7455]: #6662 -#7476 := (or #6715 #6767) -#7477 := [th-lemma arith triangle-eq]: #7476 -#7478 := [unit-resolution #7477 #7456]: #6767 -#7252 := (<= #7307 0::Int) -#7479 := (or #7449 #7252) -#7480 := [th-lemma arith triangle-eq]: #7479 -#7475 := [unit-resolution #7480 #7448]: #7252 -#6792 := (<= #6279 0::Int) -#7481 := (or #7437 #6792) -#7482 := [th-lemma arith triangle-eq]: #7481 -#7483 := [unit-resolution #7482 #7439]: #6792 -#6766 := (<= #6661 0::Int) -#7484 := (or #6715 #6766) -#7485 := [th-lemma arith triangle-eq]: #7484 -#7506 := [unit-resolution #7485 #7456]: #6766 -#7400 := (not #7253) -#7405 := (not #6798) -#7404 := (not #6767) -#7553 := (not #7252) -#7337 := (not #6792) -#7552 := (not #6766) -#7410 := (or #7059 #7552 #7337 #7553 #7404 #7405 #7400) -#7550 := [hypothesis]: #7252 -#7330 := [hypothesis]: #6792 -#7551 := [hypothesis]: #6766 -#6858 := (not #7059) -#7548 := [hypothesis]: #6858 -#7185 := (>= #7058 0::Int) -#7401 := [hypothesis]: #7253 -#7402 := [hypothesis]: #6798 -#7403 := [hypothesis]: #6767 -#7406 := (or #7185 #7404 #7405 #7400) -#7407 := [th-lemma arith assign-bounds -1 -1 -1]: #7406 -#7408 := [unit-resolution #7407 #7403 #7402 #7401]: #7185 -#7558 := (not #7185) -#7562 := (or #7558 #7059 #7552 #7337 #7553) -#7549 := [hypothesis]: #7185 -#7184 := (<= #7058 0::Int) -#7554 := (or #7184 #7552 #7337 #7553) -#7555 := [th-lemma arith assign-bounds -1 -1 -1]: #7554 -#7556 := [unit-resolution #7555 #7551 #7330 #7550]: #7184 -#7557 := (not #7184) -#7559 := (or #7059 #7557 #7558) -#7560 := [th-lemma arith triangle-eq]: #7559 -#7561 := [unit-resolution #7560 #7556 #7549 #7548]: false -#7563 := [lemma #7561]: #7562 -#7409 := [unit-resolution #7563 #7408 #7548 #7551 #7330 #7550]: false -#7445 := [lemma #7409]: #7410 -#7507 := [unit-resolution #7445 #7506 #7483 #7475 #7478 #7442 #7452]: #7059 -#4250 := (or #7036 #6858) -#7508 := [hypothesis]: #3849 -#7148 := (or #3854 #7036 #6858) -#6893 := (+ #1844 #6678) -#6894 := (+ #6821 #6893) -#6886 := (= #6894 0::Int) -#6904 := (not #6886) -#6822 := (+ #6821 #1844) -#6278 := (>= #6822 0::Int) -#6907 := (or #6278 #6904) -#7149 := (or #3854 #6907) -#7182 := (iff #7149 #7148) -#7158 := (or #3854 #4250) -#7180 := (iff #7158 #7148) -#7181 := [rewrite]: #7180 -#7159 := (iff #7149 #7158) -#7060 := (iff #6907 #4250) -#6859 := (iff #6904 #6858) -#7067 := (iff #6886 #7059) -#7045 := (+ #6678 #6821) -#7048 := (+ #1844 #7045) -#7055 := (= #7048 0::Int) -#7063 := (iff #7055 #7059) -#7064 := [rewrite]: #7063 -#7056 := (iff #6886 #7055) -#7049 := (= #6894 #7048) -#7050 := [rewrite]: #7049 -#7054 := [monotonicity #7050]: #7056 -#7068 := [trans #7054 #7064]: #7067 -#4217 := [monotonicity #7068]: #6859 -#7046 := (iff #6278 #7036) -#7021 := (+ #1844 #6821) -#7026 := (>= #7021 0::Int) -#7037 := (iff #7026 #7036) -#7038 := [rewrite]: #7037 -#7033 := (iff #6278 #7026) -#7022 := (= #6822 #7021) -#7025 := [rewrite]: #7022 -#6959 := [monotonicity #7025]: #7033 -#7047 := [trans #6959 #7038]: #7046 -#7065 := [monotonicity #7047 #4217]: #7060 -#7179 := [monotonicity #7065]: #7159 -#7183 := [trans #7179 #7181]: #7182 -#7145 := [quant-inst #6559]: #7149 -#7178 := [mp #7145 #7183]: #7148 -#7509 := [unit-resolution #7178 #7508]: #4250 -#7510 := [unit-resolution #7509 #7507]: #7036 -#6768 := (not #6562) -#6392 := (or #6716 #6768) -#6778 := [def-axiom]: #6392 -#7505 := [unit-resolution #6778 #7455]: #6768 -#7511 := [th-lemma arith farkas -1 -1 -1 1 #7442 #7505 #7452 #7510]: false -#7513 := [lemma #7511]: #7512 -#7151 := [unit-resolution #7513 #7113 #7106]: #6716 -#7153 := (or #6440 #6490) -#3678 := (or #3857 #1842) -#3343 := [def-axiom]: #3678 -#7152 := [unit-resolution #3343 #7112]: #1842 -#3494 := (or #4069 #3831) -#3495 := [def-axiom]: #3494 -#7150 := [unit-resolution #3495 #7099]: #3831 -#6491 := (or #3836 #1841 #6440 #6490) -#6489 := (or #1841 #6440 #6490) -#6492 := (or #3836 #6489) -#6718 := (iff #6492 #6491) -#6381 := [rewrite]: #6718 -#6717 := [quant-inst #1840]: #6492 -#6724 := [mp #6717 #6381]: #6491 -#7154 := [unit-resolution #6724 #7150 #7152]: #7153 -#7155 := [unit-resolution #7154 #7151]: #6440 -#3338 := (or #3857 #1847) -#3680 := [def-axiom]: #3338 -#7156 := [unit-resolution #3680 #7112]: #1847 -#7141 := [symm #7106]: #6860 -#7142 := [monotonicity #7141]: #7453 -#7140 := [symm #7142]: #5095 -#7143 := [unit-resolution #7441 #7140]: #6798 -#7144 := [th-lemma arith farkas -1 -1 1 #7143 #7156 #7155]: false -#7216 := [lemma #7144]: #3903 -#3508 := (or #4066 #3906 #4060) -#3510 := [def-axiom]: #3508 -#8264 := [unit-resolution #3510 #7216 #8263]: #4060 -#3548 := (or #4057 #199) -#3553 := [def-axiom]: #3548 -#9701 := [unit-resolution #3553 #8264]: #199 -#9297 := [symm #9701]: #9268 -#16690 := [monotonicity #9297]: #16482 -#16476 := [monotonicity #16690]: #16582 -#16737 := [symm #16476]: #15124 -#15539 := [monotonicity #16737]: #15122 -#19098 := (not #5176) -#15519 := [hypothesis]: #19098 -#5179 := (or #4630 #5176) -#7694 := (f5 #200 ?v0!14) -#7695 := (f15 #7694) -#7647 := (* -1::Int #2029) -#7713 := (+ #7647 #7695) -#7714 := (+ #190 #7713) -#7715 := (>= #7714 0::Int) -#8867 := (not #7715) -#7696 := (* -1::Int #7695) -#7697 := (+ f14 #7696) -#7698 := (<= #7697 0::Int) -#7746 := (or #7698 #7715) -#7749 := (not #7746) -#3637 := (not #2030) -#10219 := [hypothesis]: #2032 -#3631 := (or #2031 #3637) -#3638 := [def-axiom]: #3631 -#10218 := [unit-resolution #3638 #10219]: #3637 -#7752 := (or #7749 #2030) -#7911 := [hypothesis]: #7746 -#8011 := [hypothesis]: #3637 -#3534 := (or #4057 #3927) -#3515 := [def-axiom]: #3534 -#8861 := [unit-resolution #3515 #8264]: #3927 -#7814 := (or #3932 #7749 #2030) -#7699 := (+ #1235 #7696) -#7700 := (+ #2029 #7699) -#7701 := (<= #7700 0::Int) -#7743 := (or #7698 #7701) -#7744 := (not #7743) -#7745 := (or #7744 #2030) -#7816 := (or #3932 #7745) -#7852 := (iff #7816 #7814) -#7842 := (or #3932 #7752) -#7846 := (iff #7842 #7814) -#7850 := [rewrite]: #7846 -#7813 := (iff #7816 #7842) -#7753 := (iff #7745 #7752) -#7750 := (iff #7744 #7749) -#7747 := (iff #7743 #7746) -#7718 := (iff #7701 #7715) -#7706 := (+ #2029 #7696) -#7707 := (+ #1235 #7706) -#7710 := (<= #7707 0::Int) -#7716 := (iff #7710 #7715) -#7717 := [rewrite]: #7716 -#7711 := (iff #7701 #7710) -#7708 := (= #7700 #7707) -#7709 := [rewrite]: #7708 -#7712 := [monotonicity #7709]: #7711 -#7719 := [trans #7712 #7717]: #7718 -#7748 := [monotonicity #7719]: #7747 -#7751 := [monotonicity #7748]: #7750 -#7754 := [monotonicity #7751]: #7753 -#7843 := [monotonicity #7754]: #7813 -#7853 := [trans #7843 #7850]: #7852 -#7817 := [quant-inst #2024]: #7816 -#7881 := [mp #7817 #7853]: #7814 -#7907 := [unit-resolution #7881 #8861 #8011 #7911]: false -#7918 := [lemma #7907]: #7752 -#10226 := [unit-resolution #7918 #10218]: #7749 -#7767 := (or #7746 #8867) -#7768 := [def-axiom]: #7767 -#10265 := [unit-resolution #7768 #10226]: #8867 -#7674 := (+ #190 #7647) -#7981 := (>= #7674 0::Int) -#7663 := (f9 f21 ?v0!14) -#7664 := (= #7663 f1) -#7818 := (= ?v0!14 f28) -#7841 := (not #7818) -#9402 := (or #7841 #2030) -#8045 := (= #190 #2029) -#8033 := (= #2029 #190) -#8023 := [hypothesis]: #7818 -#9294 := [monotonicity #8023]: #8033 -#9295 := [symm #9294]: #8045 -#8124 := (= #2028 #190) -#4167 := (f30 f28) -#4220 := (= #4167 #190) -#4171 := (f5 #200 f28) -#4172 := (f15 #4171) -#4190 := (>= #4172 0::Int) -#4175 := (* -1::Int #4172) -#4176 := (+ f14 #4175) -#4177 := (<= #4176 0::Int) -#4222 := (or #4177 #4190) -#7990 := (= #4172 0::Int) -#8751 := (not #7990) -#8752 := [hypothesis]: #8751 -#10 := (f6 f7 #9) -#12 := (f5 #10 #11) -#3689 := (pattern #12) -#57 := (f15 #12) -#58 := (= #57 0::Int) -#56 := (= #9 #11) -#61 := (not #56) -#325 := (or #61 #58) -#3724 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3689) #325) -#333 := (forall (vars (?v0 S2) (?v1 S2)) #325) -#3727 := (iff #333 #3724) -#3725 := (iff #325 #325) -#3726 := [refl]: #3725 -#3728 := [quant-intro #3726]: #3727 -#1581 := (~ #333 #333) -#1612 := (~ #325 #325) -#1613 := [refl]: #1612 -#1582 := [nnf-pos #1613]: #1581 -#59 := (implies #56 #58) -#60 := (forall (vars (?v0 S2) (?v1 S2)) #59) -#334 := (iff #60 #333) -#331 := (iff #59 #325) -#332 := [rewrite]: #331 -#335 := [quant-intro #332]: #334 -#324 := [asserted]: #60 -#338 := [mp #324 #335]: #333 -#1583 := [mp~ #338 #1582]: #333 -#3729 := [mp #1583 #3728]: #3724 -#6738 := (not #3724) -#8741 := (or #6738 #7990) -#4492 := (= f28 f28) -#7989 := (not #4492) -#7997 := (or #7989 #7990) -#8742 := (or #6738 #7997) -#8744 := (iff #8742 #8741) -#8746 := (iff #8741 #8741) -#8747 := [rewrite]: #8746 -#8007 := (iff #7997 #7990) -#8002 := (or false #7990) -#8005 := (iff #8002 #7990) -#8006 := [rewrite]: #8005 -#8003 := (iff #7997 #8002) -#8000 := (iff #7989 false) -#7998 := (iff #7989 #6991) -#4495 := (iff #4492 true) -#4496 := [rewrite]: #4495 -#7999 := [monotonicity #4496]: #7998 -#8001 := [trans #7999 #6995]: #8000 -#8004 := [monotonicity #8001]: #8003 -#8008 := [trans #8004 #8006]: #8007 -#8745 := [monotonicity #8008]: #8744 -#8748 := [trans #8745 #8747]: #8744 -#8743 := [quant-inst #186 #186]: #8742 -#8749 := [mp #8743 #8748]: #8741 -#8757 := [unit-resolution #8749 #3729 #8752]: false -#8758 := [lemma #8757]: #7990 -#9347 := (or #8751 #4190) -#9298 := [th-lemma arith triangle-eq]: #9347 -#8814 := [unit-resolution #9298 #8758]: #4190 -#7298 := (not #4190) -#7299 := (or #4222 #7298) -#7300 := [def-axiom]: #7299 -#8812 := [unit-resolution #7300 #8814]: #4222 -#4225 := (not #4222) -#4228 := (or #4225 #4220) -#7231 := (or #3932 #4225 #4220) -#4178 := (+ #1235 #4175) -#4179 := (+ #190 #4178) -#4180 := (<= #4179 0::Int) -#4218 := (or #4177 #4180) -#4219 := (not #4218) -#4221 := (or #4219 #4220) -#7236 := (or #3932 #4221) -#7240 := (iff #7236 #7231) -#7237 := (or #3932 #4228) -#7239 := (iff #7237 #7231) -#7186 := [rewrite]: #7239 -#7235 := (iff #7236 #7237) -#4229 := (iff #4221 #4228) -#4226 := (iff #4219 #4225) -#4223 := (iff #4218 #4222) -#4193 := (iff #4180 #4190) -#4187 := (<= #4175 0::Int) -#4191 := (iff #4187 #4190) -#4192 := [rewrite]: #4191 -#4188 := (iff #4180 #4187) -#4185 := (= #4179 #4175) -#4186 := [rewrite]: #4185 -#4189 := [monotonicity #4186]: #4188 -#4194 := [trans #4189 #4192]: #4193 -#4224 := [monotonicity #4194]: #4223 -#4227 := [monotonicity #4224]: #4226 -#4230 := [monotonicity #4227]: #4229 -#7238 := [monotonicity #4230]: #7235 -#7244 := [trans #7238 #7186]: #7240 -#7187 := [quant-inst #186]: #7236 -#7245 := [mp #7187 #7244]: #7231 -#8876 := [unit-resolution #7245 #8861]: #4228 -#9179 := [unit-resolution #8876 #8812]: #4220 -#8016 := (= #2028 #4167) -#9174 := [monotonicity #8023]: #8016 -#9263 := [trans #9174 #9179]: #8124 -#9301 := [trans #9263 #9295]: #2030 -#9380 := [unit-resolution #8011 #9301]: false -#9334 := [lemma #9380]: #9402 -#10264 := [unit-resolution #9334 #10218]: #7841 -#7824 := (or #7818 #7664) -#3636 := (or #2031 #2026) -#3632 := [def-axiom]: #3636 -#10266 := [unit-resolution #3632 #10219]: #2026 -#8848 := (or #2027 #7824) -#7797 := (f9 #198 ?v0!14) -#7815 := (= #7797 f1) -#9264 := [hypothesis]: #2026 -#7840 := (= #7797 #2025) -#7882 := [monotonicity #9297]: #7840 -#8403 := [trans #7882 #9264]: #7815 -#9164 := (not #7815) -#7829 := (iff #7815 #7824) -#8915 := (or #7628 #7829) -#7819 := (if #7818 #4146 #7664) -#7820 := (iff #7815 #7819) -#8856 := (or #7628 #7820) -#9309 := (iff #8856 #8915) -#9313 := (iff #8915 #8915) -#9314 := [rewrite]: #9313 -#7830 := (iff #7820 #7829) -#7827 := (iff #7819 #7824) -#7821 := (if #7818 true #7664) -#7825 := (iff #7821 #7824) -#7826 := [rewrite]: #7825 -#7822 := (iff #7819 #7821) -#7823 := [monotonicity #4149]: #7822 -#7828 := [trans #7823 #7826]: #7827 -#7831 := [monotonicity #7828]: #7830 -#9244 := [monotonicity #7831]: #9309 -#8881 := [trans #9244 #9314]: #9309 -#9311 := [quant-inst #115 #186 #3 #2024]: #8856 -#8878 := [mp #9311 #8881]: #8915 -#9183 := [unit-resolution #8878 #3723]: #7829 -#8883 := (not #7829) -#9266 := (or #8883 #9164) -#7847 := (not #7824) -#9239 := [hypothesis]: #7847 -#8857 := (or #8883 #9164 #7824) -#8858 := [def-axiom]: #8857 -#9241 := [unit-resolution #8858 #9239]: #9266 -#9302 := [unit-resolution #9241 #9183]: #9164 -#8636 := [unit-resolution #9302 #8403]: false -#8809 := [lemma #8636]: #8848 -#10473 := [unit-resolution #8809 #10266]: #7824 -#7848 := (or #7847 #7818 #7664) -#7849 := [def-axiom]: #7848 -#10408 := [unit-resolution #7849 #10473 #10264]: #7664 -#7844 := (not #7664) -#9165 := (or #7844 #7981) -#8853 := [hypothesis]: #7664 -#8272 := (not #7981) -#8886 := [hypothesis]: #8272 -#3545 := (or #4057 #189) -#3546 := [def-axiom]: #3545 -#8131 := [unit-resolution #3546 #8264]: #189 -#3532 := (or #4069 #3815) -#3487 := [def-axiom]: #3532 -#8132 := [unit-resolution #3487 #7099]: #3815 -#7991 := (or #3820 #188 #7844 #7981) -#7982 := (or #188 #7844 #7981) -#7996 := (or #3820 #7982) -#8203 := (iff #7996 #7991) -#8204 := [rewrite]: #8203 -#8202 := [quant-inst #2024 #186]: #7996 -#8205 := [mp #8202 #8204]: #7991 -#8936 := [unit-resolution #8205 #8132 #8131 #8886 #8853]: false -#9170 := [lemma #8936]: #9165 -#10474 := [unit-resolution #9170 #10408]: #7981 -#10516 := (or #7715 #8272) -#8693 := (>= #7695 0::Int) -#7897 := (= #7695 0::Int) -#9389 := (not #7897) -#9660 := (not #8693) -#9386 := [hypothesis]: #9660 -#9403 := (or #9389 #8693) -#9379 := [th-lemma arith triangle-eq]: #9403 -#9404 := [unit-resolution #9379 #9386]: #9389 -#7892 := (= f28 ?v0!14) -#7893 := (<= #7695 0::Int) -#9385 := (or #8693 #7893) -#9405 := [th-lemma arith farkas 1 1]: #9385 -#9406 := [unit-resolution #9405 #9386]: #7893 -#7894 := (not #7893) -#7895 := (or #7892 #7894) -#344 := (<= #57 0::Int) -#345 := (not #344) -#348 := (or #56 #345) -#3730 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3689) #348) -#351 := (forall (vars (?v0 S2) (?v1 S2)) #348) -#3733 := (iff #351 #3730) -#3731 := (iff #348 #348) -#3732 := [refl]: #3731 -#3734 := [quant-intro #3732]: #3733 -#1585 := (~ #351 #351) -#1584 := (~ #348 #348) -#1614 := [refl]: #1584 -#1586 := [nnf-pos #1614]: #1585 -#62 := (< 0::Int #57) -#63 := (implies #61 #62) -#64 := (forall (vars (?v0 S2) (?v1 S2)) #63) -#354 := (iff #64 #351) -#337 := (or #56 #62) -#341 := (forall (vars (?v0 S2) (?v1 S2)) #337) -#352 := (iff #341 #351) -#349 := (iff #337 #348) -#346 := (iff #62 #345) -#347 := [rewrite]: #346 -#350 := [monotonicity #347]: #349 -#353 := [quant-intro #350]: #352 -#342 := (iff #64 #341) -#339 := (iff #63 #337) -#340 := [rewrite]: #339 -#343 := [quant-intro #340]: #342 -#355 := [trans #343 #353]: #354 -#336 := [asserted]: #64 -#356 := [mp #336 #355]: #351 -#1615 := [mp~ #356 #1586]: #351 -#3735 := [mp #1615 #3734]: #3730 -#6342 := (not #3730) -#8933 := (or #6342 #7892 #7894) -#8931 := (or #6342 #7895) -#8940 := (iff #8931 #8933) -#8941 := [rewrite]: #8940 -#8926 := [quant-inst #186 #2024]: #8931 -#8934 := [mp #8926 #8941]: #8933 -#9408 := [unit-resolution #8934 #3735]: #7895 -#9410 := [unit-resolution #9408 #9406]: #7892 -#7896 := (not #7892) -#7904 := (or #7896 #7897) -#8960 := (or #6738 #7896 #7897) -#8945 := (or #6738 #7904) -#8665 := (iff #8945 #8960) -#8668 := [rewrite]: #8665 -#8954 := [quant-inst #186 #2024]: #8945 -#8958 := [mp #8954 #8668]: #8960 -#9411 := [unit-resolution #8958 #3729]: #7904 -#9400 := [unit-resolution #9411 #9410 #9404]: false -#9401 := [lemma #9400]: #8693 -#9661 := (or #9660 #7715 #8272) -#8269 := [hypothesis]: #7981 -#9623 := [hypothesis]: #8867 -#9624 := [hypothesis]: #8693 -#9659 := [th-lemma arith farkas 1 -1 1 #9624 #9623 #8269]: false -#9662 := [lemma #9659]: #9661 -#10513 := [unit-resolution #9662 #9401]: #10516 -#10254 := [unit-resolution #10513 #10474 #10265]: false -#10267 := [lemma #10254]: #2031 -#3539 := (or #4057 #4051) -#3540 := [def-axiom]: #3539 -#9888 := [unit-resolution #3540 #8264]: #4051 -#3533 := (or #4057 #3919) -#3479 := [def-axiom]: #3533 -#8832 := [unit-resolution #3479 #8264]: #3919 -#4211 := (or #2011 #3932 #3924) -#5422 := [hypothesis]: #3919 -#5349 := [hypothesis]: #3927 -#5149 := [hypothesis]: #2012 -#4951 := (<= #2010 0::Int) -#4210 := (or #4951 #2011) -#4205 := [th-lemma arith farkas 1 1]: #4210 -#4212 := [unit-resolution #4205 #5149]: #4951 -#5428 := (not #4951) -#5460 := (or #5428 #3924 #3932 #2011) -#4742 := (f5 #200 ?v0!13) -#4743 := (f15 #4742) -#4824 := (+ #2009 #4743) -#4825 := (+ #190 #4824) -#4953 := (>= #4825 0::Int) -#4826 := (= #4825 0::Int) -#4764 := (* -1::Int #4743) -#4765 := (+ f14 #4764) -#4766 := (<= #4765 0::Int) -#4886 := (not #4766) -#4685 := (* -1::Int #2007) -#4797 := (+ #4685 #4743) -#4798 := (+ #190 #4797) -#4799 := (>= #4798 0::Int) -#4959 := (or #4766 #4799) -#4964 := (not #4959) -#4960 := (= #2008 #2007) -#5304 := (not #4960) -#4946 := (= #2007 #2008) -#5150 := (not #4946) -#5348 := (iff #5150 #5304) -#5128 := (iff #4946 #4960) -#5347 := [commutativity]: #5128 -#5343 := [monotonicity #5347]: #5348 -#5151 := (or #5150 #2011) -#5345 := [th-lemma arith triangle-eq]: #5151 -#5346 := [unit-resolution #5345 #5149]: #5150 -#5127 := [mp #5346 #5343]: #5304 -#4968 := (or #4964 #4960) -#4973 := (or #3932 #4964 #4960) -#4767 := (+ #1235 #4764) -#4762 := (+ #2007 #4767) -#4763 := (<= #4762 0::Int) -#4954 := (or #4766 #4763) -#4955 := (not #4954) -#4961 := (or #4955 #4960) -#4978 := (or #3932 #4961) -#4878 := (iff #4978 #4973) -#4880 := (or #3932 #4968) -#4882 := (iff #4880 #4973) -#4883 := [rewrite]: #4882 -#4881 := (iff #4978 #4880) -#4971 := (iff #4961 #4968) -#4969 := (iff #4955 #4964) -#4962 := (iff #4954 #4959) -#4822 := (iff #4763 #4799) -#4772 := (+ #2007 #4764) -#4793 := (+ #1235 #4772) -#4796 := (<= #4793 0::Int) -#4800 := (iff #4796 #4799) -#4801 := [rewrite]: #4800 -#4791 := (iff #4763 #4796) -#4794 := (= #4762 #4793) -#4795 := [rewrite]: #4794 -#4792 := [monotonicity #4795]: #4791 -#4823 := [trans #4792 #4801]: #4822 -#4963 := [monotonicity #4823]: #4962 -#4970 := [monotonicity #4963]: #4969 -#4972 := [monotonicity #4970]: #4971 -#4879 := [monotonicity #4972]: #4881 -#4884 := [trans #4879 #4883]: #4878 -#4979 := [quant-inst #2006]: #4978 -#4885 := [mp #4979 #4884]: #4973 -#5350 := [unit-resolution #4885 #5349]: #4968 -#5351 := [unit-resolution #5350 #5127]: #4964 -#4980 := (or #4959 #4886) -#4943 := [def-axiom]: #4980 -#5420 := [unit-resolution #4943 #5351]: #4886 -#4941 := (not #4799) -#4942 := (or #4959 #4941) -#4944 := [def-axiom]: #4942 -#5421 := [unit-resolution #4944 #5351]: #4941 -#4829 := (or #4766 #4799 #4826) -#4852 := (or #3924 #4766 #4799 #4826) -#4768 := (+ #4743 #2009) -#4769 := (+ #190 #4768) -#4770 := (= #4769 0::Int) -#4771 := (or #4766 #4763 #4770) -#4853 := (or #3924 #4771) -#4858 := (iff #4853 #4852) -#4849 := (or #3924 #4829) -#4856 := (iff #4849 #4852) -#4857 := [rewrite]: #4856 -#4850 := (iff #4853 #4849) -#4830 := (iff #4771 #4829) -#4827 := (iff #4770 #4826) -#4820 := (= #4769 #4825) -#4821 := [rewrite]: #4820 -#4828 := [monotonicity #4821]: #4827 -#4851 := [monotonicity #4823 #4828]: #4830 -#4855 := [monotonicity #4851]: #4850 -#4859 := [trans #4855 #4857]: #4858 -#4854 := [quant-inst #2006]: #4853 -#4887 := [mp #4854 #4859]: #4852 -#5423 := [unit-resolution #4887 #5422]: #4829 -#5418 := [unit-resolution #5423 #5421 #5420]: #4826 -#5424 := (not #4826) -#5395 := (or #5424 #4953) -#5419 := [th-lemma arith triangle-eq]: #5395 -#5425 := [unit-resolution #5419 #5418]: #4953 -#5426 := [hypothesis]: #4951 -#5427 := [th-lemma arith farkas 1 -1 1 #5426 #5421 #5425]: false -#5480 := [lemma #5427]: #5460 -#4213 := [unit-resolution #5480 #4212 #5149 #5349 #5422]: false -#4215 := [lemma #4213]: #4211 -#9889 := [unit-resolution #4215 #8861 #8832]: #2011 -#3538 := (or #4054 #2012 #4048) -#3431 := [def-axiom]: #3538 -#9893 := [unit-resolution #3431 #9889 #9888]: #4048 -#3559 := (or #4045 #4039) -#3560 := [def-axiom]: #3559 -#18769 := [unit-resolution #3560 #9893]: #4039 -#3558 := (or #4042 #2032 #4036) -#3554 := [def-axiom]: #3558 -#18770 := [unit-resolution #3554 #18769]: #4039 -#18771 := [unit-resolution #18770 #10267]: #4036 -#3586 := (or #4033 #3944) -#3564 := [def-axiom]: #3586 -#18772 := [unit-resolution #3564 #18771]: #3944 -#11863 := (or #3949 #4630 #5176) -#11888 := (or #3949 #5179) -#11865 := (iff #11888 #11863) -#11884 := [rewrite]: #11865 -#11905 := [quant-inst #2123]: #11888 -#11867 := [mp #11905 #11884]: #11863 -#10037 := [unit-resolution #11867 #18772]: #5179 -#15919 := [unit-resolution #10037 #15519]: #4630 -#15588 := [mp #15919 #15539]: #15284 -#15473 := (not #14478) -#15461 := (or #15473 #14450 #15350) -#15360 := [def-axiom]: #15461 -#15572 := [unit-resolution #15360 #15588 #16371]: #15350 -#15307 := (or #14460 #15274) -#15417 := [def-axiom]: #15307 -#15639 := [unit-resolution #15417 #15572]: #15274 -#15258 := [mp #15639 #14829]: #19613 -#5210 := (f5 #200 ?v0!20) -#5211 := (f15 #5210) -#19610 := (<= #5211 0::Int) -#19614 := (= #5211 0::Int) -#5267 := (+ #2127 #5211) -#5268 := (+ #190 #5267) -#14690 := (<= #5268 0::Int) -#5271 := (= #5268 0::Int) -#5228 := (+ #5194 #5211) -#5229 := (+ #190 #5228) -#5230 := (>= #5229 0::Int) -#5212 := (* -1::Int #5211) -#5213 := (+ f14 #5212) -#5214 := (<= #5213 0::Int) -#5235 := (or #5214 #5230) -#5238 := (not #5235) -#5241 := (or #5238 #5176) -#11930 := (or #3932 #5238 #5176) -#5215 := (+ #1235 #5212) -#5216 := (+ #5169 #5215) -#5217 := (<= #5216 0::Int) -#5218 := (or #5214 #5217) -#5219 := (not #5218) -#5220 := (or #5219 #5176) -#11948 := (or #3932 #5220) -#11916 := (iff #11948 #11930) -#11956 := (or #3932 #5241) -#11947 := (iff #11956 #11930) -#11957 := [rewrite]: #11947 -#11952 := (iff #11948 #11956) -#5242 := (iff #5220 #5241) -#5239 := (iff #5219 #5238) -#5236 := (iff #5218 #5235) -#5233 := (iff #5217 #5230) -#5221 := (+ #5169 #5212) -#5222 := (+ #1235 #5221) -#5225 := (<= #5222 0::Int) -#5231 := (iff #5225 #5230) -#5232 := [rewrite]: #5231 -#5226 := (iff #5217 #5225) -#5223 := (= #5216 #5222) -#5224 := [rewrite]: #5223 -#5227 := [monotonicity #5224]: #5226 -#5234 := [trans #5227 #5232]: #5233 -#5237 := [monotonicity #5234]: #5236 -#5240 := [monotonicity #5237]: #5239 -#5243 := [monotonicity #5240]: #5242 -#11958 := [monotonicity #5243]: #11952 -#11917 := [trans #11958 #11957]: #11916 -#11951 := [quant-inst #2123]: #11948 -#11918 := [mp #11951 #11917]: #11930 -#14638 := [unit-resolution #11918 #8861]: #5241 -#15554 := [unit-resolution #14638 #15519]: #5238 -#19224 := (or #5235 #5271) -#19170 := (not #5271) -#19168 := [hypothesis]: #19170 -#11915 := (not #5214) -#19162 := [hypothesis]: #5238 -#11961 := (or #5235 #11915) -#11877 := [def-axiom]: #11961 -#19173 := [unit-resolution #11877 #19162]: #11915 -#11896 := (not #5230) -#11943 := (or #5235 #11896) -#11880 := [def-axiom]: #11943 -#19184 := [unit-resolution #11880 #19162]: #11896 -#5274 := (or #5214 #5230 #5271) -#11968 := (or #3924 #5214 #5230 #5271) -#5263 := (+ #5211 #2127) -#5264 := (+ #190 #5263) -#5265 := (= #5264 0::Int) -#5266 := (or #5214 #5217 #5265) -#11881 := (or #3924 #5266) -#11987 := (iff #11881 #11968) -#11986 := (or #3924 #5274) -#11985 := (iff #11986 #11968) -#11984 := [rewrite]: #11985 -#11929 := (iff #11881 #11986) -#5275 := (iff #5266 #5274) -#5272 := (iff #5265 #5271) -#5269 := (= #5264 #5268) -#5270 := [rewrite]: #5269 -#5273 := [monotonicity #5270]: #5272 -#5276 := [monotonicity #5234 #5273]: #5275 -#11965 := [monotonicity #5276]: #11929 -#11971 := [trans #11965 #11984]: #11987 -#11962 := [quant-inst #2123]: #11881 -#11989 := [mp #11962 #11971]: #11968 -#19203 := [unit-resolution #11989 #8832]: #5274 -#19204 := [unit-resolution #19203 #19184 #19173 #19168]: false -#19220 := [lemma #19204]: #19224 -#15563 := [unit-resolution #19220 #15554]: #5271 -#14689 := (or #19170 #14690) -#14714 := [th-lemma arith triangle-eq]: #14689 -#15571 := [unit-resolution #14714 #15563]: #14690 -#14679 := (>= #5268 0::Int) -#14688 := (or #19170 #14679) -#12799 := [th-lemma arith triangle-eq]: #14688 -#15545 := [unit-resolution #12799 #15563]: #14679 -#4168 := (* -1::Int #4167) -#4169 := (+ #190 #4168) -#7297 := (<= #4169 0::Int) -#7302 := (= #190 #4167) -#18257 := (iff #4220 #7302) -#18255 := (iff #7302 #4220) -#18256 := [commutativity]: #18255 -#18258 := [symm #18256]: #18257 -#18259 := [mp #9179 #18258]: #7302 -#18260 := (not #7302) -#18261 := (or #18260 #7297) -#18262 := [th-lemma arith triangle-eq]: #18261 -#18263 := [unit-resolution #18262 #18259]: #7297 -#4170 := (>= #4169 0::Int) -#3555 := (or #4045 #3935) -#3556 := [def-axiom]: #3555 -#9894 := [unit-resolution #3556 #9893]: #3935 -#7218 := (or #3940 #4170) -#7219 := [quant-inst #186]: #7218 -#10752 := [unit-resolution #7219 #9894]: #4170 -#5157 := (+ #2126 #4168) -#5318 := (<= #5157 0::Int) -#5330 := (+ #4168 #5212) -#5331 := (+ #2126 #5330) -#5332 := (= #5331 0::Int) -#14652 := (>= #5331 0::Int) -#14681 := (not #14690) -#15108 := (or #14681 #14652) -#10393 := (not #4170) -#15550 := (or #14681 #10393 #14652) -#15472 := [th-lemma arith assign-bounds -1 1]: #15550 -#15621 := [unit-resolution #15472 #10752]: #15108 -#15637 := [unit-resolution #15621 #15571]: #14652 -#14720 := (<= #5331 0::Int) -#12661 := (not #7297) -#14678 := (not #14679) -#15123 := (or #14720 #14678 #12661) -#15620 := [th-lemma arith assign-bounds 1 -1]: #15123 -#13505 := [unit-resolution #15620 #15545 #18263]: #14720 -#19121 := (not #14652) -#12624 := (not #14720) -#15596 := (or #5332 #12624 #19121) -#15676 := [th-lemma arith triangle-eq]: #15596 -#15984 := [unit-resolution #15676 #13505 #15637]: #5332 -#5337 := (not #5332) -#15716 := (or #5318 #5337) -#4518 := (f9 f29 f28) -#4519 := (= #4518 f1) -#4144 := (f9 #198 f28) -#4145 := (= #4144 f1) -#31 := (:var 0 S1) -#28 := (:var 2 S7) -#29 := (f12 f13 #28) -#30 := (f11 #29 #9) -#32 := (f10 #30 #31) -#3710 := (pattern #32) -#35 := (= #31 f1) -#33 := (f9 #32 #9) -#34 := (= #33 f1) -#36 := (iff #34 #35) -#3711 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1)) (:pat #3710) #36) -#37 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1)) #36) -#3714 := (iff #37 #3711) -#3712 := (iff #36 #36) -#3713 := [refl]: #3712 -#3715 := [quant-intro #3713]: #3714 -#1577 := (~ #37 #37) -#1606 := (~ #36 #36) -#1607 := [refl]: #1606 -#1578 := [nnf-pos #1607]: #1577 -#321 := [asserted]: #37 -#1608 := [mp~ #321 #1578]: #37 -#3716 := [mp #1608 #3715]: #3711 -#6379 := (not #3711) -#6555 := (or #6379 #4145) -#4147 := (iff #4145 #4146) -#6775 := (or #6379 #4147) -#7023 := (iff #6775 #6555) -#7024 := (iff #6555 #6555) -#3437 := [rewrite]: #7024 -#4155 := (iff #4147 #4145) -#4150 := (iff #4145 true) -#4153 := (iff #4150 #4145) -#4154 := [rewrite]: #4153 -#4151 := (iff #4147 #4150) -#4152 := [monotonicity #4149]: #4151 -#4156 := [trans #4152 #4154]: #4155 -#7020 := [monotonicity #4156]: #7023 -#3310 := [trans #7020 #3437]: #7023 -#7010 := [quant-inst #115 #186 #3]: #6775 -#6101 := [mp #7010 #3310]: #6555 -#12643 := [unit-resolution #6101 #3716]: #4145 -#12662 := (= #4518 #4144) -#12669 := [monotonicity #9701]: #12662 -#12665 := [trans #12669 #12643]: #4519 -#4447 := (= #221 #110) -#8042 := (= #190 #110) -#7927 := (= #110 #190) -#4428 := (+ #110 #1235) -#4429 := (>= #4428 0::Int) -#4424 := (f9 f21 f16) -#4425 := (= #4424 f1) -#7254 := (not #4425) -#4381 := (= ?v0!12 f16) -#4382 := (?v1!7 ?v0!12) -#4390 := (f6 f7 #4382) -#4391 := (f5 #4390 ?v0!12) -#4392 := (f15 #4391) -#4393 := (* -1::Int #4392) -#4383 := (f19 f20 #4382) -#4384 := (* -1::Int #4383) -#4394 := (+ #4384 #4393) -#4395 := (+ #1965 #4394) -#4396 := (= #4395 0::Int) -#4397 := (not #4396) -#4387 := (f9 f21 #4382) -#4388 := (= #4387 f1) -#4389 := (not #4388) -#4385 := (+ #1965 #4384) -#4386 := (<= #4385 0::Int) -#4398 := (or #4386 #4389 #4397) -#4252 := (= f28 f16) -#4431 := (f5 #200 f16) -#4432 := (f15 #4431) -#4439 := (* -1::Int #4432) -#4442 := (+ #1235 #4439) -#4443 := (+ #110 #4442) -#4444 := (<= #4443 0::Int) -#7610 := (not #4444) -#4440 := (+ f14 #4439) -#4441 := (<= #4440 0::Int) -#4445 := (or #4441 #4444) -#4446 := (not #4445) -#9205 := (not #4447) -#5924 := (iff #713 #9205) -#5922 := (iff #222 #4447) -#5921 := (iff #4447 #222) -#5919 := [monotonicity #7324]: #5921 -#5923 := [symm #5919]: #5922 -#6064 := [monotonicity #5923]: #5924 -#5920 := [hypothesis]: #713 -#6065 := [mp #5920 #6064]: #9205 -#4448 := (or #4446 #4447) -#7601 := (or #3932 #4446 #4447) -#7602 := (or #3932 #4448) -#7604 := (iff #7602 #7601) -#7605 := [rewrite]: #7604 -#7603 := [quant-inst #65]: #7602 -#7606 := [mp #7603 #7605]: #7601 -#6066 := [unit-resolution #7606 #8861]: #4448 -#9900 := [unit-resolution #6066 #6065]: #4446 -#7611 := (or #4445 #7610) -#7612 := [def-axiom]: #7611 -#9807 := [unit-resolution #7612 #9900]: #7610 -#8599 := (or #4444 #4252) -#8514 := (<= #4432 0::Int) -#8515 := (not #8514) -#8195 := (not #4252) -#8549 := [hypothesis]: #8195 -#8513 := (or #6342 #4252 #8515) -#8516 := (or #4252 #8515) -#8519 := (or #6342 #8516) -#8521 := (iff #8519 #8513) -#8522 := [rewrite]: #8521 -#8520 := [quant-inst #186 #65]: #8519 -#8523 := [mp #8520 #8522]: #8513 -#8552 := [unit-resolution #8523 #3735 #8549]: #8515 -#4483 := (<= #110 0::Int) -#7325 := (or #878 #4483) -#7328 := [th-lemma arith triangle-eq]: #7325 -#7329 := [unit-resolution #7328 #7324]: #4483 -#4253 := (?v1!7 f28) -#4254 := (f19 f20 #4253) -#4255 := (* -1::Int #4254) -#4256 := (+ #190 #4255) -#7963 := (>= #4256 0::Int) -#4257 := (<= #4256 0::Int) -#7326 := (not #4257) -#4261 := (f6 f7 #4253) -#4262 := (f5 #4261 f28) -#4263 := (f15 #4262) -#4264 := (* -1::Int #4263) -#4265 := (+ #4255 #4264) -#4266 := (+ #190 #4265) -#4267 := (= #4266 0::Int) -#4268 := (not #4267) -#4258 := (f9 f21 #4253) -#4259 := (= #4258 f1) -#4260 := (not #4259) -#4269 := (or #4257 #4260 #4268) -#4270 := (not #4269) -#8572 := (or #4252 #4270) -#3547 := (or #4057 #1412) -#3550 := [def-axiom]: #3547 -#8267 := [unit-resolution #3550 #8264]: #1412 -#7305 := (or #3836 #4252 #1411 #4270) -#4271 := (or #4252 #1411 #4270) -#7316 := (or #3836 #4271) -#7315 := (iff #7316 #7305) -#7317 := [rewrite]: #7315 -#7314 := [quant-inst #186]: #7316 -#7318 := [mp #7314 #7317]: #7305 -#8573 := [unit-resolution #7318 #7150 #8267]: #8572 -#8574 := [unit-resolution #8573 #8549]: #4270 -#7322 := (or #4269 #7326) -#7327 := [def-axiom]: #7322 -#8575 := [unit-resolution #7327 #8574]: #7326 -#8570 := (or #7963 #4257) -#8576 := [th-lemma arith farkas 1 1]: #8570 -#8577 := [unit-resolution #8576 #8575]: #7963 -#8444 := (>= #4254 0::Int) -#3531 := (or #4069 #3806) -#3511 := [def-axiom]: #3531 -#8408 := [unit-resolution #3511 #7099]: #3806 -#7889 := (or #3811 #8444) -#7890 := [quant-inst #4253]: #7889 -#8578 := [unit-resolution #7890 #8408]: #8444 -#8579 := [hypothesis]: #7610 -#8580 := [th-lemma arith farkas 1 1 1 1 1 #8579 #8578 #8577 #7329 #8552]: false -#8600 := [lemma #8580]: #8599 -#9903 := [unit-resolution #8600 #9807]: #4252 -#11140 := (or #4398 #8195) -#4399 := (not #4398) -#11053 := [hypothesis]: #4399 -#7585 := (or #4398 #4388) -#7586 := [def-axiom]: #7585 -#11054 := [unit-resolution #7586 #11053]: #4388 -#11117 := (= #187 #4387) -#8916 := (= f28 #4382) -#10478 := (= f16 #4382) -#8133 := (= #4382 f16) -#8136 := (?v1!7 #4382) -#8144 := (f6 f7 #8136) -#8145 := (f5 #8144 #4382) -#8146 := (f15 #8145) -#8147 := (* -1::Int #8146) -#8137 := (f19 f20 #8136) -#8138 := (* -1::Int #8137) -#8148 := (+ #8138 #8147) -#8149 := (+ #4383 #8148) -#8150 := (= #8149 0::Int) -#8151 := (not #8150) -#8141 := (f9 f21 #8136) -#8142 := (= #8141 f1) -#8143 := (not #8142) -#8139 := (+ #4383 #8138) -#8140 := (<= #8139 0::Int) -#8152 := (or #8140 #8143 #8151) -#9559 := (+ #110 #4384) -#9591 := (>= #9559 0::Int) -#8009 := [hypothesis]: #4252 -#8040 := [monotonicity #8009]: #8042 -#8044 := [symm #8040]: #7927 -#7986 := (not #7927) -#7987 := (or #7986 #4429) -#7985 := [th-lemma arith triangle-eq]: #7987 -#8266 := [unit-resolution #7985 #8044]: #4429 -#8029 := (+ #190 #4384) -#8030 := (>= #8029 0::Int) -#9838 := (or #3820 #188 #4389 #8030) -#8037 := (or #188 #4389 #8030) -#9839 := (or #3820 #8037) -#9884 := (iff #9839 #9838) -#9885 := [rewrite]: #9884 -#9597 := [quant-inst #4382 #186]: #9839 -#9897 := [mp #9597 #9885]: #9838 -#11049 := [unit-resolution #9897 #8132 #8131 #11054]: #8030 -#8411 := (not #4429) -#11055 := (not #8030) -#11056 := (or #9591 #11055 #8411) -#11057 := [th-lemma arith assign-bounds -1 -1]: #11056 -#11058 := [unit-resolution #11057 #11049 #8266]: #9591 -#10720 := (not #9591) -#11080 := (or #10720 #8140) -#9223 := (>= #8137 0::Int) -#10115 := (not #9223) -#10116 := [hypothesis]: #10115 -#10093 := (or #3811 #9223) -#10094 := [quant-inst #8136]: #10093 -#10134 := [unit-resolution #10094 #8408 #10116]: false -#10135 := [lemma #10134]: #9223 -#7335 := (not #4483) -#11059 := (or #10720 #7335 #10115 #8140) -#11079 := [th-lemma arith assign-bounds -1 1 1]: #11059 -#11081 := [unit-resolution #11079 #10135 #7329]: #11080 -#11082 := [unit-resolution #11081 #11058]: #8140 -#10256 := (not #8140) -#10257 := (or #8152 #10256) -#10263 := [def-axiom]: #10257 -#11083 := [unit-resolution #10263 #11082]: #8152 -#8153 := (not #8152) -#11107 := (or #8133 #8153) -#8134 := (+ f14 #4384) -#8135 := (<= #8134 0::Int) -#11087 := (not #8135) -#8025 := (>= #4385 0::Int) -#7582 := (not #4386) -#7583 := (or #4398 #7582) -#7584 := [def-axiom]: #7583 -#11078 := [unit-resolution #7584 #11053]: #7582 -#11084 := (or #8025 #4386) -#11085 := [th-lemma arith farkas 1 1]: #11084 -#11086 := [unit-resolution #11085 #11078]: #8025 -#11088 := (not #8025) -#11110 := (or #11087 #11088) -#3544 := (or #4057 #1969) -#3549 := [def-axiom]: #3544 -#9691 := [unit-resolution #3549 #8264]: #1969 -#11108 := (or #11087 #1968 #11088) -#11109 := [th-lemma arith assign-bounds 1 1]: #11108 -#11111 := [unit-resolution #11109 #9691]: #11110 -#11112 := [unit-resolution #11111 #11086]: #11087 -#10255 := (or #3836 #8133 #8135 #8153) -#8154 := (or #8133 #8135 #8153) -#10258 := (or #3836 #8154) -#10260 := (iff #10258 #10255) -#10261 := [rewrite]: #10260 -#10259 := [quant-inst #4382]: #10258 -#10262 := [mp #10259 #10261]: #10255 -#11113 := [unit-resolution #10262 #7150 #11112]: #11107 -#11114 := [unit-resolution #11113 #11083]: #8133 -#11115 := [symm #11114]: #10478 -#11116 := [trans #8009 #11115]: #8916 -#11137 := [monotonicity #11116]: #11117 -#11138 := [trans #11137 #11054]: #188 -#11139 := [unit-resolution #8131 #11138]: false -#11141 := [lemma #11139]: #11140 -#9883 := [unit-resolution #11141 #9903]: #4398 -#8305 := (or #4381 #4399) -#7574 := (or #3836 #4381 #1968 #4399) -#4400 := (or #4381 #1968 #4399) -#7575 := (or #3836 #4400) -#7577 := (iff #7575 #7574) -#7578 := [rewrite]: #7577 -#7576 := [quant-inst #1961]: #7575 -#7579 := [mp #7576 #7578]: #7574 -#8780 := [unit-resolution #7579 #7150 #9691]: #8305 -#18251 := [unit-resolution #8780 #9883]: #4381 -#9007 := (not #4381) -#9005 := (or #9007 #7254) -#7350 := [hypothesis]: #4425 -#8961 := (= #1962 #4424) -#8959 := [hypothesis]: #4381 -#8962 := [monotonicity #8959]: #8961 -#9006 := [trans #8962 #7350]: #1963 -#3542 := (or #4057 #1964) -#3543 := [def-axiom]: #3542 -#8944 := [unit-resolution #3543 #8264]: #1964 -#8888 := [unit-resolution #8944 #9006]: false -#9008 := [lemma #8888]: #9005 -#9652 := [unit-resolution #9008 #18251]: #7254 -#4430 := (or #4425 #4429) -#3551 := (or #4057 #3909) -#3552 := [def-axiom]: #3551 -#8603 := [unit-resolution #3552 #8264]: #3909 -#7595 := (or #3914 #4425 #4429) -#7596 := (or #3914 #4430) -#7598 := (iff #7596 #7595) -#7599 := [rewrite]: #7598 -#7597 := [quant-inst #65]: #7596 -#7600 := [mp #7597 #7599]: #7595 -#9803 := [unit-resolution #7600 #8603]: #4430 -#9901 := [unit-resolution #9803 #9652]: #4429 -#9733 := (or #7927 #8411) -#8590 := (<= #4428 0::Int) -#4272 := (>= #190 0::Int) -#7146 := (or #3811 #4272) -#7514 := [quant-inst #186]: #7146 -#7845 := [unit-resolution #7514 #8408]: #4272 -#8544 := (not #8590) -#7810 := [hypothesis]: #8544 -#7888 := [th-lemma arith farkas 1 -1 1 #7810 #7329 #7845]: false -#7759 := [lemma #7888]: #8590 -#9935 := (or #7927 #8544 #8411) -#9936 := [th-lemma arith triangle-eq]: #9935 -#9606 := [unit-resolution #9936 #7759]: #9733 -#9645 := [unit-resolution #9606 #9901]: #7927 -#9892 := [symm #9645]: #8042 -#9902 := (= #221 #190) -#8871 := (= #221 #4167) -#8010 := (= f16 f28) -#9669 := [symm #9903]: #8010 -#9549 := [monotonicity #9669]: #8871 -#9612 := [trans #9549 #9179]: #9902 -#9668 := [trans #9612 #9892]: #4447 -#9570 := [trans #9668 #7324]: #222 -#9595 := [unit-resolution #5920 #9570]: false -#9632 := [lemma #9595]: #222 -#3565 := (or #4033 #4027) -#3567 := [def-axiom]: #3565 -#14028 := [unit-resolution #3567 #18771]: #4027 -#3585 := (or #4030 #713 #4024) -#3575 := [def-axiom]: #3585 -#14128 := [unit-resolution #3575 #14028]: #4027 -#14105 := [unit-resolution #14128 #9632]: #4024 -#3577 := (or #4021 #4015) -#3578 := [def-axiom]: #3577 -#14080 := [unit-resolution #3578 #14105]: #4015 -#14243 := (or #4018 #4012) -#8617 := (or #8544 #2051) -#6626 := (f5 #200 ?v0!15) -#6627 := (f15 #6626) -#9520 := (= #6627 0::Int) -#8602 := (not #9520) -#9750 := (>= #6627 0::Int) -#8541 := (not #9750) -#8393 := [hypothesis]: #8590 -#6707 := [hypothesis]: #2052 -#3322 := (>= #110 0::Int) -#6072 := (or #3811 #3322) -#6127 := [quant-inst #65]: #6072 -#8487 := [unit-resolution #6127 #8408]: #3322 -#4577 := (* -1::Int #2050) -#6683 := (+ #4577 #6627) -#6684 := (+ #190 #6683) -#9543 := (<= #6684 0::Int) -#6687 := (= #6684 0::Int) -#6628 := (* -1::Int #6627) -#6629 := (+ f14 #6628) -#6630 := (<= #6629 0::Int) -#9343 := (not #6630) -#6585 := (f19 f20 ?v0!15) -#6610 := (* -1::Int #6585) -#6644 := (+ #6610 #6627) -#6645 := (+ #190 #6644) -#6646 := (>= #6645 0::Int) -#6651 := (or #6630 #6646) -#6654 := (not #6651) -#6586 := (= #2050 #6585) -#9841 := (not #6586) -#6611 := (+ #2050 #6610) -#9310 := (>= #6611 0::Int) -#9745 := (not #9310) -#9746 := (or #9745 #2051) -#9740 := [hypothesis]: #9310 -#9233 := (>= #6585 0::Int) -#9593 := (or #3811 #9233) -#9579 := [quant-inst #2049]: #9593 -#9741 := [unit-resolution #9579 #8408]: #9233 -#9744 := [th-lemma arith farkas -1 1 1 #6707 #9741 #9740]: false -#9747 := [lemma #9744]: #9746 -#9587 := [unit-resolution #9747 #6707]: #9745 -#9589 := (or #9841 #9310) -#9611 := [th-lemma arith triangle-eq]: #9589 -#8492 := [unit-resolution #9611 #9587]: #9841 -#9172 := (or #3932 #6654 #6586) -#6631 := (+ #1235 #6628) -#6632 := (+ #6585 #6631) -#6633 := (<= #6632 0::Int) -#6634 := (or #6630 #6633) -#6635 := (not #6634) -#6636 := (or #6635 #6586) -#9240 := (or #3932 #6636) -#9341 := (iff #9240 #9172) -#6657 := (or #6654 #6586) -#8908 := (or #3932 #6657) -#9265 := (iff #8908 #9172) -#9339 := [rewrite]: #9265 -#8877 := (iff #9240 #8908) -#6658 := (iff #6636 #6657) -#6655 := (iff #6635 #6654) -#6652 := (iff #6634 #6651) -#6649 := (iff #6633 #6646) -#6637 := (+ #6585 #6628) -#6638 := (+ #1235 #6637) -#6641 := (<= #6638 0::Int) -#6647 := (iff #6641 #6646) -#6648 := [rewrite]: #6647 -#6642 := (iff #6633 #6641) -#6639 := (= #6632 #6638) -#6640 := [rewrite]: #6639 -#6643 := [monotonicity #6640]: #6642 -#6650 := [trans #6643 #6648]: #6649 -#6653 := [monotonicity #6650]: #6652 -#6656 := [monotonicity #6653]: #6655 -#6659 := [monotonicity #6656]: #6658 -#8889 := [monotonicity #6659]: #8877 -#9337 := [trans #8889 #9339]: #9341 -#8828 := [quant-inst #2049]: #9240 -#9342 := [mp #8828 #9337]: #9172 -#8493 := [unit-resolution #9342 #8861 #8492]: #6654 -#9344 := (or #6651 #9343) -#9299 := [def-axiom]: #9344 -#8494 := [unit-resolution #9299 #8493]: #9343 -#9330 := (not #6646) -#8854 := (or #6651 #9330) -#8855 := [def-axiom]: #8854 -#8307 := [unit-resolution #8855 #8493]: #9330 -#6690 := (or #6630 #6646 #6687) -#9368 := (or #3924 #6630 #6646 #6687) -#6679 := (+ #6627 #4577) -#6680 := (+ #190 #6679) -#6681 := (= #6680 0::Int) -#6682 := (or #6630 #6633 #6681) -#8704 := (or #3924 #6682) -#9540 := (iff #8704 #9368) -#9390 := (or #3924 #6690) -#9425 := (iff #9390 #9368) -#9539 := [rewrite]: #9425 -#9413 := (iff #8704 #9390) -#6691 := (iff #6682 #6690) -#6688 := (iff #6681 #6687) -#6685 := (= #6680 #6684) -#6686 := [rewrite]: #6685 -#6689 := [monotonicity #6686]: #6688 -#6692 := [monotonicity #6650 #6689]: #6691 -#9423 := [monotonicity #6692]: #9413 -#9536 := [trans #9423 #9539]: #9540 -#9412 := [quant-inst #2049]: #8704 -#9541 := [mp #9412 #9536]: #9368 -#9868 := [unit-resolution #9541 #8832]: #6690 -#8535 := [unit-resolution #9868 #8307 #8494]: #6687 -#9870 := (not #6687) -#9871 := (or #9870 #9543) -#9872 := [th-lemma arith triangle-eq]: #9871 -#8540 := [unit-resolution #9872 #8535]: #9543 -#8548 := (not #3322) -#9874 := (not #9543) -#8539 := (or #8541 #2051 #9874 #8544 #8548) -#8530 := [th-lemma arith assign-bounds -1 -1 -1 1]: #8539 -#8601 := [unit-resolution #8530 #8540 #8487 #6707 #8393]: #8541 -#8604 := (or #8602 #9750) -#8571 := [th-lemma arith triangle-eq]: #8604 -#8605 := [unit-resolution #8571 #8601]: #8602 -#9672 := (= f28 ?v0!15) -#9673 := (<= #6627 0::Int) -#8598 := (or #9673 #2051 #9874 #8544 #8548) -#8613 := [th-lemma arith assign-bounds 1 1 1 1]: #8598 -#8611 := [unit-resolution #8613 #8540 #8487 #6707 #8393]: #9673 -#9674 := (not #9673) -#9609 := (or #6342 #9672 #9674) -#9675 := (or #9672 #9674) -#9610 := (or #6342 #9675) -#9622 := (iff #9610 #9609) -#9618 := [rewrite]: #9622 -#9604 := [quant-inst #186 #2049]: #9610 -#9619 := [mp #9604 #9618]: #9609 -#8607 := [unit-resolution #9619 #3735 #8611]: #9672 -#9676 := (not #9672) -#8402 := (or #6738 #9676 #9520) -#9726 := (or #9676 #9520) -#8488 := (or #6738 #9726) -#8484 := (iff #8488 #8402) -#8485 := [rewrite]: #8484 -#8489 := [quant-inst #186 #2049]: #8488 -#8486 := [mp #8489 #8485]: #8402 -#8619 := [unit-resolution #8486 #3729 #8607 #8605]: false -#8618 := [lemma #8619]: #8617 -#14242 := [unit-resolution #8618 #7759]: #2051 -#3593 := (or #4018 #2052 #4012) -#3573 := [def-axiom]: #3593 -#14109 := [unit-resolution #3573 #14242]: #14243 -#14124 := [unit-resolution #14109 #14080]: #4012 -#3596 := (or #4009 #4003) -#3601 := [def-axiom]: #3596 -#14006 := [unit-resolution #3601 #14124]: #4003 -#14245 := (or #4006 #4000) -#6060 := [hypothesis]: #2959 -#3627 := (not #2077) -#3630 := (or #2954 #3627) -#3514 := [def-axiom]: #3630 -#6061 := [unit-resolution #3514 #6060]: #3627 -#10344 := (or #2954 #2077) -#5944 := (f19 f20 ?v1!16) -#5961 := (* -1::Int #5944) -#5013 := (+ #190 #5961) -#5014 := (<= #5013 0::Int) -#5817 := (f9 f21 ?v1!16) -#5818 := (= #5817 f1) -#10018 := (not #5818) -#5816 := (= ?v1!16 f28) -#5824 := (or #5816 #5818) -#10022 := (not #5824) -#5814 := (f9 #198 ?v1!16) -#5815 := (= #5814 f1) -#5829 := (iff #5815 #5824) -#9980 := (or #7628 #5829) -#5819 := (if #5816 #4146 #5818) -#5820 := (iff #5815 #5819) -#9981 := (or #7628 #5820) -#10002 := (iff #9981 #9980) -#10009 := (iff #9980 #9980) -#10010 := [rewrite]: #10009 -#5830 := (iff #5820 #5829) -#5827 := (iff #5819 #5824) -#5821 := (if #5816 true #5818) -#5825 := (iff #5821 #5824) -#5826 := [rewrite]: #5825 -#5822 := (iff #5819 #5821) -#5823 := [monotonicity #4149]: #5822 -#5828 := [trans #5823 #5826]: #5827 -#5831 := [monotonicity #5828]: #5830 -#10008 := [monotonicity #5831]: #10002 -#10011 := [trans #10008 #10010]: #10002 -#10007 := [quant-inst #115 #186 #3 #2064]: #9981 -#10012 := [mp #10007 #10011]: #9980 -#10496 := [unit-resolution #10012 #3723]: #5829 -#10031 := (not #5815) -#10269 := (iff #2068 #10031) -#10268 := (iff #2067 #5815) -#10548 := (iff #5815 #2067) -#10495 := (= #5814 #2066) -#10497 := [monotonicity #9297]: #10495 -#10549 := [monotonicity #10497]: #10548 -#10526 := [symm #10549]: #10268 -#10270 := [monotonicity #10526]: #10269 -#3625 := (or #2954 #2068) -#3628 := [def-axiom]: #3625 -#6063 := [unit-resolution #3628 #6060]: #2068 -#10271 := [mp #6063 #10270]: #10031 -#10024 := (not #5829) -#10025 := (or #10024 #5815 #10022) -#10026 := [def-axiom]: #10025 -#10272 := [unit-resolution #10026 #10271 #10496]: #10022 -#10019 := (or #5824 #10018) -#10020 := [def-axiom]: #10019 -#10273 := [unit-resolution #10020 #10272]: #10018 -#5037 := (or #5818 #5014) -#10145 := (or #3914 #5818 #5014) -#4981 := (+ #5944 #1235) -#4982 := (>= #4981 0::Int) -#5007 := (or #5818 #4982) -#10146 := (or #3914 #5007) -#10172 := (iff #10146 #10145) -#10167 := (or #3914 #5037) -#10170 := (iff #10167 #10145) -#10171 := [rewrite]: #10170 -#10168 := (iff #10146 #10167) -#5038 := (iff #5007 #5037) -#5035 := (iff #4982 #5014) -#5008 := (+ #1235 #5944) -#5011 := (>= #5008 0::Int) -#5015 := (iff #5011 #5014) -#5016 := [rewrite]: #5015 -#5006 := (iff #4982 #5011) -#5009 := (= #4981 #5008) -#5010 := [rewrite]: #5009 -#5012 := [monotonicity #5010]: #5006 -#5036 := [trans #5012 #5016]: #5035 -#5039 := [monotonicity #5036]: #5038 -#10169 := [monotonicity #5039]: #10168 -#10173 := [trans #10169 #10171]: #10172 -#10166 := [quant-inst #2064]: #10146 -#10174 := [mp #10166 #10173]: #10145 -#10537 := [unit-resolution #10174 #8603]: #5037 -#10535 := [unit-resolution #10537 #10273]: #5014 -#5741 := (f19 f20 ?v0!17) -#5634 := (* -1::Int #5741) -#5694 := (+ #2074 #5634) -#5699 := (<= #5694 0::Int) -#10122 := (or #3940 #5699) -#5671 := (+ #5741 #2075) -#5684 := (>= #5671 0::Int) -#10124 := (or #3940 #5684) -#10127 := (iff #10124 #10122) -#10130 := (iff #10122 #10122) -#10131 := [rewrite]: #10130 -#5701 := (iff #5684 #5699) -#5685 := (+ #2075 #5741) -#5689 := (>= #5685 0::Int) -#5700 := (iff #5689 #5699) -#5698 := [rewrite]: #5700 -#5692 := (iff #5684 #5689) -#5690 := (= #5671 #5685) -#5691 := [rewrite]: #5690 -#5693 := [monotonicity #5691]: #5692 -#5702 := [trans #5693 #5698]: #5701 -#10128 := [monotonicity #5702]: #10127 -#10132 := [trans #10128 #10131]: #10127 -#10126 := [quant-inst #2065]: #10124 -#10133 := [mp #10126 #10132]: #10122 -#10770 := [unit-resolution #10133 #9894]: #5699 -#10716 := [hypothesis]: #3627 -#5629 := (+ #190 #5634) -#10727 := (>= #5629 0::Int) -#5771 := (f9 f21 ?v0!17) -#5772 := (= #5771 f1) -#5770 := (= ?v0!17 f28) -#5778 := (or #5770 #5772) -#5760 := (f9 #198 ?v0!17) -#5761 := (= #5760 f1) -#5783 := (iff #5761 #5778) -#10038 := (or #7628 #5783) -#5773 := (if #5770 #4146 #5772) -#5774 := (iff #5761 #5773) -#10036 := (or #7628 #5774) -#10046 := (iff #10036 #10038) -#10028 := (iff #10038 #10038) -#10048 := [rewrite]: #10028 -#5784 := (iff #5774 #5783) -#5781 := (iff #5773 #5778) -#5775 := (if #5770 true #5772) -#5779 := (iff #5775 #5778) -#5780 := [rewrite]: #5779 -#5776 := (iff #5773 #5775) -#5777 := [monotonicity #4149]: #5776 -#5782 := [trans #5777 #5780]: #5781 -#5785 := [monotonicity #5782]: #5784 -#10047 := [monotonicity #5785]: #10046 -#10049 := [trans #10047 #10048]: #10046 -#10045 := [quant-inst #115 #186 #3 #2065]: #10036 -#10050 := [mp #10045 #10049]: #10038 -#10530 := [unit-resolution #10050 #3723]: #5783 -#3626 := (or #2954 #2070) -#3629 := [def-axiom]: #3626 -#6062 := [unit-resolution #3629 #6060]: #2070 -#10538 := (= #5760 #2069) -#10540 := [monotonicity #9297]: #10538 -#10544 := [trans #10540 #6062]: #5761 -#10058 := (not #5761) -#10073 := (not #5783) -#10059 := (or #10073 #10058 #5778) -#10060 := [def-axiom]: #10059 -#10536 := [unit-resolution #10060 #10544 #10530]: #5778 -#10051 := (not #5770) -#10683 := (= #2074 #4167) -#10731 := (not #10683) -#6074 := (+ #2074 #4168) -#10684 := (<= #6074 0::Int) -#10570 := (not #10684) -#5977 := (f5 #200 ?v1!16) -#5978 := (f15 #5977) -#10503 := (<= #5978 0::Int) -#10504 := (not #10503) -#10502 := (= f28 ?v1!16) -#10419 := (not #10502) -#10016 := (not #5816) -#10017 := (or #5824 #10016) -#10015 := [def-axiom]: #10017 -#10374 := [unit-resolution #10015 #10272]: #10016 -#10357 := (or #10419 #5816) -#10399 := [hypothesis]: #10502 -#10410 := [symm #10399]: #5816 -#10367 := [hypothesis]: #10016 -#10417 := [unit-resolution #10367 #10410]: false -#10416 := [lemma #10417]: #10357 -#10418 := [unit-resolution #10416 #10374]: #10419 -#10343 := (or #10504 #10502) -#10409 := [hypothesis]: #10419 -#10318 := [hypothesis]: #10503 -#10322 := (or #6342 #10502 #10504) -#10505 := (or #10502 #10504) -#10338 := (or #6342 #10505) -#10339 := (iff #10338 #10322) -#10340 := [rewrite]: #10339 -#10295 := [quant-inst #186 #2064]: #10338 -#10341 := [mp #10295 #10340]: #10322 -#10422 := [unit-resolution #10341 #3735 #10318 #10409]: false -#10472 := [lemma #10422]: #10343 -#10405 := [unit-resolution #10472 #10418]: #10504 -#10571 := (not #5014) -#10467 := (or #10570 #10503 #2077 #10571) -#4581 := (* -1::Int #2073) -#6036 := (+ #4581 #5978) -#6037 := (+ #190 #6036) -#6040 := (= #6037 0::Int) -#10441 := (not #6040) -#10120 := (<= #6037 0::Int) -#10719 := (not #10120) -#10714 := [hypothesis]: #10504 -#10567 := [hypothesis]: #10684 -#10406 := (or #10503 #2077 #10719 #10570 #10393) -#10337 := [th-lemma arith assign-bounds 1 1 1 1]: #10406 -#10342 := [unit-resolution #10337 #10567 #10714 #10752 #10716]: #10719 -#10420 := (or #10441 #10120) -#10421 := [th-lemma arith triangle-eq]: #10420 -#10378 := [unit-resolution #10421 #10342]: #10441 -#5996 := (+ #5961 #5978) -#5997 := (+ #190 #5996) -#5998 := (>= #5997 0::Int) -#5979 := (* -1::Int #5978) -#5980 := (+ f14 #5979) -#5981 := (<= #5980 0::Int) -#6003 := (or #5981 #5998) -#6006 := (not #6003) -#5987 := (= #2073 #5944) -#10379 := (not #5987) -#5962 := (+ #2073 #5961) -#10107 := (>= #5962 0::Int) -#10569 := (not #10107) -#10566 := [hypothesis]: #5014 -#10572 := (or #10569 #2077 #10570 #10571) -#10562 := [hypothesis]: #10107 -#10568 := [th-lemma arith farkas -1 1 1 -1 1 #10562 #10716 #10567 #10752 #10566]: false -#10576 := [lemma #10568]: #10572 -#10358 := [unit-resolution #10576 #10567 #10716 #10566]: #10569 -#10380 := (or #10379 #10107) -#10381 := [th-lemma arith triangle-eq]: #10380 -#10359 := [unit-resolution #10381 #10358]: #10379 -#6009 := (or #6006 #5987) -#10077 := (or #3932 #6006 #5987) -#5982 := (+ #1235 #5979) -#5983 := (+ #5944 #5982) -#5984 := (<= #5983 0::Int) -#5985 := (or #5981 #5984) -#5986 := (not #5985) -#5988 := (or #5986 #5987) -#10078 := (or #3932 #5988) -#10096 := (iff #10078 #10077) -#10079 := (or #3932 #6009) -#10075 := (iff #10079 #10077) -#10095 := [rewrite]: #10075 -#10080 := (iff #10078 #10079) -#6010 := (iff #5988 #6009) -#6007 := (iff #5986 #6006) -#6004 := (iff #5985 #6003) -#6001 := (iff #5984 #5998) -#5989 := (+ #5944 #5979) -#5990 := (+ #1235 #5989) -#5993 := (<= #5990 0::Int) -#5999 := (iff #5993 #5998) -#6000 := [rewrite]: #5999 -#5994 := (iff #5984 #5993) -#5991 := (= #5983 #5990) -#5992 := [rewrite]: #5991 -#5995 := [monotonicity #5992]: #5994 -#6002 := [trans #5995 #6000]: #6001 -#6005 := [monotonicity #6002]: #6004 -#6008 := [monotonicity #6005]: #6007 -#6011 := [monotonicity #6008]: #6010 -#10081 := [monotonicity #6011]: #10080 -#10097 := [trans #10081 #10095]: #10096 -#10076 := [quant-inst #2064]: #10078 -#10098 := [mp #10076 #10097]: #10077 -#10377 := [unit-resolution #10098 #8861]: #6009 -#10383 := [unit-resolution #10377 #10359]: #6006 -#10564 := (or #6003 #6040) -#10442 := [hypothesis]: #10441 -#10074 := (not #5981) -#10558 := [hypothesis]: #6006 -#10099 := (or #6003 #10074) -#10100 := [def-axiom]: #10099 -#10559 := [unit-resolution #10100 #10558]: #10074 -#10101 := (not #5998) -#10102 := (or #6003 #10101) -#10103 := [def-axiom]: #10102 -#10560 := [unit-resolution #10103 #10558]: #10101 -#6043 := (or #5981 #5998 #6040) -#10108 := (or #3924 #5981 #5998 #6040) -#6032 := (+ #5978 #4581) -#6033 := (+ #190 #6032) -#6034 := (= #6033 0::Int) -#6035 := (or #5981 #5984 #6034) -#10109 := (or #3924 #6035) -#10118 := (iff #10109 #10108) -#10110 := (or #3924 #6043) -#10113 := (iff #10110 #10108) -#10114 := [rewrite]: #10113 -#10111 := (iff #10109 #10110) -#6044 := (iff #6035 #6043) -#6041 := (iff #6034 #6040) -#6038 := (= #6033 #6037) -#6039 := [rewrite]: #6038 -#6042 := [monotonicity #6039]: #6041 -#6045 := [monotonicity #6002 #6042]: #6044 -#10112 := [monotonicity #6045]: #10111 -#10119 := [trans #10112 #10114]: #10118 -#10104 := [quant-inst #2064]: #10109 -#10117 := [mp #10104 #10119]: #10108 -#10561 := [unit-resolution #10117 #8832]: #6043 -#10563 := [unit-resolution #10561 #10560 #10559 #10442]: false -#10565 := [lemma #10563]: #10564 -#10382 := [unit-resolution #10565 #10383 #10378]: false -#10471 := [lemma #10382]: #10467 -#10423 := [unit-resolution #10471 #10405 #10716 #10535]: #10570 -#10738 := (or #10731 #10684) -#10737 := [th-lemma arith triangle-eq]: #10738 -#10531 := [unit-resolution #10737 #10423]: #10731 -#10368 := (or #10051 #10683) -#10401 := [hypothesis]: #5770 -#10400 := [monotonicity #10401]: #10683 -#10370 := [hypothesis]: #10731 -#10402 := [unit-resolution #10370 #10400]: false -#10369 := [lemma #10402]: #10368 -#10426 := [unit-resolution #10369 #10531]: #10051 -#10070 := (not #5778) -#10071 := (or #10070 #5770 #5772) -#10072 := [def-axiom]: #10071 -#10427 := [unit-resolution #10072 #10426 #10536]: #5772 -#10067 := (not #5772) -#10803 := (or #10067 #10727) -#10782 := (not #10727) -#10800 := [hypothesis]: #10782 -#10801 := [hypothesis]: #5772 -#10785 := (or #3820 #188 #10067 #10727) -#10728 := (or #188 #10067 #10727) -#10786 := (or #3820 #10728) -#10788 := (iff #10786 #10785) -#10789 := [rewrite]: #10788 -#10787 := [quant-inst #2065 #186]: #10786 -#10790 := [mp #10787 #10789]: #10785 -#10802 := [unit-resolution #10790 #8132 #8131 #10801 #10800]: false -#10804 := [lemma #10802]: #10803 -#10428 := [unit-resolution #10804 #10427]: #10727 -#10429 := (not #5699) -#10276 := (or #10782 #2077 #10719 #10503 #10429) -#10278 := [th-lemma arith assign-bounds 1 1 1 1]: #10276 -#10279 := [unit-resolution #10278 #10428 #10770 #10405 #10716]: #10719 -#10280 := [unit-resolution #10421 #10279]: #10441 -#10275 := [unit-resolution #10565 #10280]: #6003 -#10281 := [unit-resolution #10377 #10275]: #5987 -#10277 := [unit-resolution #10381 #10281]: #10107 -#10282 := [th-lemma arith farkas -1 -1 1 1 1 #10277 #10428 #10716 #10770 #10535]: false -#10345 := [lemma #10282]: #10344 -#11340 := [unit-resolution #10345 #6061 #6060]: false -#11363 := [lemma #11340]: #2954 -#3597 := (or #4006 #2959 #4000) -#3598 := [def-axiom]: #3597 -#14089 := [unit-resolution #3598 #11363]: #14245 -#14298 := [unit-resolution #14089 #14006]: #4000 -#3606 := (or #3997 #3991) -#3607 := [def-axiom]: #3606 -#17543 := [unit-resolution #3607 #14298]: #3991 -#16954 := [hypothesis]: #3005 -#3619 := (or #3000 #2101) -#3622 := [def-axiom]: #3619 -#16970 := [unit-resolution #3622 #16954]: #2101 -#6572 := (f5 #200 ?v0!19) -#6570 := (f15 #6572) -#6573 := (* -1::Int #6570) -#16948 := (+ #2097 #6573) -#16952 := (>= #16948 0::Int) -#16938 := (= #2097 #6570) -#17002 := (= #2096 #6572) -#16996 := (= #2095 #200) -#5496 := (= ?v1!18 f28) -#5497 := (f9 f21 ?v1!18) -#5498 := (= #5497 f1) -#6712 := (not #5498) -#6463 := (f19 f20 ?v0!19) -#6534 := (* -1::Int #6463) -#5451 := (f19 f20 ?v1!18) -#6728 := (+ #5451 #6534) -#6729 := (+ #2097 #6728) -#6730 := (>= #6729 0::Int) -#16957 := (not #6730) -#3507 := (not #2109) -#3522 := (or #3000 #3507) -#3524 := [def-axiom]: #3522 -#16955 := [unit-resolution #3524 #16954]: #3507 -#5548 := (* -1::Int #5451) -#5549 := (+ #2104 #5548) -#12637 := (>= #5549 0::Int) -#5469 := (= #2104 #5451) -#3523 := (or #3000 #2094) -#3618 := [def-axiom]: #3523 -#16956 := [unit-resolution #3618 #16954]: #2094 -#16334 := (or #3949 #2985 #5469) -#5472 := (or #2985 #5469) -#16340 := (or #3949 #5472) -#16341 := (iff #16340 #16334) -#16068 := [rewrite]: #16341 -#16335 := [quant-inst #2091]: #16340 -#16150 := [mp #16335 #16068]: #16334 -#16959 := [unit-resolution #16150 #18772 #16956]: #5469 -#16963 := (not #5469) -#16964 := (or #16963 #12637) -#16966 := [th-lemma arith triangle-eq]: #16964 -#16967 := [unit-resolution #16966 #16959]: #12637 -#16961 := (not #12637) -#12548 := (or #16957 #16961 #2109) -#6535 := (+ #2105 #6534) -#6536 := (<= #6535 0::Int) -#18328 := (not #6536) -#18338 := [hypothesis]: #18328 -#17088 := (or #3940 #6536) -#6478 := (+ #6463 #2106) -#6488 := (>= #6478 0::Int) -#17089 := (or #3940 #6488) -#18276 := (iff #17089 #17088) -#18278 := (iff #17088 #17088) -#18289 := [rewrite]: #18278 -#6557 := (iff #6488 #6536) -#6529 := (+ #2106 #6463) -#6532 := (>= #6529 0::Int) -#6537 := (iff #6532 #6536) -#6556 := [rewrite]: #6537 -#6527 := (iff #6488 #6532) -#6530 := (= #6478 #6529) -#6531 := [rewrite]: #6530 -#6533 := [monotonicity #6531]: #6527 -#6558 := [trans #6533 #6556]: #6557 -#18277 := [monotonicity #6558]: #18276 -#18290 := [trans #18277 #18289]: #18276 -#18275 := [quant-inst #2092]: #17089 -#18291 := [mp #18275 #18290]: #17088 -#18339 := [unit-resolution #18291 #9894 #18338]: false -#18340 := [lemma #18339]: #6536 -#16962 := (or #16957 #16961 #18328 #2109) -#16968 := [th-lemma arith assign-bounds 1 -1 -1]: #16962 -#12549 := [unit-resolution #16968 #18340]: #12548 -#12627 := [unit-resolution #12549 #16967 #16955]: #16957 -#16932 := (or #6712 #6730) -#16777 := (or #3828 #6712 #2100 #6730) -#6731 := (or #6712 #2100 #6730) -#16782 := (or #3828 #6731) -#16783 := (iff #16782 #16777) -#16775 := [rewrite]: #16783 -#16780 := [quant-inst #2092 #2091]: #16782 -#16784 := [mp #16780 #16775]: #16777 -#16975 := [unit-resolution #16784 #7100 #16970]: #16932 -#12604 := [unit-resolution #16975 #12627]: #6712 -#5504 := (or #5496 #5498) -#5486 := (f9 #198 ?v1!18) -#5487 := (= #5486 f1) -#5509 := (iff #5487 #5504) -#16182 := (or #7628 #5509) -#5499 := (if #5496 #4146 #5498) -#5500 := (iff #5487 #5499) -#16247 := (or #7628 #5500) -#16275 := (iff #16247 #16182) -#16296 := (iff #16182 #16182) -#15136 := [rewrite]: #16296 -#5510 := (iff #5500 #5509) -#5507 := (iff #5499 #5504) -#5501 := (if #5496 true #5498) -#5505 := (iff #5501 #5504) -#5506 := [rewrite]: #5505 -#5502 := (iff #5499 #5501) -#5503 := [monotonicity #4149]: #5502 -#5508 := [trans #5503 #5506]: #5507 -#5511 := [monotonicity #5508]: #5510 -#15135 := [monotonicity #5511]: #16275 -#15137 := [trans #15135 #15136]: #16275 -#16092 := [quant-inst #115 #186 #3 #2091]: #16247 -#16292 := [mp #16092 #15137]: #16182 -#16991 := [unit-resolution #16292 #3723]: #5509 -#16993 := (= #5486 #2093) -#16994 := [monotonicity #9297]: #16993 -#16974 := [trans #16994 #16956]: #5487 -#16337 := (not #5487) -#15281 := (not #5509) -#16421 := (or #15281 #16337 #5504) -#16336 := [def-axiom]: #16421 -#16992 := [unit-resolution #16336 #16974 #16991]: #5504 -#16342 := (not #5504) -#16264 := (or #16342 #5496 #5498) -#15134 := [def-axiom]: #16264 -#12567 := [unit-resolution #15134 #16992 #12604]: #5496 -#12652 := [monotonicity #12567]: #16996 -#12545 := [monotonicity #12652]: #17002 -#12613 := [monotonicity #12545]: #16938 -#16983 := (not #16938) -#16973 := (or #16983 #16952) -#16987 := [th-lemma arith triangle-eq]: #16973 -#12610 := [unit-resolution #16987 #12613]: #16952 -#6574 := (+ f14 #6573) -#6575 := (<= #6574 0::Int) -#6600 := (+ #6534 #6570) -#6598 := (+ #190 #6600) -#6601 := (>= #6598 0::Int) -#12029 := (not #6601) -#6452 := (+ #2104 #4168) -#6453 := (>= #6452 0::Int) -#5573 := (+ #190 #5548) -#5574 := (<= #5573 0::Int) -#16786 := (or #3914 #5498 #5574) -#5564 := (+ #5451 #1235) -#5565 := (>= #5564 0::Int) -#5566 := (or #5498 #5565) -#16796 := (or #3914 #5566) -#16822 := (iff #16796 #16786) -#5579 := (or #5498 #5574) -#16815 := (or #3914 #5579) -#16827 := (iff #16815 #16786) -#16821 := [rewrite]: #16827 -#16825 := (iff #16796 #16815) -#5580 := (iff #5566 #5579) -#5577 := (iff #5565 #5574) -#5567 := (+ #1235 #5451) -#5570 := (>= #5567 0::Int) -#5575 := (iff #5570 #5574) -#5576 := [rewrite]: #5575 -#5571 := (iff #5565 #5570) -#5568 := (= #5564 #5567) -#5569 := [rewrite]: #5568 -#5572 := [monotonicity #5569]: #5571 -#5578 := [trans #5572 #5576]: #5577 -#5581 := [monotonicity #5578]: #5580 -#16826 := [monotonicity #5581]: #16825 -#16820 := [trans #16826 #16821]: #16822 -#16817 := [quant-inst #2091]: #16796 -#16823 := [mp #16817 #16820]: #16786 -#12620 := [unit-resolution #16823 #8603 #12604]: #5574 -#16986 := (not #5574) -#12638 := (or #6453 #16986 #16961) -#16989 := (or #6453 #16986 #16961 #10393) -#16990 := [th-lemma arith assign-bounds 1 -1 -1]: #16989 -#12605 := [unit-resolution #16990 #10752]: #12638 -#12619 := [unit-resolution #12605 #12620 #16967]: #6453 -#12634 := (not #16952) -#12636 := (not #6453) -#12622 := (or #12029 #18328 #2109 #12636 #12661 #12634) -#12656 := [th-lemma arith assign-bounds -1 -1 1 -1 1]: #12622 -#12623 := [unit-resolution #12656 #12619 #18340 #18263 #16955 #12610]: #12029 -#6617 := (or #6575 #6601) -#6699 := (+ #2106 #6570) -#6700 := (+ #190 #6699) -#6703 := (= #6700 0::Int) -#11657 := (not #6703) -#12480 := (>= #6700 0::Int) -#17015 := (not #12480) -#17017 := (or #3000 #17015) -#16969 := [unit-resolution #16968 #16967 #18340 #16955]: #16957 -#16976 := [unit-resolution #16975 #16969]: #6712 -#16995 := [unit-resolution #15134 #16992 #16976]: #5496 -#16997 := [monotonicity #16995]: #16996 -#16981 := [monotonicity #16997]: #17002 -#16982 := [monotonicity #16981]: #16938 -#16980 := [unit-resolution #16987 #16982]: #16952 -#16988 := [unit-resolution #16823 #8603 #16976]: #5574 -#17010 := [unit-resolution #16990 #16967 #10752 #16988]: #6453 -#17013 := [hypothesis]: #12480 -#17014 := [th-lemma arith farkas 1 -1 1 -1 1 #17013 #16955 #17010 #18263 #16980]: false -#17018 := [lemma #17014]: #17017 -#12641 := [unit-resolution #17018 #16954]: #17015 -#11714 := (or #11657 #12480) -#12635 := [th-lemma arith triangle-eq]: #11714 -#12017 := [unit-resolution #12635 #12641]: #11657 -#12092 := (or #3924 #6575 #6601 #6703) -#6696 := (+ #6570 #2106) -#6697 := (+ #190 #6696) -#6698 := (= #6697 0::Int) -#6580 := (+ #1235 #6573) -#6581 := (+ #6463 #6580) -#6579 := (<= #6581 0::Int) -#6693 := (or #6575 #6579 #6698) -#12098 := (or #3924 #6693) -#12143 := (iff #12098 #12092) -#5162 := (or #6575 #6601 #6703) -#12058 := (or #3924 #5162) -#12141 := (iff #12058 #12092) -#12147 := [rewrite]: #12141 -#12060 := (iff #12098 #12058) -#5352 := (iff #6693 #5162) -#5122 := (iff #6698 #6703) -#6701 := (= #6697 #6700) -#6702 := [rewrite]: #6701 -#5123 := [monotonicity #6702]: #5122 -#6618 := (iff #6579 #6601) -#6588 := (+ #6463 #6573) -#6589 := (+ #1235 #6588) -#6591 := (<= #6589 0::Int) -#6602 := (iff #6591 #6601) -#6603 := [rewrite]: #6602 -#6592 := (iff #6579 #6591) -#6587 := (= #6581 #6589) -#6590 := [rewrite]: #6587 -#6599 := [monotonicity #6590]: #6592 -#6619 := [trans #6599 #6603]: #6618 -#5353 := [monotonicity #6619 #5123]: #5352 -#12148 := [monotonicity #5353]: #12060 -#12142 := [trans #12148 #12147]: #12143 -#12130 := [quant-inst #2092]: #12098 -#12144 := [mp #12130 #12142]: #12092 -#12644 := [unit-resolution #12144 #8832 #12017]: #6617 -#11750 := [unit-resolution #12644 #12623]: #6575 -#12020 := [th-lemma arith farkas -1 1 1 #11750 #12610 #16970]: false -#12047 := [lemma #12020]: #3000 -#3615 := (or #3994 #3005 #3988) -#3616 := [def-axiom]: #3615 -#17550 := [unit-resolution #3616 #12047 #17543]: #3988 -#3620 := (or #3985 #3977) -#3624 := [def-axiom]: #3620 -#14729 := [unit-resolution #3624 #17550]: #3977 -#4520 := (not #4519) -#9879 := (or #3982 #5318 #4520 #5337) -#5308 := (+ #4167 #5267) -#5309 := (= #5308 0::Int) -#5310 := (not #5309) -#5298 := (+ #4167 #2127) -#5299 := (>= #5298 0::Int) -#5311 := (or #5299 #4520 #5310) -#9846 := (or #3982 #5311) -#3396 := (iff #9846 #9879) -#5340 := (or #5318 #4520 #5337) -#9859 := (or #3982 #5340) -#8772 := (iff #9859 #9879) -#8417 := [rewrite]: #8772 -#7921 := (iff #9846 #9859) -#5341 := (iff #5311 #5340) -#5338 := (iff #5310 #5337) -#5335 := (iff #5309 #5332) -#5323 := (+ #4167 #5211) -#5324 := (+ #2127 #5323) -#5327 := (= #5324 0::Int) -#5333 := (iff #5327 #5332) -#5334 := [rewrite]: #5333 -#5328 := (iff #5309 #5327) -#5325 := (= #5308 #5324) -#5326 := [rewrite]: #5325 -#5329 := [monotonicity #5326]: #5328 -#5336 := [trans #5329 #5334]: #5335 -#5339 := [monotonicity #5336]: #5338 -#5321 := (iff #5299 #5318) -#5312 := (+ #2127 #4167) -#5315 := (>= #5312 0::Int) -#5319 := (iff #5315 #5318) -#5320 := [rewrite]: #5319 -#5316 := (iff #5299 #5315) -#5313 := (= #5298 #5312) -#5314 := [rewrite]: #5313 -#5317 := [monotonicity #5314]: #5316 -#5322 := [trans #5317 #5320]: #5321 -#5342 := [monotonicity #5322 #5339]: #5341 -#7809 := [monotonicity #5342]: #7921 -#9848 := [trans #7809 #8417]: #3396 -#9851 := [quant-inst #186]: #9846 -#9882 := [mp #9851 #9848]: #9879 -#14657 := [unit-resolution #9882 #14729 #12665]: #15716 -#13744 := [unit-resolution #14657 #15984]: #5318 -#5158 := (>= #5157 0::Int) -#15624 := (or #4623 #5158) -#3612 := (or #3997 #3961) -#3617 := [def-axiom]: #3612 -#14246 := [unit-resolution #3617 #14298]: #3961 -#11761 := (or #3966 #4623 #4520 #5158) -#5159 := (or #4623 #4520 #5158) -#10607 := (or #3966 #5159) -#11378 := (iff #10607 #11761) -#11392 := [rewrite]: #11378 -#10887 := [quant-inst #186 #2123]: #10607 -#11762 := [mp #10887 #11392]: #11761 -#15544 := [unit-resolution #11762 #14246 #12665]: #15624 -#13741 := [unit-resolution #15544 #15919]: #5158 -#13599 := [th-lemma arith eq-propagate 1 1 -1 -1 1 1 #13741 #13744 #10752 #18263 #15545 #15571]: #19614 -#13366 := (not #19614) -#15910 := (or #13366 #19610) -#15852 := [th-lemma arith triangle-eq]: #15910 -#12478 := [unit-resolution #15852 #13599]: #19610 -#19611 := (not #19610) -#19612 := (or #19609 #19611) -#12798 := (or #6342 #19609 #19611) -#14603 := (or #6342 #19612) -#14654 := (iff #14603 #12798) -#14656 := [rewrite]: #14654 -#14666 := [quant-inst #186 #2123]: #14603 -#14616 := [mp #14666 #14656]: #12798 -#13305 := [unit-resolution #14616 #3735]: #19612 -#16503 := [unit-resolution #13305 #12478]: #19609 -#15534 := [unit-resolution #16503 #15258]: false -#16669 := [lemma #15534]: #5176 -#19122 := (or #19098 #17503) -#17519 := (not #17503) -#19187 := [hypothesis]: #17519 -#19192 := [hypothesis]: #5176 -#19097 := [th-lemma arith triangle-eq]: #19122 -#19172 := [unit-resolution #19097 #19192 #19187]: false -#19096 := [lemma #19172]: #19122 -#24633 := [unit-resolution #19096 #16669]: #17503 -#17541 := (or #17547 #17519) -#3530 := (or #3985 #2130) -#3623 := [def-axiom]: #3530 -#17522 := [unit-resolution #3623 #17550]: #2130 -#17561 := [hypothesis]: #17503 -#17545 := [hypothesis]: #5430 -#17548 := [th-lemma arith farkas -1 1 1 #17545 #17561 #17522]: false -#17521 := [lemma #17548]: #17541 -#24634 := [unit-resolution #17521 #24633]: #17547 -#21003 := (or #5430 #5448) -#3528 := (or #3985 #2125) -#3529 := [def-axiom]: #3528 -#21002 := [unit-resolution #3529 #17550]: #2125 -#11823 := (or #3836 #2124 #5430 #5448) -#5449 := (or #2124 #5430 #5448) -#11543 := (or #3836 #5449) -#11822 := (iff #11543 #11823) -#11793 := [rewrite]: #11822 -#11827 := [quant-inst #2123]: #11543 -#11829 := [mp #11827 #11793]: #11823 -#21004 := [unit-resolution #11829 #7150 #21002]: #21003 -#24635 := [unit-resolution #21004 #24634]: #5448 -#10444 := (or #5447 #5445) -#11271 := [def-axiom]: #10444 -#20098 := [unit-resolution #11271 #24635]: #5445 -#20099 := (or #5446 #11830) -#20097 := [th-lemma arith triangle-eq]: #20099 -#20088 := [unit-resolution #20097 #20098]: #11830 -#18274 := (+ #5432 #17799) -#18321 := (>= #18274 0::Int) -#15420 := (or #3940 #18321) -#15369 := [quant-inst #5431]: #15420 -#19872 := [unit-resolution #15369 #9894]: #18321 -#20100 := (not #18321) -#19873 := (not #11830) -#20101 := (or #15418 #19873 #17519 #20100) -#20102 := [th-lemma arith assign-bounds -1 -1 -1]: #20101 -#20082 := [unit-resolution #20102 #24633 #19872 #20088]: #15418 -#18473 := (<= #18529 0::Int) -#18450 := (+ f14 #5442) -#18526 := (<= #18450 0::Int) -#19955 := (not #18526) -#18451 := (>= #5432 0::Int) -#15358 := (or #3811 #18451) -#15465 := [quant-inst #5431]: #15358 -#21016 := [unit-resolution #15465 #8408]: #18451 -#21023 := (not #18451) -#19947 := (or #19955 #2129 #17519 #21023 #19873) -#19948 := [th-lemma arith assign-bounds -1 -1 -1 -1]: #19947 -#19989 := [unit-resolution #19948 #21016 #24633 #20088 #17522]: #19955 -#18253 := (f9 f29 #5431) -#17861 := (= #18253 f1) -#24578 := (f9 #198 #5431) -#24579 := (= #24578 f1) -#24590 := (= #5431 f28) -#24596 := (or #24590 #5437) -#24601 := (iff #24579 #24596) -#24604 := (or #7628 #24601) -#24591 := (if #24590 #4146 #5437) -#24592 := (iff #24579 #24591) -#24605 := (or #7628 #24592) -#24607 := (iff #24605 #24604) -#24609 := (iff #24604 #24604) -#24610 := [rewrite]: #24609 -#24602 := (iff #24592 #24601) -#24599 := (iff #24591 #24596) -#24593 := (if #24590 true #5437) -#24597 := (iff #24593 #24596) -#24598 := [rewrite]: #24597 -#24594 := (iff #24591 #24593) -#24595 := [monotonicity #4149]: #24594 -#24600 := [trans #24595 #24598]: #24599 -#24603 := [monotonicity #24600]: #24602 -#24608 := [monotonicity #24603]: #24607 -#24611 := [trans #24608 #24610]: #24607 -#24606 := [quant-inst #115 #186 #3 #5431]: #24605 -#24612 := [mp #24606 #24611]: #24604 -#24632 := [unit-resolution #24612 #3723]: #24601 -#24621 := (not #24601) -#24638 := (or #24621 #24579) -#12006 := (or #5447 #5437) -#12000 := [def-axiom]: #12006 -#24636 := [unit-resolution #12000 #24635]: #5437 -#24616 := (or #24596 #5438) -#24617 := [def-axiom]: #24616 -#24637 := [unit-resolution #24617 #24636]: #24596 -#24618 := (not #24596) -#24622 := (or #24621 #24579 #24618) -#24623 := [def-axiom]: #24622 -#24639 := [unit-resolution #24623 #24637]: #24638 -#24640 := [unit-resolution #24639 #24632]: #24579 -#24641 := (= #18253 #24578) -#24642 := [monotonicity #9701]: #24641 -#24643 := [trans #24642 #24640]: #17861 -#17862 := (not #17861) -#24631 := [hypothesis]: #17862 -#24644 := [unit-resolution #24631 #24643]: false -#24645 := [lemma #24644]: #17861 -#12615 := (or #17862 #18526 #18473) -#3526 := (or #3985 #3969) -#3527 := [def-axiom]: #3526 -#22006 := [unit-resolution #3527 #17550]: #3969 -#16736 := (or #3974 #17862 #18526 #18473) -#18522 := (+ #18254 #2127) -#18507 := (+ #5441 #18522) -#18515 := (>= #18507 0::Int) -#18516 := (or #17862 #18526 #18515) -#16729 := (or #3974 #18516) -#15322 := (iff #16729 #16736) -#16781 := (or #3974 #12615) -#16766 := (iff #16781 #16736) -#16787 := [rewrite]: #16766 -#16771 := (iff #16729 #16781) -#13633 := (iff #18516 #12615) -#14647 := (iff #18515 #18473) -#18513 := (+ #5441 #18254) -#18523 := (+ #2127 #18513) -#18470 := (>= #18523 0::Int) -#18472 := (iff #18470 #18473) -#18530 := [rewrite]: #18472 -#18514 := (iff #18515 #18470) -#18525 := (= #18507 #18523) -#18520 := [rewrite]: #18525 -#18527 := [monotonicity #18520]: #18514 -#12281 := [trans #18527 #18530]: #14647 -#14300 := [monotonicity #12281]: #13633 -#15106 := [monotonicity #14300]: #16771 -#16805 := [trans #15106 #16787]: #15322 -#16779 := [quant-inst #2123 #5431]: #16729 -#15127 := [mp #16779 #16805]: #16736 -#20083 := [unit-resolution #15127 #22006]: #12615 -#19946 := [unit-resolution #20083 #24645 #19989]: #18473 -#18690 := (= #18529 0::Int) -#18704 := (not #18690) -#18651 := (+ #2126 #17799) -#18655 := (<= #18651 0::Int) -#18872 := (not #18655) -#11828 := (not #5435) -#11949 := (or #5447 #11828) -#11796 := [def-axiom]: #11949 -#19950 := [unit-resolution #11796 #24635]: #11828 -#18977 := (or #18872 #5435 #17519 #20100) -#18978 := [th-lemma arith assign-bounds -1 -1 -1]: #18977 -#18953 := [unit-resolution #18978 #24633 #19872 #19950]: #18872 -#18707 := (or #18655 #17862 #18704) -#16901 := (or #3982 #18655 #17862 #18704) -#18650 := (+ #2127 #5441) -#18592 := (+ #18254 #18650) -#18638 := (= #18592 0::Int) -#18644 := (not #18638) -#18662 := (>= #18522 0::Int) -#18615 := (or #18662 #17862 #18644) -#16863 := (or #3982 #18615) -#12904 := (iff #16863 #16901) -#16890 := (or #3982 #18707) -#16885 := (iff #16890 #16901) -#15516 := [rewrite]: #16885 -#15161 := (iff #16863 #16890) -#18708 := (iff #18615 #18707) -#18692 := (iff #18644 #18704) -#18691 := (iff #18638 #18690) -#18658 := (= #18523 0::Int) -#18654 := (iff #18658 #18690) -#18693 := [rewrite]: #18654 -#18673 := (iff #18638 #18658) -#18649 := (= #18592 #18523) -#18653 := [rewrite]: #18649 -#18674 := [monotonicity #18653]: #18673 -#18694 := [trans #18674 #18693]: #18691 -#18689 := [monotonicity #18694]: #18692 -#18659 := (iff #18662 #18655) -#18581 := (+ #2127 #18254) -#18641 := (>= #18581 0::Int) -#18666 := (iff #18641 #18655) -#18665 := [rewrite]: #18666 -#18646 := (iff #18662 #18641) -#18645 := (= #18522 #18581) -#18596 := [rewrite]: #18645 -#18647 := [monotonicity #18596]: #18646 -#18664 := [trans #18647 #18665]: #18659 -#18709 := [monotonicity #18664 #18689]: #18708 -#15308 := [monotonicity #18709]: #15161 -#16914 := [trans #15308 #15516]: #12904 -#16811 := [quant-inst #5431]: #16863 -#15485 := [mp #16811 #16914]: #16901 -#19077 := [unit-resolution #15485 #14729]: #18707 -#19169 := [unit-resolution #19077 #24645 #18953]: #18704 -#19090 := (not #15418) -#19243 := (not #18473) -#19996 := (or #18690 #19243 #19090) -#19953 := [th-lemma arith triangle-eq]: #19996 -[unit-resolution #19953 #19169 #19946 #20082]: false -unsat diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/Boogie_Dijkstra.certs2 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/SMT_Examples/Boogie_Dijkstra.certs2 Thu May 01 22:57:38 2014 +0200 @@ -0,0 +1,3139 @@ +4130cc2c7db4aedd246ade86526a1512dc2d3ec1 3138 0 +unsat +((set-logic AUFLIA) +(declare-fun ?v0!19 () B_Vertex$) +(declare-fun ?v1!18 () B_Vertex$) +(declare-fun ?v0!20 () B_Vertex$) +(declare-fun ?v0!17 () B_Vertex$) +(declare-fun ?v1!16 () B_Vertex$) +(declare-fun ?v0!15 () B_Vertex$) +(declare-fun ?v0!14 () B_Vertex$) +(declare-fun ?v0!13 () B_Vertex$) +(declare-fun ?v0!12 () B_Vertex$) +(declare-fun ?v0!11 () B_Vertex$) +(declare-fun ?v1!10 () B_Vertex$) +(declare-fun ?v1!9 (B_Vertex$) B_Vertex$) +(declare-fun ?v0!8 () B_Vertex$) +(declare-fun ?v1!7 (B_Vertex$) B_Vertex$) +(declare-fun ?v1!6 (B_Vertex$) B_Vertex$) +(declare-fun ?v0!5 () B_Vertex$) +(declare-fun ?v0!4 () B_Vertex$) +(declare-fun ?v1!3 () B_Vertex$) +(declare-fun ?v0!2 () B_Vertex$) +(declare-fun ?v1!1 () B_Vertex$) +(declare-fun ?v0!0 () B_Vertex$) +(proof +(let ((?x2200 (* (- 1) (v_b_SP_G_2$ ?v0!19)))) +(let ((?x2198 (v_b_SP_G_2$ ?v1!18))) +(let ((?x2191 (b_G$ (pair$ ?v1!18 ?v0!19)))) +(let (($x2202 (>= (+ ?x2191 ?x2198 ?x2200) 0))) +(let (($x2194 (<= (+ b_Infinity$ (* (- 1) ?x2191)) 0))) +(let (($x2189 (fun_app$ v_b_Visited_G_2$ ?v1!18))) +(let (($x3065 (not $x2189))) +(let (($x3080 (or $x3065 $x2194 $x2202))) +(let (($x3085 (not $x3080))) +(let (($x3977 (forall ((?v1 B_Vertex$) )(!(let ((?x2217 (v_b_SP_G_2$ ?v0!20))) +(let ((?x2218 (* (- 1) ?x2217))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x247 (not $x238))) +(or (>= (+ ?x220 ?x2218) 0) $x247 (not $x2528)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) ))) +)) +(let (($x3982 (not $x3977))) +(let (($x2220 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0))) +(let (($x2215 (= ?v0!20 b_Source$))) +(let (($x3968 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x247 (not $x238))) +(or $x247 $x1303 $x1621))))))) :pattern ( (pair$ ?v1 ?v0) ))) +)) +(let (($x3973 (not $x3968))) +(let (($x3985 (or $x3973 $x2215 $x2220 $x3982))) +(let (($x3988 (not $x3985))) +(let (($x3991 (or $x3085 $x3988))) +(let (($x3994 (not $x3991))) +(let (($x3960 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(or $x238 (not (fun_app$ v_b_Visited_G_2$ ?v0)) $x1601))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) ))) +)) +(let (($x3997 (or (not $x3960) $x3994))) +(let (($x4000 (not $x3997))) +(let (($x2175 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0))) +(let (($x2168 (fun_app$ v_b_Visited_G_2$ ?v0!17))) +(let (($x3019 (not $x2168))) +(let (($x2166 (fun_app$ v_b_Visited_G_2$ ?v1!16))) +(let (($x3034 (or $x2166 $x3019 $x2175))) +(let (($x3943 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0))) +(let (($x247 (not $x238))) +(or $x247 $x225)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +)) +(let (($x3039 (not $x3034))) +(let (($x4003 (or $x3039 $x4000))) +(let (($x4006 (not $x4003))) +(let (($x3951 (forall ((?v0 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v0))) +(>= ?x220 0)) :pattern ( (v_b_SP_G_2$ ?v0) ))) +)) +(let (($x4009 (or (not $x3951) $x4006))) +(let (($x4012 (not $x4009))) +(let ((?x2152 (v_b_SP_G_2$ ?v0!15))) +(let (($x2153 (>= ?x2152 0))) +(let (($x2154 (not $x2153))) +(let ((?x243 (v_b_SP_G_2$ b_Source$))) +(let (($x244 (= ?x243 0))) +(let (($x913 (not $x244))) +(let (($x4015 (or $x913 $x2154 $x4012))) +(let (($x4018 (not $x4015))) +(let (($x3948 (not $x3943))) +(let (($x4021 (or $x3948 $x4018))) +(let (($x4024 (not $x4021))) +(let ((?x2136 (fun_app$c v_b_SP_G_1$ ?v0!14))) +(let ((?x2135 (v_b_SP_G_2$ ?v0!14))) +(let (($x2137 (= ?x2135 ?x2136))) +(let (($x2133 (fun_app$ v_b_Visited_G_2$ ?v0!14))) +(let (($x2134 (not $x2133))) +(let (($x2138 (or $x2134 $x2137))) +(let ((@x8891 (unit-resolution (def-axiom (or $x2138 $x2133)) (hypothesis (not $x2138)) $x2133))) +(let (($x3646 (not $x2137))) +(let ((@x8820 (unit-resolution (def-axiom (or $x2138 $x3646)) (hypothesis (not $x2138)) $x3646))) +(let ((?x212 (fun_app$a (fun_app$b (fun_upd$ v_b_Visited_G_1$) v_b_v_G_1$) true))) +(let (($x213 (= v_b_Visited_G_2$ ?x212))) +(let (($x2139 (not $x2138))) +(let (($x4027 (or $x2139 $x4024))) +(let (($x4030 (not $x4027))) +(let (($x3934 (forall ((?v0 B_Vertex$) )(!(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ))) +)) +(let (($x3939 (not $x3934))) +(let (($x4033 (or $x3939 $x4030))) +(let (($x4036 (not $x4033))) +(let (($x2121 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!13) (* (- 1) (v_b_SP_G_2$ ?v0!13))) 0))) +(let (($x2122 (not $x2121))) +(let (($x4039 (or $x2122 $x4036))) +(let (($x4042 (not $x4039))) +(let (($x3926 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x1520 (* (- 1) ?x204))) +(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) +(let (($x2991 (or $x1540 $x1547))) +(let (($x2992 (not $x2991))) +(or $x2992 $x225)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ))) +)) +(let (($x3931 (not $x3926))) +(let (($x3918 (forall ((?v0 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let ((?x1560 (* (- 1) ?x220))) +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0))) +(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0))) +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0))) +(or $x1540 $x1547 $x1559)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ))) +)) +(let (($x3923 (not $x3918))) +(let (($x3196 (not $x213))) +(let (($x3908 (forall ((?v0 B_Vertex$) )(!(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x1520 (* (- 1) ?x204))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(or $x125 (>= (+ ?x121 ?x1520) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +)) +(let (($x3913 (not $x3908))) +(let (($x1522 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) 0))) +(let (($x202 (fun_app$ v_b_Visited_G_1$ v_b_v_G_1$))) +(let (($x2087 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!12))) 0))) +(let (($x2082 (fun_app$ v_b_Visited_G_1$ ?v0!12))) +(let (($x4045 (or $x2082 $x2087 $x202 $x1522 $x3913 $x3196 $x3923 $x3931 $x4042))) +(let (($x4048 (not $x4045))) +(let (($x193 (= (fun_app$c v_b_SP_G_3$ b_Source$) 0))) +(let (($x3870 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0))) +(or $x1448 $x1303 $x1493)))))) :pattern ( (pair$ ?v1 ?v0) ))) +)) +(let (($x3878 (or (not $x3870) $x193))) +(let (($x3881 (not $x3878))) +(let ((?x2036 (b_G$ (pair$ ?v1!10 ?v0!11)))) +(let ((?x2030 (fun_app$c v_b_SP_G_3$ ?v1!10))) +(let (($x2497 (>= (+ ?x2030 ?x2036 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0))) +(let (($x2039 (<= (+ b_Infinity$ (* (- 1) ?x2036)) 0))) +(let (($x2033 (<= (+ b_Infinity$ (* (- 1) ?x2030)) 0))) +(let (($x2919 (or $x2033 $x2039 $x2497))) +(let (($x2924 (not $x2919))) +(let (($x3884 (or $x2924 $x3881))) +(let (($x3887 (not $x3884))) +(let (($x3862 (forall ((?v0 B_Vertex$) )(!(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0))) +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0)))))) +(let (($x2480 (= ?x2479 0))) +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0))) +(let (($x2891 (not (or $x2464 (not $x2480))))) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0))) +(let (($x74 (= ?v0 b_Source$))) +(or $x74 $x1448 $x2891)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) ))) +)) +(let (($x3890 (or (not $x3862) $x3887))) +(let (($x3893 (not $x3890))) +(let (($x3848 (forall ((?v1 B_Vertex$) )(!(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let ((?x1971 (* (- 1) ?x1970))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0))) +(or (>= (+ ?x177 ?x1971) 0) (not $x2436)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) ))) +)) +(let (($x3853 (not $x3848))) +(let (($x1973 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!8))) 0))) +(let (($x1968 (= ?v0!8 b_Source$))) +(let (($x3856 (or $x1968 $x1973 $x3853))) +(let (($x3859 (not $x3856))) +(let (($x3896 (or $x3859 $x3893))) +(let (($x3899 (not $x3896))) +(let (($x164 (= v_b_SP_G_3$ v_b_SP_G_1$))) +(let (($x2982 (not $x164))) +(let (($x3838 (forall ((?v0 B_Vertex$) )(!(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(or $x125 $x1395))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +)) +(let (($x3843 (not $x3838))) +(let (($x3902 (or $x3843 (not (= v_b_Visited_G_3$ v_b_Visited_G_1$)) (not (= v_b_v_G_2$ v_b_v_G_0$)) $x2982 (not (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)) $x3899))) +(let (($x5759 (>= (+ ?x2030 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!10))) 0))) +(let ((?x4698 (fun_app$c v_b_SP_G_1$ ?v1!10))) +(let (($x6220 (= ?x2030 ?x4698))) +(let (($x3905 (not $x3902))) +(let ((@x5698 (hypothesis $x3905))) +(let ((@x5699 (unit-resolution (def-axiom (or $x3902 $x164)) @x5698 $x164))) +(let ((@x7384 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6220) $x5759)) (monotonicity @x5699 $x6220) $x5759))) +(let (($x3668 (not $x2497))) +(let (($x4677 (>= (+ ?x2036 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11)) ?x4698) 0))) +(let (($x4697 (fun_app$ v_b_Visited_G_1$ ?v1!10))) +(let (($x4492 (<= (+ b_Infinity$ (* (- 1) ?x4698)) 0))) +(let (($x5659 (not $x4492))) +(let (($x2034 (not $x2033))) +(let ((?x119 (fun_app$c v_b_SP_G_1$ b_Source$))) +(let (($x120 (= ?x119 0))) +(let (($x4051 (or $x3905 $x4048))) +(let (($x4054 (not $x4051))) +(let (($x3829 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0)))))) +(let (($x2417 (= ?x2416 0))) +(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0))) +(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2417))))) +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0))) +(let (($x74 (= ?v0 b_Source$))) +(or $x74 $x1395 $x2825)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +)) +(let (($x3834 (not $x3829))) +(let (($x3821 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x126 (not $x125))) +(or $x126 $x1303 $x1384))))))) :pattern ( (pair$ ?v1 ?v0) ))) +)) +(let (($x3826 (not $x3821))) +(let (($x3813 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(or $x125 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1367)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) ))) +)) +(let (($x3818 (not $x3813))) +(let (($x3804 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(>= ?x121 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ))) +)) +(let (($x3809 (not $x3804))) +(let (($x3213 (not $x120))) +(let (($x3795 (forall ((?v0 B_Vertex$) )(!(let ((?x75 (v_b_SP_G_0$ ?v0))) +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0)))))) +(let (($x2379 (= ?x2378 0))) +(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0))) +(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2379))))) +(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0))) +(let (($x74 (= ?v0 b_Source$))) +(or $x74 $x1330 $x2752)))))))) :pattern ( (v_b_SP_G_0$ ?v0) ))) +)) +(let (($x4057 (or (not $x3795) $x3213 $x3809 $x3818 $x3826 $x3834 $x4054))) +(let (($x4060 (not $x4057))) +(let (($x3781 (forall ((?v1 B_Vertex$) )(!(let ((?x1849 (v_b_SP_G_0$ ?v0!5))) +(let ((?x1850 (* (- 1) ?x1849))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x84 (not $x83))) +(or (>= (+ ?x75 ?x1850) 0) $x84 (not (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) ))) +)) +(let (($x1852 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0))) +(let (($x1847 (= ?v0!5 b_Source$))) +(let (($x3789 (or $x1847 $x1852 (not $x3781)))) +(let (($x3792 (not $x3789))) +(let (($x4063 (or $x3792 $x4060))) +(let (($x4066 (not $x4063))) +(let (($x3772 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x84 (not $x83))) +(or $x84 $x1303 $x1316))))))) :pattern ( (pair$ ?v1 ?v0) ))) +)) +(let (($x4069 (or (not $x3772) $x4066))) +(let (($x4072 (not $x4069))) +(let ((?x1823 (b_G$ (pair$ ?v1!3 ?v0!4)))) +(let (($x2336 (>= (+ ?x1823 (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4))) 0))) +(let (($x1826 (<= (+ b_Infinity$ (* (- 1) ?x1823)) 0))) +(let (($x1821 (v_b_Visited_G_0$ ?v1!3))) +(let (($x2668 (not $x1821))) +(let (($x2683 (or $x2668 $x1826 $x2336))) +(let (($x3748 (forall ((?v0 B_Vertex$) )(!(let (($x83 (v_b_Visited_G_0$ ?v0))) +(not $x83)) :pattern ( (v_b_Visited_G_0$ ?v0) ))) +)) +(let (($x85 (forall ((?v0 B_Vertex$) )(let (($x83 (v_b_Visited_G_0$ ?v0))) +(not $x83))) +)) +(let ((@x3752 (quant-intro (refl (= (not (v_b_Visited_G_0$ ?0)) (not (v_b_Visited_G_0$ ?0)))) (= $x85 $x3748)))) +(let ((@x1779 (nnf-pos (refl (~ (not (v_b_Visited_G_0$ ?0)) (not (v_b_Visited_G_0$ ?0)))) (~ $x85 $x85)))) +(let (($x343 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$))) +(or $x74 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))) +)) +(let (($x337 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(or $x79 (= (v_b_SP_G_0$ ?v0) 0))))) +)) +(let (($x354 (and $x337 $x343 $x85))) +(let (($x850 (forall ((?v0 B_Vertex$) )(let (($x838 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x255 (+ ?x220 ?x102))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x262 (= ?x250 ?x255))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x251 (<= ?x250 ?x220))) +(let (($x827 (not $x251))) +(and $x827 $x238 $x262)))))))))) +)) +(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?v0))))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x824 (and $x79 $x821))) +(let (($x844 (not $x824))) +(or $x844 $x838)))))))) +)) +(let (($x817 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x255 (+ ?x220 ?x102))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x256 (<= ?x250 ?x255))) +(let (($x378 (not (<= b_Infinity$ ?x102)))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x805 (and $x238 $x378))) +(let (($x811 (not $x805))) +(or $x811 $x256))))))))))) +)) +(let (($x878 (or (not $x817) $x850))) +(let (($x883 (and $x817 $x878))) +(let (($x802 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x251 (<= ?x250 ?x220))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x247 (not $x238))) +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0)))) +(let (($x798 (not $x249))) +(or $x798 $x251))))))))) +)) +(let (($x889 (not $x802))) +(let (($x890 (or $x889 $x883))) +(let (($x895 (and $x802 $x890))) +(let (($x246 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0))) +(<= 0 ?x220))) +)) +(let (($x901 (not $x246))) +(let (($x902 (or $x901 $x895))) +(let (($x907 (and $x246 $x902))) +(let (($x914 (or $x913 $x907))) +(let (($x919 (and $x244 $x914))) +(let (($x786 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0))) +(let (($x247 (not $x238))) +(or $x247 $x225))))))) +)) +(let (($x925 (not $x786))) +(let (($x926 (or $x925 $x919))) +(let (($x931 (and $x786 $x926))) +(let (($x237 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(<= ?x220 ?x121)))) +)) +(let (($x937 (not $x237))) +(let (($x938 (or $x937 $x931))) +(let (($x943 (and $x237 $x938))) +(let (($x726 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x217 (+ ?x204 ?x215))) +(let (($x698 (not (<= ?x121 ?x217)))) +(let (($x694 (not (<= b_Infinity$ ?x215)))) +(let (($x701 (and $x694 $x698))) +(or $x701 $x225))))))))))) +)) +(let (($x713 (forall ((?v0 B_Vertex$) )(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x217 (+ ?x204 ?x215))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x221 (= ?x220 ?x217))) +(let (($x698 (not (<= (fun_app$c v_b_SP_G_1$ ?v0) ?x217)))) +(let (($x694 (not (<= b_Infinity$ ?x215)))) +(let (($x701 (and $x694 $x698))) +(let (($x707 (not $x701))) +(or $x707 $x221))))))))))) +)) +(let (($x690 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let (($x206 (<= ?x204 ?x121))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(or $x125 $x206)))))) +)) +(let (($x684 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))))) +(let (($x203 (not $x202))) +(let (($x540 (exists ((?v0 B_Vertex$) )(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0))))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x126 (not $x125))) +(and $x126 $x452))))) +)) +(let (($x767 (and $x540 $x203 $x684 $x690 $x213 $x713 $x726))) +(let (($x949 (not $x767))) +(let (($x950 (or $x949 $x943))) +(let (($x638 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x182 (+ ?x177 ?x102))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x189 (<= ?x180 ?x182))) +(let (($x378 (not (<= b_Infinity$ ?x102)))) +(let (($x598 (not (<= b_Infinity$ ?x177)))) +(let (($x626 (and $x598 $x378))) +(let (($x632 (not $x626))) +(or $x632 $x189))))))))))) +)) +(let (($x654 (or (not $x638) $x193))) +(let (($x659 (and $x638 $x654))) +(let (($x623 (forall ((?v0 B_Vertex$) )(let (($x611 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x182 (+ ?x177 ?x102))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x183 (= ?x180 ?x182))) +(let (($x605 (not (<= ?x180 ?x177)))) +(and $x605 $x183)))))))) +)) +(let (($x598 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_3$ ?v0))))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x601 (and $x79 $x598))) +(let (($x617 (not $x601))) +(or $x617 $x611)))))))) +)) +(let (($x666 (or (not $x623) $x659))) +(let (($x671 (and $x623 $x666))) +(let (($x167 (= v_b_oldSP_G_1$ v_b_oldSP_G_0$))) +(let (($x162 (= v_b_v_G_2$ v_b_v_G_0$))) +(let (($x159 (= v_b_Visited_G_3$ v_b_Visited_G_1$))) +(let (($x543 (not $x540))) +(let (($x581 (and $x543 $x159 $x162 $x164 $x167))) +(let (($x677 (not $x581))) +(let (($x678 (or $x677 $x671))) +(let (($x955 (and $x678 $x950))) +(let (($x481 (forall ((?v0 B_Vertex$) )(let (($x469 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x134 (+ ?x121 ?x102))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x141 (= ?x129 ?x134))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x130 (<= ?x129 ?x121))) +(let (($x458 (not $x130))) +(and $x458 $x125 $x141)))))))))) +)) +(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0))))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x455 (and $x79 $x452))) +(let (($x475 (not $x455))) +(or $x475 $x469)))))))) +)) +(let (($x448 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x134 (+ ?x121 ?x102))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x135 (<= ?x129 ?x134))) +(let (($x378 (not (<= b_Infinity$ ?x102)))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x436 (and $x125 $x378))) +(let (($x442 (not $x436))) +(or $x442 $x135))))))))))) +)) +(let (($x433 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x130 (<= ?x129 ?x121))) +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x126 (not $x125))) +(let (($x128 (and $x126 $x127))) +(let (($x429 (not $x128))) +(or $x429 $x130)))))))))) +)) +(let (($x123 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(<= 0 ?x121))) +)) +(let (($x426 (forall ((?v0 B_Vertex$) )(let (($x414 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0))) +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x98 (<= ?x97 ?x75))) +(let (($x403 (not $x98))) +(and $x403 $x83 $x112)))))))) +)) +(let (($x397 (not (<= b_Infinity$ (v_b_SP_G_0$ ?v0))))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x400 (and $x79 $x397))) +(or (not $x400) $x414))))))) +)) +(let (($x532 (and $x426 $x120 $x123 $x433 $x448 $x481))) +(let (($x961 (not $x532))) +(let (($x962 (or $x961 $x955))) +(let (($x967 (and $x426 $x962))) +(let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0))) +(let (($x106 (<= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))) +(let (($x378 (not (<= b_Infinity$ (b_G$ (pair$ ?v1 ?v0)))))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x381 (and $x83 $x378))) +(or (not $x381) $x106))))))) +)) +(let (($x973 (not $x393))) +(let (($x974 (or $x973 $x967))) +(let (($x979 (and $x393 $x974))) +(let (($x374 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let ((?x97 (v_b_SP_G_0$ ?v0))) +(let (($x98 (<= ?x97 ?x75))) +(let (($x95 (v_b_Visited_G_0$ ?v0))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x84 (not $x83))) +(let (($x96 (and $x84 $x95))) +(let (($x370 (not $x96))) +(or $x370 $x98)))))))))) +)) +(let (($x985 (not $x374))) +(let (($x986 (or $x985 $x979))) +(let (($x991 (and $x374 $x986))) +(let (($x94 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0))) +(<= 0 ?x75))) +)) +(let (($x997 (not $x94))) +(let (($x998 (or $x997 $x991))) +(let (($x1003 (and $x94 $x998))) +(let (($x92 (= (v_b_SP_G_0$ b_Source$) 0))) +(let (($x1009 (not $x92))) +(let (($x1010 (or $x1009 $x1003))) +(let (($x1015 (and $x92 $x1010))) +(let (($x1022 (or (not $x354) $x1015))) +(let (($x267 (forall ((?v0 B_Vertex$) )(let (($x265 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x255 (+ ?x220 ?x102))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x262 (= ?x250 ?x255))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(and (< ?x220 ?x250) (and $x238 $x262))))))))) +)) +(=> (and (not (= ?v0 b_Source$)) (< (v_b_SP_G_2$ ?v0) b_Infinity$)) $x265))) +)) +(let (($x268 (and $x267 false))) +(let (($x269 (=> $x268 true))) +(let (($x270 (and $x267 $x269))) +(let (($x258 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x255 (+ ?x220 ?x102))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x256 (<= ?x250 ?x255))) +(=> (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x102 b_Infinity$)) $x256))))))) +)) +(let (($x271 (=> $x258 $x270))) +(let (($x253 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x251 (<= ?x250 ?x220))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x247 (not $x238))) +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0)))) +(=> $x249 $x251)))))))) +)) +(let (($x273 (=> $x253 (and $x258 $x271)))) +(let (($x275 (=> $x246 (and $x253 $x273)))) +(let (($x277 (=> $x244 (and $x246 $x275)))) +(let (($x240 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0))) +(=> $x238 $x225)))))) +)) +(let (($x242 (and $x240 (and true true)))) +(let (($x279 (=> $x242 (and $x244 $x277)))) +(let (($x281 (=> $x237 (and $x240 $x279)))) +(let (($x227 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x217 (+ ?x204 ?x215))) +(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 ?x121)))) +(=> (not $x219) $x225))))))))) +)) +(let (($x223 (forall ((?v0 B_Vertex$) )(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x217 (+ ?x204 ?x215))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x221 (= ?x220 ?x217))) +(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 (fun_app$c v_b_SP_G_1$ ?v0))))) +(=> $x219 $x221)))))))) +)) +(let (($x229 (and $x213 (and $x223 $x227)))) +(let (($x208 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let (($x206 (<= ?x204 ?x121))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x126 (not $x125))) +(=> $x126 $x206))))))) +)) +(let (($x230 (and $x208 $x229))) +(let (($x231 (and (< (fun_app$c v_b_SP_G_1$ v_b_v_G_1$) b_Infinity$) $x230))) +(let (($x232 (and $x203 $x231))) +(let (($x156 (exists ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x138 (< ?x121 b_Infinity$))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x126 (not $x125))) +(and $x126 $x138)))))) +)) +(let (($x233 (and $x156 $x232))) +(let (($x234 (and true $x233))) +(let (($x235 (and true $x234))) +(let (($x283 (=> $x235 (and $x237 $x281)))) +(let (($x195 (and $x193 (=> $x193 true)))) +(let (($x191 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x182 (+ ?x177 ?x102))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x189 (<= ?x180 ?x182))) +(=> (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x189))))))) +)) +(let (($x196 (=> $x191 $x195))) +(let (($x187 (forall ((?v0 B_Vertex$) )(let (($x185 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x182 (+ ?x177 ?x102))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x183 (= ?x180 ?x182))) +(and (< ?x177 ?x180) $x183))))))) +)) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x178 (< ?x177 b_Infinity$))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(=> (and $x79 $x178) $x185))))))) +)) +(let (($x198 (=> $x187 (and $x191 $x196)))) +(let (($x170 (and $x162 (and $x164 (and $x167 true))))) +(let (($x171 (and $x159 $x170))) +(let (($x172 (and true $x171))) +(let (($x173 (and true $x172))) +(let (($x174 (and (not $x156) $x173))) +(let (($x175 (and true $x174))) +(let (($x176 (and true $x175))) +(let (($x200 (=> $x176 (and $x187 $x198)))) +(let (($x146 (forall ((?v0 B_Vertex$) )(let (($x144 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x134 (+ ?x121 ?x102))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x141 (= ?x129 ?x134))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(and (< ?x121 ?x129) (and $x125 $x141))))))))) +)) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x138 (< ?x121 b_Infinity$))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(=> (and $x79 $x138) $x144))))))) +)) +(let (($x147 (and $x146 true))) +(let (($x137 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x134 (+ ?x121 ?x102))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x135 (<= ?x129 ?x134))) +(=> (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x102 b_Infinity$)) $x135))))))) +)) +(let (($x132 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x130 (<= ?x129 ?x121))) +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x126 (not $x125))) +(let (($x128 (and $x126 $x127))) +(=> $x128 $x130))))))))) +)) +(let (($x149 (and $x132 (and $x137 $x147)))) +(let (($x150 (and $x123 $x149))) +(let (($x151 (and $x120 $x150))) +(let (($x152 (and true $x151))) +(let (($x153 (and true $x152))) +(let (($x117 (forall ((?v0 B_Vertex$) )(let (($x115 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0))) +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(and (< (v_b_SP_G_0$ ?v1) ?x97) (and $x83 $x112)))))) +)) +(=> (and (not (= ?v0 b_Source$)) (< (v_b_SP_G_0$ ?v0) b_Infinity$)) $x115))) +)) +(let (($x154 (and $x117 $x153))) +(let (($x285 (=> $x154 (and $x200 $x283)))) +(let (($x108 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0))) +(let (($x106 (<= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x103 (< ?x102 b_Infinity$))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(=> (and $x83 $x103) $x106))))))) +)) +(let (($x287 (=> $x108 (and $x117 $x285)))) +(let (($x100 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let ((?x97 (v_b_SP_G_0$ ?v0))) +(let (($x98 (<= ?x97 ?x75))) +(let (($x95 (v_b_Visited_G_0$ ?v0))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x84 (not $x83))) +(let (($x96 (and $x84 $x95))) +(=> $x96 $x98))))))))) +)) +(let (($x289 (=> $x100 (and $x108 $x287)))) +(let (($x291 (=> $x94 (and $x100 $x289)))) +(let (($x293 (=> $x92 (and $x94 $x291)))) +(let (($x82 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(=> $x79 (= (v_b_SP_G_0$ ?v0) b_Infinity$))))) +)) +(let (($x78 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$))) +(=> $x74 (= (v_b_SP_G_0$ ?v0) 0)))) +)) +(let (($x88 (and $x78 (and $x82 (and $x85 true))))) +(let (($x89 (and true $x88))) +(let (($x90 (and true $x89))) +(let (($x295 (=> $x90 (and $x92 $x293)))) +(let (($x296 (not $x295))) +(let (($x838 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x255 (+ ?x220 ?x102))) +(let ((?x250 (v_b_SP_G_2$ ?0))) +(let (($x262 (= ?x250 ?x255))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x251 (<= ?x250 ?x220))) +(let (($x827 (not $x251))) +(and $x827 $x238 $x262)))))))))) +)) +(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?0))))) +(let (($x74 (= ?0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x824 (and $x79 $x821))) +(let (($x844 (not $x824))) +(let (($x845 (or $x844 $x838))) +(let (($x265 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x255 (+ ?x220 ?x102))) +(let ((?x250 (v_b_SP_G_2$ ?0))) +(let (($x262 (= ?x250 ?x255))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(and (< ?x220 ?x250) (and $x238 $x262))))))))) +)) +(let (($x266 (=> (and $x79 (< (v_b_SP_G_2$ ?0) b_Infinity$)) $x265))) +(let ((?x102 (b_G$ (pair$ ?0 ?1)))) +(let ((?x220 (v_b_SP_G_2$ ?0))) +(let ((?x255 (+ ?x220 ?x102))) +(let ((?x250 (v_b_SP_G_2$ ?1))) +(let (($x262 (= ?x250 ?x255))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?0))) +(let (($x251 (<= ?x250 ?x220))) +(let (($x827 (not $x251))) +(let (($x833 (and $x827 $x238 $x262))) +(let (($x264 (and (< ?x220 ?x250) (and $x238 $x262)))) +(let ((@x832 (monotonicity (rewrite (= (< ?x220 ?x250) $x827)) (= $x264 (and $x827 (and $x238 $x262)))))) +(let ((@x837 (trans @x832 (rewrite (= (and $x827 (and $x238 $x262)) $x833)) (= $x264 $x833)))) +(let ((@x826 (monotonicity (rewrite (= (< ?x220 b_Infinity$) $x821)) (= (and $x79 (< ?x220 b_Infinity$)) $x824)))) +(let ((@x843 (monotonicity @x826 (quant-intro @x837 (= $x265 $x838)) (= $x266 (=> $x824 $x838))))) +(let ((@x852 (quant-intro (trans @x843 (rewrite (= (=> $x824 $x838) $x845)) (= $x266 $x845)) (= $x267 $x850)))) +(let ((@x859 (trans (monotonicity @x852 (= $x268 (and $x850 false))) (rewrite (= (and $x850 false) false)) (= $x268 false)))) +(let ((@x866 (trans (monotonicity @x859 (= $x269 (=> false true))) (rewrite (= (=> false true) true)) (= $x269 true)))) +(let ((@x873 (trans (monotonicity @x852 @x866 (= $x270 (and $x850 true))) (rewrite (= (and $x850 true) $x850)) (= $x270 $x850)))) +(let (($x256 (<= ?x250 ?x255))) +(let (($x378 (not (<= b_Infinity$ ?x102)))) +(let (($x805 (and $x238 $x378))) +(let (($x811 (not $x805))) +(let (($x812 (or $x811 $x256))) +(let (($x257 (=> (and $x238 (< ?x102 b_Infinity$)) $x256))) +(let ((@x380 (rewrite (= (< ?x102 b_Infinity$) $x378)))) +(let ((@x810 (monotonicity (monotonicity @x380 (= (and $x238 (< ?x102 b_Infinity$)) $x805)) (= $x257 (=> $x805 $x256))))) +(let ((@x819 (quant-intro (trans @x810 (rewrite (= (=> $x805 $x256) $x812)) (= $x257 $x812)) (= $x258 $x817)))) +(let ((@x882 (trans (monotonicity @x819 @x873 (= $x271 (=> $x817 $x850))) (rewrite (= (=> $x817 $x850) $x878)) (= $x271 $x878)))) +(let (($x247 (not $x238))) +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?1)))) +(let (($x798 (not $x249))) +(let (($x799 (or $x798 $x251))) +(let ((@x888 (monotonicity (quant-intro (rewrite (= (=> $x249 $x251) $x799)) (= $x253 $x802)) (monotonicity @x819 @x882 (= (and $x258 $x271) $x883)) (= $x273 (=> $x802 $x883))))) +(let ((@x897 (monotonicity (quant-intro (rewrite (= (=> $x249 $x251) $x799)) (= $x253 $x802)) (trans @x888 (rewrite (= (=> $x802 $x883) $x890)) (= $x273 $x890)) (= (and $x253 $x273) $x895)))) +(let ((@x906 (trans (monotonicity @x897 (= $x275 (=> $x246 $x895))) (rewrite (= (=> $x246 $x895) $x902)) (= $x275 $x902)))) +(let ((@x912 (monotonicity (monotonicity @x906 (= (and $x246 $x275) $x907)) (= $x277 (=> $x244 $x907))))) +(let ((@x921 (monotonicity (trans @x912 (rewrite (= (=> $x244 $x907) $x914)) (= $x277 $x914)) (= (and $x244 $x277) $x919)))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?0))) +(let (($x225 (= ?x220 ?x121))) +(let (($x783 (or $x247 $x225))) +(let ((@x793 (monotonicity (quant-intro (rewrite (= (=> $x238 $x225) $x783)) (= $x240 $x786)) (rewrite (= (and true true) true)) (= $x242 (and $x786 true))))) +(let ((@x924 (monotonicity (trans @x793 (rewrite (= (and $x786 true) $x786)) (= $x242 $x786)) @x921 (= $x279 (=> $x786 $x919))))) +(let ((@x933 (monotonicity (quant-intro (rewrite (= (=> $x238 $x225) $x783)) (= $x240 $x786)) (trans @x924 (rewrite (= (=> $x786 $x919) $x926)) (= $x279 $x926)) (= (and $x240 $x279) $x931)))) +(let ((@x942 (trans (monotonicity @x933 (= $x281 (=> $x237 $x931))) (rewrite (= (=> $x237 $x931) $x938)) (= $x281 $x938)))) +(let (($x759 (and $x203 $x684 $x690 $x213 $x713 $x726))) +(let (($x751 (and $x684 $x690 $x213 $x713 $x726))) +(let ((@x745 (rewrite (= (and $x690 (and $x213 $x713 $x726)) (and $x690 $x213 $x713 $x726))))) +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x217 (+ ?x204 ?x215))) +(let (($x698 (not (<= ?x121 ?x217)))) +(let (($x694 (not (<= b_Infinity$ ?x215)))) +(let (($x701 (and $x694 $x698))) +(let (($x721 (or $x701 $x225))) +(let (($x226 (=> (not (and (< ?x215 b_Infinity$) (< ?x217 ?x121))) $x225))) +(let ((@x703 (monotonicity (rewrite (= (< ?x215 b_Infinity$) $x694)) (rewrite (= (< ?x217 ?x121) $x698)) (= (and (< ?x215 b_Infinity$) (< ?x217 ?x121)) $x701)))) +(let ((@x717 (monotonicity @x703 (= (not (and (< ?x215 b_Infinity$) (< ?x217 ?x121))) (not $x701))))) +(let ((@x725 (trans (monotonicity @x717 (= $x226 (=> (not $x701) $x225))) (rewrite (= (=> (not $x701) $x225) $x721)) (= $x226 $x721)))) +(let (($x221 (= ?x220 ?x217))) +(let (($x707 (not $x701))) +(let (($x708 (or $x707 $x221))) +(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 ?x121)))) +(let (($x222 (=> $x219 $x221))) +(let ((@x712 (trans (monotonicity @x703 (= $x222 (=> $x701 $x221))) (rewrite (= (=> $x701 $x221) $x708)) (= $x222 $x708)))) +(let ((@x731 (monotonicity (quant-intro @x712 (= $x223 $x713)) (quant-intro @x725 (= $x227 $x726)) (= (and $x223 $x227) (and $x713 $x726))))) +(let ((@x739 (trans (monotonicity @x731 (= $x229 (and $x213 (and $x713 $x726)))) (rewrite (= (and $x213 (and $x713 $x726)) (and $x213 $x713 $x726))) (= $x229 (and $x213 $x713 $x726))))) +(let (($x206 (<= ?x204 ?x121))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?0))) +(let (($x687 (or $x125 $x206))) +(let ((@x692 (quant-intro (rewrite (= (=> (not $x125) $x206) $x687)) (= $x208 $x690)))) +(let ((@x747 (trans (monotonicity @x692 @x739 (= $x230 (and $x690 (and $x213 $x713 $x726)))) @x745 (= $x230 (and $x690 $x213 $x713 $x726))))) +(let ((@x750 (monotonicity (rewrite (= (< ?x204 b_Infinity$) $x684)) @x747 (= $x231 (and $x684 (and $x690 $x213 $x713 $x726)))))) +(let ((@x755 (trans @x750 (rewrite (= (and $x684 (and $x690 $x213 $x713 $x726)) $x751)) (= $x231 $x751)))) +(let ((@x763 (trans (monotonicity @x755 (= $x232 (and $x203 $x751))) (rewrite (= (and $x203 $x751) $x759)) (= $x232 $x759)))) +(let (($x452 (not (<= b_Infinity$ ?x121)))) +(let (($x126 (not $x125))) +(let (($x537 (and $x126 $x452))) +(let ((@x539 (monotonicity (rewrite (= (< ?x121 b_Infinity$) $x452)) (= (and $x126 (< ?x121 b_Infinity$)) $x537)))) +(let ((@x766 (monotonicity (quant-intro @x539 (= $x156 $x540)) @x763 (= $x233 (and $x540 $x759))))) +(let ((@x774 (monotonicity (trans @x766 (rewrite (= (and $x540 $x759) $x767)) (= $x233 $x767)) (= $x234 (and true $x767))))) +(let ((@x780 (monotonicity (trans @x774 (rewrite (= (and true $x767) $x767)) (= $x234 $x767)) (= $x235 (and true $x767))))) +(let ((@x948 (monotonicity (trans @x780 (rewrite (= (and true $x767) $x767)) (= $x235 $x767)) (monotonicity @x942 (= (and $x237 $x281) $x943)) (= $x283 (=> $x767 $x943))))) +(let ((@x645 (monotonicity (rewrite (= (=> $x193 true) true)) (= $x195 (and $x193 true))))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?0))) +(let ((?x182 (+ ?x177 ?x102))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?1))) +(let (($x189 (<= ?x180 ?x182))) +(let (($x598 (not (<= b_Infinity$ ?x177)))) +(let (($x626 (and $x598 $x378))) +(let (($x632 (not $x626))) +(let (($x633 (or $x632 $x189))) +(let (($x190 (=> (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x189))) +(let ((@x628 (monotonicity (rewrite (= (< ?x177 b_Infinity$) $x598)) @x380 (= (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x626)))) +(let ((@x637 (trans (monotonicity @x628 (= $x190 (=> $x626 $x189))) (rewrite (= (=> $x626 $x189) $x633)) (= $x190 $x633)))) +(let ((@x652 (monotonicity (quant-intro @x637 (= $x191 $x638)) (trans @x645 (rewrite (= (and $x193 true) $x193)) (= $x195 $x193)) (= $x196 (=> $x638 $x193))))) +(let ((@x661 (monotonicity (quant-intro @x637 (= $x191 $x638)) (trans @x652 (rewrite (= (=> $x638 $x193) $x654)) (= $x196 $x654)) (= (and $x191 $x196) $x659)))) +(let (($x611 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x182 (+ ?x177 ?x102))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0))) +(let (($x183 (= ?x180 ?x182))) +(let (($x605 (not (<= ?x180 ?x177)))) +(and $x605 $x183)))))))) +)) +(let (($x601 (and $x79 $x598))) +(let (($x617 (not $x601))) +(let (($x618 (or $x617 $x611))) +(let (($x185 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x182 (+ ?x177 ?x102))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0))) +(let (($x183 (= ?x180 ?x182))) +(and (< ?x177 ?x180) $x183))))))) +)) +(let (($x186 (=> (and $x79 (< ?x177 b_Infinity$)) $x185))) +(let (($x183 (= ?x180 ?x182))) +(let (($x605 (not (<= ?x180 ?x177)))) +(let (($x608 (and $x605 $x183))) +(let ((@x610 (monotonicity (rewrite (= (< ?x177 ?x180) $x605)) (= (and (< ?x177 ?x180) $x183) $x608)))) +(let ((@x603 (monotonicity (rewrite (= (< ?x177 b_Infinity$) $x598)) (= (and $x79 (< ?x177 b_Infinity$)) $x601)))) +(let ((@x616 (monotonicity @x603 (quant-intro @x610 (= $x185 $x611)) (= $x186 (=> $x601 $x611))))) +(let ((@x625 (quant-intro (trans @x616 (rewrite (= (=> $x601 $x611) $x618)) (= $x186 $x618)) (= $x187 $x623)))) +(let ((@x670 (trans (monotonicity @x625 @x661 (= $x198 (=> $x623 $x659))) (rewrite (= (=> $x623 $x659) $x666)) (= $x198 $x666)))) +(let (($x562 (and $x159 $x162 $x164 $x167))) +(let (($x567 (and true $x562))) +(let ((@x550 (monotonicity (rewrite (= (and $x167 true) $x167)) (= (and $x164 (and $x167 true)) (and $x164 $x167))))) +(let ((@x558 (trans (monotonicity @x550 (= $x170 (and $x162 (and $x164 $x167)))) (rewrite (= (and $x162 (and $x164 $x167)) (and $x162 $x164 $x167))) (= $x170 (and $x162 $x164 $x167))))) +(let ((@x566 (trans (monotonicity @x558 (= $x171 (and $x159 (and $x162 $x164 $x167)))) (rewrite (= (and $x159 (and $x162 $x164 $x167)) $x562)) (= $x171 $x562)))) +(let ((@x573 (trans (monotonicity @x566 (= $x172 $x567)) (rewrite (= $x567 $x562)) (= $x172 $x562)))) +(let ((@x577 (trans (monotonicity @x573 (= $x173 $x567)) (rewrite (= $x567 $x562)) (= $x173 $x562)))) +(let ((@x545 (monotonicity (quant-intro @x539 (= $x156 $x540)) (= (not $x156) $x543)))) +(let ((@x585 (trans (monotonicity @x545 @x577 (= $x174 (and $x543 $x562))) (rewrite (= (and $x543 $x562) $x581)) (= $x174 $x581)))) +(let ((@x592 (trans (monotonicity @x585 (= $x175 (and true $x581))) (rewrite (= (and true $x581) $x581)) (= $x175 $x581)))) +(let ((@x596 (trans (monotonicity @x592 (= $x176 (and true $x581))) (rewrite (= (and true $x581) $x581)) (= $x176 $x581)))) +(let ((@x676 (monotonicity @x596 (monotonicity @x625 @x670 (= (and $x187 $x198) $x671)) (= $x200 (=> $x581 $x671))))) +(let ((@x957 (monotonicity (trans @x676 (rewrite (= (=> $x581 $x671) $x678)) (= $x200 $x678)) (trans @x948 (rewrite (= (=> $x767 $x943) $x950)) (= $x283 $x950)) (= (and $x200 $x283) $x955)))) +(let (($x513 (and $x120 $x123 $x433 $x448 $x481))) +(let (($x518 (and true $x513))) +(let ((@x507 (rewrite (= (and $x123 (and $x433 $x448 $x481)) (and $x123 $x433 $x448 $x481))))) +(let (($x469 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x134 (+ ?x121 ?x102))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0))) +(let (($x141 (= ?x129 ?x134))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x130 (<= ?x129 ?x121))) +(let (($x458 (not $x130))) +(and $x458 $x125 $x141)))))))))) +)) +(let (($x455 (and $x79 $x452))) +(let (($x475 (not $x455))) +(let (($x476 (or $x475 $x469))) +(let (($x144 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x134 (+ ?x121 ?x102))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0))) +(let (($x141 (= ?x129 ?x134))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(and (< ?x121 ?x129) (and $x125 $x141))))))))) +)) +(let (($x145 (=> (and $x79 (< ?x121 b_Infinity$)) $x144))) +(let ((?x134 (+ ?x121 ?x102))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?1))) +(let (($x141 (= ?x129 ?x134))) +(let (($x130 (<= ?x129 ?x121))) +(let (($x458 (not $x130))) +(let (($x464 (and $x458 $x125 $x141))) +(let (($x143 (and (< ?x121 ?x129) (and $x125 $x141)))) +(let ((@x463 (monotonicity (rewrite (= (< ?x121 ?x129) $x458)) (= $x143 (and $x458 (and $x125 $x141)))))) +(let ((@x468 (trans @x463 (rewrite (= (and $x458 (and $x125 $x141)) $x464)) (= $x143 $x464)))) +(let ((@x457 (monotonicity (rewrite (= (< ?x121 b_Infinity$) $x452)) (= (and $x79 (< ?x121 b_Infinity$)) $x455)))) +(let ((@x474 (monotonicity @x457 (quant-intro @x468 (= $x144 $x469)) (= $x145 (=> $x455 $x469))))) +(let ((@x483 (quant-intro (trans @x474 (rewrite (= (=> $x455 $x469) $x476)) (= $x145 $x476)) (= $x146 $x481)))) +(let ((@x490 (trans (monotonicity @x483 (= $x147 (and $x481 true))) (rewrite (= (and $x481 true) $x481)) (= $x147 $x481)))) +(let (($x135 (<= ?x129 ?x134))) +(let (($x436 (and $x125 $x378))) +(let (($x442 (not $x436))) +(let (($x443 (or $x442 $x135))) +(let (($x136 (=> (and $x125 (< ?x102 b_Infinity$)) $x135))) +(let ((@x441 (monotonicity (monotonicity @x380 (= (and $x125 (< ?x102 b_Infinity$)) $x436)) (= $x136 (=> $x436 $x135))))) +(let ((@x450 (quant-intro (trans @x441 (rewrite (= (=> $x436 $x135) $x443)) (= $x136 $x443)) (= $x137 $x448)))) +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?1))) +(let (($x128 (and $x126 $x127))) +(let (($x429 (not $x128))) +(let (($x430 (or $x429 $x130))) +(let ((@x496 (monotonicity (quant-intro (rewrite (= (=> $x128 $x130) $x430)) (= $x132 $x433)) (monotonicity @x450 @x490 (= (and $x137 $x147) (and $x448 $x481))) (= $x149 (and $x433 (and $x448 $x481)))))) +(let ((@x501 (trans @x496 (rewrite (= (and $x433 (and $x448 $x481)) (and $x433 $x448 $x481))) (= $x149 (and $x433 $x448 $x481))))) +(let ((@x509 (trans (monotonicity @x501 (= $x150 (and $x123 (and $x433 $x448 $x481)))) @x507 (= $x150 (and $x123 $x433 $x448 $x481))))) +(let ((@x517 (trans (monotonicity @x509 (= $x151 (and $x120 (and $x123 $x433 $x448 $x481)))) (rewrite (= (and $x120 (and $x123 $x433 $x448 $x481)) $x513)) (= $x151 $x513)))) +(let ((@x524 (trans (monotonicity @x517 (= $x152 $x518)) (rewrite (= $x518 $x513)) (= $x152 $x513)))) +(let ((@x528 (trans (monotonicity @x524 (= $x153 $x518)) (rewrite (= $x518 $x513)) (= $x153 $x513)))) +(let (($x414 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?0))) +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0)))))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x98 (<= ?x97 ?x75))) +(let (($x403 (not $x98))) +(and $x403 $x83 $x112)))))))) +)) +(let (($x421 (or (not (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0))))) $x414))) +(let (($x115 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?0))) +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0)))))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(and (< (v_b_SP_G_0$ ?v1) ?x97) (and $x83 $x112)))))) +)) +(let (($x116 (=> (and $x79 (< (v_b_SP_G_0$ ?0) b_Infinity$)) $x115))) +(let (($x422 (= (=> (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0)))) $x414) $x421))) +(let (($x418 (= $x116 (=> (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0)))) $x414)))) +(let ((?x97 (v_b_SP_G_0$ ?1))) +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?0) ?x102)))) +(let (($x83 (v_b_Visited_G_0$ ?0))) +(let ((?x75 (v_b_SP_G_0$ ?0))) +(let (($x98 (<= ?x97 ?x75))) +(let (($x403 (not $x98))) +(let (($x409 (and $x403 $x83 $x112))) +(let (($x114 (and (< ?x75 ?x97) (and $x83 $x112)))) +(let ((@x408 (monotonicity (rewrite (= (< ?x75 ?x97) $x403)) (= $x114 (and $x403 (and $x83 $x112)))))) +(let ((@x413 (trans @x408 (rewrite (= (and $x403 (and $x83 $x112)) $x409)) (= $x114 $x409)))) +(let (($x397 (not (<= b_Infinity$ ?x75)))) +(let (($x400 (and $x79 $x397))) +(let ((@x402 (monotonicity (rewrite (= (< ?x75 b_Infinity$) $x397)) (= (and $x79 (< ?x75 b_Infinity$)) $x400)))) +(let ((@x425 (trans (monotonicity @x402 (quant-intro @x413 (= $x115 $x414)) $x418) (rewrite $x422) (= $x116 $x421)))) +(let ((@x531 (monotonicity (quant-intro @x425 (= $x117 $x426)) @x528 (= $x154 (and $x426 $x513))))) +(let ((@x960 (monotonicity (trans @x531 (rewrite (= (and $x426 $x513) $x532)) (= $x154 $x532)) @x957 (= $x285 (=> $x532 $x955))))) +(let ((@x969 (monotonicity (quant-intro @x425 (= $x117 $x426)) (trans @x960 (rewrite (= (=> $x532 $x955) $x962)) (= $x285 $x962)) (= (and $x117 $x285) $x967)))) +(let (($x106 (<= ?x97 (+ ?x75 ?x102)))) +(let (($x388 (or (not (and $x83 $x378)) $x106))) +(let (($x107 (=> (and $x83 (< ?x102 b_Infinity$)) $x106))) +(let ((@x383 (monotonicity @x380 (= (and $x83 (< ?x102 b_Infinity$)) (and $x83 $x378))))) +(let ((@x392 (trans (monotonicity @x383 (= $x107 (=> (and $x83 $x378) $x106))) (rewrite (= (=> (and $x83 $x378) $x106) $x388)) (= $x107 $x388)))) +(let ((@x972 (monotonicity (quant-intro @x392 (= $x108 $x393)) @x969 (= $x287 (=> $x393 $x967))))) +(let ((@x981 (monotonicity (quant-intro @x392 (= $x108 $x393)) (trans @x972 (rewrite (= (=> $x393 $x967) $x974)) (= $x287 $x974)) (= (and $x108 $x287) $x979)))) +(let (($x95 (v_b_Visited_G_0$ ?1))) +(let (($x84 (not $x83))) +(let (($x96 (and $x84 $x95))) +(let (($x370 (not $x96))) +(let (($x371 (or $x370 $x98))) +(let ((@x984 (monotonicity (quant-intro (rewrite (= (=> $x96 $x98) $x371)) (= $x100 $x374)) @x981 (= $x289 (=> $x374 $x979))))) +(let ((@x993 (monotonicity (quant-intro (rewrite (= (=> $x96 $x98) $x371)) (= $x100 $x374)) (trans @x984 (rewrite (= (=> $x374 $x979) $x986)) (= $x289 $x986)) (= (and $x100 $x289) $x991)))) +(let ((@x1002 (trans (monotonicity @x993 (= $x291 (=> $x94 $x991))) (rewrite (= (=> $x94 $x991) $x998)) (= $x291 $x998)))) +(let ((@x1008 (monotonicity (monotonicity @x1002 (= (and $x94 $x291) $x1003)) (= $x293 (=> $x92 $x1003))))) +(let ((@x1017 (monotonicity (trans @x1008 (rewrite (= (=> $x92 $x1003) $x1010)) (= $x293 $x1010)) (= (and $x92 $x293) $x1015)))) +(let (($x340 (or $x74 (= ?x75 b_Infinity$)))) +(let ((@x345 (quant-intro (rewrite (= (=> $x79 (= ?x75 b_Infinity$)) $x340)) (= $x82 $x343)))) +(let ((@x350 (monotonicity @x345 (rewrite (= (and $x85 true) $x85)) (= (and $x82 (and $x85 true)) (and $x343 $x85))))) +(let ((@x339 (quant-intro (rewrite (= (=> $x74 (= ?x75 0)) (or $x79 (= ?x75 0)))) (= $x78 $x337)))) +(let ((@x358 (trans (monotonicity @x339 @x350 (= $x88 (and $x337 (and $x343 $x85)))) (rewrite (= (and $x337 (and $x343 $x85)) $x354)) (= $x88 $x354)))) +(let ((@x365 (trans (monotonicity @x358 (= $x89 (and true $x354))) (rewrite (= (and true $x354) $x354)) (= $x89 $x354)))) +(let ((@x369 (trans (monotonicity @x365 (= $x90 (and true $x354))) (rewrite (= (and true $x354) $x354)) (= $x90 $x354)))) +(let ((@x1026 (trans (monotonicity @x369 @x1017 (= $x295 (=> $x354 $x1015))) (rewrite (= (=> $x354 $x1015) $x1022)) (= $x295 $x1022)))) +(let ((@x1030 (mp (asserted $x296) (monotonicity @x1026 (= $x296 (not $x1022))) (not $x1022)))) +(let ((@x1031 (not-or-elim @x1030 $x354))) +(let ((@x1780 (mp~ (mp (and-elim @x1031 $x85) (rewrite* (= $x85 $x85)) $x85) @x1779 $x85))) +(let ((@x4210 (unit-resolution ((_ quant-inst ?v1!3) (or (not $x3748) $x2668)) (mp @x1780 @x3752 $x3748) (hypothesis $x1821) false))) +(let (($x2688 (not $x2683))) +(let (($x4075 (or $x2688 $x4072))) +(let (($x4078 (not $x4075))) +(let (($x3763 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(or $x83 (not (v_b_Visited_G_0$ ?v0)) $x1288))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) ))) +)) +(let (($x4081 (or (not $x3763) $x4078))) +(let (($x4084 (not $x4081))) +(let (($x1807 (>= (+ (v_b_SP_G_0$ ?v1!1) (* (- 1) (v_b_SP_G_0$ ?v0!2))) 0))) +(let (($x1800 (v_b_Visited_G_0$ ?v0!2))) +(let (($x2622 (not $x1800))) +(let (($x1798 (v_b_Visited_G_0$ ?v1!1))) +(let (($x2637 (or $x1798 $x2622 $x1807))) +(let (($x2642 (not $x2637))) +(let (($x4087 (or $x2642 $x4084))) +(let (($x4090 (not $x4087))) +(let (($x3754 (forall ((?v0 B_Vertex$) )(!(let ((?x75 (v_b_SP_G_0$ ?v0))) +(>= ?x75 0)) :pattern ( (v_b_SP_G_0$ ?v0) ))) +)) +(let (($x4093 (or (not $x3754) $x4090))) +(let (($x4096 (not $x4093))) +(let ((?x1784 (v_b_SP_G_0$ ?v0!0))) +(let (($x1785 (>= ?x1784 0))) +(let (($x307 (not (<= b_Infinity$ 0)))) +(let ((@x310 (mp (asserted (< 0 b_Infinity$)) (rewrite (= (< 0 b_Infinity$) $x307)) $x307))) +(let (($x3424 (= b_Infinity$ ?x1784))) +(let ((@x3416 (symm (commutativity (= $x3424 (= ?x1784 b_Infinity$))) (= (= ?x1784 b_Infinity$) $x3424)))) +(let (($x3481 (= ?x1784 b_Infinity$))) +(let (($x5544 (= ?v0!0 b_Source$))) +(let (($x5542 (not $x5544))) +(let ((@x3411 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1784 0)) $x1785)) (hypothesis (not $x1785)) (not (= ?x1784 0))))) +(let (($x3735 (forall ((?v0 B_Vertex$) )(!(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(or $x79 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) ))) +)) +(let ((@x3739 (quant-intro (refl (= (or $x79 (= ?x75 0)) (or $x79 (= ?x75 0)))) (= $x337 $x3735)))) +(let ((@x1769 (nnf-pos (refl (~ (or $x79 (= ?x75 0)) (or $x79 (= ?x75 0)))) (~ $x337 $x337)))) +(let ((@x1770 (mp~ (mp (and-elim @x1031 $x337) (rewrite* (= $x337 $x337)) $x337) @x1769 $x337))) +(let (($x3446 (= (or (not $x3735) (or $x5542 (= ?x1784 0))) (or (not $x3735) $x5542 (= ?x1784 0))))) +(let ((@x3448 (mp ((_ quant-inst ?v0!0) (or (not $x3735) (or $x5542 (= ?x1784 0)))) (rewrite $x3446) (or (not $x3735) $x5542 (= ?x1784 0))))) +(let (($x3741 (forall ((?v0 B_Vertex$) )(!(let (($x74 (= ?v0 b_Source$))) +(or $x74 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) ))) +)) +(let ((@x1775 (mp~ (mp (and-elim @x1031 $x343) (rewrite* (= $x343 $x343)) $x343) (nnf-pos (refl (~ $x340 $x340)) (~ $x343 $x343)) $x343))) +(let ((@x3440 (rewrite (= (or (not $x3741) (or $x5544 $x3481)) (or (not $x3741) $x5544 $x3481))))) +(let ((@x3430 (mp ((_ quant-inst ?v0!0) (or (not $x3741) (or $x5544 $x3481))) @x3440 (or (not $x3741) $x5544 $x3481)))) +(let ((@x3417 (unit-resolution @x3430 (mp @x1775 (quant-intro (refl (= $x340 $x340)) (= $x343 $x3741)) $x3741) (unit-resolution @x3448 (mp @x1770 @x3739 $x3735) @x3411 $x5542) $x3481))) +(let ((@x3399 ((_ th-lemma arith triangle-eq) (or (not $x3424) (<= (+ b_Infinity$ (* (- 1) ?x1784)) 0))))) +(let ((@x3400 (unit-resolution @x3399 (mp @x3417 @x3416 $x3424) (<= (+ b_Infinity$ (* (- 1) ?x1784)) 0)))) +(let ((@x3331 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= ?x1784 0) $x1785)) (hypothesis (not $x1785)) (<= ?x1784 0)))) +(let ((@x3301 ((_ th-lemma arith farkas 1 -1 1) @x3331 @x3400 (mp @x310 (rewrite* (= $x307 $x307)) $x307) false))) +(let (($x3437 (not $x3735))) +(let (($x3312 (or $x3437 $x92))) +(let ((@x3294 (monotonicity (rewrite (= (= b_Source$ b_Source$) true)) (= (not (= b_Source$ b_Source$)) (not true))))) +(let ((@x3309 (trans @x3294 (rewrite (= (not true) false)) (= (not (= b_Source$ b_Source$)) false)))) +(let ((@x3315 (monotonicity @x3309 (= (or (not (= b_Source$ b_Source$)) $x92) (or false $x92))))) +(let ((@x3319 (trans @x3315 (rewrite (= (or false $x92) $x92)) (= (or (not (= b_Source$ b_Source$)) $x92) $x92)))) +(let ((@x3291 (monotonicity @x3319 (= (or $x3437 (or (not (= b_Source$ b_Source$)) $x92)) $x3312)))) +(let ((@x3299 (trans @x3291 (rewrite (= $x3312 $x3312)) (= (or $x3437 (or (not (= b_Source$ b_Source$)) $x92)) $x3312)))) +(let ((@x3300 (mp ((_ quant-inst b_Source$) (or $x3437 (or (not (= b_Source$ b_Source$)) $x92))) @x3299 $x3312))) +(let ((@x4116 (lemma (unit-resolution @x3300 (mp @x1770 @x3739 $x3735) (hypothesis $x1009) false) $x92))) +(let (($x3122 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20))) +(let ((?x2218 (* (- 1) ?x2217))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x247 (not $x238))) +(or (>= (+ ?x220 ?x2218) 0) $x247 (not $x2528))))))))) +)) +(let (($x3107 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x247 (not $x238))) +(or $x247 $x1303 $x1621)))))))) +)) +(let (($x3131 (not (or (not $x3107) $x2215 $x2220 (not $x3122))))) +(let (($x3136 (or $x3085 $x3131))) +(let (($x3062 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(or $x238 (not (fun_app$ v_b_Visited_G_2$ ?v0)) $x1601)))) +)) +(let (($x3145 (not (or (not $x3062) (not $x3136))))) +(let (($x3150 (or $x3039 $x3145))) +(let (($x1595 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0))) +(>= ?x220 0))) +)) +(let (($x1598 (not $x1595))) +(let (($x3158 (not (or $x1598 (not $x3150))))) +(let (($x3163 (or $x913 $x2154 $x3158))) +(let (($x3171 (not (or $x925 (not $x3163))))) +(let (($x3176 (or $x2139 $x3171))) +(let (($x1586 (forall ((?v0 B_Vertex$) )(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)) +)) +(let (($x1589 (not $x1586))) +(let (($x3184 (not (or $x1589 (not $x3176))))) +(let (($x3189 (or $x2122 $x3184))) +(let (($x3016 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x1520 (* (- 1) ?x204))) +(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) +(let (($x2991 (or $x1540 $x1547))) +(let (($x2992 (not $x2991))) +(or $x2992 $x225))))))))))) +)) +(let (($x3010 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let ((?x1560 (* (- 1) ?x220))) +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0))) +(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0))) +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0))) +(or $x1540 $x1547 $x1559))))))))) +)) +(let (($x1535 (forall ((?v0 B_Vertex$) )(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x1520 (* (- 1) ?x204))) +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(or $x125 (>= (+ ?x121 ?x1520) 0))))))) +)) +(let (($x3200 (or $x2082 $x2087 $x202 $x1522 (not $x1535) $x3196 (not $x3010) (not $x3016) (not $x3189)))) +(let (($x3201 (not $x3200))) +(let (($x2946 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0))) +(or $x1448 $x1303 $x1493))))))) +)) +(let (($x2954 (not (or (not $x2946) $x193)))) +(let (($x2959 (or $x2924 $x2954))) +(let (($x2902 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0))) +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0)))))) +(let (($x2480 (= ?x2479 0))) +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0))) +(let (($x2891 (not (or $x2464 (not $x2480))))) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0))) +(let (($x74 (= ?v0 b_Source$))) +(or $x74 $x1448 $x2891))))))))) +)) +(let (($x2968 (not (or (not $x2902) (not $x2959))))) +(let (($x2865 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let ((?x1971 (* (- 1) ?x1970))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0))) +(or (>= (+ ?x177 ?x1971) 0) (not $x2436))))))) +)) +(let (($x2873 (not (or $x1968 $x1973 (not $x2865))))) +(let (($x2973 (or $x2873 $x2968))) +(let (($x2850 (forall ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(or $x125 $x1395)))) +)) +(let (($x2986 (not (or (not $x2850) (not $x159) (not $x162) $x2982 (not $x167) (not $x2973))))) +(let (($x3206 (or $x2986 $x3201))) +(let (($x2836 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0)))))) +(let (($x2417 (= ?x2416 0))) +(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0))) +(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2417))))) +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0))) +(let (($x74 (= ?v0 b_Source$))) +(or $x74 $x1395 $x2825))))))))) +)) +(let (($x2808 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x126 (not $x125))) +(or $x126 $x1303 $x1384)))))))) +)) +(let (($x2786 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(or $x125 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1367))))) +)) +(let (($x1363 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(>= ?x121 0))) +)) +(let (($x2763 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0))) +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0)))))) +(let (($x2379 (= ?x2378 0))) +(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0))) +(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2379))))) +(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0))) +(let (($x74 (= ?v0 b_Source$))) +(or $x74 $x1330 $x2752))))))))) +)) +(let (($x3219 (or (not $x2763) $x3213 (not $x1363) (not $x2786) (not $x2808) (not $x2836) (not $x3206)))) +(let (($x3220 (not $x3219))) +(let (($x2725 (forall ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5))) +(let ((?x1850 (* (- 1) ?x1849))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x84 (not $x83))) +(or (>= (+ ?x75 ?x1850) 0) $x84 (not (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0))))))))) +)) +(let (($x2733 (not (or $x1847 $x1852 (not $x2725))))) +(let (($x3225 (or $x2733 $x3220))) +(let (($x2710 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x84 (not $x83))) +(or $x84 $x1303 $x1316)))))))) +)) +(let (($x3234 (not (or (not $x2710) (not $x3225))))) +(let (($x3239 (or $x2688 $x3234))) +(let (($x2665 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(or $x83 (not (v_b_Visited_G_0$ ?v0)) $x1288)))) +)) +(let (($x3248 (not (or (not $x2665) (not $x3239))))) +(let (($x3253 (or $x2642 $x3248))) +(let (($x1280 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0))) +(>= ?x75 0))) +)) +(let (($x1283 (not $x1280))) +(let (($x3261 (not (or $x1283 (not $x3253))))) +(let (($x1786 (not $x1785))) +(let (($x3266 (or $x1009 $x1786 $x3261))) +(let (($x2528 (= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20)) (b_G$ (pair$ ?0 ?v0!20))) 0))) +(let (($x3111 (or (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0) $x247 (not $x2528)))) +(let ((@x3984 (monotonicity (quant-intro (refl (= $x3111 $x3111)) (= $x3122 $x3977)) (= (not $x3122) $x3982)))) +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) ?x250)) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x3102 (or $x247 $x1303 $x1621))) +(let ((@x3975 (monotonicity (quant-intro (refl (= $x3102 $x3102)) (= $x3107 $x3968)) (= (not $x3107) $x3973)))) +(let ((@x3987 (monotonicity @x3975 @x3984 (= (or (not $x3107) $x2215 $x2220 (not $x3122)) $x3985)))) +(let ((@x3996 (monotonicity (monotonicity (monotonicity @x3987 (= $x3131 $x3988)) (= $x3136 $x3991)) (= (not $x3136) $x3994)))) +(let (($x1601 (>= (+ ?x220 (* (- 1) ?x250)) 0))) +(let (($x3057 (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1)) $x1601))) +(let ((@x3967 (monotonicity (quant-intro (refl (= $x3057 $x3057)) (= $x3062 $x3960)) (= (not $x3062) (not $x3960))))) +(let ((@x4002 (monotonicity (monotonicity @x3967 @x3996 (= (or (not $x3062) (not $x3136)) $x3997)) (= $x3145 $x4000)))) +(let ((@x4008 (monotonicity (monotonicity @x4002 (= $x3150 $x4003)) (= (not $x3150) $x4006)))) +(let ((@x3955 (quant-intro (refl (= (>= ?x220 0) (>= ?x220 0))) (= $x1595 $x3951)))) +(let ((@x4011 (monotonicity (monotonicity @x3955 (= $x1598 (not $x3951))) @x4008 (= (or $x1598 (not $x3150)) $x4009)))) +(let ((@x4020 (monotonicity (monotonicity (monotonicity @x4011 (= $x3158 $x4012)) (= $x3163 $x4015)) (= (not $x3163) $x4018)))) +(let ((@x3950 (monotonicity (quant-intro (refl (= $x783 $x783)) (= $x786 $x3943)) (= $x925 $x3948)))) +(let ((@x4026 (monotonicity (monotonicity @x3950 @x4020 (= (or $x925 (not $x3163)) $x4021)) (= $x3171 $x4024)))) +(let ((@x4032 (monotonicity (monotonicity @x4026 (= $x3176 $x4027)) (= (not $x3176) $x4030)))) +(let (($x1582 (>= (+ ?x121 (* (- 1) ?x220)) 0))) +(let ((@x3941 (monotonicity (quant-intro (refl (= $x1582 $x1582)) (= $x1586 $x3934)) (= $x1589 $x3939)))) +(let ((@x4038 (monotonicity (monotonicity @x3941 @x4032 (= (or $x1589 (not $x3176)) $x4033)) (= $x3184 $x4036)))) +(let ((@x4044 (monotonicity (monotonicity @x4038 (= $x3189 $x4039)) (= (not $x3189) $x4042)))) +(let (($x1547 (<= (+ ?x121 (* (- 1) ?x204) (* (- 1) ?x215)) 0))) +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0))) +(let (($x2991 (or $x1540 $x1547))) +(let (($x2992 (not $x2991))) +(let (($x3013 (or $x2992 $x225))) +(let ((@x3933 (monotonicity (quant-intro (refl (= $x3013 $x3013)) (= $x3016 $x3926)) (= (not $x3016) $x3931)))) +(let (($x1559 (= (+ ?x204 ?x215 (* (- 1) ?x220)) 0))) +(let (($x3005 (or $x1540 $x1547 $x1559))) +(let ((@x3925 (monotonicity (quant-intro (refl (= $x3005 $x3005)) (= $x3010 $x3918)) (= (not $x3010) $x3923)))) +(let (($x1532 (or $x125 (>= (+ ?x121 (* (- 1) ?x204)) 0)))) +(let ((@x3915 (monotonicity (quant-intro (refl (= $x1532 $x1532)) (= $x1535 $x3908)) (= (not $x1535) $x3913)))) +(let ((@x4050 (monotonicity (monotonicity @x3915 @x3925 @x3933 @x4044 (= $x3200 $x4045)) (= $x3201 $x4048)))) +(let (($x3903 (= (or (not $x2850) (not $x159) (not $x162) $x2982 (not $x167) (not $x2973)) $x3902))) +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) ?x180)) 0))) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0))) +(let (($x2941 (or $x1448 $x1303 $x1493))) +(let ((@x3877 (monotonicity (quant-intro (refl (= $x2941 $x2941)) (= $x2946 $x3870)) (= (not $x2946) (not $x3870))))) +(let ((@x3883 (monotonicity (monotonicity @x3877 (= (or (not $x2946) $x193) $x3878)) (= $x2954 $x3881)))) +(let ((@x3889 (monotonicity (monotonicity @x3883 (= $x2959 $x3884)) (= (not $x2959) $x3887)))) +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?0) ?0)))))) +(let (($x2480 (= ?x2479 0))) +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0)))) 0))) +(let (($x2891 (not (or $x2464 (not $x2480))))) +(let (($x2897 (or $x74 $x1448 $x2891))) +(let ((@x3869 (monotonicity (quant-intro (refl (= $x2897 $x2897)) (= $x2902 $x3862)) (= (not $x2902) (not $x3862))))) +(let ((@x3895 (monotonicity (monotonicity @x3869 @x3889 (= (or (not $x2902) (not $x2959)) $x3890)) (= $x2968 $x3893)))) +(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let ((?x1971 (* (- 1) ?x1970))) +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?0 ?v0!8))) 0))) +(let (($x2854 (or (>= (+ ?x177 ?x1971) 0) (not $x2436)))) +(let ((@x3855 (monotonicity (quant-intro (refl (= $x2854 $x2854)) (= $x2865 $x3848)) (= (not $x2865) $x3853)))) +(let ((@x3861 (monotonicity (monotonicity @x3855 (= (or $x1968 $x1973 (not $x2865)) $x3856)) (= $x2873 $x3859)))) +(let ((@x3901 (monotonicity (monotonicity @x3861 @x3895 (= $x2973 $x3896)) (= (not $x2973) $x3899)))) +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0))) +(let (($x2839 (or $x125 $x1395))) +(let ((@x3845 (monotonicity (quant-intro (refl (= $x2839 $x2839)) (= $x2850 $x3838)) (= (not $x2850) $x3843)))) +(let ((@x4053 (monotonicity (monotonicity (monotonicity @x3845 @x3901 $x3903) (= $x2986 $x3905)) @x4050 (= $x3206 $x4051)))) +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?0) ?0)))))) +(let (($x2417 (= ?x2416 0))) +(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0)))) 0))) +(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?0))) (not $x2417))))) +(let (($x2831 (or $x74 $x1395 $x2825))) +(let ((@x3836 (monotonicity (quant-intro (refl (= $x2831 $x2831)) (= $x2836 $x3829)) (= (not $x2836) $x3834)))) +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) ?x129)) 0))) +(let (($x2803 (or $x126 $x1303 $x1384))) +(let ((@x3828 (monotonicity (quant-intro (refl (= $x2803 $x2803)) (= $x2808 $x3821)) (= (not $x2808) $x3826)))) +(let (($x1367 (>= (+ ?x121 (* (- 1) ?x129)) 0))) +(let (($x2781 (or $x125 (not $x127) $x1367))) +(let ((@x3820 (monotonicity (quant-intro (refl (= $x2781 $x2781)) (= $x2786 $x3813)) (= (not $x2786) $x3818)))) +(let ((@x3808 (quant-intro (refl (= (>= ?x121 0) (>= ?x121 0))) (= $x1363 $x3804)))) +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?0) ?0)))))) +(let (($x2379 (= ?x2378 0))) +(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0)))) 0))) +(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?0))) (not $x2379))))) +(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0))) +(let (($x2758 (or $x74 $x1330 $x2752))) +(let ((@x3802 (monotonicity (quant-intro (refl (= $x2758 $x2758)) (= $x2763 $x3795)) (= (not $x2763) (not $x3795))))) +(let ((@x4059 (monotonicity @x3802 (monotonicity @x3808 (= (not $x1363) $x3809)) @x3820 @x3828 @x3836 (monotonicity @x4053 (= (not $x3206) $x4054)) (= $x3219 $x4057)))) +(let (($x1862 (= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5)) (b_G$ (pair$ ?0 ?v0!5))) 0))) +(let (($x2714 (or (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0) $x84 (not $x1862)))) +(let ((@x3788 (monotonicity (quant-intro (refl (= $x2714 $x2714)) (= $x2725 $x3781)) (= (not $x2725) (not $x3781))))) +(let ((@x3794 (monotonicity (monotonicity @x3788 (= (or $x1847 $x1852 (not $x2725)) $x3789)) (= $x2733 $x3792)))) +(let ((@x4065 (monotonicity @x3794 (monotonicity @x4059 (= $x3220 $x4060)) (= $x3225 $x4063)))) +(let (($x1316 (>= (+ ?x75 (* (- 1) ?x97) ?x102) 0))) +(let (($x2705 (or $x84 $x1303 $x1316))) +(let ((@x3779 (monotonicity (quant-intro (refl (= $x2705 $x2705)) (= $x2710 $x3772)) (= (not $x2710) (not $x3772))))) +(let ((@x4071 (monotonicity @x3779 (monotonicity @x4065 (= (not $x3225) $x4066)) (= (or (not $x2710) (not $x3225)) $x4069)))) +(let ((@x4080 (monotonicity (monotonicity (monotonicity @x4071 (= $x3234 $x4072)) (= $x3239 $x4075)) (= (not $x3239) $x4078)))) +(let (($x1288 (>= (+ ?x75 (* (- 1) ?x97)) 0))) +(let (($x2660 (or $x83 (not $x95) $x1288))) +(let ((@x3770 (monotonicity (quant-intro (refl (= $x2660 $x2660)) (= $x2665 $x3763)) (= (not $x2665) (not $x3763))))) +(let ((@x4086 (monotonicity (monotonicity @x3770 @x4080 (= (or (not $x2665) (not $x3239)) $x4081)) (= $x3248 $x4084)))) +(let ((@x4092 (monotonicity (monotonicity @x4086 (= $x3253 $x4087)) (= (not $x3253) $x4090)))) +(let ((@x3758 (quant-intro (refl (= (>= ?x75 0) (>= ?x75 0))) (= $x1280 $x3754)))) +(let ((@x4095 (monotonicity (monotonicity @x3758 (= $x1283 (not $x3754))) @x4092 (= (or $x1283 (not $x3253)) $x4093)))) +(let ((@x4101 (monotonicity (monotonicity @x4095 (= $x3261 $x4096)) (= $x3266 (or $x1009 $x1786 $x4096))))) +(let (($x2537 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20))) +(let ((?x2218 (* (- 1) ?x2217))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x2531 (and (not (>= (+ ?x220 ?x2218) 0)) $x238 $x2528))) +(not $x2531)))))))) +)) +(let (($x2221 (not $x2220))) +(let (($x2216 (not $x2215))) +(let (($x1628 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x1306 (not $x1303))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x1615 (and $x238 $x1306))) +(let (($x1618 (not $x1615))) +(or $x1618 $x1621)))))))))) +)) +(let (($x2546 (and $x1628 $x2216 $x2221 $x2537))) +(let (($x2197 (not (and $x2189 (not $x2194))))) +(let (($x2203 (or $x2197 $x2202))) +(let (($x2204 (not $x2203))) +(let (($x2551 (or $x2204 $x2546))) +(let (($x1609 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x247 (not $x238))) +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0)))) +(let (($x798 (not $x249))) +(or $x798 $x1601))))))) +)) +(let (($x2554 (and $x1609 $x2551))) +(let (($x2170 (not (and (not $x2166) $x2168)))) +(let (($x2176 (or $x2170 $x2175))) +(let (($x2177 (not $x2176))) +(let (($x2557 (or $x2177 $x2554))) +(let (($x2560 (and $x1595 $x2557))) +(let (($x2563 (or $x913 $x2154 $x2560))) +(let (($x2566 (and $x786 $x2563))) +(let (($x2569 (or $x2139 $x2566))) +(let (($x2572 (and $x1586 $x2569))) +(let (($x2575 (or $x2122 $x2572))) +(let (($x1573 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let (($x225 (= ?x220 ?x121))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let ((?x1520 (* (- 1) ?x204))) +(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0))) +(let (($x1553 (and (not $x1540) (not $x1547)))) +(or $x1553 $x225)))))))))) +)) +(let (($x1567 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0))) +(let ((?x1560 (* (- 1) ?x220))) +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0)))) +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) +(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0))) +(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0))) +(let (($x1553 (and (not (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)) (not $x1547)))) +(let (($x1556 (not $x1553))) +(or $x1556 $x1559)))))))))) +)) +(let (($x1525 (not $x1522))) +(let (($x2088 (not $x2087))) +(let (($x2083 (not $x2082))) +(let (($x2581 (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x1567 $x1573 $x2575))) +(let (($x2058 (not $x193))) +(let (($x1499 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x1306 (not $x1303))) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0))) +(let (($x1451 (not $x1448))) +(let (($x1487 (and $x1451 $x1306))) +(let (($x1490 (not $x1487))) +(or $x1490 $x1493))))))))))) +)) +(let (($x2061 (and $x1499 $x2058))) +(let (($x2042 (not (and $x2034 (not $x2039))))) +(let (($x2500 (or $x2042 $x2497))) +(let (($x2503 (not $x2500))) +(let (($x2506 (or $x2503 $x2061))) +(let (($x2491 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0))) +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0)))))) +(let (($x2480 (= ?x2479 0))) +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0))) +(let (($x2485 (and (not $x2464) $x2480))) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0))) +(let (($x1451 (not $x1448))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1454 (and $x79 $x1451))) +(let (($x1457 (not $x1454))) +(or $x1457 $x2485))))))))))))) +)) +(let (($x2509 (and $x2491 $x2506))) +(let (($x2445 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let ((?x1971 (* (- 1) ?x1970))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0))) +(let (($x2439 (and (not (>= (+ ?x177 ?x1971) 0)) $x2436))) +(not $x2439))))))) +)) +(let (($x1974 (not $x1973))) +(let (($x1969 (not $x1968))) +(let (($x2451 (and $x1969 $x1974 $x2445))) +(let (($x2512 (or $x2451 $x2509))) +(let (($x1950 (forall ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1398 (not $x1395))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x126 (not $x125))) +(let (($x1431 (and $x126 $x1398))) +(not $x1431))))))) +)) +(let (($x2518 (and $x1950 $x159 $x162 $x164 $x167 $x2512))) +(let (($x2586 (or $x2518 $x2581))) +(let (($x2428 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0)))))) +(let (($x2417 (= ?x2416 0))) +(let ((?x1922 (?v1!7 ?v0))) +(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922))) +(let (($x2422 (and (not (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x1922))) 0)) $x1927 $x2417))) +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0))) +(let (($x1398 (not $x1395))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1401 (and $x79 $x1398))) +(let (($x1404 (not $x1401))) +(or $x1404 $x2422)))))))))))))) +)) +(let (($x1390 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x1306 (not $x1303))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x1377 (and $x125 $x1306))) +(let (($x1380 (not $x1377))) +(or $x1380 $x1384)))))))))) +)) +(let (($x1374 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x126 (not $x125))) +(let (($x128 (and $x126 $x127))) +(let (($x429 (not $x128))) +(or $x429 $x1367))))))))) +)) +(let (($x2390 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0))) +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0)))))) +(let (($x2379 (= ?x2378 0))) +(let ((?x1887 (?v1!6 ?v0))) +(let (($x1892 (v_b_Visited_G_0$ ?x1887))) +(let (($x2384 (and (not (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?x1887))) 0)) $x1892 $x2379))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1336 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x75)) 0))))) +(let (($x1339 (not $x1336))) +(or $x1339 $x2384)))))))))))) +)) +(let (($x2595 (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428 $x2586))) +(let (($x1876 (forall ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5))) +(let ((?x1850 (* (- 1) ?x1849))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x1863 (and (not (>= (+ ?x75 ?x1850) 0)) $x83 (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0)))) +(not $x1863))))))) +)) +(let (($x1853 (not $x1852))) +(let (($x1848 (not $x1847))) +(let (($x2350 (and $x1848 $x1853 $x1876))) +(let (($x2600 (or $x2350 $x2595))) +(let (($x1322 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0))) +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0))) +(let (($x1306 (not $x1303))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x1309 (and $x83 $x1306))) +(let (($x1312 (not $x1309))) +(or $x1312 $x1316)))))))))) +)) +(let (($x2603 (and $x1322 $x2600))) +(let (($x1829 (not (and $x1821 (not $x1826))))) +(let (($x2339 (or $x1829 $x2336))) +(let (($x2342 (not $x2339))) +(let (($x2606 (or $x2342 $x2603))) +(let (($x1295 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0))) +(let (($x95 (v_b_Visited_G_0$ ?v0))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(let (($x84 (not $x83))) +(let (($x96 (and $x84 $x95))) +(let (($x370 (not $x96))) +(or $x370 $x1288)))))))) +)) +(let (($x2609 (and $x1295 $x2606))) +(let (($x1802 (not (and (not $x1798) $x1800)))) +(let (($x1808 (or $x1802 $x1807))) +(let (($x1809 (not $x1808))) +(let (($x2612 (or $x1809 $x2609))) +(let (($x2615 (and $x1280 $x2612))) +(let (($x2618 (or $x1009 $x1786 $x2615))) +(let ((@x3203 (rewrite (= (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x3010 $x3016 $x3189) $x3201)))) +(let (($x2531 (and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)) $x238 $x2528))) +(let (($x2534 (not $x2531))) +(let ((@x3117 (monotonicity (rewrite (= $x2531 (not $x3111))) (= $x2534 (not (not $x3111)))))) +(let ((@x3124 (quant-intro (trans @x3117 (rewrite (= (not (not $x3111)) $x3111)) (= $x2534 $x3111)) (= $x2537 $x3122)))) +(let (($x1306 (not $x1303))) +(let (($x1615 (and $x238 $x1306))) +(let (($x1618 (not $x1615))) +(let (($x1625 (or $x1618 $x1621))) +(let ((@x3094 (monotonicity (rewrite (= $x1615 (not (or $x247 $x1303)))) (= $x1618 (not (not (or $x247 $x1303))))))) +(let ((@x3098 (trans @x3094 (rewrite (= (not (not (or $x247 $x1303))) (or $x247 $x1303))) (= $x1618 (or $x247 $x1303))))) +(let ((@x3106 (trans (monotonicity @x3098 (= $x1625 (or (or $x247 $x1303) $x1621))) (rewrite (= (or (or $x247 $x1303) $x1621) $x3102)) (= $x1625 $x3102)))) +(let ((@x3127 (monotonicity (quant-intro @x3106 (= $x1628 $x3107)) @x3124 (= $x2546 (and $x3107 $x2216 $x2221 $x3122))))) +(let ((@x3135 (trans @x3127 (rewrite (= (and $x3107 $x2216 $x2221 $x3122) $x3131)) (= $x2546 $x3131)))) +(let ((@x3072 (monotonicity (rewrite (= (and $x2189 (not $x2194)) (not (or $x3065 $x2194)))) (= $x2197 (not (not (or $x3065 $x2194))))))) +(let ((@x3076 (trans @x3072 (rewrite (= (not (not (or $x3065 $x2194))) (or $x3065 $x2194))) (= $x2197 (or $x3065 $x2194))))) +(let ((@x3084 (trans (monotonicity @x3076 (= $x2203 (or (or $x3065 $x2194) $x2202))) (rewrite (= (or (or $x3065 $x2194) $x2202) $x3080)) (= $x2203 $x3080)))) +(let ((@x3138 (monotonicity (monotonicity @x3084 (= $x2204 $x3085)) @x3135 (= $x2551 $x3136)))) +(let (($x3058 (= (or (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1))) $x1601) $x3057))) +(let (($x1606 (or $x798 $x1601))) +(let (($x3055 (= $x1606 (or (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1))) $x1601)))) +(let (($x3043 (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1))))) +(let ((@x3049 (monotonicity (rewrite (= $x249 (not $x3043))) (= $x798 (not (not $x3043)))))) +(let ((@x3056 (monotonicity (trans @x3049 (rewrite (= (not (not $x3043)) $x3043)) (= $x798 $x3043)) $x3055))) +(let ((@x3064 (quant-intro (trans @x3056 (rewrite $x3058) (= $x1606 $x3057)) (= $x1609 $x3062)))) +(let ((@x3149 (trans (monotonicity @x3064 @x3138 (= $x2554 (and $x3062 $x3136))) (rewrite (= (and $x3062 $x3136) $x3145)) (= $x2554 $x3145)))) +(let ((@x3026 (monotonicity (rewrite (= (and (not $x2166) $x2168) (not (or $x2166 $x3019)))) (= $x2170 (not (not (or $x2166 $x3019))))))) +(let ((@x3030 (trans @x3026 (rewrite (= (not (not (or $x2166 $x3019))) (or $x2166 $x3019))) (= $x2170 (or $x2166 $x3019))))) +(let ((@x3038 (trans (monotonicity @x3030 (= $x2176 (or (or $x2166 $x3019) $x2175))) (rewrite (= (or (or $x2166 $x3019) $x2175) $x3034)) (= $x2176 $x3034)))) +(let ((@x3152 (monotonicity (monotonicity @x3038 (= $x2177 $x3039)) @x3149 (= $x2557 $x3150)))) +(let ((@x3162 (trans (monotonicity @x3152 (= $x2560 (and $x1595 $x3150))) (rewrite (= (and $x1595 $x3150) $x3158)) (= $x2560 $x3158)))) +(let ((@x3168 (monotonicity (monotonicity @x3162 (= $x2563 $x3163)) (= $x2566 (and $x786 $x3163))))) +(let ((@x3178 (monotonicity (trans @x3168 (rewrite (= (and $x786 $x3163) $x3171)) (= $x2566 $x3171)) (= $x2569 $x3176)))) +(let ((@x3188 (trans (monotonicity @x3178 (= $x2572 (and $x1586 $x3176))) (rewrite (= (and $x1586 $x3176) $x3184)) (= $x2572 $x3184)))) +(let ((@x3015 (monotonicity (rewrite (= (and (not $x1540) (not $x1547)) $x2992)) (= (or (and (not $x1540) (not $x1547)) $x225) $x3013)))) +(let ((@x2997 (monotonicity (rewrite (= (and (not $x1540) (not $x1547)) $x2992)) (= (not (and (not $x1540) (not $x1547))) (not $x2992))))) +(let ((@x3001 (trans @x2997 (rewrite (= (not $x2992) $x2991)) (= (not (and (not $x1540) (not $x1547))) $x2991)))) +(let ((@x3004 (monotonicity @x3001 (= (or (not (and (not $x1540) (not $x1547))) $x1559) (or $x2991 $x1559))))) +(let ((@x3009 (trans @x3004 (rewrite (= (or $x2991 $x1559) $x3005)) (= (or (not (and (not $x1540) (not $x1547))) $x1559) $x3005)))) +(let ((@x3194 (monotonicity (quant-intro @x3009 (= $x1567 $x3010)) (quant-intro @x3015 (= $x1573 $x3016)) (monotonicity @x3188 (= $x2575 $x3189)) (= $x2581 (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x3010 $x3016 $x3189))))) +(let (($x1451 (not $x1448))) +(let (($x1487 (and $x1451 $x1306))) +(let (($x1490 (not $x1487))) +(let (($x1496 (or $x1490 $x1493))) +(let ((@x2933 (monotonicity (rewrite (= $x1487 (not (or $x1448 $x1303)))) (= $x1490 (not (not (or $x1448 $x1303))))))) +(let ((@x2937 (trans @x2933 (rewrite (= (not (not (or $x1448 $x1303))) (or $x1448 $x1303))) (= $x1490 (or $x1448 $x1303))))) +(let ((@x2945 (trans (monotonicity @x2937 (= $x1496 (or (or $x1448 $x1303) $x1493))) (rewrite (= (or (or $x1448 $x1303) $x1493) $x2941)) (= $x1496 $x2941)))) +(let ((@x2951 (monotonicity (quant-intro @x2945 (= $x1499 $x2946)) (= $x2061 (and $x2946 $x2058))))) +(let ((@x2911 (monotonicity (rewrite (= (and $x2034 (not $x2039)) (not (or $x2033 $x2039)))) (= $x2042 (not (not (or $x2033 $x2039))))))) +(let ((@x2915 (trans @x2911 (rewrite (= (not (not (or $x2033 $x2039))) (or $x2033 $x2039))) (= $x2042 (or $x2033 $x2039))))) +(let ((@x2923 (trans (monotonicity @x2915 (= $x2500 (or (or $x2033 $x2039) $x2497))) (rewrite (= (or (or $x2033 $x2039) $x2497) $x2919)) (= $x2500 $x2919)))) +(let ((@x2961 (monotonicity (monotonicity @x2923 (= $x2503 $x2924)) (trans @x2951 (rewrite (= (and $x2946 $x2058) $x2954)) (= $x2061 $x2954)) (= $x2506 $x2959)))) +(let (($x2485 (and (not $x2464) $x2480))) +(let (($x1454 (and $x79 $x1451))) +(let (($x1457 (not $x1454))) +(let (($x2488 (or $x1457 $x2485))) +(let ((@x2884 (monotonicity (rewrite (= $x1454 (not (or $x74 $x1448)))) (= $x1457 (not (not (or $x74 $x1448))))))) +(let ((@x2888 (trans @x2884 (rewrite (= (not (not (or $x74 $x1448))) (or $x74 $x1448))) (= $x1457 (or $x74 $x1448))))) +(let ((@x2896 (monotonicity @x2888 (rewrite (= $x2485 $x2891)) (= $x2488 (or (or $x74 $x1448) $x2891))))) +(let ((@x2901 (trans @x2896 (rewrite (= (or (or $x74 $x1448) $x2891) $x2897)) (= $x2488 $x2897)))) +(let ((@x2964 (monotonicity (quant-intro @x2901 (= $x2491 $x2902)) @x2961 (= $x2509 (and $x2902 $x2959))))) +(let (($x2439 (and (not (>= (+ ?x177 ?x1971) 0)) $x2436))) +(let (($x2442 (not $x2439))) +(let ((@x2860 (monotonicity (rewrite (= $x2439 (not $x2854))) (= $x2442 (not (not $x2854)))))) +(let ((@x2867 (quant-intro (trans @x2860 (rewrite (= (not (not $x2854)) $x2854)) (= $x2442 $x2854)) (= $x2445 $x2865)))) +(let ((@x2877 (trans (monotonicity @x2867 (= $x2451 (and $x1969 $x1974 $x2865))) (rewrite (= (and $x1969 $x1974 $x2865) $x2873)) (= $x2451 $x2873)))) +(let ((@x2975 (monotonicity @x2877 (trans @x2964 (rewrite (= (and $x2902 $x2959) $x2968)) (= $x2509 $x2968)) (= $x2512 $x2973)))) +(let ((@x2845 (monotonicity (rewrite (= (and $x126 (not $x1395)) (not $x2839))) (= (not (and $x126 (not $x1395))) (not (not $x2839)))))) +(let ((@x2849 (trans @x2845 (rewrite (= (not (not $x2839)) $x2839)) (= (not (and $x126 (not $x1395))) $x2839)))) +(let ((@x2978 (monotonicity (quant-intro @x2849 (= $x1950 $x2850)) @x2975 (= $x2518 (and $x2850 $x159 $x162 $x164 $x167 $x2973))))) +(let ((@x2990 (trans @x2978 (rewrite (= (and $x2850 $x159 $x162 $x164 $x167 $x2973) $x2986)) (= $x2518 $x2986)))) +(let ((?x1922 (?v1!7 ?0))) +(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922))) +(let (($x2422 (and (not $x2401) $x1927 $x2417))) +(let (($x1398 (not $x1395))) +(let (($x1401 (and $x79 $x1398))) +(let (($x1404 (not $x1401))) +(let (($x2425 (or $x1404 $x2422))) +(let ((@x2817 (monotonicity (rewrite (= $x1401 (not (or $x74 $x1395)))) (= $x1404 (not (not (or $x74 $x1395))))))) +(let ((@x2821 (trans @x2817 (rewrite (= (not (not (or $x74 $x1395))) (or $x74 $x1395))) (= $x1404 (or $x74 $x1395))))) +(let ((@x2830 (monotonicity @x2821 (rewrite (= $x2422 $x2825)) (= $x2425 (or (or $x74 $x1395) $x2825))))) +(let ((@x2835 (trans @x2830 (rewrite (= (or (or $x74 $x1395) $x2825) $x2831)) (= $x2425 $x2831)))) +(let ((@x2795 (monotonicity (rewrite (= (and $x125 $x1306) (not (or $x126 $x1303)))) (= (not (and $x125 $x1306)) (not (not (or $x126 $x1303))))))) +(let ((@x2799 (trans @x2795 (rewrite (= (not (not (or $x126 $x1303))) (or $x126 $x1303))) (= (not (and $x125 $x1306)) (or $x126 $x1303))))) +(let ((@x2802 (monotonicity @x2799 (= (or (not (and $x125 $x1306)) $x1384) (or (or $x126 $x1303) $x1384))))) +(let ((@x2807 (trans @x2802 (rewrite (= (or (or $x126 $x1303) $x1384) $x2803)) (= (or (not (and $x125 $x1306)) $x1384) $x2803)))) +(let ((@x2775 (rewrite (= (not (not (or $x125 (not $x127)))) (or $x125 (not $x127)))))) +(let ((@x2773 (monotonicity (rewrite (= $x128 (not (or $x125 (not $x127))))) (= $x429 (not (not (or $x125 (not $x127)))))))) +(let ((@x2780 (monotonicity (trans @x2773 @x2775 (= $x429 (or $x125 (not $x127)))) (= (or $x429 $x1367) (or (or $x125 (not $x127)) $x1367))))) +(let ((@x2785 (trans @x2780 (rewrite (= (or (or $x125 (not $x127)) $x1367) $x2781)) (= (or $x429 $x1367) $x2781)))) +(let ((?x1887 (?v1!6 ?0))) +(let (($x1892 (v_b_Visited_G_0$ ?x1887))) +(let (($x2384 (and (not $x2363) $x1892 $x2379))) +(let (($x1336 (and $x79 (not $x1330)))) +(let (($x1339 (not $x1336))) +(let (($x2387 (or $x1339 $x2384))) +(let ((@x2744 (monotonicity (rewrite (= $x1336 (not (or $x74 $x1330)))) (= $x1339 (not (not (or $x74 $x1330))))))) +(let ((@x2748 (trans @x2744 (rewrite (= (not (not (or $x74 $x1330))) (or $x74 $x1330))) (= $x1339 (or $x74 $x1330))))) +(let ((@x2757 (monotonicity @x2748 (rewrite (= $x2384 $x2752)) (= $x2387 (or (or $x74 $x1330) $x2752))))) +(let ((@x2762 (trans @x2757 (rewrite (= (or (or $x74 $x1330) $x2752) $x2758)) (= $x2387 $x2758)))) +(let ((@x3211 (monotonicity (quant-intro @x2762 (= $x2390 $x2763)) (quant-intro @x2785 (= $x1374 $x2786)) (quant-intro @x2807 (= $x1390 $x2808)) (quant-intro @x2835 (= $x2428 $x2836)) (monotonicity @x2990 (trans @x3194 @x3203 (= $x2581 $x3201)) (= $x2586 $x3206)) (= $x2595 (and $x2763 $x120 $x1363 $x2786 $x2808 $x2836 $x3206))))) +(let ((@x3224 (trans @x3211 (rewrite (= (and $x2763 $x120 $x1363 $x2786 $x2808 $x2836 $x3206) $x3220)) (= $x2595 $x3220)))) +(let (($x1863 (and (not (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0)) $x83 $x1862))) +(let (($x1873 (not $x1863))) +(let ((@x2720 (monotonicity (rewrite (= $x1863 (not $x2714))) (= $x1873 (not (not $x2714)))))) +(let ((@x2727 (quant-intro (trans @x2720 (rewrite (= (not (not $x2714)) $x2714)) (= $x1873 $x2714)) (= $x1876 $x2725)))) +(let ((@x2737 (trans (monotonicity @x2727 (= $x2350 (and $x1848 $x1853 $x2725))) (rewrite (= (and $x1848 $x1853 $x2725) $x2733)) (= $x2350 $x2733)))) +(let ((@x2697 (monotonicity (rewrite (= (and $x83 $x1306) (not (or $x84 $x1303)))) (= (not (and $x83 $x1306)) (not (not (or $x84 $x1303))))))) +(let ((@x2701 (trans @x2697 (rewrite (= (not (not (or $x84 $x1303))) (or $x84 $x1303))) (= (not (and $x83 $x1306)) (or $x84 $x1303))))) +(let ((@x2704 (monotonicity @x2701 (= (or (not (and $x83 $x1306)) $x1316) (or (or $x84 $x1303) $x1316))))) +(let ((@x2709 (trans @x2704 (rewrite (= (or (or $x84 $x1303) $x1316) $x2705)) (= (or (not (and $x83 $x1306)) $x1316) $x2705)))) +(let ((@x3230 (monotonicity (quant-intro @x2709 (= $x1322 $x2710)) (monotonicity @x2737 @x3224 (= $x2600 $x3225)) (= $x2603 (and $x2710 $x3225))))) +(let ((@x2675 (monotonicity (rewrite (= (and $x1821 (not $x1826)) (not (or $x2668 $x1826)))) (= $x1829 (not (not (or $x2668 $x1826))))))) +(let ((@x2679 (trans @x2675 (rewrite (= (not (not (or $x2668 $x1826))) (or $x2668 $x1826))) (= $x1829 (or $x2668 $x1826))))) +(let ((@x2687 (trans (monotonicity @x2679 (= $x2339 (or (or $x2668 $x1826) $x2336))) (rewrite (= (or (or $x2668 $x1826) $x2336) $x2683)) (= $x2339 $x2683)))) +(let ((@x3241 (monotonicity (monotonicity @x2687 (= $x2342 $x2688)) (trans @x3230 (rewrite (= (and $x2710 $x3225) $x3234)) (= $x2603 $x3234)) (= $x2606 $x3239)))) +(let ((@x2654 (rewrite (= (not (not (or $x83 (not $x95)))) (or $x83 (not $x95)))))) +(let ((@x2652 (monotonicity (rewrite (= $x96 (not (or $x83 (not $x95))))) (= $x370 (not (not (or $x83 (not $x95)))))))) +(let ((@x2659 (monotonicity (trans @x2652 @x2654 (= $x370 (or $x83 (not $x95)))) (= (or $x370 $x1288) (or (or $x83 (not $x95)) $x1288))))) +(let ((@x2664 (trans @x2659 (rewrite (= (or (or $x83 (not $x95)) $x1288) $x2660)) (= (or $x370 $x1288) $x2660)))) +(let ((@x3244 (monotonicity (quant-intro @x2664 (= $x1295 $x2665)) @x3241 (= $x2609 (and $x2665 $x3239))))) +(let ((@x2629 (monotonicity (rewrite (= (and (not $x1798) $x1800) (not (or $x1798 $x2622)))) (= $x1802 (not (not (or $x1798 $x2622))))))) +(let ((@x2633 (trans @x2629 (rewrite (= (not (not (or $x1798 $x2622))) (or $x1798 $x2622))) (= $x1802 (or $x1798 $x2622))))) +(let ((@x2641 (trans (monotonicity @x2633 (= $x1808 (or (or $x1798 $x2622) $x1807))) (rewrite (= (or (or $x1798 $x2622) $x1807) $x2637)) (= $x1808 $x2637)))) +(let ((@x3255 (monotonicity (monotonicity @x2641 (= $x1809 $x2642)) (trans @x3244 (rewrite (= (and $x2665 $x3239) $x3248)) (= $x2609 $x3248)) (= $x2612 $x3253)))) +(let ((@x3265 (trans (monotonicity @x3255 (= $x2615 (and $x1280 $x3253))) (rewrite (= (and $x1280 $x3253) $x3261)) (= $x2615 $x3261)))) +(let (($x2244 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20))) +(let ((?x2218 (* (- 1) ?x2217))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x2231 (and (not (>= (+ ?x220 ?x2218) 0)) $x238 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x220 ?x2218) 0)))) +(not $x2231))))))) +)) +(let (($x2238 (not (not (and $x2216 $x2221))))) +(let (($x2248 (and $x2238 $x2244))) +(let (($x2253 (and $x1628 $x2248))) +(let (($x2257 (or $x2204 $x2253))) +(let (($x2261 (and $x1609 $x2257))) +(let (($x2265 (or $x2177 $x2261))) +(let (($x2269 (and $x1595 $x2265))) +(let (($x2273 (or $x913 $x2154 $x2269))) +(let (($x2277 (and $x786 $x2273))) +(let (($x2281 (or $x2139 $x2277))) +(let (($x2285 (and $x1586 $x2281))) +(let (($x2289 (or $x2122 $x2285))) +(let (($x2110 (and (and $x2083 $x2088) $x203 $x1525 $x1535 $x213 $x1567 $x1573))) +(let (($x2293 (and $x2110 $x2289))) +(let (($x2047 (or $x2042 (>= (+ ?x2036 ?x2030 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0)))) +(let (($x2048 (not $x2047))) +(let (($x2065 (or $x2048 $x2061))) +(let (($x2022 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0))) +(let ((?x1446 (* (- 1) ?x177))) +(let ((?x2008 (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) +(let ((?x2013 (b_G$ (pair$ (?v1!9 ?v0) ?v0)))) +(let (($x2015 (= (+ ?x2013 ?x2008 ?x1446) 0))) +(let (($x2016 (and (not (>= (+ ?x2008 ?x1446) 0)) $x2015))) +(let (($x1448 (<= (+ b_Infinity$ ?x1446) 0))) +(let (($x1451 (not $x1448))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1454 (and $x79 $x1451))) +(let (($x1457 (not $x1454))) +(or $x1457 $x2016)))))))))))))) +)) +(let (($x2069 (and $x2022 $x2065))) +(let (($x1996 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let ((?x1971 (* (- 1) ?x1970))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let (($x1984 (and (not (>= (+ ?x177 ?x1971) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x177 ?x1971) 0)))) +(not $x1984)))))) +)) +(let (($x1990 (not (not (and $x1969 $x1974))))) +(let (($x2000 (and $x1990 $x1996))) +(let (($x2073 (or $x2000 $x2069))) +(let (($x1961 (and $x1950 $x159 $x162 $x164 $x167))) +(let (($x2077 (and $x1961 $x2073))) +(let (($x2297 (or $x2077 $x2293))) +(let (($x1938 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0))) +(let ((?x1393 (* (- 1) ?x121))) +(let ((?x1922 (?v1!7 ?v0))) +(let ((?x1923 (fun_app$c v_b_SP_G_1$ ?x1922))) +(let ((?x1929 (b_G$ (pair$ ?x1922 ?v0)))) +(let (($x1931 (= (+ ?x1929 ?x1923 ?x1393) 0))) +(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922))) +(let (($x1932 (and (not (>= (+ ?x1923 ?x1393) 0)) $x1927 $x1931))) +(let (($x1395 (<= (+ b_Infinity$ ?x1393) 0))) +(let (($x1398 (not $x1395))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1401 (and $x79 $x1398))) +(let (($x1404 (not $x1401))) +(or $x1404 $x1932)))))))))))))))) +)) +(let (($x1903 (forall ((?v0 B_Vertex$) )(let ((?x1894 (b_G$ (pair$ (?v1!6 ?v0) ?v0)))) +(let ((?x75 (v_b_SP_G_0$ ?v0))) +(let ((?x1328 (* (- 1) ?x75))) +(let ((?x1887 (?v1!6 ?v0))) +(let ((?x1888 (v_b_SP_G_0$ ?x1887))) +(let (($x1896 (= (+ ?x1888 ?x1328 ?x1894) 0))) +(let (($x1892 (v_b_Visited_G_0$ ?x1887))) +(let (($x1897 (and (not (>= (+ ?x1888 ?x1328) 0)) $x1892 $x1896))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1336 (and $x79 (not (<= (+ b_Infinity$ ?x1328) 0))))) +(let (($x1339 (not $x1336))) +(or $x1339 $x1897)))))))))))))) +)) +(let (($x1941 (and $x1903 $x120 $x1363 $x1374 $x1390 $x1938))) +(let (($x2301 (and $x1941 $x2297))) +(let (($x1870 (not (not (and $x1848 $x1853))))) +(let (($x1880 (and $x1870 $x1876))) +(let (($x2305 (or $x1880 $x2301))) +(let (($x2309 (and $x1322 $x2305))) +(let (($x1834 (>= (+ (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4)) ?x1823) 0))) +(let (($x1836 (not (or $x1829 $x1834)))) +(let (($x2313 (or $x1836 $x2309))) +(let (($x2317 (and $x1295 $x2313))) +(let (($x2321 (or $x1809 $x2317))) +(let (($x2325 (and $x1280 $x2321))) +(let (($x2329 (or $x1009 $x1786 $x2325))) +(let (($x2230 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0))) +(let (($x2231 (and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)) $x238 $x2230))) +(let (($x2241 (not $x2231))) +(let (($x2526 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20)) (b_G$ (pair$ ?0 ?v0!20)))))) +(let ((@x2533 (monotonicity (monotonicity (rewrite $x2526) (= $x2230 $x2528)) (= $x2231 $x2531)))) +(let ((@x2542 (monotonicity (rewrite (= $x2238 (and $x2216 $x2221))) (quant-intro (monotonicity @x2533 (= $x2241 $x2534)) (= $x2244 $x2537)) (= $x2248 (and (and $x2216 $x2221) $x2537))))) +(let ((@x2550 (trans (monotonicity @x2542 (= $x2253 (and $x1628 (and (and $x2216 $x2221) $x2537)))) (rewrite (= (and $x1628 (and (and $x2216 $x2221) $x2537)) $x2546)) (= $x2253 $x2546)))) +(let ((@x2559 (monotonicity (monotonicity (monotonicity @x2550 (= $x2257 $x2551)) (= $x2261 $x2554)) (= $x2265 $x2557)))) +(let ((@x2568 (monotonicity (monotonicity (monotonicity @x2559 (= $x2269 $x2560)) (= $x2273 $x2563)) (= $x2277 $x2566)))) +(let ((@x2577 (monotonicity (monotonicity (monotonicity @x2568 (= $x2281 $x2569)) (= $x2285 $x2572)) (= $x2289 $x2575)))) +(let ((@x2585 (trans (monotonicity @x2577 (= $x2293 (and $x2110 $x2575))) (rewrite (= (and $x2110 $x2575) $x2581)) (= $x2293 $x2581)))) +(let (($x2498 (= (>= (+ ?x2036 ?x2030 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0) $x2497))) +(let (($x2495 (= (+ ?x2036 ?x2030 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) (+ ?x2030 ?x2036 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11)))))) +(let ((@x2505 (monotonicity (monotonicity (monotonicity (rewrite $x2495) $x2498) (= $x2047 $x2500)) (= $x2048 $x2503)))) +(let ((?x1446 (* (- 1) ?x177))) +(let ((?x2008 (fun_app$c v_b_SP_G_3$ (?v1!9 ?0)))) +(let ((?x2013 (b_G$ (pair$ (?v1!9 ?0) ?0)))) +(let (($x2015 (= (+ ?x2013 ?x2008 ?x1446) 0))) +(let (($x2016 (and (not (>= (+ ?x2008 ?x1446) 0)) $x2015))) +(let (($x2019 (or $x1457 $x2016))) +(let ((@x2477 (monotonicity (rewrite (= (+ ?x2013 ?x2008 ?x1446) (+ ?x1446 ?x2008 ?x2013))) (= $x2015 (= (+ ?x1446 ?x2008 ?x2013) 0))))) +(let ((@x2484 (trans @x2477 (rewrite (= (= (+ ?x1446 ?x2008 ?x2013) 0) $x2480)) (= $x2015 $x2480)))) +(let ((@x2461 (monotonicity (rewrite (= (+ ?x2008 ?x1446) (+ ?x1446 ?x2008))) (= (>= (+ ?x2008 ?x1446) 0) (>= (+ ?x1446 ?x2008) 0))))) +(let ((@x2468 (trans @x2461 (rewrite (= (>= (+ ?x1446 ?x2008) 0) $x2464)) (= (>= (+ ?x2008 ?x1446) 0) $x2464)))) +(let ((@x2487 (monotonicity (monotonicity @x2468 (= (not (>= (+ ?x2008 ?x1446) 0)) (not $x2464))) @x2484 (= $x2016 $x2485)))) +(let ((@x2511 (monotonicity (quant-intro (monotonicity @x2487 (= $x2019 $x2488)) (= $x2022 $x2491)) (monotonicity @x2505 (= $x2065 $x2506)) (= $x2069 $x2509)))) +(let (($x1984 (and (not (>= (+ ?x177 ?x1971) 0)) (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x177 ?x1971) 0)))) +(let (($x1993 (not $x1984))) +(let (($x2434 (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x177 ?x1971) (+ ?x177 ?x1971 (b_G$ (pair$ ?0 ?v0!8)))))) +(let ((@x2438 (monotonicity (rewrite $x2434) (= (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x177 ?x1971) 0) $x2436)))) +(let ((@x2447 (quant-intro (monotonicity (monotonicity @x2438 (= $x1984 $x2439)) (= $x1993 $x2442)) (= $x1996 $x2445)))) +(let ((@x2450 (monotonicity (rewrite (= $x1990 (and $x1969 $x1974))) @x2447 (= $x2000 (and (and $x1969 $x1974) $x2445))))) +(let ((@x2455 (trans @x2450 (rewrite (= (and (and $x1969 $x1974) $x2445) $x2451)) (= $x2000 $x2451)))) +(let ((@x2517 (monotonicity (monotonicity @x2455 @x2511 (= $x2073 $x2512)) (= $x2077 (and $x1961 $x2512))))) +(let ((@x2588 (monotonicity (trans @x2517 (rewrite (= (and $x1961 $x2512) $x2518)) (= $x2077 $x2518)) @x2585 (= $x2297 $x2586)))) +(let ((?x1393 (* (- 1) ?x121))) +(let ((?x1923 (fun_app$c v_b_SP_G_1$ ?x1922))) +(let ((?x1929 (b_G$ (pair$ ?x1922 ?0)))) +(let (($x1931 (= (+ ?x1929 ?x1923 ?x1393) 0))) +(let (($x1932 (and (not (>= (+ ?x1923 ?x1393) 0)) $x1927 $x1931))) +(let (($x1935 (or $x1404 $x1932))) +(let ((@x2414 (monotonicity (rewrite (= (+ ?x1929 ?x1923 ?x1393) (+ ?x1393 ?x1923 ?x1929))) (= $x1931 (= (+ ?x1393 ?x1923 ?x1929) 0))))) +(let ((@x2421 (trans @x2414 (rewrite (= (= (+ ?x1393 ?x1923 ?x1929) 0) $x2417)) (= $x1931 $x2417)))) +(let ((@x2398 (monotonicity (rewrite (= (+ ?x1923 ?x1393) (+ ?x1393 ?x1923))) (= (>= (+ ?x1923 ?x1393) 0) (>= (+ ?x1393 ?x1923) 0))))) +(let ((@x2405 (trans @x2398 (rewrite (= (>= (+ ?x1393 ?x1923) 0) $x2401)) (= (>= (+ ?x1923 ?x1393) 0) $x2401)))) +(let ((@x2424 (monotonicity (monotonicity @x2405 (= (not (>= (+ ?x1923 ?x1393) 0)) (not $x2401))) @x2421 (= $x1932 $x2422)))) +(let (($x1896 (= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75) (b_G$ (pair$ ?x1887 ?0))) 0))) +(let (($x1897 (and (not (>= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) 0)) $x1892 $x1896))) +(let (($x1900 (or $x1339 $x1897))) +(let (($x2374 (= (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887) (b_G$ (pair$ ?x1887 ?0))) 0))) +(let (($x2372 (= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75) (b_G$ (pair$ ?x1887 ?0))) (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887) (b_G$ (pair$ ?x1887 ?0)))))) +(let ((@x2383 (trans (monotonicity (rewrite $x2372) (= $x1896 $x2374)) (rewrite (= $x2374 $x2379)) (= $x1896 $x2379)))) +(let (($x2369 (= (not (>= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) 0)) (not $x2363)))) +(let (($x1890 (>= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) 0))) +(let (($x2356 (= (+ (v_b_SP_G_0$ ?x1887) (* (- 1) ?x75)) (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887))))) +(let ((@x2360 (monotonicity (rewrite $x2356) (= $x1890 (>= (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887)) 0))))) +(let ((@x2367 (trans @x2360 (rewrite (= (>= (+ (* (- 1) ?x75) (v_b_SP_G_0$ ?x1887)) 0) $x2363)) (= $x1890 $x2363)))) +(let ((@x2389 (monotonicity (monotonicity (monotonicity @x2367 $x2369) @x2383 (= $x1897 $x2384)) (= $x1900 $x2387)))) +(let ((@x2591 (monotonicity (quant-intro @x2389 (= $x1903 $x2390)) (quant-intro (monotonicity @x2424 (= $x1935 $x2425)) (= $x1938 $x2428)) (= $x1941 (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428))))) +(let ((@x2594 (monotonicity @x2591 @x2588 (= $x2301 (and (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428) $x2586))))) +(let ((@x2599 (trans @x2594 (rewrite (= (and (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428) $x2586) $x2595)) (= $x2301 $x2595)))) +(let ((@x2349 (monotonicity (rewrite (= $x1870 (and $x1848 $x1853))) (= $x1880 (and (and $x1848 $x1853) $x1876))))) +(let ((@x2354 (trans @x2349 (rewrite (= (and (and $x1848 $x1853) $x1876) $x2350)) (= $x1880 $x2350)))) +(let ((@x2605 (monotonicity (monotonicity @x2354 @x2599 (= $x2305 $x2600)) (= $x2309 $x2603)))) +(let (($x2334 (= (+ (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4)) ?x1823) (+ ?x1823 (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4)))))) +(let ((@x2341 (monotonicity (monotonicity (rewrite $x2334) (= $x1834 $x2336)) (= (or $x1829 $x1834) $x2339)))) +(let ((@x2608 (monotonicity (monotonicity @x2341 (= $x1836 $x2342)) @x2605 (= $x2313 $x2606)))) +(let ((@x2617 (monotonicity (monotonicity (monotonicity @x2608 (= $x2317 $x2609)) (= $x2321 $x2612)) (= $x2325 $x2615)))) +(let (($x1662 (forall ((?v0 B_Vertex$) )(let (($x1656 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)) $x238 (= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))))) +)) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1641 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0))) 0))))) +(or (not $x1641) $x1656)))))) +)) +(let (($x1631 (not $x1628))) +(let (($x1665 (or $x1631 $x1662))) +(let (($x1668 (and $x1628 $x1665))) +(let (($x1612 (not $x1609))) +(let (($x1671 (or $x1612 $x1668))) +(let (($x1674 (and $x1609 $x1671))) +(let (($x1677 (or $x1598 $x1674))) +(let (($x1680 (and $x244 $x1595 $x1677))) +(let (($x1683 (or $x925 $x1680))) +(let (($x1686 (and $x786 $x1683))) +(let (($x1689 (or $x1589 $x1686))) +(let (($x1692 (and $x1586 $x1689))) +(let (($x1434 (exists ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1398 (not $x1395))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0))) +(let (($x126 (not $x125))) +(and $x126 $x1398)))))) +)) +(let (($x1576 (and $x1434 $x203 $x1525 $x1535 $x213 $x1567 $x1573))) +(let (($x1579 (not $x1576))) +(let (($x1695 (or $x1579 $x1692))) +(let (($x1502 (not $x1499))) +(let (($x1505 (or $x1502 $x193))) +(let (($x1508 (and $x1499 $x1505))) +(let (($x1481 (forall ((?v0 B_Vertex$) )(let (($x1475 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(and (not (>= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))))) +)) +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0))) +(let (($x1451 (not $x1448))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1454 (and $x79 $x1451))) +(let (($x1457 (not $x1454))) +(or $x1457 $x1475))))))))) +)) +(let (($x1484 (not $x1481))) +(let (($x1511 (or $x1484 $x1508))) +(let (($x1514 (and $x1481 $x1511))) +(let (($x1437 (not $x1434))) +(let (($x1440 (and $x1437 $x159 $x162 $x164 $x167))) +(let (($x1443 (not $x1440))) +(let (($x1517 (or $x1443 $x1514))) +(let (($x1698 (and $x1517 $x1695))) +(let (($x1422 (forall ((?v0 B_Vertex$) )(let (($x1416 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(and (not (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)) $x125 (= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))))) +)) +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0))) +(let (($x1398 (not $x1395))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1401 (and $x79 $x1398))) +(let (($x1404 (not $x1401))) +(or $x1404 $x1416))))))))) +)) +(let (($x1357 (forall ((?v0 B_Vertex$) )(let (($x1351 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(and (not (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0))) 0)) $x83 (= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0)))))) +)) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x1336 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0))) 0))))) +(let (($x1339 (not $x1336))) +(or $x1339 $x1351))))))) +)) +(let (($x1425 (and $x1357 $x120 $x1363 $x1374 $x1390 $x1422))) +(let (($x1428 (not $x1425))) +(let (($x1701 (or $x1428 $x1698))) +(let (($x1704 (and $x1357 $x1701))) +(let (($x1325 (not $x1322))) +(let (($x1707 (or $x1325 $x1704))) +(let (($x1710 (and $x1322 $x1707))) +(let (($x1298 (not $x1295))) +(let (($x1713 (or $x1298 $x1710))) +(let (($x1716 (and $x1295 $x1713))) +(let (($x1719 (or $x1283 $x1716))) +(let (($x1725 (not (and $x92 $x1280 $x1719)))) +(let (($x2232 (exists ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20))) +(let ((?x2218 (* (- 1) ?x2217))) +(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(and (not (>= (+ ?x220 ?x2218) 0)) $x238 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x220 ?x2218) 0))))))) +)) +(let ((@x2250 (nnf-neg (refl (~ $x2238 $x2238)) (nnf-neg (refl (~ $x2241 $x2241)) (~ (not $x2232) $x2244)) (~ (not (or (not (and $x2216 $x2221)) $x2232)) $x2248)))) +(let ((@x2252 (trans (sk (~ (not $x1662) (not (or (not (and $x2216 $x2221)) $x2232)))) @x2250 (~ (not $x1662) $x2248)))) +(let ((@x2213 (nnf-neg (nnf-pos (refl (~ $x1625 $x1625)) (~ $x1628 $x1628)) (~ (not $x1631) $x1628)))) +(let ((@x2260 (nnf-neg (sk (~ $x1631 $x2204)) (nnf-neg @x2213 @x2252 (~ (not $x1665) $x2253)) (~ (not $x1668) $x2257)))) +(let ((@x2186 (nnf-neg (nnf-pos (refl (~ $x1606 $x1606)) (~ $x1609 $x1609)) (~ (not $x1612) $x1609)))) +(let ((@x2268 (nnf-neg (sk (~ $x1612 $x2177)) (nnf-neg @x2186 @x2260 (~ (not $x1671) $x2261)) (~ (not $x1674) $x2265)))) +(let ((@x2163 (nnf-neg (nnf-pos (refl (~ (>= ?x220 0) (>= ?x220 0))) (~ $x1595 $x1595)) (~ (not $x1598) $x1595)))) +(let ((@x2276 (nnf-neg (refl (~ $x913 $x913)) (sk (~ $x1598 $x2154)) (nnf-neg @x2163 @x2268 (~ (not $x1677) $x2269)) (~ (not $x1680) $x2273)))) +(let ((@x2148 (nnf-neg (nnf-pos (refl (~ $x783 $x783)) (~ $x786 $x786)) (~ (not $x925) $x786)))) +(let ((@x2284 (nnf-neg (sk (~ $x925 $x2139)) (nnf-neg @x2148 @x2276 (~ (not $x1683) $x2277)) (~ (not $x1686) $x2281)))) +(let ((@x2131 (nnf-neg (nnf-pos (refl (~ $x1582 $x1582)) (~ $x1586 $x1586)) (~ (not $x1589) $x1586)))) +(let ((@x2292 (nnf-neg (sk (~ $x1589 $x2122)) (nnf-neg @x2131 @x2284 (~ (not $x1689) $x2285)) (~ (not $x1692) $x2289)))) +(let (($x1553 (and (not $x1540) (not $x1547)))) +(let (($x1570 (or $x1553 $x225))) +(let ((@x2105 (nnf-pos (refl (~ (or (not $x1553) $x1559) (or (not $x1553) $x1559))) (~ $x1567 $x1567)))) +(let ((@x2112 (monotonicity (sk (~ $x1434 (and $x2083 $x2088))) (refl (~ $x203 $x203)) (refl (~ $x1525 $x1525)) (nnf-pos (refl (~ $x1532 $x1532)) (~ $x1535 $x1535)) (refl (~ $x213 $x213)) @x2105 (nnf-pos (refl (~ $x1570 $x1570)) (~ $x1573 $x1573)) (~ $x1576 $x2110)))) +(let ((@x2296 (nnf-neg (nnf-neg @x2112 (~ (not $x1579) $x2110)) @x2292 (~ (not $x1695) $x2293)))) +(let ((@x2057 (nnf-neg (nnf-pos (refl (~ $x1496 $x1496)) (~ $x1499 $x1499)) (~ (not $x1502) $x1499)))) +(let ((@x2068 (nnf-neg (sk (~ $x1502 $x2048)) (nnf-neg @x2057 (refl (~ $x2058 $x2058)) (~ (not $x1505) $x2061)) (~ (not $x1508) $x2065)))) +(let (($x1475 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(and (not (>= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)) (= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0))))) +)) +(let (($x1478 (or $x1457 $x1475))) +(let ((@x2024 (nnf-pos (monotonicity (refl (~ $x1457 $x1457)) (sk (~ $x1475 $x2016)) (~ $x1478 $x2019)) (~ $x1481 $x2022)))) +(let ((@x2072 (nnf-neg (nnf-neg @x2024 (~ (not $x1484) $x2022)) @x2068 (~ (not $x1511) $x2069)))) +(let (($x1985 (exists ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8))) +(let ((?x1971 (* (- 1) ?x1970))) +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(and (not (>= (+ ?x177 ?x1971) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x177 ?x1971) 0)))))) +)) +(let ((@x2002 (nnf-neg (refl (~ $x1990 $x1990)) (nnf-neg (refl (~ $x1993 $x1993)) (~ (not $x1985) $x1996)) (~ (not (or (not (and $x1969 $x1974)) $x1985)) $x2000)))) +(let ((@x2004 (trans (sk (~ $x1484 (not (or (not (and $x1969 $x1974)) $x1985)))) @x2002 (~ $x1484 $x2000)))) +(let ((@x1952 (nnf-neg (refl (~ (not (and $x126 $x1398)) (not (and $x126 $x1398)))) (~ $x1437 $x1950)))) +(let ((@x1963 (monotonicity @x1952 (refl (~ $x159 $x159)) (refl (~ $x162 $x162)) (refl (~ $x164 $x164)) (refl (~ $x167 $x167)) (~ $x1440 $x1961)))) +(let ((@x2080 (nnf-neg (nnf-neg @x1963 (~ (not $x1443) $x1961)) (nnf-neg @x2004 @x2072 (~ (not $x1514) $x2073)) (~ (not $x1517) $x2077)))) +(let (($x1416 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(and (not (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)) $x125 (= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)))))) +)) +(let (($x1419 (or $x1404 $x1416))) +(let ((@x1940 (nnf-pos (monotonicity (refl (~ $x1404 $x1404)) (sk (~ $x1416 $x1932)) (~ $x1419 $x1935)) (~ $x1422 $x1938)))) +(let ((@x1917 (refl (~ (or (not (and $x125 $x1306)) $x1384) (or (not (and $x125 $x1306)) $x1384))))) +(let (($x1351 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(and (not (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?0))) 0)) $x83 (= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?0)) ?x102) 0)))))) +)) +(let (($x1354 (or $x1339 $x1351))) +(let ((@x1905 (nnf-pos (monotonicity (refl (~ $x1339 $x1339)) (sk (~ $x1351 $x1897)) (~ $x1354 $x1900)) (~ $x1357 $x1903)))) +(let ((@x1943 (monotonicity @x1905 (refl (~ $x120 $x120)) (nnf-pos (refl (~ (>= ?x121 0) (>= ?x121 0))) (~ $x1363 $x1363)) (nnf-pos (refl (~ (or $x429 $x1367) (or $x429 $x1367))) (~ $x1374 $x1374)) (nnf-pos @x1917 (~ $x1390 $x1390)) @x1940 (~ $x1425 $x1941)))) +(let ((@x2304 (nnf-neg (nnf-neg @x1943 (~ (not $x1428) $x1941)) (nnf-neg @x2080 @x2296 (~ (not $x1698) $x2297)) (~ (not $x1701) $x2301)))) +(let (($x1864 (exists ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5))) +(let ((?x1850 (* (- 1) ?x1849))) +(let ((?x75 (v_b_SP_G_0$ ?v1))) +(let (($x83 (v_b_Visited_G_0$ ?v1))) +(and (not (>= (+ ?x75 ?x1850) 0)) $x83 (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0))))))) +)) +(let ((@x1882 (nnf-neg (refl (~ $x1870 $x1870)) (nnf-neg (refl (~ $x1873 $x1873)) (~ (not $x1864) $x1876)) (~ (not (or (not (and $x1848 $x1853)) $x1864)) $x1880)))) +(let ((@x1884 (trans (sk (~ (not $x1357) (not (or (not (and $x1848 $x1853)) $x1864)))) @x1882 (~ (not $x1357) $x1880)))) +(let ((@x1840 (refl (~ (or (not (and $x83 $x1306)) $x1316) (or (not (and $x83 $x1306)) $x1316))))) +(let ((@x2312 (nnf-neg (nnf-neg (nnf-pos @x1840 (~ $x1322 $x1322)) (~ (not $x1325) $x1322)) (nnf-neg @x1884 @x2304 (~ (not $x1704) $x2305)) (~ (not $x1707) $x2309)))) +(let ((@x1818 (nnf-neg (nnf-pos (refl (~ (or $x370 $x1288) (or $x370 $x1288))) (~ $x1295 $x1295)) (~ (not $x1298) $x1295)))) +(let ((@x2320 (nnf-neg @x1818 (nnf-neg (sk (~ $x1325 $x1836)) @x2312 (~ (not $x1710) $x2313)) (~ (not $x1713) $x2317)))) +(let ((@x1795 (nnf-neg (nnf-pos (refl (~ (>= ?x75 0) (>= ?x75 0))) (~ $x1280 $x1280)) (~ (not $x1283) $x1280)))) +(let ((@x2328 (nnf-neg @x1795 (nnf-neg (sk (~ $x1298 $x1809)) @x2320 (~ (not $x1716) $x2321)) (~ (not $x1719) $x2325)))) +(let ((@x2331 (nnf-neg (refl (~ $x1009 $x1009)) (sk (~ $x1283 $x1786)) @x2328 (~ $x1725 $x2329)))) +(let (($x1075 (or $x949 (and $x237 (or $x937 (and $x786 (or $x925 (and $x244 $x246 $x902)))))))) +(let (($x1082 (and $x374 (or $x985 (and $x393 (or $x973 (and $x426 (or $x961 (and $x678 $x1075))))))))) +(let (($x1084 (not (and $x92 $x94 (or $x997 $x1082))))) +(let (($x1211 (forall ((?v0 B_Vertex$) )(let (($x1205 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x1184 (+ ?x102 ?x220))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x1199 (= ?x250 ?x1184))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x251 (<= ?x250 ?x220))) +(let (($x827 (not $x251))) +(and $x827 $x238 $x1199)))))))))) +)) +(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?v0))))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x824 (and $x79 $x821))) +(let (($x844 (not $x824))) +(or $x844 $x1205)))))))) +)) +(let (($x1193 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x1184 (+ ?x102 ?x220))) +(let ((?x250 (v_b_SP_G_2$ ?v0))) +(let (($x1187 (<= ?x250 ?x1184))) +(let (($x378 (not (<= b_Infinity$ ?x102)))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x805 (and $x238 $x378))) +(let (($x811 (not $x805))) +(or $x811 $x1187))))))))))) +)) +(let (($x1196 (not $x1193))) +(let (($x1214 (or $x1196 $x1211))) +(let (($x1217 (and $x1193 $x1214))) +(let (($x1220 (or $x889 $x1217))) +(let (($x1223 (and $x802 $x1220))) +(let (($x1226 (or $x901 $x1223))) +(let (($x1229 (and $x244 $x246 $x1226))) +(let (($x1232 (or $x925 $x1229))) +(let (($x1235 (and $x786 $x1232))) +(let (($x1238 (or $x937 $x1235))) +(let (($x1241 (and $x237 $x1238))) +(let (($x1244 (or $x949 $x1241))) +(let (($x1163 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x1136 (+ ?x102 ?x177))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x1157 (<= ?x180 ?x1136))) +(let (($x378 (not (<= b_Infinity$ ?x102)))) +(let (($x598 (not (<= b_Infinity$ ?x177)))) +(let (($x626 (and $x598 $x378))) +(let (($x632 (not $x626))) +(or $x632 $x1157))))))))))) +)) +(let (($x1166 (not $x1163))) +(let (($x1169 (or $x1166 $x193))) +(let (($x1172 (and $x1163 $x1169))) +(let (($x1151 (forall ((?v0 B_Vertex$) )(let (($x1145 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x1136 (+ ?x102 ?x177))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0))) +(let (($x1139 (= ?x180 ?x1136))) +(let (($x605 (not (<= ?x180 ?x177)))) +(and $x605 $x1139)))))))) +)) +(let (($x598 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_3$ ?v0))))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x601 (and $x79 $x598))) +(let (($x617 (not $x601))) +(or $x617 $x1145)))))))) +)) +(let (($x1154 (not $x1151))) +(let (($x1175 (or $x1154 $x1172))) +(let (($x1178 (and $x1151 $x1175))) +(let (($x1181 (or $x677 $x1178))) +(let (($x1247 (and $x1181 $x1244))) +(let (($x1127 (forall ((?v0 B_Vertex$) )(let (($x1121 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x1102 (+ ?x102 ?x121))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x1115 (= ?x129 ?x1102))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x130 (<= ?x129 ?x121))) +(let (($x458 (not $x130))) +(and $x458 $x125 $x1115)))))))))) +)) +(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0))))) +(let (($x74 (= ?v0 b_Source$))) +(let (($x79 (not $x74))) +(let (($x455 (and $x79 $x452))) +(let (($x475 (not $x455))) +(or $x475 $x1121)))))))) +)) +(let (($x1112 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?v0)))) +(let ((?x1102 (+ ?x102 ?x121))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0))) +(let (($x1106 (<= ?x129 ?x1102))) +(let (($x378 (not (<= b_Infinity$ ?x102)))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x436 (and $x125 $x378))) +(let (($x442 (not $x436))) +(or $x442 $x1106))))))))))) +)) +(let (($x1130 (and $x426 $x120 $x123 $x433 $x1112 $x1127))) +(let (($x1133 (not $x1130))) +(let (($x1250 (or $x1133 $x1247))) +(let (($x1253 (and $x426 $x1250))) +(let (($x1256 (or $x973 $x1253))) +(let (($x1259 (and $x393 $x1256))) +(let (($x1262 (or $x985 $x1259))) +(let (($x1265 (and $x374 $x1262))) +(let (($x1268 (or $x997 $x1265))) +(let (($x1271 (and $x92 $x94 $x1268))) +(let (($x1656 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?0))) 0)) $x238 (= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?0))) 0)))))) +)) +(let (($x1659 (or (not (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0)))) $x1656))) +(let (($x1205 (exists ((?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x1184 (+ ?x102 ?x220))) +(let ((?x250 (v_b_SP_G_2$ ?0))) +(let (($x1199 (= ?x250 ?x1184))) +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1))) +(let (($x251 (<= ?x250 ?x220))) +(let (($x827 (not $x251))) +(and $x827 $x238 $x1199)))))))))) +)) +(let (($x1208 (or $x844 $x1205))) +(let ((?x1184 (+ ?x102 ?x220))) +(let (($x1199 (= ?x250 ?x1184))) +(let (($x1202 (and $x827 $x238 $x1199))) +(let (($x1654 (= $x1202 (and (not $x1601) $x238 (= (+ ?x102 ?x220 (* (- 1) ?x250)) 0))))) +(let ((@x1655 (monotonicity (monotonicity (rewrite (= $x251 $x1601)) (= $x827 (not $x1601))) (rewrite (= $x1199 (= (+ ?x102 ?x220 (* (- 1) ?x250)) 0))) $x1654))) +(let (($x1645 (= $x844 (not (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0))))))) +(let (($x1642 (= $x824 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0)))))) +(let (($x1636 (= (<= b_Infinity$ ?x220) (<= (+ b_Infinity$ (* (- 1) ?x220)) 0)))) +(let ((@x1640 (monotonicity (rewrite $x1636) (= $x821 (not (<= (+ b_Infinity$ (* (- 1) ?x220)) 0)))))) +(let ((@x1661 (monotonicity (monotonicity (monotonicity @x1640 $x1642) $x1645) (quant-intro @x1655 (= $x1205 $x1656)) (= $x1208 $x1659)))) +(let ((@x1308 (monotonicity (rewrite (= (<= b_Infinity$ ?x102) $x1303)) (= $x378 $x1306)))) +(let ((@x1627 (monotonicity (monotonicity (monotonicity @x1308 (= $x805 $x1615)) (= $x811 $x1618)) (rewrite (= (<= ?x250 ?x1184) $x1621)) (= (or $x811 (<= ?x250 ?x1184)) $x1625)))) +(let ((@x1667 (monotonicity (monotonicity (quant-intro @x1627 (= $x1193 $x1628)) (= $x1196 $x1631)) (quant-intro @x1661 (= $x1211 $x1662)) (= $x1214 $x1665)))) +(let ((@x1611 (quant-intro (monotonicity (rewrite (= $x251 $x1601)) (= $x799 $x1606)) (= $x802 $x1609)))) +(let ((@x1673 (monotonicity (monotonicity @x1611 (= $x889 $x1612)) (monotonicity (quant-intro @x1627 (= $x1193 $x1628)) @x1667 (= $x1217 $x1668)) (= $x1220 $x1671)))) +(let ((@x1597 (quant-intro (rewrite (= (<= 0 ?x220) (>= ?x220 0))) (= $x246 $x1595)))) +(let ((@x1679 (monotonicity (monotonicity @x1597 (= $x901 $x1598)) (monotonicity @x1611 @x1673 (= $x1223 $x1674)) (= $x1226 $x1677)))) +(let ((@x1685 (monotonicity (monotonicity @x1597 @x1679 (= $x1229 $x1680)) (= $x1232 $x1683)))) +(let ((@x1591 (monotonicity (quant-intro (rewrite (= (<= ?x220 ?x121) $x1582)) (= $x237 $x1586)) (= $x937 $x1589)))) +(let ((@x1691 (monotonicity @x1591 (monotonicity @x1685 (= $x1235 $x1686)) (= $x1238 $x1689)))) +(let ((@x1694 (monotonicity (quant-intro (rewrite (= (<= ?x220 ?x121) $x1582)) (= $x237 $x1586)) @x1691 (= $x1241 $x1692)))) +(let ((@x1552 (monotonicity (rewrite (= (<= ?x121 ?x217) $x1547)) (= $x698 (not $x1547))))) +(let ((@x1545 (monotonicity (rewrite (= (<= b_Infinity$ ?x215) $x1540)) (= $x694 (not $x1540))))) +(let ((@x1572 (monotonicity (monotonicity @x1545 @x1552 (= $x701 $x1553)) (= $x721 $x1570)))) +(let ((@x1558 (monotonicity (monotonicity @x1545 @x1552 (= $x701 $x1553)) (= $x707 (not $x1553))))) +(let ((@x1566 (monotonicity @x1558 (rewrite (= $x221 $x1559)) (= $x708 (or (not $x1553) $x1559))))) +(let ((@x1534 (monotonicity (rewrite (= $x206 (>= (+ ?x121 (* (- 1) ?x204)) 0))) (= $x687 $x1532)))) +(let ((@x1527 (monotonicity (rewrite (= (<= b_Infinity$ ?x204) $x1522)) (= $x684 $x1525)))) +(let ((@x1400 (monotonicity (rewrite (= (<= b_Infinity$ ?x121) $x1395)) (= $x452 $x1398)))) +(let ((@x1436 (quant-intro (monotonicity @x1400 (= $x537 (and $x126 $x1398))) (= $x540 $x1434)))) +(let ((@x1578 (monotonicity @x1436 @x1527 (quant-intro @x1534 (= $x690 $x1535)) (quant-intro @x1566 (= $x713 $x1567)) (quant-intro @x1572 (= $x726 $x1573)) (= $x767 $x1576)))) +(let ((@x1697 (monotonicity (monotonicity @x1578 (= $x949 $x1579)) @x1694 (= $x1244 $x1695)))) +(let ((@x1453 (monotonicity (rewrite (= (<= b_Infinity$ ?x177) $x1448)) (= $x598 $x1451)))) +(let ((@x1492 (monotonicity (monotonicity @x1453 @x1308 (= $x626 $x1487)) (= $x632 $x1490)))) +(let ((@x1498 (monotonicity @x1492 (rewrite (= (<= ?x180 (+ ?x102 ?x177)) $x1493)) (= (or $x632 (<= ?x180 (+ ?x102 ?x177))) $x1496)))) +(let ((@x1507 (monotonicity (monotonicity (quant-intro @x1498 (= $x1163 $x1499)) (= $x1166 $x1502)) (= $x1169 $x1505)))) +(let (($x1145 (exists ((?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x1136 (+ ?x102 ?x177))) +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0))) +(let (($x1139 (= ?x180 ?x1136))) +(let (($x605 (not (<= ?x180 ?x177)))) +(and $x605 $x1139)))))))) +)) +(let (($x1148 (or $x617 $x1145))) +(let (($x1472 (and (not (>= (+ ?x177 (* (- 1) ?x180)) 0)) (= (+ ?x102 ?x177 (* (- 1) ?x180)) 0)))) +(let ((?x1136 (+ ?x102 ?x177))) +(let (($x1139 (= ?x180 ?x1136))) +(let (($x1142 (and $x605 $x1139))) +(let ((@x1467 (monotonicity (rewrite (= (<= ?x180 ?x177) (>= (+ ?x177 (* (- 1) ?x180)) 0))) (= $x605 (not (>= (+ ?x177 (* (- 1) ?x180)) 0)))))) +(let ((@x1474 (monotonicity @x1467 (rewrite (= $x1139 (= (+ ?x102 ?x177 (* (- 1) ?x180)) 0))) (= $x1142 $x1472)))) +(let ((@x1480 (monotonicity (monotonicity (monotonicity @x1453 (= $x601 $x1454)) (= $x617 $x1457)) (quant-intro @x1474 (= $x1145 $x1475)) (= $x1148 $x1478)))) +(let ((@x1513 (monotonicity (monotonicity (quant-intro @x1480 (= $x1151 $x1481)) (= $x1154 $x1484)) (monotonicity (quant-intro @x1498 (= $x1163 $x1499)) @x1507 (= $x1172 $x1508)) (= $x1175 $x1511)))) +(let ((@x1445 (monotonicity (monotonicity (monotonicity @x1436 (= $x543 $x1437)) (= $x581 $x1440)) (= $x677 $x1443)))) +(let ((@x1519 (monotonicity @x1445 (monotonicity (quant-intro @x1480 (= $x1151 $x1481)) @x1513 (= $x1178 $x1514)) (= $x1181 $x1517)))) +(let (($x1121 (exists ((?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1))) +(let ((?x102 (b_G$ (pair$ ?v1 ?0)))) +(let ((?x1102 (+ ?x102 ?x121))) +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0))) +(let (($x1115 (= ?x129 ?x1102))) +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1))) +(let (($x130 (<= ?x129 ?x121))) +(let (($x458 (not $x130))) +(and $x458 $x125 $x1115)))))))))) +)) +(let (($x1124 (or $x475 $x1121))) +(let ((?x1102 (+ ?x102 ?x121))) +(let (($x1115 (= ?x129 ?x1102))) +(let (($x1118 (and $x458 $x125 $x1115))) +(let (($x1414 (= $x1118 (and (not $x1367) $x125 (= (+ ?x102 ?x121 (* (- 1) ?x129)) 0))))) +(let ((@x1415 (monotonicity (monotonicity (rewrite (= $x130 $x1367)) (= $x458 (not $x1367))) (rewrite (= $x1115 (= (+ ?x102 ?x121 (* (- 1) ?x129)) 0))) $x1414))) +(let ((@x1421 (monotonicity (monotonicity (monotonicity @x1400 (= $x455 $x1401)) (= $x475 $x1404)) (quant-intro @x1415 (= $x1121 $x1416)) (= $x1124 $x1419)))) +(let ((@x1382 (monotonicity (monotonicity @x1308 (= $x436 (and $x125 $x1306))) (= $x442 (not (and $x125 $x1306)))))) +(let ((@x1389 (monotonicity @x1382 (rewrite (= (<= ?x129 ?x1102) $x1384)) (= (or $x442 (<= ?x129 ?x1102)) (or (not (and $x125 $x1306)) $x1384))))) +(let ((@x1376 (quant-intro (monotonicity (rewrite (= $x130 $x1367)) (= $x430 (or $x429 $x1367))) (= $x433 $x1374)))) +(let ((@x1365 (quant-intro (rewrite (= (<= 0 ?x121) (>= ?x121 0))) (= $x123 $x1363)))) +(let (($x1349 (= $x409 (and (not $x1288) $x83 (= (+ ?x75 (* (- 1) ?x97) ?x102) 0))))) +(let ((@x1350 (monotonicity (monotonicity (rewrite (= $x98 $x1288)) (= $x403 (not $x1288))) (rewrite (= $x112 (= (+ ?x75 (* (- 1) ?x97) ?x102) 0))) $x1349))) +(let ((@x1335 (monotonicity (rewrite (= (<= b_Infinity$ ?x75) $x1330)) (= $x397 (not $x1330))))) +(let ((@x1341 (monotonicity (monotonicity @x1335 (= $x400 $x1336)) (= (not $x400) $x1339)))) +(let ((@x1359 (quant-intro (monotonicity @x1341 (quant-intro @x1350 (= $x414 $x1351)) (= $x421 $x1354)) (= $x426 $x1357)))) +(let ((@x1427 (monotonicity @x1359 @x1365 @x1376 (quant-intro @x1389 (= $x1112 $x1390)) (quant-intro @x1421 (= $x1127 $x1422)) (= $x1130 $x1425)))) +(let ((@x1703 (monotonicity (monotonicity @x1427 (= $x1133 $x1428)) (monotonicity @x1519 @x1697 (= $x1247 $x1698)) (= $x1250 $x1701)))) +(let ((@x1314 (monotonicity (monotonicity @x1308 (= (and $x83 $x378) (and $x83 $x1306))) (= (not (and $x83 $x378)) (not (and $x83 $x1306)))))) +(let ((@x1321 (monotonicity @x1314 (rewrite (= $x106 $x1316)) (= $x388 (or (not (and $x83 $x1306)) $x1316))))) +(let ((@x1709 (monotonicity (monotonicity (quant-intro @x1321 (= $x393 $x1322)) (= $x973 $x1325)) (monotonicity @x1359 @x1703 (= $x1253 $x1704)) (= $x1256 $x1707)))) +(let ((@x1297 (quant-intro (monotonicity (rewrite (= $x98 $x1288)) (= $x371 (or $x370 $x1288))) (= $x374 $x1295)))) +(let ((@x1715 (monotonicity (monotonicity @x1297 (= $x985 $x1298)) (monotonicity (quant-intro @x1321 (= $x393 $x1322)) @x1709 (= $x1259 $x1710)) (= $x1262 $x1713)))) +(let ((@x1282 (quant-intro (rewrite (= (<= 0 ?x75) (>= ?x75 0))) (= $x94 $x1280)))) +(let ((@x1721 (monotonicity (monotonicity @x1282 (= $x997 $x1283)) (monotonicity @x1297 @x1715 (= $x1265 $x1716)) (= $x1268 $x1719)))) +(let ((@x1727 (monotonicity (monotonicity @x1282 @x1721 (= $x1271 (and $x92 $x1280 $x1719))) (= (not $x1271) $x1725)))) +(let (($x1263 (= (or $x985 (and $x393 (or $x973 (and $x426 (or $x961 (and $x678 $x1075)))))) $x1262))) +(let (($x1260 (= (and $x393 (or $x973 (and $x426 (or $x961 (and $x678 $x1075))))) $x1259))) +(let (($x1242 (= (and $x237 (or $x937 (and $x786 (or $x925 (and $x244 $x246 $x902))))) $x1241))) +(let ((@x1204 (monotonicity (monotonicity (rewrite (= ?x255 ?x1184)) (= $x262 $x1199)) (= $x833 $x1202)))) +(let ((@x1213 (quant-intro (monotonicity (quant-intro @x1204 (= $x838 $x1205)) (= $x845 $x1208)) (= $x850 $x1211)))) +(let ((@x1192 (monotonicity (monotonicity (rewrite (= ?x255 ?x1184)) (= $x256 (<= ?x250 ?x1184))) (= $x812 (or $x811 (<= ?x250 ?x1184)))))) +(let ((@x1198 (monotonicity (quant-intro @x1192 (= $x817 $x1193)) (= (not $x817) $x1196)))) +(let ((@x1219 (monotonicity (quant-intro @x1192 (= $x817 $x1193)) (monotonicity @x1198 @x1213 (= $x878 $x1214)) (= $x883 $x1217)))) +(let ((@x1228 (monotonicity (monotonicity (monotonicity @x1219 (= $x890 $x1220)) (= $x895 $x1223)) (= $x902 $x1226)))) +(let ((@x1234 (monotonicity (monotonicity @x1228 (= (and $x244 $x246 $x902) $x1229)) (= (or $x925 (and $x244 $x246 $x902)) $x1232)))) +(let ((@x1237 (monotonicity @x1234 (= (and $x786 (or $x925 (and $x244 $x246 $x902))) $x1235)))) +(let ((@x1240 (monotonicity @x1237 (= (or $x937 (and $x786 (or $x925 (and $x244 $x246 $x902)))) $x1238)))) +(let ((@x1162 (monotonicity (monotonicity (rewrite (= ?x182 ?x1136)) (= $x189 (<= ?x180 ?x1136))) (= $x633 (or $x632 (<= ?x180 ?x1136)))))) +(let ((@x1168 (monotonicity (quant-intro @x1162 (= $x638 $x1163)) (= (not $x638) $x1166)))) +(let ((@x1174 (monotonicity (quant-intro @x1162 (= $x638 $x1163)) (monotonicity @x1168 (= $x654 $x1169)) (= $x659 $x1172)))) +(let ((@x1144 (monotonicity (monotonicity (rewrite (= ?x182 ?x1136)) (= $x183 $x1139)) (= $x608 $x1142)))) +(let ((@x1153 (quant-intro (monotonicity (quant-intro @x1144 (= $x611 $x1145)) (= $x618 $x1148)) (= $x623 $x1151)))) +(let ((@x1177 (monotonicity (monotonicity @x1153 (= (not $x623) $x1154)) @x1174 (= $x666 $x1175)))) +(let ((@x1183 (monotonicity (monotonicity @x1153 @x1177 (= $x671 $x1178)) (= $x678 $x1181)))) +(let ((@x1249 (monotonicity @x1183 (monotonicity (monotonicity @x1240 $x1242) (= $x1075 $x1244)) (= (and $x678 $x1075) $x1247)))) +(let ((@x1120 (monotonicity (monotonicity (rewrite (= ?x134 ?x1102)) (= $x141 $x1115)) (= $x464 $x1118)))) +(let ((@x1129 (quant-intro (monotonicity (quant-intro @x1120 (= $x469 $x1121)) (= $x476 $x1124)) (= $x481 $x1127)))) +(let ((@x1111 (monotonicity (monotonicity (rewrite (= ?x134 ?x1102)) (= $x135 (<= ?x129 ?x1102))) (= $x443 (or $x442 (<= ?x129 ?x1102)))))) +(let ((@x1135 (monotonicity (monotonicity (quant-intro @x1111 (= $x448 $x1112)) @x1129 (= $x532 $x1130)) (= $x961 $x1133)))) +(let ((@x1255 (monotonicity (monotonicity @x1135 @x1249 (= (or $x961 (and $x678 $x1075)) $x1250)) (= (and $x426 (or $x961 (and $x678 $x1075))) $x1253)))) +(let ((@x1258 (monotonicity @x1255 (= (or $x973 (and $x426 (or $x961 (and $x678 $x1075)))) $x1256)))) +(let ((@x1267 (monotonicity (monotonicity (monotonicity @x1258 $x1260) $x1263) (= $x1082 $x1265)))) +(let ((@x1273 (monotonicity (monotonicity @x1267 (= (or $x997 $x1082) $x1268)) (= (and $x92 $x94 (or $x997 $x1082)) $x1271)))) +(let ((@x1729 (trans (monotonicity @x1273 (= $x1084 (not $x1271))) @x1727 (= $x1084 $x1725)))) +(let ((@x1088 (mp (not-or-elim @x1030 (not $x1015)) (rewrite* (= (not $x1015) $x1084)) $x1084))) +(let ((@x2621 (mp (mp~ (mp @x1088 @x1729 $x1725) @x2331 $x2329) (monotonicity @x2617 (= $x2329 $x2618)) $x2618))) +(let ((@x4102 (mp (mp @x2621 (monotonicity @x3265 (= $x2618 $x3266)) $x3266) @x4101 (or $x1009 $x1786 $x4096)))) +(let ((@x5459 (unit-resolution (def-axiom (or $x4093 $x4087)) (unit-resolution @x4102 @x4116 (lemma @x3301 $x1785) $x4096) $x4087))) +(let ((@x4213 (unit-resolution ((_ quant-inst ?v0!2) (or (not $x3748) $x2622)) (mp @x1780 @x3752 $x3748) (hypothesis $x1800) false))) +(let ((@x5512 (unit-resolution (def-axiom (or $x4090 $x2642 $x4084)) (unit-resolution (def-axiom (or $x2637 $x1800)) (lemma @x4213 $x2622) $x2637) @x5459 $x4084))) +(let ((@x5451 (unit-resolution (def-axiom (or $x4078 $x2688 $x4072)) (unit-resolution (def-axiom (or $x4081 $x4075)) @x5512 $x4075) (unit-resolution (def-axiom (or $x2683 $x1821)) (lemma @x4210 $x2668) $x2683) $x4072))) +(let ((?x1849 (v_b_SP_G_0$ ?v0!5))) +(let (($x4261 (= b_Infinity$ ?x1849))) +(let ((@x4269 (symm (commutativity (= $x4261 (= ?x1849 b_Infinity$))) (= (= ?x1849 b_Infinity$) $x4261)))) +(let (($x4170 (= ?x1849 b_Infinity$))) +(let ((@x4259 (rewrite (= (or (not $x3741) (or $x1847 $x4170)) (or (not $x3741) $x1847 $x4170))))) +(let ((@x4260 (mp ((_ quant-inst ?v0!5) (or (not $x3741) (or $x1847 $x4170))) @x4259 (or (not $x3741) $x1847 $x4170)))) +(let ((@x4263 (unit-resolution @x4260 (mp @x1775 (quant-intro (refl (= $x340 $x340)) (= $x343 $x3741)) $x3741) (unit-resolution (def-axiom (or $x3789 $x1848)) (hypothesis $x3792) $x1848) $x4170))) +(let ((@x4249 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4261) $x1852)) (unit-resolution (def-axiom (or $x3789 $x1853)) (hypothesis $x3792) $x1853) (not $x4261)))) +(let ((@x5453 (unit-resolution (def-axiom (or $x4066 $x3792 $x4060)) (lemma (unit-resolution @x4249 (mp @x4263 @x4269 $x4261) false) $x3789) (unit-resolution (def-axiom (or $x4069 $x4063)) @x5451 $x4063) $x4060))) +(let ((@x5456 (unit-resolution (def-axiom (or $x4057 $x120)) @x5453 $x120))) +(let ((@x5702 (trans (monotonicity @x5699 (= (fun_app$c v_b_SP_G_3$ b_Source$) ?x119)) @x5456 $x193))) +(let (($x4338 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!8))) 0))) +(let (($x4960 (not $x4338))) +(let (($x4484 (>= (+ ?x1970 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!8))) 0))) +(let ((@x6411 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1970 (fun_app$c v_b_SP_G_1$ ?v0!8))) $x4484)) (monotonicity @x5699 (= ?x1970 (fun_app$c v_b_SP_G_1$ ?v0!8))) $x4484))) +(let ((@x4754 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x4484) (hypothesis $x4338) (hypothesis $x1974) false) (or $x4960 (not $x4484) $x1973)))) +(let (($x5013 (<= (+ ?x1970 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!7 ?v0!8)))) 0))) +(let ((?x4355 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0!8))))) +(let ((?x4335 (fun_app$c v_b_SP_G_1$ ?v0!8))) +(let (($x4361 (<= (+ ?x4335 ?x4355) 0))) +(let (($x4332 (not $x4361))) +(let ((?x4366 (+ ?x4335 ?x4355 (* (- 1) (b_G$ (pair$ (?v1!7 ?v0!8) ?v0!8)))))) +(let (($x4371 (= ?x4366 0))) +(let (($x4372 (not $x4371))) +(let (($x4370 (or $x4361 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0!8))) $x4372))) +(let (($x4373 (not $x4370))) +(let ((@x4406 (unit-resolution (def-axiom (or $x4057 $x3829)) @x5453 $x3829))) +(let ((@x4343 (rewrite (= (or $x3834 (or $x1968 $x4338 $x4373)) (or $x3834 $x1968 $x4338 $x4373))))) +(let ((@x4329 (mp ((_ quant-inst ?v0!8) (or $x3834 (or $x1968 $x4338 $x4373))) @x4343 (or $x3834 $x1968 $x4338 $x4373)))) +(let ((@x4408 (unit-resolution @x4329 @x4406 (unit-resolution (def-axiom (or $x3856 $x1969)) (hypothesis $x3859) $x1969) (hypothesis $x4960) $x4373))) +(let ((@x4463 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1970 ?x4335)) $x4484)) (monotonicity (hypothesis $x164) (= ?x1970 ?x4335)) $x4484))) +(let (($x4500 (<= (+ (fun_app$c v_b_SP_G_3$ (?v1!7 ?v0!8)) ?x4355) 0))) +(let ((?x4341 (?v1!7 ?v0!8))) +(let ((?x4288 (fun_app$c v_b_SP_G_3$ ?x4341))) +(let ((@x5080 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4500)) (monotonicity (hypothesis $x164) (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4500))) +(let ((@x5445 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x4484) (hypothesis $x5013) (hypothesis $x4500) (hypothesis $x4332) false))) +(let ((@x4647 (unit-resolution (lemma @x5445 (or (not $x5013) (not $x4484) (not $x4500) $x4361)) @x5080 @x4463 (unit-resolution (def-axiom (or $x4370 $x4332)) @x4408 $x4332) (not $x5013)))) +(let ((?x4700 (+ ?x1970 (* (- 1) ?x4288) (* (- 1) (b_G$ (pair$ ?x4341 ?v0!8)))))) +(let (($x4722 (= ?x4700 0))) +(let (($x4489 (>= ?x4700 0))) +(let (($x4331 (>= ?x4366 0))) +(let ((@x4769 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4372 $x4331)) (unit-resolution (def-axiom (or $x4370 $x4371)) @x4408 $x4371) $x4331))) +(let ((@x5050 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x4489 (not $x4331) (not $x4484) (not $x4500))) @x4769 @x4463 @x5080 $x4489))) +(let (($x5088 (<= ?x4700 0))) +(let (($x4912 (>= (+ ?x4288 ?x4355) 0))) +(let ((@x6226 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4912)) (monotonicity (hypothesis $x164) (= ?x4288 (fun_app$c v_b_SP_G_1$ ?x4341))) $x4912))) +(let (($x4483 (<= (+ ?x1970 (* (- 1) ?x4335)) 0))) +(let ((@x4788 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1970 ?x4335)) $x4483)) (monotonicity (hypothesis $x164) (= ?x1970 ?x4335)) $x4483))) +(let (($x4330 (<= ?x4366 0))) +(let ((@x4407 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4372 $x4330)) (unit-resolution (def-axiom (or $x4370 $x4371)) @x4408 $x4371) $x4330))) +(let ((@x5001 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x5088 (not $x4330) (not $x4483) (not $x4912))) @x4407 @x4788 @x6226 $x5088))) +(let ((@x4974 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4722 (not $x5088) (not $x4489))) @x5001 @x5050 $x4722))) +(let (($x5094 (not $x4722))) +(let (($x4624 (or $x5013 $x5094))) +(let (($x4764 (or $x3853 $x5013 $x5094))) +(let (($x4299 (>= (+ ?x4288 ?x1971) 0))) +(let (($x4989 (or $x3853 (or $x4299 (not (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) 0)))))) +(let (($x4626 (= (or $x4299 (not (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) 0))) $x4624))) +(let ((@x4723 (rewrite (= (= (+ ?x1971 ?x4288 (b_G$ (pair$ ?x4341 ?v0!8))) 0) $x4722)))) +(let (($x4286 (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) 0))) +(let (($x4839 (= (+ ?x4288 ?x1971 (b_G$ (pair$ ?x4341 ?v0!8))) (+ ?x1971 ?x4288 (b_G$ (pair$ ?x4341 ?v0!8)))))) +(let ((@x4695 (monotonicity (rewrite $x4839) (= $x4286 (= (+ ?x1971 ?x4288 (b_G$ (pair$ ?x4341 ?v0!8))) 0))))) +(let ((@x4401 (monotonicity (trans @x4695 @x4723 (= $x4286 $x4722)) (= (not $x4286) $x5094)))) +(let ((@x5263 (monotonicity (rewrite (= (+ ?x4288 ?x1971) (+ ?x1971 ?x4288))) (= $x4299 (>= (+ ?x1971 ?x4288) 0))))) +(let ((@x4841 (trans @x5263 (rewrite (= (>= (+ ?x1971 ?x4288) 0) $x5013)) (= $x4299 $x5013)))) +(let ((@x5186 (trans (monotonicity (monotonicity @x4841 @x4401 $x4626) (= $x4989 (or $x3853 $x4624))) (rewrite (= (or $x3853 $x4624) $x4764)) (= $x4989 $x4764)))) +(let ((@x5499 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!8)) $x4989) @x5186 $x4764) (unit-resolution (def-axiom (or $x3856 $x3848)) (hypothesis $x3859) $x3848) $x4624))) +(let ((@x5708 (unit-resolution (lemma (unit-resolution @x5499 @x4974 @x4647 false) (or $x3856 $x2982 $x4338)) @x5699 (unit-resolution @x4754 @x6411 (hypothesis $x1974) $x4960) $x3856))) +(let ((@x5837 (unit-resolution (def-axiom (or $x3899 $x3859 $x3893)) @x5708 (unit-resolution (def-axiom (or $x3902 $x3896)) @x5698 $x3896) $x3893))) +(let ((@x5839 (unit-resolution (def-axiom (or $x3887 $x2924 $x3881)) (unit-resolution (def-axiom (or $x3890 $x3884)) @x5837 $x3884) (unit-resolution (def-axiom (or $x3878 $x2058)) @x5702 $x3878) $x2924))) +(let ((@x5847 (monotonicity (symm @x5699 (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x4698 ?x2030)))) +(let ((@x6414 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6220) $x5759)) (symm @x5847 $x6220) $x5759))) +(let ((@x6168 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x5759) (hypothesis $x4492) (hypothesis $x2034) false) (or $x5659 (not $x5759) $x2033)))) +(let ((@x5991 (unit-resolution @x6168 @x6414 (unit-resolution (def-axiom (or $x2919 $x2034)) @x5839 $x2034) $x5659))) +(let ((@x4386 (mp ((_ quant-inst ?v1!10) (or $x3843 (or $x4697 $x4492))) (rewrite (= (or $x3843 (or $x4697 $x4492)) (or $x3843 $x4697 $x4492))) (or $x3843 $x4697 $x4492)))) +(let ((@x5999 (unit-resolution @x4386 (unit-resolution (def-axiom (or $x3902 $x3838)) @x5698 $x3838) (or $x4697 $x4492)))) +(let ((@x6172 (unit-resolution (def-axiom (or $x4057 $x3821)) @x5453 $x3821))) +(let (($x4384 (not $x4697))) +(let (($x5846 (or $x3826 $x4384 $x2039 $x4677))) +(let (($x4673 (or $x4384 $x2039 (>= (+ ?x2036 ?x4698 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11))) 0)))) +(let (($x5849 (or $x3826 $x4673))) +(let (($x4614 (= (>= (+ ?x2036 ?x4698 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11))) 0) $x4677))) +(let (($x4674 (= (+ ?x2036 ?x4698 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11))) (+ ?x2036 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11)) ?x4698)))) +(let ((@x5516 (monotonicity (monotonicity (rewrite $x4674) $x4614) (= $x4673 (or $x4384 $x2039 $x4677))))) +(let ((@x5314 (trans (monotonicity @x5516 (= $x5849 (or $x3826 (or $x4384 $x2039 $x4677)))) (rewrite (= (or $x3826 (or $x4384 $x2039 $x4677)) $x5846)) (= $x5849 $x5846)))) +(let ((@x6307 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x5849) @x5314 $x5846) @x6172 (unit-resolution (def-axiom (or $x2919 (not $x2039))) @x5839 (not $x2039)) (or $x4384 $x4677)))) +(let ((?x4518 (fun_app$c v_b_SP_G_1$ ?v0!11))) +(let ((?x4546 (* (- 1) ?x4518))) +(let ((?x2043 (fun_app$c v_b_SP_G_3$ ?v0!11))) +(let ((@x6142 (monotonicity (symm @x5699 (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x4518 ?x2043)))) +(let ((@x5800 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x2043 ?x4518)) (<= (+ ?x2043 ?x4546) 0))) (symm @x6142 (= ?x2043 ?x4518)) (<= (+ ?x2043 ?x4546) 0)))) +(let ((@x5815 ((_ th-lemma arith farkas -1 -1 1 1) @x5800 (unit-resolution (def-axiom (or $x2919 $x3668)) @x5839 $x3668) @x6414 (unit-resolution @x6307 (unit-resolution @x5999 @x5991 $x4697) $x4677) false))) +(let ((@x7385 (unit-resolution (def-axiom (or $x3856 $x1974)) (unit-resolution (lemma @x5815 (or $x3902 $x1973)) @x5698 $x1973) $x3856))) +(let ((@x7411 (unit-resolution (def-axiom (or $x3899 $x3859 $x3893)) @x7385 (unit-resolution (def-axiom (or $x3902 $x3896)) @x5698 $x3896) $x3893))) +(let ((@x7356 (unit-resolution (def-axiom (or $x3887 $x2924 $x3881)) (unit-resolution (def-axiom (or $x3878 $x2058)) @x5702 $x3878) (unit-resolution (def-axiom (or $x3890 $x3884)) @x7411 $x3884) $x2924))) +(let ((@x7398 (unit-resolution @x6168 (unit-resolution (def-axiom (or $x2919 $x2034)) @x7356 $x2034) @x7384 $x5659))) +(let ((@x7318 (unit-resolution @x4386 (unit-resolution (def-axiom (or $x3902 $x3838)) @x5698 $x3838) @x7398 $x4697))) +(let ((@x5937 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x5849) @x5314 $x5846) @x6172 (unit-resolution (def-axiom (or $x2919 (not $x2039))) @x7356 (not $x2039)) @x7318 $x4677))) +(let ((@x6020 ((_ th-lemma arith farkas 1 -1 -1 1) @x5937 @x5800 (unit-resolution (def-axiom (or $x2919 $x3668)) @x7356 $x3668) @x7384 false))) +(let ((@x8163 (unit-resolution (def-axiom (or $x4054 $x3905 $x4048)) (unit-resolution (def-axiom (or $x4057 $x4051)) @x5453 $x4051) $x4051))) +(let ((@x8164 (unit-resolution @x8163 (lemma @x6020 $x3902) $x4048))) +(let ((@x8214 (unit-resolution (def-axiom (or $x4045 $x213)) @x8164 $x213))) +(let ((@x8302 (unit-resolution (def-axiom (or $x4045 $x3926)) @x8164 $x3926))) +(let (($x5115 (fun_app$ ?x212 ?v0!14))) +(let ((@x7409 (monotonicity (symm (hypothesis $x213) (= ?x212 v_b_Visited_G_2$)) (= $x5115 $x2133)))) +(let (($x6262 (fun_app$ v_b_Visited_G_1$ ?v0!14))) +(let (($x5230 (= ?v0!14 v_b_v_G_1$))) +(let (($x7438 (or $x5230 $x6262))) +(let (($x7443 (= $x5115 $x7438))) +(let (($x3716 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(!(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) +(= $x56 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) ))) +)) +(let (($x1099 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) +(= $x56 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3))))) +)) +(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0))) +(let (($x1095 (= $x56 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))))) +(let (($x61 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x56 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3))) +(= $x56 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3))))) +)) +(let ((@x1098 (rewrite (= (= $x56 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))) $x1095)))) +(let ((@x1104 (mp (mp (asserted $x61) (rewrite* (= $x61 $x61)) $x61) (quant-intro @x1098 (= $x61 $x1099)) $x1099))) +(let ((@x3721 (mp (mp~ @x1104 (nnf-pos (refl (~ $x1095 $x1095)) (~ $x1099 $x1099)) $x1099) (quant-intro (refl (= $x1095 $x1095)) (= $x1099 $x3716)) $x3716))) +(let (($x5105 (not $x3716))) +(let (($x7445 (or $x5105 $x7443))) +(let ((@x7444 (monotonicity (rewrite (= (ite $x5230 true $x6262) $x7438)) (= (= $x5115 (ite $x5230 true $x6262)) $x7443)))) +(let ((@x7449 (monotonicity @x7444 (= (or $x5105 (= $x5115 (ite $x5230 true $x6262))) $x7445)))) +(let ((@x7452 (trans @x7449 (rewrite (= $x7445 $x7445)) (= (or $x5105 (= $x5115 (ite $x5230 true $x6262))) $x7445)))) +(let ((@x7453 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!14) (or $x5105 (= $x5115 (ite $x5230 true $x6262)))) @x7452 $x7445))) +(let (($x7425 (not $x7438))) +(let (($x6006 (not $x6262))) +(let (($x7455 (>= (+ ?x204 (* (- 1) ?x2136)) 0))) +(let (($x7487 (not $x7455))) +(let (($x5623 (>= (+ ?x204 (* (- 1) ?x2136) (b_G$ (pair$ v_b_v_G_1$ ?v0!14))) 0))) +(let (($x5890 (not $x5623))) +(let (($x6101 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0))) +(let (($x5590 (or $x6101 $x5623))) +(let (($x5624 (not $x5590))) +(let ((@x5806 (hypothesis $x3646))) +(let ((@x6086 (hypothesis $x3926))) +(let (($x5930 (or $x3931 $x5624 $x2137))) +(let ((?x6353 (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) +(let ((?x6397 (* (- 1) ?x6353))) +(let ((?x1520 (* (- 1) ?x204))) +(let (($x6154 (<= (+ ?x2136 ?x1520 ?x6397) 0))) +(let (($x5925 (or $x3931 (or (not (or $x6101 $x6154)) $x2137)))) +(let ((@x5231 (monotonicity (rewrite (= (+ ?x2136 ?x1520 ?x6397) (+ ?x1520 ?x2136 ?x6397))) (= $x6154 (<= (+ ?x1520 ?x2136 ?x6397) 0))))) +(let ((@x5207 (trans @x5231 (rewrite (= (<= (+ ?x1520 ?x2136 ?x6397) 0) $x5623)) (= $x6154 $x5623)))) +(let ((@x5636 (monotonicity (monotonicity @x5207 (= (or $x6101 $x6154) $x5590)) (= (not (or $x6101 $x6154)) $x5624)))) +(let ((@x5641 (monotonicity @x5636 (= (or (not (or $x6101 $x6154)) $x2137) (or $x5624 $x2137))))) +(let ((@x5869 (trans (monotonicity @x5641 (= $x5925 (or $x3931 (or $x5624 $x2137)))) (rewrite (= (or $x3931 (or $x5624 $x2137)) $x5930)) (= $x5925 $x5930)))) +(let ((@x6877 (unit-resolution (def-axiom (or $x5590 $x5890)) (unit-resolution (mp ((_ quant-inst ?v0!14) $x5925) @x5869 $x5930) @x6086 @x5806 $x5624) $x5890))) +(let (($x5403 (= v_b_v_G_1$ ?v0!14))) +(let (($x5399 (<= ?x6353 0))) +(let ((@x6842 (hypothesis $x5890))) +(let ((@x7496 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x5399 $x5623 $x7487)) (hypothesis $x7455) @x6842 $x5399))) +(let (($x3728 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x319 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) +(let (($x64 (= ?v0 ?v1))) +(or $x64 $x319))) :pattern ( (pair$ ?v0 ?v1) ))) +)) +(let (($x330 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x319 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) +(let (($x64 (= ?v0 ?v1))) +(or $x64 $x319)))) +)) +(let (($x319 (not (<= (b_G$ (pair$ ?1 ?0)) 0)))) +(let (($x64 (= ?1 ?0))) +(let (($x325 (or $x64 $x319))) +(let (($x72 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x64 (= ?v0 ?v1))) +(let (($x69 (not $x64))) +(=> $x69 (< 0 (b_G$ (pair$ ?v0 ?v1))))))) +)) +(let (($x69 (not $x64))) +(let (($x71 (=> $x69 (< 0 (b_G$ (pair$ ?1 ?0)))))) +(let ((@x324 (monotonicity (rewrite (= (< 0 (b_G$ (pair$ ?1 ?0))) $x319)) (= $x71 (=> $x69 $x319))))) +(let ((@x332 (quant-intro (trans @x324 (rewrite (= (=> $x69 $x319) $x325)) (= $x71 $x325)) (= $x72 $x330)))) +(let ((@x1765 (mp~ (mp (mp (asserted $x72) @x332 $x330) (rewrite* (= $x330 $x330)) $x330) (nnf-pos (refl (~ $x325 $x325)) (~ $x330 $x330)) $x330))) +(let ((@x3733 (mp @x1765 (quant-intro (refl (= $x325 $x325)) (= $x330 $x3728)) $x3728))) +(let (($x7466 (= (or (not $x3728) (or $x5403 (not $x5399))) (or (not $x3728) $x5403 (not $x5399))))) +(let ((@x7468 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3728) (or $x5403 (not $x5399)))) (rewrite $x7466) (or (not $x3728) $x5403 (not $x5399))))) +(let ((@x7498 (unit-resolution (unit-resolution @x7468 @x3733 (or $x5403 (not $x5399))) @x7496 $x5403))) +(let ((@x7502 (unit-resolution ((_ th-lemma arith assign-bounds -1 1) (or (not (>= ?x6353 0)) $x5623 $x7487)) (hypothesis $x7455) @x6842 (not (>= ?x6353 0))))) +(let ((@x7506 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6353 0)) (>= ?x6353 0))) @x7502 (not (= ?x6353 0))))) +(let (($x3722 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x64 (= ?v0 ?v1))) +(let (($x69 (not $x64))) +(or $x69 (= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) ))) +)) +(let (($x314 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x64 (= ?v0 ?v1))) +(let (($x69 (not $x64))) +(or $x69 (= (b_G$ (pair$ ?v0 ?v1)) 0))))) +)) +(let (($x311 (or $x69 (= (b_G$ (pair$ ?1 ?0)) 0)))) +(let (($x68 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x64 (= ?v0 ?v1))) +(=> $x64 (= (b_G$ (pair$ ?v0 ?v1)) 0)))) +)) +(let ((@x316 (quant-intro (rewrite (= (=> $x64 (= (b_G$ (pair$ ?1 ?0)) 0)) $x311)) (= $x68 $x314)))) +(let ((@x1760 (mp~ (mp (mp (asserted $x68) @x316 $x314) (rewrite* (= $x314 $x314)) $x314) (nnf-pos (refl (~ $x311 $x311)) (~ $x314 $x314)) $x314))) +(let ((@x3727 (mp @x1760 (quant-intro (refl (= $x311 $x311)) (= $x314 $x3722)) $x3722))) +(let (($x7472 (= (or (not $x3722) (or (not $x5403) (= ?x6353 0))) (or (not $x3722) (not $x5403) (= ?x6353 0))))) +(let ((@x7474 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3722) (or (not $x5403) (= ?x6353 0)))) (rewrite $x7472) (or (not $x3722) (not $x5403) (= ?x6353 0))))) +(let ((@x7508 (unit-resolution (unit-resolution @x7474 @x3727 (or (not $x5403) (= ?x6353 0))) @x7506 @x7498 false))) +(let ((@x6970 (unit-resolution (def-axiom (or $x4057 $x3813)) @x5453 $x3813))) +(let ((@x7100 (rewrite (= (or $x3818 (or $x202 $x6006 $x7455)) (or $x3818 $x202 $x6006 $x7455))))) +(let ((@x7101 (mp ((_ quant-inst ?v0!14 v_b_v_G_1$) (or $x3818 (or $x202 $x6006 $x7455))) @x7100 (or $x3818 $x202 $x6006 $x7455)))) +(let ((@x5643 (unit-resolution @x7101 @x6970 (hypothesis $x203) (hypothesis $x6262) (hypothesis $x7487) false))) +(let ((@x7476 (unit-resolution (lemma @x5643 (or $x6006 $x202 $x7455)) (unit-resolution (lemma @x7508 (or $x7487 $x5623)) @x6877 $x7487) (hypothesis $x203) $x6006))) +(let ((?x3394 (v_b_SP_G_2$ v_b_v_G_1$))) +(let (($x3329 (= ?x3394 ?x204))) +(let ((?x3404 (b_G$ (pair$ v_b_v_G_1$ v_b_v_G_1$)))) +(let (($x3390 (>= ?x3404 0))) +(let (($x4586 (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3390))) +(let (($x4394 (= ?x3404 0))) +(let (($x4439 (not $x3722))) +(let (($x4440 (or $x4439 $x4394))) +(let ((@x4427 (monotonicity (rewrite (= (= v_b_v_G_1$ v_b_v_G_1$) true)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) (not true))))) +(let ((@x4447 (trans @x4427 (rewrite (= (not true) false)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) false)))) +(let ((@x4434 (monotonicity @x4447 (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394) (or false $x4394))))) +(let ((@x4438 (trans @x4434 (rewrite (= (or false $x4394) $x4394)) (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394) $x4394)))) +(let ((@x4450 (monotonicity @x4438 (= (or $x4439 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394)) $x4440)))) +(let ((@x4451 (trans @x4450 (rewrite (= $x4440 $x4440)) (= (or $x4439 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394)) $x4440)))) +(let ((@x4452 (mp ((_ quant-inst v_b_v_G_1$ v_b_v_G_1$) (or $x4439 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4394))) @x4451 $x4440))) +(let ((@x4473 (lemma (unit-resolution @x4452 @x3727 (hypothesis (not $x4394)) false) $x4394))) +(let ((@x6229 (unit-resolution (def-axiom (or $x4586 (not $x3390))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4394) $x3390)) @x4473 $x3390) $x4586))) +(let (($x4589 (not $x4586))) +(let (($x5387 (or $x3931 $x4589 $x3329))) +(let (($x3393 (<= (+ ?x204 ?x1520 (* (- 1) ?x3404)) 0))) +(let (($x3330 (or (not (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3393)) $x3329))) +(let (($x4517 (or $x3931 $x3330))) +(let (($x4592 (= (not (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3393)) $x4589))) +(let ((@x3389 (monotonicity (rewrite (= (+ ?x204 ?x1520 (* (- 1) ?x3404)) (* (- 1) ?x3404))) (= $x3393 (<= (* (- 1) ?x3404) 0))))) +(let ((@x3371 (trans @x3389 (rewrite (= (<= (* (- 1) ?x3404) 0) $x3390)) (= $x3393 $x3390)))) +(let ((@x5175 (monotonicity @x3371 (= (or (<= (+ b_Infinity$ (* (- 1) ?x3404)) 0) $x3393) $x4586)))) +(let ((@x4575 (monotonicity (monotonicity (monotonicity @x5175 $x4592) (= $x3330 (or $x4589 $x3329))) (= $x4517 (or $x3931 (or $x4589 $x3329)))))) +(let ((@x5481 (trans @x4575 (rewrite (= (or $x3931 (or $x4589 $x3329)) $x5387)) (= $x4517 $x5387)))) +(let ((@x6230 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x4517) @x5481 $x5387) @x6086 @x6229 $x3329))) +(let ((@x7480 (trans (monotonicity (hypothesis $x5230) (= ?x2135 ?x3394)) (hypothesis $x3329) (= ?x2135 ?x204)))) +(let ((@x7483 (trans @x7480 (symm (monotonicity (hypothesis $x5230) (= ?x2136 ?x204)) (= ?x204 ?x2136)) $x2137))) +(let ((@x7489 (lemma (unit-resolution @x5806 @x7483 false) (or (not $x5230) $x2137 (not $x3329))))) +(let ((@x7479 (unit-resolution (def-axiom (or $x7425 $x5230 $x6262)) (unit-resolution @x7489 @x5806 @x6230 (not $x5230)) (or $x7425 $x6262)))) +(let ((@x7373 (unit-resolution (def-axiom (or (not $x7443) (not $x5115) $x7438)) (unit-resolution @x7479 @x7476 $x7425) (unit-resolution @x7453 @x3721 $x7443) (not $x5115)))) +(let ((@x7491 (unit-resolution @x7373 (mp (hypothesis $x2133) (symm @x7409 (= $x2133 $x5115)) $x5115) false))) +(let ((@x5912 (unit-resolution (lemma @x7491 (or $x2134 $x3196 $x202 $x3931 $x2137)) (unit-resolution (def-axiom (or $x4045 $x203)) @x8164 $x203) @x8302 @x8214 $x2138))) +(let ((@x8165 (unit-resolution (def-axiom (or $x4045 $x3918)) @x8164 $x3918))) +(let ((?x6546 (b_G$ (pair$ v_b_v_G_1$ ?v0!13)))) +(let ((?x2118 (v_b_SP_G_2$ ?v0!13))) +(let ((?x2119 (* (- 1) ?x2118))) +(let ((?x6581 (+ ?x204 ?x2119 ?x6546))) +(let (($x6584 (= ?x6581 0))) +(let (($x6576 (>= (+ ?x204 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!13)) ?x6546) 0))) +(let (($x6555 (<= (+ b_Infinity$ (* (- 1) ?x6546)) 0))) +(let (($x6633 (or $x6555 $x6576))) +(let (($x6635 (not $x6633))) +(let (($x6716 (not (= (fun_app$c v_b_SP_G_1$ ?v0!13) ?x2118)))) +(let ((?x2117 (fun_app$c v_b_SP_G_1$ ?v0!13))) +(let (($x6631 (= ?x2118 ?x2117))) +(let ((@x6726 (monotonicity (commutativity (= (= ?x2117 ?x2118) $x6631)) (= $x6716 (not $x6631))))) +(let ((@x6727 (mp (unit-resolution ((_ th-lemma arith triangle-eq) (or $x6716 $x2121)) (hypothesis $x2122) $x6716) @x6726 (not $x6631)))) +(let (($x6620 (or $x6635 $x6631))) +(let (($x6613 (or $x3931 $x6635 $x6631))) +(let (($x6614 (or $x3931 (or (not (or $x6555 (<= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) 0))) $x6631)))) +(let (($x6610 (= (or (not (or $x6555 (<= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) 0))) $x6631) $x6620))) +(let (($x6556 (<= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) 0))) +(let ((@x6595 (rewrite (= (+ ?x2117 ?x1520 (* (- 1) ?x6546)) (+ ?x1520 ?x2117 (* (- 1) ?x6546)))))) +(let ((@x6574 (monotonicity @x6595 (= $x6556 (<= (+ ?x1520 ?x2117 (* (- 1) ?x6546)) 0))))) +(let ((@x6580 (trans @x6574 (rewrite (= (<= (+ ?x1520 ?x2117 (* (- 1) ?x6546)) 0) $x6576)) (= $x6556 $x6576)))) +(let ((@x6619 (monotonicity (monotonicity @x6580 (= (or $x6555 $x6556) $x6633)) (= (not (or $x6555 $x6556)) $x6635)))) +(let ((@x6624 (trans (monotonicity (monotonicity @x6619 $x6610) (= $x6614 (or $x3931 $x6620))) (rewrite (= (or $x3931 $x6620) $x6613)) (= $x6614 $x6613)))) +(let ((@x6732 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!13) $x6614) @x6624 $x6613) @x6086 $x6620) @x6727 $x6635))) +(let (($x6587 (or $x6555 $x6576 $x6584))) +(let ((@x4512 (hypothesis $x3918))) +(let (($x6590 (or $x3923 $x6555 $x6576 $x6584))) +(let (($x6591 (or $x3923 (or $x6555 $x6556 (= (+ ?x204 ?x6546 ?x2119) 0))))) +(let ((@x6586 (monotonicity (rewrite (= (+ ?x204 ?x6546 ?x2119) ?x6581)) (= (= (+ ?x204 ?x6546 ?x2119) 0) $x6584)))) +(let ((@x6589 (monotonicity @x6580 @x6586 (= (or $x6555 $x6556 (= (+ ?x204 ?x6546 ?x2119) 0)) $x6587)))) +(let ((@x6601 (trans (monotonicity @x6589 (= $x6591 (or $x3923 $x6587))) (rewrite (= (or $x3923 $x6587) $x6590)) (= $x6591 $x6590)))) +(let ((@x6735 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!13) $x6591) @x6601 $x6590) @x4512 $x6587) (unit-resolution (def-axiom (or $x6633 (not $x6576))) @x6732 (not $x6576)) (unit-resolution (def-axiom (or $x6633 (not $x6555))) @x6732 (not $x6555)) $x6584))) +(let ((@x6746 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6584) (>= ?x6581 0))) @x6735 (>= ?x6581 0)))) +(let ((@x6748 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= (+ ?x2117 ?x2119) 0) $x2121)) (hypothesis $x2122) (<= (+ ?x2117 ?x2119) 0)))) +(let ((@x6749 ((_ th-lemma arith farkas 1 -1 1) @x6748 (unit-resolution (def-axiom (or $x6633 (not $x6576))) @x6732 (not $x6576)) @x6746 false))) +(let ((@x8304 (unit-resolution (def-axiom (or $x4042 $x2122 $x4036)) (unit-resolution (lemma @x6749 (or $x2121 $x3923 $x3931)) @x8165 @x8302 $x2121) (unit-resolution (def-axiom (or $x4045 $x4039)) @x8164 $x4039) $x4036))) +(let ((@x8619 (unit-resolution (def-axiom (or $x4030 $x2139 $x4024)) (unit-resolution (def-axiom (or $x4033 $x4027)) @x8304 $x4027) $x4027))) +(let ((@x10488 (unit-resolution @x8619 (lemma (unit-resolution @x5912 @x8820 @x8891 false) $x2138) $x4024))) +(let ((@x10489 (unit-resolution (def-axiom (or $x4021 $x3943)) @x10488 $x3943))) +(let (($x4687 (= ?v0!17 v_b_v_G_1$))) +(let (($x4718 (fun_app$ v_b_Visited_G_1$ ?v0!17))) +(let (($x7386 (or $x4687 $x4718))) +(let (($x4686 (fun_app$ ?x212 ?v0!17))) +(let (($x7429 (= $x4686 $x7386))) +(let (($x7431 (or $x5105 $x7429))) +(let ((@x7423 (monotonicity (rewrite (= (ite $x4687 true $x4718) $x7386)) (= (= $x4686 (ite $x4687 true $x4718)) $x7429)))) +(let ((@x7457 (monotonicity @x7423 (= (or $x5105 (= $x4686 (ite $x4687 true $x4718))) $x7431)))) +(let ((@x7375 (trans @x7457 (rewrite (= $x7431 $x7431)) (= (or $x5105 (= $x4686 (ite $x4687 true $x4718))) $x7431)))) +(let ((@x7402 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!17) (or $x5105 (= $x4686 (ite $x4687 true $x4718)))) @x7375 $x7431))) +(let ((@x8181 (symm (monotonicity (symm @x8214 (= ?x212 v_b_Visited_G_2$)) (= $x4686 $x2168)) (= $x2168 $x4686)))) +(let ((@x8115 (mp (unit-resolution (def-axiom (or $x3034 $x2168)) (hypothesis $x3039) $x2168) @x8181 $x4686))) +(let ((@x8116 (unit-resolution (def-axiom (or (not $x7429) (not $x4686) $x7386)) @x8115 (unit-resolution @x7402 @x3721 $x7429) $x7386))) +(let (($x7513 (not $x4718))) +(let (($x8244 (>= (+ ?x204 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!17))) 0))) +(let (($x8196 (not $x8244))) +(let (($x7753 (<= (+ ?x204 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0))) +(let (($x4600 (fun_app$ v_b_Visited_G_1$ ?v1!16))) +(let (($x4599 (= ?v1!16 v_b_v_G_1$))) +(let (($x7324 (or $x4599 $x4600))) +(let (($x4598 (fun_app$ ?x212 ?v1!16))) +(let (($x7351 (= $x4598 $x7324))) +(let (($x5310 (or $x5105 $x7351))) +(let ((@x4543 (monotonicity (rewrite (= (ite $x4599 true $x4600) $x7324)) (= (= $x4598 (ite $x4599 true $x4600)) $x7351)))) +(let ((@x7173 (monotonicity @x4543 (= (or $x5105 (= $x4598 (ite $x4599 true $x4600))) $x5310)))) +(let ((@x7233 (trans @x7173 (rewrite (= $x5310 $x5310)) (= (or $x5105 (= $x4598 (ite $x4599 true $x4600))) $x5310)))) +(let ((@x7234 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x5105 (= $x4598 (ite $x4599 true $x4600)))) @x7233 $x5310))) +(let ((@x8188 (symm (monotonicity (symm @x8214 (= ?x212 v_b_Visited_G_2$)) (= $x4598 $x2166)) (= $x2166 $x4598)))) +(let (($x2167 (not $x2166))) +(let ((@x8189 (hypothesis $x3039))) +(let ((@x7882 (mp (unit-resolution (def-axiom (or $x3034 $x2167)) @x8189 $x2167) (monotonicity @x8188 (= $x2167 (not $x4598))) (not $x4598)))) +(let ((@x7883 (unit-resolution (def-axiom (or (not $x7351) $x4598 (not $x7324))) @x7882 (unit-resolution @x7234 @x3721 $x7351) (not $x7324)))) +(let (($x7758 (or $x4600 $x7753))) +(let (($x7761 (or $x3913 $x4600 $x7753))) +(let (($x7762 (or $x3913 (or $x4600 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) 0))))) +(let (($x7759 (= (or $x4600 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) 0)) $x7758))) +(let ((@x7755 (rewrite (= (>= (+ ?x1520 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0) $x7753)))) +(let (($x5376 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) 0))) +(let (($x7728 (= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1520) (+ ?x1520 (fun_app$c v_b_SP_G_1$ ?v1!16))))) +(let ((@x7751 (monotonicity (rewrite $x7728) (= $x5376 (>= (+ ?x1520 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0))))) +(let ((@x7766 (monotonicity (monotonicity (trans @x7751 @x7755 (= $x5376 $x7753)) $x7759) (= $x7762 (or $x3913 $x7758))))) +(let ((@x7771 (mp ((_ quant-inst ?v1!16) $x7762) (trans @x7766 (rewrite (= (or $x3913 $x7758) $x7761)) (= $x7762 $x7761)) $x7761))) +(let ((@x7873 (unit-resolution @x7771 (unit-resolution (def-axiom (or $x4045 $x3908)) @x8164 $x3908) $x7758))) +(let ((@x7874 (unit-resolution @x7873 (unit-resolution (def-axiom (or $x7324 (not $x4600))) @x7883 (not $x4600)) $x7753))) +(let ((?x4523 (b_G$ (pair$ v_b_v_G_1$ ?v1!16)))) +(let (($x8224 (<= ?x4523 0))) +(let (($x8225 (not $x8224))) +(let (($x8223 (= v_b_v_G_1$ ?v1!16))) +(let (($x8293 (not $x8223))) +(let ((@x8351 (unit-resolution (hypothesis (not $x4599)) (symm (hypothesis $x8223) $x4599) false))) +(let ((@x7877 (unit-resolution (lemma @x8351 (or $x8293 $x4599)) (unit-resolution (def-axiom (or $x7324 (not $x4599))) @x7883 (not $x4599)) $x8293))) +(let ((@x8233 (rewrite (= (or (not $x3728) (or $x8223 $x8225)) (or (not $x3728) $x8223 $x8225))))) +(let ((@x8234 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3728) (or $x8223 $x8225))) @x8233 (or (not $x3728) $x8223 $x8225)))) +(let ((@x6202 (lemma (unit-resolution @x8234 @x3733 (hypothesis $x8224) (hypothesis $x8293) false) (or $x8225 $x8223)))) +(let (($x3634 (not $x2175))) +(let ((@x8299 (hypothesis $x3634))) +(let (($x7624 (<= (+ (v_b_SP_G_2$ ?v0!17) (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!17))) 0))) +(let ((@x8305 (unit-resolution (def-axiom (or $x4033 $x3934)) @x8304 $x3934))) +(let (($x7629 (or $x3939 $x7624))) +(let (($x5070 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!17) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0))) +(let (($x7620 (>= (+ (* (- 1) (v_b_SP_G_2$ ?v0!17)) (fun_app$c v_b_SP_G_1$ ?v0!17)) 0))) +(let (($x7616 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!17) (* (- 1) (v_b_SP_G_2$ ?v0!17))) (+ (* (- 1) (v_b_SP_G_2$ ?v0!17)) (fun_app$c v_b_SP_G_1$ ?v0!17))))) +(let ((@x7628 (trans (monotonicity (rewrite $x7616) (= $x5070 $x7620)) (rewrite (= $x7620 $x7624)) (= $x5070 $x7624)))) +(let ((@x7636 (trans (monotonicity @x7628 (= (or $x3939 $x5070) $x7629)) (rewrite (= $x7629 $x7629)) (= (or $x3939 $x5070) $x7629)))) +(let ((@x8222 (hypothesis $x8244))) +(let (($x7884 (or $x8196 $x2175 (not (<= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0)) $x8224 (not $x7624)))) +(let ((@x8211 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) $x7884) @x8222 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3939 $x5070)) @x7636 $x7629) @x8305 $x7624) (hypothesis $x8225) @x8299 (not (<= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0))))) +(let (($x8251 (or (not (= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0)) (<= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0)))) +(let ((@x8191 (unit-resolution ((_ th-lemma arith triangle-eq) $x8251) @x8211 (not (= (+ ?x204 (* (- 1) (v_b_SP_G_2$ ?v1!16)) ?x4523) 0))))) +(let (($x7559 (>= (+ ?x204 ?x4523 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0))) +(let (($x4525 (<= (+ b_Infinity$ (* (- 1) ?x4523)) 0))) +(let (($x7564 (or $x4525 $x7559))) +(let (($x7567 (not $x7564))) +(let (($x7592 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0))) +(let ((@x8198 ((_ th-lemma arith farkas -1 -1 1 1 1) (hypothesis $x7592) @x8222 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3939 $x5070)) @x7636 $x7629) @x8305 $x7624) @x8299 (hypothesis $x7753) false))) +(let ((@x8177 (unit-resolution (lemma @x8198 (or $x8196 (not $x7592) $x2175 (not $x7753))) @x8222 @x8299 (hypothesis $x7753) (not $x7592)))) +(let (($x8284 (or (not (= (v_b_SP_G_2$ ?v1!16) (fun_app$c v_b_SP_G_1$ ?v1!16))) $x7592))) +(let ((@x8185 (unit-resolution ((_ th-lemma arith triangle-eq) $x8284) @x8177 (not (= (v_b_SP_G_2$ ?v1!16) (fun_app$c v_b_SP_G_1$ ?v1!16)))))) +(let ((?x4855 (fun_app$c v_b_SP_G_1$ ?v1!16))) +(let ((?x2171 (v_b_SP_G_2$ ?v1!16))) +(let (($x4497 (= ?x2171 ?x4855))) +(let (($x7570 (or $x7567 $x4497))) +(let (($x7573 (or $x3931 $x7567 $x4497))) +(let (($x7574 (or $x3931 (or (not (or $x4525 (<= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) 0))) $x4497)))) +(let (($x7571 (= (or (not (or $x4525 (<= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) 0))) $x4497) $x7570))) +(let (($x4527 (<= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) 0))) +(let ((@x7554 (rewrite (= (+ ?x4855 ?x1520 (* (- 1) ?x4523)) (+ ?x1520 (* (- 1) ?x4523) ?x4855))))) +(let ((@x7557 (monotonicity @x7554 (= $x4527 (<= (+ ?x1520 (* (- 1) ?x4523) ?x4855) 0))))) +(let ((@x7563 (trans @x7557 (rewrite (= (<= (+ ?x1520 (* (- 1) ?x4523) ?x4855) 0) $x7559)) (= $x4527 $x7559)))) +(let ((@x7569 (monotonicity (monotonicity @x7563 (= (or $x4525 $x4527) $x7564)) (= (not (or $x4525 $x4527)) $x7567)))) +(let ((@x7582 (trans (monotonicity (monotonicity @x7569 $x7571) (= $x7574 (or $x3931 $x7570))) (rewrite (= (or $x3931 $x7570) $x7573)) (= $x7574 $x7573)))) +(let ((@x7879 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v1!16) $x7574) @x7582 $x7573) @x8302 $x7570) @x8185 $x7567))) +(let ((?x7593 (+ ?x204 (* (- 1) ?x2171) ?x4523))) +(let (($x7596 (= ?x7593 0))) +(let (($x7599 (or $x4525 $x7559 $x7596))) +(let (($x7602 (or $x3923 $x4525 $x7559 $x7596))) +(let (($x7603 (or $x3923 (or $x4525 $x4527 (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) 0))))) +(let ((@x7598 (monotonicity (rewrite (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) ?x7593)) (= (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) 0) $x7596)))) +(let ((@x7601 (monotonicity @x7563 @x7598 (= (or $x4525 $x4527 (= (+ ?x204 ?x4523 (* (- 1) ?x2171)) 0)) $x7599)))) +(let ((@x7611 (trans (monotonicity @x7601 (= $x7603 (or $x3923 $x7599))) (rewrite (= (or $x3923 $x7599) $x7602)) (= $x7603 $x7602)))) +(let ((@x7886 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v1!16) $x7603) @x7611 $x7602) @x8165 $x7599) (unit-resolution (def-axiom (or $x7564 (not $x7559))) @x7879 (not $x7559)) (unit-resolution (def-axiom (or $x7564 (not $x4525))) @x7879 (not $x4525)) @x8191 false))) +(let ((@x7891 (unit-resolution (lemma @x7886 (or $x8196 $x8224 $x2175 (not $x7753))) (unit-resolution @x6202 @x7877 $x8225) (unit-resolution (def-axiom (or $x3034 $x3634)) @x8189 $x3634) @x7874 $x8196))) +(let ((@x8258 (rewrite (= (or $x3818 (or $x202 $x7513 $x8244)) (or $x3818 $x202 $x7513 $x8244))))) +(let ((@x8259 (mp ((_ quant-inst ?v0!17 v_b_v_G_1$) (or $x3818 (or $x202 $x7513 $x8244))) @x8258 (or $x3818 $x202 $x7513 $x8244)))) +(let ((@x8237 (unit-resolution @x8259 @x6970 (unit-resolution (def-axiom (or $x4045 $x203)) @x8164 $x203) (hypothesis $x4718) (hypothesis $x8196) false))) +(let ((@x7896 (unit-resolution (def-axiom (or (not $x7386) $x4687 $x4718)) (unit-resolution (lemma @x8237 (or $x7513 $x8244)) @x7891 $x7513) @x8116 $x4687))) +(let ((?x2172 (v_b_SP_G_2$ ?v0!17))) +(let (($x8143 (= ?x2172 ?x3394))) +(let (($x8113 (not $x8143))) +(let (($x3298 (>= (+ ?x204 (* (- 1) ?x3394)) 0))) +(let ((@x8142 (unit-resolution ((_ quant-inst v_b_v_G_1$) (or $x3939 $x3298)) @x8305 $x3298))) +(let (($x7700 (>= (+ ?x2172 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!17))) 0))) +(let ((?x4678 (fun_app$c v_b_SP_G_1$ ?v0!17))) +(let (($x4679 (= ?x2172 ?x4678))) +(let ((@x7441 (mp ((_ quant-inst ?v0!17) (or $x3948 (or $x3019 $x4679))) (rewrite (= (or $x3948 (or $x3019 $x4679)) (or $x3948 $x3019 $x4679))) (or $x3948 $x3019 $x4679)))) +(let ((@x7894 (unit-resolution @x7441 (hypothesis $x3943) (unit-resolution (def-axiom (or $x3034 $x2168)) @x8189 $x2168) $x4679))) +(let (($x7901 (or $x8244 (not (<= (+ ?x2172 (* (- 1) ?x3394)) 0)) (not $x7700) (not $x3298)))) +(let ((@x5877 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) $x7901) @x7891 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4679) $x7700)) @x7894 $x7700) @x8142 (not (<= (+ ?x2172 (* (- 1) ?x3394)) 0))))) +(let ((@x5587 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8113 (<= (+ ?x2172 (* (- 1) ?x3394)) 0))) @x5877 $x8113))) +(let ((@x8137 (unit-resolution (hypothesis $x8113) (monotonicity (hypothesis $x4687) $x8143) false))) +(let ((@x5143 (lemma (unit-resolution (lemma @x8137 (or (not $x4687) $x8143)) @x5587 @x7896 false) (or $x3034 $x3948)))) +(let ((@x7027 (hypothesis $x2154))) +(let ((@x5873 (hypothesis $x4048))) +(let ((@x5974 (unit-resolution (def-axiom (or $x4045 $x3926)) @x5873 $x3926))) +(let ((@x5247 (unit-resolution (def-axiom (or $x4045 $x3918)) @x5873 $x3918))) +(let ((?x6040 (b_G$ (pair$ v_b_v_G_1$ ?v0!15)))) +(let ((?x6162 (+ ?x204 (* (- 1) ?x2152) ?x6040))) +(let (($x5552 (= ?x6162 0))) +(let (($x7159 (not $x5552))) +(let (($x6237 (<= ?x6162 0))) +(let (($x7034 (not $x6237))) +(let ((?x3280 (?v1!7 v_b_v_G_1$))) +(let ((?x3281 (fun_app$c v_b_SP_G_1$ ?x3280))) +(let ((?x3282 (* (- 1) ?x3281))) +(let (($x4633 (<= (+ b_Infinity$ ?x3282) 0))) +(let (($x6507 (not $x4633))) +(let (($x4951 (>= (+ ?x204 ?x3282) 0))) +(let (($x3284 (<= (+ ?x204 ?x3282) 0))) +(let (($x4138 (not $x3284))) +(let (($x4244 (fun_app$ v_b_Visited_G_1$ b_Source$))) +(let (($x5095 (not $x4244))) +(let (($x3279 (= v_b_v_G_1$ b_Source$))) +(let (($x6104 (not (= (+ ?x204 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$))) ?x3282) 0)))) +(let (($x5949 (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x6104))) +(let (($x4583 (not $x5949))) +(let (($x4896 (or $x3834 $x3279 $x1522 $x4583))) +(let (($x4103 (not (= (+ ?x204 ?x3282 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$)))) 0)))) +(let (($x4106 (or $x3279 $x1522 (not (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x4103))))) +(let (($x4926 (or $x3834 $x4106))) +(let (($x4565 (= (not (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x4103)) $x4583))) +(let (($x5863 (= (= (+ ?x204 ?x3282 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$)))) 0) (= (+ ?x204 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$))) ?x3282) 0)))) +(let (($x5947 (= (+ ?x204 ?x3282 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$)))) (+ ?x204 (* (- 1) (b_G$ (pair$ ?x3280 v_b_v_G_1$))) ?x3282)))) +(let ((@x5489 (monotonicity (monotonicity (monotonicity (rewrite $x5947) $x5863) (= $x4103 $x6104)) (= (or $x3284 (not (fun_app$ v_b_Visited_G_1$ ?x3280)) $x4103) $x5949)))) +(let ((@x4548 (monotonicity (monotonicity (monotonicity @x5489 $x4565) (= $x4106 (or $x3279 $x1522 $x4583))) (= $x4926 (or $x3834 (or $x3279 $x1522 $x4583)))))) +(let ((@x4802 (trans @x4548 (rewrite (= (or $x3834 (or $x3279 $x1522 $x4583)) $x4896)) (= $x4926 $x4896)))) +(let ((@x6065 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x4926) @x4802 $x4896) @x4406 (unit-resolution (def-axiom (or $x4045 $x1525)) @x5873 $x1525) (unit-resolution (def-axiom (or $x5949 $x4138)) (hypothesis $x3284) $x5949) $x3279))) +(let ((@x5493 (mp (unit-resolution (def-axiom (or $x4045 $x203)) @x5873 $x203) (monotonicity (monotonicity @x6065 (= $x202 $x4244)) (= $x203 $x5095)) $x5095))) +(let ((@x5435 (unit-resolution (def-axiom (or $x4042 $x2122 $x4036)) (unit-resolution (lemma @x6749 (or $x2121 $x3923 $x3931)) @x5247 @x5974 $x2121) (unit-resolution (def-axiom (or $x4045 $x4039)) @x5873 $x4039) $x4036))) +(let ((@x7140 (symm (commutativity (= (= b_Source$ ?v0!15) (= ?v0!15 b_Source$))) (= (= ?v0!15 b_Source$) (= b_Source$ ?v0!15))))) +(let ((@x7142 (monotonicity @x7140 (= (not (= ?v0!15 b_Source$)) (not (= b_Source$ ?v0!15)))))) +(let (($x6380 (= ?v0!15 b_Source$))) +(let (($x6990 (not $x6380))) +(let (($x6954 (or $x6380 (fun_app$ v_b_Visited_G_1$ ?v0!15)))) +(let ((?x6005 (fun_app$a (fun_app$b (fun_upd$ v_b_Visited_G_1$) b_Source$) true))) +(let (($x6887 (fun_app$ ?x6005 ?v0!15))) +(let (($x6951 (= $x6887 $x6954))) +(let (($x6959 (or $x5105 $x6951))) +(let (($x6960 (or $x5105 (= $x6887 (ite $x6380 true (fun_app$ v_b_Visited_G_1$ ?v0!15)))))) +(let (($x6957 (= (= $x6887 (ite $x6380 true (fun_app$ v_b_Visited_G_1$ ?v0!15))) $x6951))) +(let ((@x6956 (rewrite (= (ite $x6380 true (fun_app$ v_b_Visited_G_1$ ?v0!15)) $x6954)))) +(let ((@x6989 (trans (monotonicity (monotonicity @x6956 $x6957) (= $x6960 $x6959)) (rewrite (= $x6959 $x6959)) (= $x6960 $x6959)))) +(let (($x6793 (= (fun_app$b (fun_upd$ v_b_Visited_G_1$) b_Source$) (fun_app$b (fun_upd$ v_b_Visited_G_1$) v_b_v_G_1$)))) +(let ((@x5780 (hypothesis $x3279))) +(let ((@x5781 (symm @x5780 (= b_Source$ v_b_v_G_1$)))) +(let ((@x6803 (trans (monotonicity (monotonicity @x5781 $x6793) (= ?x6005 ?x212)) (symm (hypothesis $x213) (= ?x212 v_b_Visited_G_2$)) (= ?x6005 v_b_Visited_G_2$)))) +(let ((@x7131 (symm (monotonicity @x6803 (= $x6887 (fun_app$ v_b_Visited_G_2$ ?v0!15))) (= (fun_app$ v_b_Visited_G_2$ ?v0!15) $x6887)))) +(let ((@x7133 (monotonicity @x7131 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!15)) (not $x6887))))) +(let (($x5938 (fun_app$ v_b_Visited_G_2$ ?v0!15))) +(let (($x5943 (not $x5938))) +(let ((?x5971 (fun_app$c v_b_SP_G_1$ ?v0!15))) +(let (($x6392 (>= ?x5971 0))) +(let ((@x5502 (unit-resolution (def-axiom (or $x4057 $x3804)) @x5453 $x3804))) +(let ((@x7119 ((_ th-lemma arith assign-bounds -1 1) (or (not (>= (+ ?x2152 (* (- 1) ?x5971)) 0)) $x2153 (not $x6392))))) +(let ((@x7120 (unit-resolution @x7119 (unit-resolution ((_ quant-inst ?v0!15) (or $x3809 $x6392)) @x5502 $x6392) @x7027 (not (>= (+ ?x2152 (* (- 1) ?x5971)) 0))))) +(let ((@x7123 ((_ th-lemma arith triangle-eq) (or (not (= ?x2152 ?x5971)) (>= (+ ?x2152 (* (- 1) ?x5971)) 0))))) +(let (($x5994 (= (or $x3948 (or $x5943 (= ?x2152 ?x5971))) (or $x3948 $x5943 (= ?x2152 ?x5971))))) +(let ((@x6100 (mp ((_ quant-inst ?v0!15) (or $x3948 (or $x5943 (= ?x2152 ?x5971)))) (rewrite $x5994) (or $x3948 $x5943 (= ?x2152 ?x5971))))) +(let ((@x7127 (unit-resolution (unit-resolution @x6100 (hypothesis $x3943) (or $x5943 (= ?x2152 ?x5971))) (unit-resolution @x7123 @x7120 (not (= ?x2152 ?x5971))) $x5943))) +(let ((@x7135 (unit-resolution (def-axiom (or (not $x6951) $x6887 (not $x6954))) (mp @x7127 @x7133 (not $x6887)) (unit-resolution (mp ((_ quant-inst v_b_Visited_G_1$ b_Source$ true ?v0!15) $x6960) @x6989 $x6959) @x3721 $x6951) (not $x6954)))) +(let ((@x7143 (mp (unit-resolution (def-axiom (or $x6954 $x6990)) @x7135 $x6990) @x7142 (not (= b_Source$ ?v0!15))))) +(let ((?x7024 (b_G$ (pair$ b_Source$ ?v0!15)))) +(let (($x7048 (<= ?x7024 0))) +(let (($x7084 (>= (+ ?x6040 (* (- 1) ?x7024)) 0))) +(let ((@x7145 (monotonicity @x5781 (= (pair$ b_Source$ ?v0!15) (pair$ v_b_v_G_1$ ?v0!15))))) +(let ((@x7152 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6040 ?x7024)) $x7084)) (symm (monotonicity @x7145 (= ?x7024 ?x6040)) (= ?x6040 ?x7024)) $x7084))) +(let (($x6014 (<= (+ ?x119 ?x1520) 0))) +(let ((@x5742 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x119 ?x204)) $x6014)) (symm (monotonicity @x5780 (= ?x204 ?x119)) (= ?x119 ?x204)) $x6014))) +(let (($x3478 (>= ?x119 0))) +(let ((@x6523 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3213 $x3478)) @x5456 $x3478))) +(let (($x5984 (>= (+ ?x204 (* (- 1) ?x5971) ?x6040) 0))) +(let (($x6042 (<= (+ b_Infinity$ (* (- 1) ?x6040)) 0))) +(let (($x5545 (or $x6042 $x5984))) +(let (($x5577 (not $x5545))) +(let (($x5972 (= ?x2152 ?x5971))) +(let (($x6132 (or $x5577 $x5972))) +(let (($x6394 (or $x3931 $x5577 $x5972))) +(let (($x6213 (or $x3931 (or (not (or $x6042 (<= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) 0))) $x5972)))) +(let (($x6240 (= (or (not (or $x6042 (<= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) 0))) $x5972) $x6132))) +(let (($x6044 (<= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) 0))) +(let ((@x6156 (rewrite (= (+ ?x5971 ?x1520 (* (- 1) ?x6040)) (+ ?x1520 ?x5971 (* (- 1) ?x6040)))))) +(let ((@x5992 (monotonicity @x6156 (= $x6044 (<= (+ ?x1520 ?x5971 (* (- 1) ?x6040)) 0))))) +(let ((@x5651 (trans @x5992 (rewrite (= (<= (+ ?x1520 ?x5971 (* (- 1) ?x6040)) 0) $x5984)) (= $x6044 $x5984)))) +(let ((@x5893 (monotonicity (monotonicity @x5651 (= (or $x6042 $x6044) $x5545)) (= (not (or $x6042 $x6044)) $x5577)))) +(let ((@x5887 (trans (monotonicity (monotonicity @x5893 $x6240) (= $x6213 (or $x3931 $x6132))) (rewrite (= (or $x3931 $x6132) $x6394)) (= $x6213 $x6394)))) +(let ((@x7154 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!15) $x6213) @x5887 $x6394) @x6086 $x6132) (unit-resolution @x7123 @x7120 (not $x5972)) $x5577))) +(let (($x5495 (or $x6042 $x5984 $x5552))) +(let (($x5652 (or $x3923 $x6042 $x5984 $x5552))) +(let (($x5496 (or $x3923 (or $x6042 $x6044 (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) 0))))) +(let ((@x5529 (monotonicity (rewrite (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) ?x6162)) (= (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) 0) $x5552)))) +(let ((@x5649 (monotonicity @x5651 @x5529 (= (or $x6042 $x6044 (= (+ ?x204 ?x6040 (* (- 1) ?x2152)) 0)) $x5495)))) +(let ((@x5906 (trans (monotonicity @x5649 (= $x5496 (or $x3923 $x5495))) (rewrite (= (or $x3923 $x5495) $x5652)) (= $x5496 $x5652)))) +(let ((@x7158 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!15) $x5496) @x5906 $x5652) @x4512 $x5495) (unit-resolution (def-axiom (or $x5545 (not $x5984))) @x7154 (not $x5984)) (unit-resolution (def-axiom (or $x5545 (not $x6042))) @x7154 (not $x6042)) $x5552))) +(let ((@x7166 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7048 (not $x7084) $x2153 $x7034 (not $x6014) (not $x3478))) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7159 $x6237)) @x7158 $x6237) @x6523 @x5742 @x7027 @x7152 $x7048))) +(let (($x7062 (= (or (not $x3728) (or (= b_Source$ ?v0!15) (not $x7048))) (or (not $x3728) (= b_Source$ ?v0!15) (not $x7048))))) +(let ((@x7064 (mp ((_ quant-inst b_Source$ ?v0!15) (or (not $x3728) (or (= b_Source$ ?v0!15) (not $x7048)))) (rewrite $x7062) (or (not $x3728) (= b_Source$ ?v0!15) (not $x7048))))) +(let ((@x7168 (unit-resolution (unit-resolution @x7064 @x3733 (or (= b_Source$ ?v0!15) (not $x7048))) @x7166 @x7143 false))) +(let ((@x6972 (unit-resolution (lemma @x7168 (or $x3948 $x2153 (not $x3279) $x3196 $x3923 $x3931)) @x6065 @x7027 (unit-resolution (def-axiom (or $x4045 $x213)) @x5873 $x213) @x5247 @x5974 $x3948))) +(let ((@x6196 (unit-resolution (def-axiom (or $x4030 $x2139 $x4024)) (unit-resolution (def-axiom (or $x4021 $x3943)) @x6972 $x4021) (unit-resolution (def-axiom (or $x4033 $x4027)) @x5435 $x4027) $x2139))) +(let (($x6189 (>= (+ ?x6353 (* (- 1) (b_G$ (pair$ b_Source$ ?v0!14)))) 0))) +(let ((@x5870 (monotonicity @x5780 (= (pair$ v_b_v_G_1$ ?v0!14) (pair$ b_Source$ ?v0!14))))) +(let ((@x6892 ((_ th-lemma arith triangle-eq) (or (not (= ?x6353 (b_G$ (pair$ b_Source$ ?v0!14)))) $x6189)))) +(let ((@x6893 (unit-resolution @x6892 (monotonicity @x5870 (= ?x6353 (b_G$ (pair$ b_Source$ ?v0!14)))) $x6189))) +(let ((?x6449 (b_G$ (pair$ b_Source$ ?v0!14)))) +(let (($x6497 (<= ?x6449 0))) +(let (($x6702 (not $x6497))) +(let (($x6238 (= b_Source$ ?v0!14))) +(let (($x6704 (not $x6238))) +(let ((@x5923 (monotonicity (symm (hypothesis $x6238) (= ?v0!14 b_Source$)) (= ?x2136 ?x119)))) +(let ((@x5826 (monotonicity (symm (hypothesis $x6238) (= ?v0!14 b_Source$)) (= ?x2135 ?x243)))) +(let ((@x5929 (trans (trans @x5826 (monotonicity @x5781 (= ?x243 ?x3394)) (= ?x2135 ?x3394)) (hypothesis $x3329) (= ?x2135 ?x204)))) +(let ((@x6701 (trans (trans @x5929 (monotonicity @x5780 (= ?x204 ?x119)) (= ?x2135 ?x119)) (symm @x5923 (= ?x119 ?x2136)) $x2137))) +(let ((@x6754 (lemma (unit-resolution @x5806 @x6701 false) (or $x6704 $x2137 (not $x3329) (not $x3279))))) +(let ((@x6858 (rewrite (= (or (not $x3728) (or $x6238 $x6702)) (or (not $x3728) $x6238 $x6702))))) +(let ((@x6859 (mp ((_ quant-inst b_Source$ ?v0!14) (or (not $x3728) (or $x6238 $x6702))) @x6858 (or (not $x3728) $x6238 $x6702)))) +(let ((@x6879 (unit-resolution @x6859 @x3733 (unit-resolution @x6754 @x5806 @x6230 @x5780 $x6704) $x6702))) +(let (($x5364 (= ?v0!14 b_Source$))) +(let (($x6300 (or $x5364 $x6262))) +(let (($x6211 (fun_app$ ?x6005 ?v0!14))) +(let (($x6870 (= $x6211 $x6300))) +(let (($x6873 (or $x5105 $x6870))) +(let ((@x6868 (monotonicity (rewrite (= (ite $x5364 true $x6262) $x6300)) (= (= $x6211 (ite $x5364 true $x6262)) $x6870)))) +(let ((@x6944 (monotonicity @x6868 (= (or $x5105 (= $x6211 (ite $x5364 true $x6262))) $x6873)))) +(let ((@x6946 (trans @x6944 (rewrite (= $x6873 $x6873)) (= (or $x5105 (= $x6211 (ite $x5364 true $x6262))) $x6873)))) +(let ((@x6947 (mp ((_ quant-inst v_b_Visited_G_1$ b_Source$ true ?v0!14) (or $x5105 (= $x6211 (ite $x5364 true $x6262)))) @x6946 $x6873))) +(let ((@x6885 (mp (hypothesis $x2133) (symm (monotonicity @x6803 (= $x6211 $x2133)) (= $x2133 $x6211)) $x6211))) +(let ((@x6923 (unit-resolution (def-axiom (or (not $x6870) (not $x6211) $x6300)) @x6885 (unit-resolution @x6947 @x3721 $x6870) $x6300))) +(let (($x6603 (>= (+ ?x119 (* (- 1) ?x2136)) 0))) +(let ((@x6948 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6449 0)) $x6497)) (hypothesis $x6702) (not (= ?x6449 0))))) +(let (($x6718 (= (or $x4439 (or $x6704 (= ?x6449 0))) (or $x4439 $x6704 (= ?x6449 0))))) +(let ((@x5740 (mp ((_ quant-inst b_Source$ ?v0!14) (or $x4439 (or $x6704 (= ?x6449 0)))) (rewrite $x6718) (or $x4439 $x6704 (= ?x6449 0))))) +(let ((@x6975 (unit-resolution (unit-resolution @x5740 @x3727 (or $x6704 (= ?x6449 0))) @x6948 $x6704))) +(let ((@x6981 (mp @x6975 (monotonicity (commutativity (= $x6238 $x5364)) (= $x6704 (not $x5364))) (not $x5364)))) +(let ((@x6938 (unit-resolution (def-axiom (or (not $x6300) $x5364 $x6262)) @x6981 (hypothesis $x6300) $x6262))) +(let ((@x6605 (rewrite (= (or $x3818 (or $x4244 $x6006 $x6603)) (or $x3818 $x4244 $x6006 $x6603))))) +(let ((@x6664 (mp ((_ quant-inst ?v0!14 b_Source$) (or $x3818 (or $x4244 $x6006 $x6603))) @x6605 (or $x3818 $x4244 $x6006 $x6603)))) +(let ((@x6832 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (>= ?x6449 0) $x6497)) (hypothesis $x6702) (>= ?x6449 0)))) +(let ((@x6833 ((_ th-lemma arith farkas 1 1 -1 -1 1) @x6832 (hypothesis $x6189) @x6842 (hypothesis $x6014) (unit-resolution @x6664 @x6970 (hypothesis $x5095) @x6938 $x6603) false))) +(let ((@x6924 (unit-resolution (lemma @x6833 (or $x6497 (not $x6189) $x5623 (not $x6014) $x4244 (not $x6300))) @x6923 @x6879 @x6877 @x5742 (hypothesis $x5095) @x6893 false))) +(let ((@x6199 (unit-resolution (lemma @x6924 (or $x2134 $x4244 $x3196 (not $x3279) $x3931 $x2137)) (unit-resolution (def-axiom (or $x2138 $x3646)) @x6196 $x3646) (unit-resolution (def-axiom (or $x2138 $x2133)) @x6196 $x2133) (unit-resolution (def-axiom (or $x4045 $x213)) @x5873 $x213) @x6065 @x5974 @x5493 false))) +(let ((@x7353 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x3284 $x4951)) (unit-resolution (lemma @x6199 (or $x4045 $x2153 $x4138)) @x5873 @x7027 $x4138) $x4951))) +(let ((@x7331 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x6507 $x1522 (not $x4951))) @x7353 (unit-resolution (def-axiom (or $x4045 $x1525)) @x5873 $x1525) $x6507))) +(let (($x6440 (= v_b_v_G_1$ ?v0!15))) +(let (($x6441 (<= ?x6040 0))) +(let (($x6477 (<= (+ ?x119 ?x3282) 0))) +(let (($x4627 (= ?x3280 b_Source$))) +(let ((?x5260 (+ ?x3281 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?x3280))) (* (- 1) (b_G$ (pair$ (?v1!7 ?x3280) ?x3280)))))) +(let (($x5252 (<= (+ ?x3281 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?x3280)))) 0))) +(let (($x4638 (or $x5252 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?x3280))) (not (= ?x5260 0))))) +(let ((@x7029 (hypothesis $x4951))) +(let ((@x7028 (hypothesis $x6237))) +(let ((@x7030 (hypothesis (not $x5252)))) +(let (($x6656 (>= (fun_app$c v_b_SP_G_1$ (?v1!7 ?x3280)) 0))) +(let ((@x6836 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x6441 (not $x4951) (not $x6656) $x5252 $x2153 $x7034)) @x7030 @x7029 @x7028 @x7027 (unit-resolution ((_ quant-inst (?v1!7 ?x3280)) (or $x3809 $x6656)) @x5502 $x6656) $x6441))) +(let (($x6469 (= (or (not $x3728) (or $x6440 (not $x6441))) (or (not $x3728) $x6440 (not $x6441))))) +(let ((@x6472 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or (not $x3728) (or $x6440 (not $x6441)))) (rewrite $x6469) (or (not $x3728) $x6440 (not $x6441))))) +(let ((@x7025 (unit-resolution (unit-resolution @x6472 @x3733 (or $x6440 (not $x6441))) (hypothesis $x6441) $x6440))) +(let (($x6466 (= ?x6040 0))) +(let (($x7038 (not $x6466))) +(let (($x7031 (not (>= ?x6040 0)))) +(let ((@x7037 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7031 (not $x4951) (not $x6656) $x5252 $x2153 $x7034)) @x7030 @x7029 @x7028 @x7027 (unit-resolution ((_ quant-inst (?v1!7 ?x3280)) (or $x3809 $x6656)) @x5502 $x6656) $x7031))) +(let ((@x6480 (rewrite (= (or $x4439 (or (not $x6440) $x6466)) (or $x4439 (not $x6440) $x6466))))) +(let ((@x6481 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or $x4439 (or (not $x6440) $x6466))) @x6480 (or $x4439 (not $x6440) $x6466)))) +(let ((@x7043 (unit-resolution (unit-resolution @x6481 @x3727 (or (not $x6440) $x6466)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7038 (>= ?x6040 0))) @x7037 $x7038) @x7025 false))) +(let ((@x6866 (unit-resolution (lemma @x7043 (or (not $x6441) $x5252 (not $x4951) $x7034 $x2153)) @x6836 @x7030 @x7029 @x7028 @x7027 false))) +(let ((@x6500 (unit-resolution (lemma @x6866 (or $x5252 (not $x4951) $x7034 $x2153)) @x7028 @x7029 @x7027 $x5252))) +(let (($x5562 (= (or $x3834 (or $x4627 $x4633 (not $x4638))) (or $x3834 $x4627 $x4633 (not $x4638))))) +(let ((@x5564 (mp ((_ quant-inst (?v1!7 v_b_v_G_1$)) (or $x3834 (or $x4627 $x4633 (not $x4638)))) (rewrite $x5562) (or $x3834 $x4627 $x4633 (not $x4638))))) +(let ((@x6514 (unit-resolution (unit-resolution @x5564 @x4406 (hypothesis $x6507) (or $x4627 (not $x4638))) (unit-resolution (def-axiom (or $x4638 (not $x5252))) @x6500 $x4638) $x4627))) +(let ((@x6521 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x119 ?x3281)) $x6477)) (symm (monotonicity @x6514 (= ?x3281 ?x119)) (= ?x119 ?x3281)) $x6477))) +(let ((@x6529 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x6441 (not $x4951) $x2153 $x7034 (not $x3478) (not $x6477))) @x7028 @x6523 @x7029 @x7027 @x6521 $x6441))) +(let ((@x6534 (unit-resolution (unit-resolution @x6472 @x3733 (or $x6440 (not $x6441))) @x6529 $x6440))) +(let ((@x6536 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1) (or $x7031 (not $x4951) $x2153 $x7034 (not $x3478) (not $x6477))) @x7028 @x6523 @x7029 @x7027 @x6521 $x7031))) +(let ((@x6538 (unit-resolution (unit-resolution @x6481 @x3727 (or (not $x6440) $x6466)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7038 (>= ?x6040 0))) @x6536 $x7038) @x6534 false))) +(let ((@x7332 (unit-resolution (lemma @x6538 (or $x7034 (not $x4951) $x2153 $x4633)) @x7353 @x7027 @x7331 $x7034))) +(let ((@x7339 (unit-resolution (mp ((_ quant-inst ?v0!15) $x5496) @x5906 $x5652) @x4512 (hypothesis $x7159) $x5545))) +(let ((@x7377 (unit-resolution @x7339 (unit-resolution (def-axiom (or $x5545 (not $x5984))) @x7154 (not $x5984)) (unit-resolution (def-axiom (or $x5545 (not $x6042))) @x7154 (not $x6042)) false))) +(let ((@x7334 (unit-resolution (lemma @x7377 (or $x5552 $x3923 $x3931 $x2153)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7159 $x6237)) @x7332 $x7159) @x5247 @x5974 @x7027 false))) +(let (($x4282 (= ?x243 ?x119))) +(let (($x4455 (<= (b_G$ (pair$ v_b_v_G_1$ b_Source$)) 0))) +(let (($x4147 (>= ?x204 0))) +(let (($x3479 (<= ?x119 0))) +(let (($x4279 (<= (+ ?x119 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ b_Source$)))) 0))) +(let (($x4277 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ b_Source$)))) 0))) +(let (($x4281 (not (or $x4277 $x4279)))) +(let (($x4909 (not $x4282))) +(let ((@x4883 (hypothesis $x913))) +(let ((@x4907 (mp (hypothesis $x4282) (monotonicity (hypothesis $x120) (= $x4282 $x244)) $x244))) +(let ((@x6051 (unit-resolution (lemma (unit-resolution @x4883 @x4907 false) (or $x4909 $x244 $x3213)) @x5456 (or $x4909 $x244)))) +(let ((@x5597 (mp ((_ quant-inst b_Source$) (or $x3931 (or $x4281 $x4282))) (rewrite (= (or $x3931 (or $x4281 $x4282)) (or $x3931 $x4281 $x4282))) (or $x3931 $x4281 $x4282)))) +(let ((@x5875 (unit-resolution (unit-resolution @x5597 @x6086 (or $x4281 $x4282)) (unit-resolution @x6051 @x4883 $x4909) $x4281))) +(let ((@x5520 (unit-resolution (def-axiom (or (or $x4277 $x4279) (not $x4279))) @x5875 (not $x4279)))) +(let ((@x6090 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x4455 (not $x3479) (not $x4147) $x4279)) @x5520 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3213 $x3479)) @x5456 $x3479) (unit-resolution ((_ quant-inst v_b_v_G_1$) (or $x3809 $x4147)) @x5502 $x4147) $x4455))) +(let (($x5519 (= (or (not $x3728) (or $x3279 (not $x4455))) (or (not $x3728) $x3279 (not $x4455))))) +(let ((@x6055 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or (not $x3728) (or $x3279 (not $x4455)))) (rewrite $x5519) (or (not $x3728) $x3279 (not $x4455))))) +(let ((@x6223 (symm (unit-resolution @x6055 @x3733 @x6090 $x3279) (= b_Source$ v_b_v_G_1$)))) +(let ((@x5727 (trans (trans (monotonicity @x6223 (= ?x243 ?x3394)) @x6230 (= ?x243 ?x204)) (monotonicity (unit-resolution @x6055 @x3733 @x6090 $x3279) (= ?x204 ?x119)) $x4282))) +(let ((@x5312 (lemma (unit-resolution @x4883 (trans @x5727 @x5456 $x244) false) (or $x244 $x3931)))) +(let ((@x8382 (unit-resolution (def-axiom (or $x4018 $x913 $x2154 $x4012)) (unit-resolution @x5312 @x8302 $x244) (unit-resolution (lemma @x7334 (or $x4045 $x2153)) @x8164 $x2153) (or $x4018 $x4012)))) +(let ((@x9064 (unit-resolution @x8382 (unit-resolution (def-axiom (or $x4021 $x4015)) @x10488 $x4015) $x4012))) +(let ((@x10157 (unit-resolution (def-axiom (or $x4006 $x3039 $x4000)) (unit-resolution (def-axiom (or $x4009 $x4003)) @x9064 $x4003) (unit-resolution @x5143 @x10489 $x3034) $x4000))) +(let ((@x8593 (hypothesis $x3988))) +(let ((?x4618 (fun_app$c v_b_SP_G_1$ ?v0!20))) +(let (($x4870 (<= (+ ?x4618 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0!20)))) 0))) +(let ((@x5730 (hypothesis $x2221))) +(let (($x8567 (>= (+ (v_b_SP_G_2$ ?v0!20) (* (- 1) ?x4618)) 0))) +(let ((?x2217 (v_b_SP_G_2$ ?v0!20))) +(let (($x4625 (= ?x2217 ?x4618))) +(let ((?x4660 (b_G$ (pair$ v_b_v_G_1$ ?v0!20)))) +(let ((?x4661 (* (- 1) ?x4660))) +(let ((?x3395 (* (- 1) ?x3394))) +(let ((?x8452 (+ ?x2217 ?x3395 ?x4661))) +(let (($x8388 (<= ?x8452 0))) +(let (($x8780 (>= ?x8452 0))) +(let ((@x6097 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x8780 $x8388)) (hypothesis (not $x8388)) $x8780))) +(let (($x4663 (<= (+ b_Infinity$ ?x4661) 0))) +(let (($x4368 (fun_app$ v_b_Visited_G_2$ v_b_v_G_1$))) +(let ((@x8557 (symm (monotonicity @x8214 (= $x4368 (fun_app$ ?x212 v_b_v_G_1$))) (= (fun_app$ ?x212 v_b_v_G_1$) $x4368)))) +(let (($x3413 (fun_app$ ?x212 v_b_v_G_1$))) +(let (($x3709 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(!(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :pattern ( (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ))) +)) +(let (($x1092 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2)) +)) +(let (($x1089 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0))) +(let (($x49 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2)) +)) +(let (($x48 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0))) +(let ((@x1097 (mp (mp (asserted $x49) (rewrite* (= $x49 $x49)) $x49) (quant-intro (rewrite (= $x48 $x1089)) (= $x49 $x1092)) $x1092))) +(let ((@x3714 (mp (mp~ @x1097 (nnf-pos (refl (~ $x1089 $x1089)) (~ $x1092 $x1092)) $x1092) (quant-intro (refl (= $x1089 $x1089)) (= $x1092 $x3709)) $x3709))) +(let (($x4545 (or (not $x3709) $x3413))) +(let ((@x6188 (monotonicity (rewrite (= (= $x3413 true) $x3413)) (= (or (not $x3709) (= $x3413 true)) $x4545)))) +(let ((@x5812 (trans @x6188 (rewrite (= $x4545 $x4545)) (= (or (not $x3709) (= $x3413 true)) $x4545)))) +(let ((@x8745 (unit-resolution (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true) (or (not $x3709) (= $x3413 true))) @x5812 $x4545) @x3714 $x3413))) +(let ((@x6205 (hypothesis $x3968))) +(let (($x4369 (not $x4368))) +(let (($x9030 (or $x3973 $x4369 $x4663 $x8388))) +(let (($x9031 (or $x3973 (or $x4369 $x4663 (>= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) 0))))) +(let (($x8458 (= (or $x4369 $x4663 (>= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) 0)) (or $x4369 $x4663 $x8388)))) +(let (($x8517 (>= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) 0))) +(let ((@x8896 (rewrite (= (+ ?x4660 ?x3394 (* (- 1) ?x2217)) (+ (* (- 1) ?x2217) ?x3394 ?x4660))))) +(let ((@x8448 (monotonicity @x8896 (= $x8517 (>= (+ (* (- 1) ?x2217) ?x3394 ?x4660) 0))))) +(let ((@x8455 (trans @x8448 (rewrite (= (>= (+ (* (- 1) ?x2217) ?x3394 ?x4660) 0) $x8388)) (= $x8517 $x8388)))) +(let ((@x9127 (monotonicity (monotonicity @x8455 $x8458) (= $x9031 (or $x3973 (or $x4369 $x4663 $x8388)))))) +(let ((@x8184 (trans @x9127 (rewrite (= (or $x3973 (or $x4369 $x4663 $x8388)) $x9030)) (= $x9031 $x9030)))) +(let ((@x6333 (unit-resolution (mp ((_ quant-inst ?v0!20 v_b_v_G_1$) $x9031) @x8184 $x9030) @x6205 (mp @x8745 @x8557 $x4368) (hypothesis (not $x8388)) $x4663))) +(let ((@x5997 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x6014 (not $x4147) (not $x3479))) (unit-resolution ((_ quant-inst v_b_v_G_1$) (or $x3809 $x4147)) @x5502 $x4147) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3213 $x3479)) @x5456 $x3479) $x6014))) +(let (($x6242 (= ?x204 ?x3394))) +(let ((@x9345 (mp (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x4517) @x5481 $x5387) @x8302 @x6229 $x3329) (symm (commutativity (= $x6242 $x3329)) (= $x3329 $x6242)) $x6242))) +(let ((@x8936 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6242) (<= (+ ?x204 ?x3395) 0))) @x9345 (<= (+ ?x204 ?x3395) 0)))) +(let ((@x5629 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1) @x8936 @x5997 @x6523 @x6333 @x6097 @x5730 false) (or $x8388 $x2220 $x3973)))) +(let ((@x10145 (unit-resolution @x5629 (unit-resolution (def-axiom (or $x3985 $x3968)) @x8593 $x3968) @x5730 $x8388))) +(let (($x8926 (<= (+ ?x2217 ?x3395) 0))) +(let (($x8453 (= ?x8452 0))) +(let ((?x2218 (* (- 1) ?x2217))) +(let ((?x8793 (+ ?x204 ?x2218 ?x4660))) +(let (($x8622 (<= ?x8793 0))) +(let (($x8798 (= ?x8793 0))) +(let (($x8551 (>= (+ ?x204 (* (- 1) ?x4618) ?x4660) 0))) +(let (($x8822 (or $x4663 $x8551))) +(let (($x8685 (not $x8822))) +(let (($x8574 (or $x8685 $x4625))) +(let (($x8550 (or $x3931 $x8685 $x4625))) +(let (($x8571 (or $x3931 (or (not (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0))) $x4625)))) +(let ((@x9375 (monotonicity (rewrite (= (+ ?x4618 ?x1520 ?x4661) (+ ?x1520 ?x4618 ?x4661))) (= (<= (+ ?x4618 ?x1520 ?x4661) 0) (<= (+ ?x1520 ?x4618 ?x4661) 0))))) +(let ((@x8823 (trans @x9375 (rewrite (= (<= (+ ?x1520 ?x4618 ?x4661) 0) $x8551)) (= (<= (+ ?x4618 ?x1520 ?x4661) 0) $x8551)))) +(let ((@x8684 (monotonicity @x8823 (= (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0)) $x8822)))) +(let ((@x8549 (monotonicity @x8684 (= (not (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0))) $x8685)))) +(let ((@x8576 (monotonicity @x8549 (= (or (not (or $x4663 (<= (+ ?x4618 ?x1520 ?x4661) 0))) $x4625) $x8574)))) +(let ((@x8764 (trans (monotonicity @x8576 (= $x8571 (or $x3931 $x8574))) (rewrite (= (or $x3931 $x8574) $x8550)) (= $x8571 $x8550)))) +(let ((@x10339 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!20) $x8571) @x8764 $x8550) @x8302 $x8574) (hypothesis (not $x4625)) $x8685))) +(let ((@x10165 (unit-resolution (def-axiom (or $x8822 (not $x4663))) (hypothesis $x8685) (not $x4663)))) +(let ((@x10166 (unit-resolution (def-axiom (or $x8822 (not $x8551))) (hypothesis $x8685) (not $x8551)))) +(let (($x8800 (or $x4663 $x8551 $x8798))) +(let (($x8659 (or $x3923 $x4663 $x8551 $x8798))) +(let (($x4665 (<= (+ ?x4618 ?x1520 ?x4661) 0))) +(let (($x9296 (or $x3923 (or $x4663 $x4665 (= (+ ?x204 ?x4660 ?x2218) 0))))) +(let ((@x8797 (monotonicity (rewrite (= (+ ?x204 ?x4660 ?x2218) ?x8793)) (= (= (+ ?x204 ?x4660 ?x2218) 0) $x8798)))) +(let ((@x8638 (monotonicity @x8823 @x8797 (= (or $x4663 $x4665 (= (+ ?x204 ?x4660 ?x2218) 0)) $x8800)))) +(let ((@x9312 (trans (monotonicity @x8638 (= $x9296 (or $x3923 $x8800))) (rewrite (= (or $x3923 $x8800) $x8659)) (= $x9296 $x8659)))) +(let ((@x10167 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!20) $x9296) @x9312 $x8659) @x8165 $x8800) @x10166 @x10165 (hypothesis (not $x8798)) false))) +(let ((@x10348 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8798) $x8622)) (unit-resolution (lemma @x10167 (or $x8822 $x8798)) @x10339 $x8798) $x8622))) +(let ((@x10388 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x8622) $x8780 (not $x3298))) @x8142 (or (not $x8622) $x8780)))) +(let ((@x10484 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8453 (not $x8388) (not $x8780))) (hypothesis $x8388) (or $x8453 (not $x8780))))) +(let ((@x11844 (hypothesis $x3977))) +(let (($x8695 (not $x8453))) +(let (($x8690 (or $x3982 $x8926 $x4369 $x8695))) +(let (($x4741 (>= (+ ?x3394 ?x2218) 0))) +(let (($x8692 (or $x3982 (or $x4741 $x4369 (not (= (+ ?x3394 ?x2218 ?x4660) 0)))))) +(let (($x9019 (= (or $x4741 $x4369 (not (= (+ ?x3394 ?x2218 ?x4660) 0))) (or $x8926 $x4369 $x8695)))) +(let ((@x8997 (monotonicity (rewrite (= (+ ?x3394 ?x2218 ?x4660) (+ ?x2218 ?x3394 ?x4660))) (= (= (+ ?x3394 ?x2218 ?x4660) 0) (= (+ ?x2218 ?x3394 ?x4660) 0))))) +(let ((@x9034 (trans @x8997 (rewrite (= (= (+ ?x2218 ?x3394 ?x4660) 0) $x8453)) (= (= (+ ?x3394 ?x2218 ?x4660) 0) $x8453)))) +(let ((@x8397 (monotonicity (rewrite (= (+ ?x3394 ?x2218) (+ ?x2218 ?x3394))) (= $x4741 (>= (+ ?x2218 ?x3394) 0))))) +(let ((@x9139 (trans @x8397 (rewrite (= (>= (+ ?x2218 ?x3394) 0) $x8926)) (= $x4741 $x8926)))) +(let ((@x9020 (monotonicity @x9139 (monotonicity @x9034 (= (not (= (+ ?x3394 ?x2218 ?x4660) 0)) $x8695)) $x9019))) +(let ((@x8404 (trans (monotonicity @x9020 (= $x8692 (or $x3982 (or $x8926 $x4369 $x8695)))) (rewrite (= (or $x3982 (or $x8926 $x4369 $x8695)) $x8690)) (= $x8692 $x8690)))) +(let ((@x10486 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x8692) @x8404 $x8690) @x11844 (mp @x8745 @x8557 $x4368) (or $x8926 $x8695)))) +(let ((@x10481 (unit-resolution @x10486 (unit-resolution @x10484 (unit-resolution @x10388 @x10348 $x8780) $x8453) $x8926))) +(let (($x6460 (not (<= ?x4660 0)))) +(let ((@x10539 (commutativity (= (= v_b_v_G_1$ ?v0!20) (= ?v0!20 v_b_v_G_1$))))) +(let ((@x10627 (monotonicity (symm @x10539 (= (= ?v0!20 v_b_v_G_1$) (= v_b_v_G_1$ ?v0!20))) (= (not (= ?v0!20 v_b_v_G_1$)) (not (= v_b_v_G_1$ ?v0!20)))))) +(let (($x7719 (= ?v0!20 v_b_v_G_1$))) +(let (($x10690 (not $x7719))) +(let (($x10582 (or $x7719 (fun_app$ v_b_Visited_G_1$ ?v0!20)))) +(let (($x7724 (fun_app$ ?x212 ?v0!20))) +(let (($x10917 (= $x7724 $x10582))) +(let (($x10865 (or $x5105 $x10917))) +(let (($x10888 (or $x5105 (= $x7724 (ite $x7719 true (fun_app$ v_b_Visited_G_1$ ?v0!20)))))) +(let (($x10747 (= (= $x7724 (ite $x7719 true (fun_app$ v_b_Visited_G_1$ ?v0!20))) $x10917))) +(let ((@x9484 (rewrite (= (ite $x7719 true (fun_app$ v_b_Visited_G_1$ ?v0!20)) $x10582)))) +(let ((@x10687 (trans (monotonicity (monotonicity @x9484 $x10747) (= $x10888 $x10865)) (rewrite (= $x10865 $x10865)) (= $x10888 $x10865)))) +(let ((@x8210 (symm @x8214 (= ?x212 v_b_Visited_G_2$)))) +(let ((@x10510 (symm (monotonicity @x8210 (= $x7724 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x7724)))) +(let ((@x10542 (monotonicity @x10510 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) (not $x7724))))) +(let (($x4503 (fun_app$ v_b_Visited_G_2$ ?v0!20))) +(let (($x4504 (not $x4503))) +(let ((@x10611 (mp ((_ quant-inst ?v0!20) (or $x3948 (or $x4504 $x4625))) (rewrite (= (or $x3948 (or $x4504 $x4625)) (or $x3948 $x4504 $x4625))) (or $x3948 $x4504 $x4625)))) +(let ((@x10491 (unit-resolution (unit-resolution @x10611 @x10489 (or $x4504 $x4625)) (hypothesis (not $x4625)) $x4504))) +(let ((@x10518 (unit-resolution (def-axiom (or (not $x10917) $x7724 (not $x10582))) (mp @x10491 @x10542 (not $x7724)) (unit-resolution (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) $x10888) @x10687 $x10865) @x3721 $x10917) (not $x10582)))) +(let ((@x10563 (mp (unit-resolution (def-axiom (or $x10582 $x10690)) @x10518 $x10690) @x10627 (not (= v_b_v_G_1$ ?v0!20))))) +(let (($x9114 (= (or (not $x3728) (or (= v_b_v_G_1$ ?v0!20) $x6460)) (or (not $x3728) (= v_b_v_G_1$ ?v0!20) $x6460)))) +(let ((@x9115 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or (not $x3728) (or (= v_b_v_G_1$ ?v0!20) $x6460))) (rewrite $x9114) (or (not $x3728) (= v_b_v_G_1$ ?v0!20) $x6460)))) +(let ((@x10566 (unit-resolution (unit-resolution @x9115 @x3733 (or (= v_b_v_G_1$ ?v0!20) $x6460)) @x10563 $x6460))) +(let ((@x10568 (lemma ((_ th-lemma arith farkas -1 -1 1 1) @x8142 @x10566 @x10348 @x10481 false) (or $x4625 $x3982 (not $x8388))))) +(let ((@x10170 (unit-resolution @x10568 (unit-resolution (def-axiom (or $x3985 $x3977)) @x8593 $x3977) @x10145 $x4625))) +(let ((?x4866 (?v1!7 ?v0!20))) +(let (($x8671 (fun_app$ v_b_Visited_G_2$ ?x4866))) +(let (($x8672 (not $x8671))) +(let ((@x11435 (symm (monotonicity @x8210 (= (fun_app$ ?x212 ?x4866) $x8671)) (= $x8671 (fun_app$ ?x212 ?x4866))))) +(let (($x6693 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ ?x4866 ?v0!20)))) 0))) +(let (($x11835 (not $x6693))) +(let ((?x4874 (b_G$ (pair$ ?x4866 ?v0!20)))) +(let ((?x4875 (* (- 1) ?x4874))) +(let ((?x4876 (+ ?x4618 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x4866)) ?x4875))) +(let (($x8645 (>= ?x4876 0))) +(let (($x4877 (= ?x4876 0))) +(let (($x4878 (not $x4877))) +(let (($x4879 (or $x4870 (not (fun_app$ v_b_Visited_G_1$ ?x4866)) $x4878))) +(let (($x4880 (not $x4879))) +(let (($x4865 (<= (+ b_Infinity$ (* (- 1) ?x4618)) 0))) +(let (($x8667 (not $x4865))) +(let ((@x8893 (hypothesis $x8567))) +(let ((@x8402 (lemma ((_ th-lemma arith farkas 1 -1 1) @x8893 (hypothesis $x4865) @x5730 false) (or $x8667 (not $x8567) $x2220)))) +(let ((@x9038 (rewrite (= (or $x3834 (or $x2215 $x4865 $x4880)) (or $x3834 $x2215 $x4865 $x4880))))) +(let ((@x9039 (mp ((_ quant-inst ?v0!20) (or $x3834 (or $x2215 $x4865 $x4880))) @x9038 (or $x3834 $x2215 $x4865 $x4880)))) +(let ((@x9273 (unit-resolution (unit-resolution @x9039 @x4406 (hypothesis $x2216) (or $x4865 $x4880)) (unit-resolution @x8402 @x8893 @x5730 $x8667) $x4880))) +(let ((@x11282 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4878 $x8645)) (unit-resolution (def-axiom (or $x4879 $x4877)) @x9273 $x4877) $x8645))) +(let ((?x4867 (fun_app$c v_b_SP_G_1$ ?x4866))) +(let (($x5337 (>= ?x4867 0))) +(let ((@x11717 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 -1) (or $x11835 (not $x8645) $x2220 (not $x8567) (not $x5337))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3809 $x5337)) @x5502 $x5337) @x5730 @x8893 @x11282 $x11835))) +(let (($x9233 (<= ?x4876 0))) +(let ((@x11182 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4878 $x9233)) (unit-resolution (def-axiom (or $x4879 $x4877)) @x9273 $x4877) $x9233))) +(let ((?x8643 (v_b_SP_G_2$ ?x4866))) +(let ((?x9203 (* (- 1) ?x8643))) +(let ((?x9103 (+ ?x2217 ?x4875 ?x9203))) +(let (($x10503 (>= ?x9103 0))) +(let (($x6233 (>= (+ ?x4867 ?x9203) 0))) +(let ((@x11833 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x10503 (not $x6233) (not $x8645) (not $x8567))) (hypothesis $x8645) @x8893 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3939 $x6233)) @x8305 $x6233) $x10503))) +(let (($x10448 (<= (+ ?x2217 ?x9203) 0))) +(let (($x11011 (= ?x9103 0))) +(let (($x10912 (<= ?x9103 0))) +(let (($x10744 (or $x8672 $x6693 $x10912))) +(let (($x10746 (or $x3973 $x8672 $x6693 $x10912))) +(let (($x10750 (or $x3973 (or $x8672 $x6693 (>= (+ ?x4874 ?x8643 ?x2218) 0))))) +(let ((@x9876 (monotonicity (rewrite (= (+ ?x4874 ?x8643 ?x2218) (+ ?x2218 ?x4874 ?x8643))) (= (>= (+ ?x4874 ?x8643 ?x2218) 0) (>= (+ ?x2218 ?x4874 ?x8643) 0))))) +(let ((@x10867 (trans @x9876 (rewrite (= (>= (+ ?x2218 ?x4874 ?x8643) 0) $x10912)) (= (>= (+ ?x4874 ?x8643 ?x2218) 0) $x10912)))) +(let ((@x10745 (monotonicity @x10867 (= (or $x8672 $x6693 (>= (+ ?x4874 ?x8643 ?x2218) 0)) $x10744)))) +(let ((@x10734 (trans (monotonicity @x10745 (= $x10750 (or $x3973 $x10744))) (rewrite (= (or $x3973 $x10744) $x10746)) (= $x10750 $x10746)))) +(let ((@x11838 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!20 (?v1!7 ?v0!20)) $x10750) @x10734 $x10746) @x6205 $x10744) (hypothesis $x8671) (hypothesis $x11835) $x10912))) +(let ((@x11843 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x11011 (not $x10912) (not $x10503))) @x11833 @x11838 $x11011))) +(let (($x10804 (not $x11011))) +(let (($x11040 (or $x10448 $x8672 $x10804))) +(let (($x10301 (or $x3982 $x10448 $x8672 $x10804))) +(let (($x6994 (>= (+ ?x8643 ?x2218) 0))) +(let (($x10896 (or $x3982 (or $x6994 $x8672 (not (= (+ ?x8643 ?x2218 ?x4874) 0)))))) +(let ((@x11010 (monotonicity (rewrite (= (+ ?x8643 ?x2218 ?x4874) (+ ?x2218 ?x4874 ?x8643))) (= (= (+ ?x8643 ?x2218 ?x4874) 0) (= (+ ?x2218 ?x4874 ?x8643) 0))))) +(let ((@x10803 (trans @x11010 (rewrite (= (= (+ ?x2218 ?x4874 ?x8643) 0) $x11011)) (= (= (+ ?x8643 ?x2218 ?x4874) 0) $x11011)))) +(let ((@x10440 (monotonicity (rewrite (= (+ ?x8643 ?x2218) (+ ?x2218 ?x8643))) (= $x6994 (>= (+ ?x2218 ?x8643) 0))))) +(let ((@x10354 (trans @x10440 (rewrite (= (>= (+ ?x2218 ?x8643) 0) $x10448)) (= $x6994 $x10448)))) +(let ((@x10595 (monotonicity @x10354 (monotonicity @x10803 (= (not (= (+ ?x8643 ?x2218 ?x4874) 0)) $x10804)) (= (or $x6994 $x8672 (not (= (+ ?x8643 ?x2218 ?x4874) 0))) $x11040)))) +(let ((@x10685 (trans (monotonicity @x10595 (= $x10896 (or $x3982 $x11040))) (rewrite (= (or $x3982 $x11040) $x10301)) (= $x10896 $x10301)))) +(let ((@x11846 (unit-resolution (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x10896) @x10685 $x10301) @x11844 $x11040) @x11843 (hypothesis $x8671) $x10448))) +(let ((@x11850 (lemma ((_ th-lemma arith farkas -1 1 -1 1) @x11846 @x11833 (hypothesis $x9233) (hypothesis (not $x4870)) false) (or $x8672 (not $x9233) $x4870 $x3982 (not $x8645) (not $x8567) $x6693 $x3973)))) +(let ((@x11185 (unit-resolution @x11850 @x11182 (hypothesis (not $x4870)) @x11844 @x11282 @x8893 @x11717 @x6205 $x8672))) +(let ((@x11550 (mp @x11185 (monotonicity @x11435 (= $x8672 (not (fun_app$ ?x212 ?x4866)))) (not (fun_app$ ?x212 ?x4866))))) +(let (($x11789 (fun_app$ ?x212 ?x4866))) +(let (($x4871 (fun_app$ v_b_Visited_G_1$ ?x4866))) +(let (($x11792 (or (= ?x4866 v_b_v_G_1$) $x4871))) +(let (($x11795 (= $x11789 $x11792))) +(let (($x11638 (or $x5105 $x11795))) +(let (($x11557 (= (or $x5105 (= $x11789 (ite (= ?x4866 v_b_v_G_1$) true $x4871))) $x11638))) +(let ((@x11797 (monotonicity (rewrite (= (ite (= ?x4866 v_b_v_G_1$) true $x4871) $x11792)) (= (= $x11789 (ite (= ?x4866 v_b_v_G_1$) true $x4871)) $x11795)))) +(let ((@x11556 ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true (?v1!7 ?v0!20)) (or $x5105 (= $x11789 (ite (= ?x4866 v_b_v_G_1$) true $x4871)))))) +(let ((@x11621 (mp @x11556 (trans (monotonicity @x11797 $x11557) (rewrite (= $x11638 $x11638)) $x11557) $x11638))) +(let ((@x11379 (unit-resolution (def-axiom (or $x11792 (not $x4871))) (unit-resolution (def-axiom (or $x4879 $x4871)) @x9273 $x4871) $x11792))) +(let ((@x11588 (unit-resolution (def-axiom (or (not $x11795) $x11789 (not $x11792))) @x11379 (or (not $x11795) $x11789)))) +(let ((@x11409 (unit-resolution (unit-resolution @x11588 (unit-resolution @x11621 @x3721 $x11795) $x11789) @x11550 false))) +(let ((@x9681 (unit-resolution (lemma @x11409 (or (not $x8567) $x4870 $x3982 $x3973 $x2220 $x2215)) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4625) $x8567)) @x10170 $x8567) (unit-resolution (def-axiom (or $x3985 $x3977)) @x8593 $x3977) (unit-resolution (def-axiom (or $x3985 $x3968)) @x8593 $x3968) @x5730 (unit-resolution (def-axiom (or $x3985 $x2216)) @x8593 $x2216) $x4870))) +(let ((@x9302 (unit-resolution @x8402 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4625) $x8567)) @x10170 $x8567) @x5730 $x8667))) +(let ((@x10155 (unit-resolution @x9039 @x4406 (unit-resolution (def-axiom (or $x3985 $x2216)) @x8593 $x2216) (or $x4865 $x4880)))) +(let ((@x10236 (unit-resolution (def-axiom (or $x4879 (not $x4870))) (unit-resolution @x10155 @x9302 $x4880) @x9681 false))) +(let ((@x10357 (unit-resolution (lemma @x10236 (or $x3985 $x2220)) (unit-resolution (def-axiom (or $x3985 $x2221)) @x8593 $x2221) @x8593 false))) +(let ((@x8697 (unit-resolution (def-axiom (or $x3994 $x3085 $x3988)) (lemma @x10357 $x3985) (unit-resolution (def-axiom (or $x3997 $x3991)) @x10157 $x3991) $x3085))) +(let (($x2195 (not $x2194))) +(let (($x4939 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!19)))) 0))) +(let ((?x4936 (b_G$ (pair$ v_b_v_G_1$ ?v0!19)))) +(let ((?x4520 (fun_app$c v_b_SP_G_1$ ?v0!19))) +(let ((?x4919 (* (- 1) ?x4520))) +(let (($x7104 (>= (+ ?x204 ?x4919 ?x4936) 0))) +(let (($x8037 (>= (+ ?x2191 (* (- 1) ?x4936)) 0))) +(let (($x4552 (= ?v1!18 v_b_v_G_1$))) +(let (($x4560 (fun_app$ v_b_Visited_G_1$ ?v1!18))) +(let (($x4584 (not $x4560))) +(let (($x3626 (not $x2202))) +(let ((@x9184 (hypothesis $x3626))) +(let (($x8491 (>= (+ ?x2198 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!18))) 0))) +(let ((?x4539 (fun_app$c v_b_SP_G_1$ ?v1!18))) +(let (($x4537 (= ?x2198 ?x4539))) +(let ((@x8063 (mp ((_ quant-inst ?v1!18) (or $x3948 (or $x3065 $x4537))) (rewrite (= (or $x3948 (or $x3065 $x4537)) (or $x3948 $x3065 $x4537))) (or $x3948 $x3065 $x4537)))) +(let ((@x10071 (unit-resolution @x8063 @x10489 (unit-resolution (def-axiom (or $x3080 $x2189)) (hypothesis $x3085) $x2189) $x4537))) +(let (($x9200 (<= (+ (v_b_SP_G_2$ ?v0!19) ?x4919) 0))) +(let (($x9219 (or $x3939 $x9200))) +(let ((@x6015 (monotonicity (rewrite (= (+ ?x4520 ?x2200) (+ ?x2200 ?x4520))) (= (>= (+ ?x4520 ?x2200) 0) (>= (+ ?x2200 ?x4520) 0))))) +(let ((@x9261 (trans @x6015 (rewrite (= (>= (+ ?x2200 ?x4520) 0) $x9200)) (= (>= (+ ?x4520 ?x2200) 0) $x9200)))) +(let ((@x8768 (trans (monotonicity @x9261 (= (or $x3939 (>= (+ ?x4520 ?x2200) 0)) $x9219)) (rewrite (= $x9219 $x9219)) (= (or $x3939 (>= (+ ?x4520 ?x2200) 0)) $x9219)))) +(let ((@x9207 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3939 (>= (+ ?x4520 ?x2200) 0))) @x8768 $x9219) @x8305 $x9200))) +(let ((@x9209 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis (>= (+ ?x2191 ?x4919 ?x4539) 0)) @x9207 @x9184 (hypothesis $x8491) false))) +(let ((@x9157 (lemma @x9209 (or (not (>= (+ ?x2191 ?x4919 ?x4539) 0)) $x2202 (not $x8491))))) +(let ((@x10062 (unit-resolution @x9157 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4537) $x8491)) @x10071 $x8491) @x9184 (not (>= (+ ?x2191 ?x4919 ?x4539) 0))))) +(let (($x8396 (>= (+ ?x2191 ?x4919 ?x4539) 0))) +(let (($x7250 (or $x3826 $x4584 $x2194 $x8396))) +(let (($x7254 (or $x3826 (or $x4584 $x2194 (>= (+ ?x2191 ?x4539 ?x4919) 0))))) +(let (($x7281 (= (or $x4584 $x2194 (>= (+ ?x2191 ?x4539 ?x4919) 0)) (or $x4584 $x2194 $x8396)))) +(let ((@x7279 (monotonicity (rewrite (= (+ ?x2191 ?x4539 ?x4919) (+ ?x2191 ?x4919 ?x4539))) (= (>= (+ ?x2191 ?x4539 ?x4919) 0) $x8396)))) +(let ((@x7262 (monotonicity (monotonicity @x7279 $x7281) (= $x7254 (or $x3826 (or $x4584 $x2194 $x8396)))))) +(let ((@x7275 (trans @x7262 (rewrite (= (or $x3826 (or $x4584 $x2194 $x8396)) $x7250)) (= $x7254 $x7250)))) +(let ((@x10063 (unit-resolution (mp ((_ quant-inst ?v0!19 ?v1!18) $x7254) @x7275 $x7250) @x6172 (unit-resolution (def-axiom (or $x3080 $x2195)) (hypothesis $x3085) $x2195) (or $x4584 $x8396)))) +(let (($x8064 (or $x4552 $x4560))) +(let (($x4569 (fun_app$ ?x212 ?v1!18))) +(let (($x7915 (= $x4569 $x8064))) +(let (($x5802 (or $x5105 $x7915))) +(let ((@x7808 (monotonicity (rewrite (= (ite $x4552 true $x4560) $x8064)) (= (= $x4569 (ite $x4552 true $x4560)) $x7915)))) +(let ((@x8409 (monotonicity @x7808 (= (or $x5105 (= $x4569 (ite $x4552 true $x4560))) $x5802)))) +(let ((@x8439 (trans @x8409 (rewrite (= $x5802 $x5802)) (= (or $x5105 (= $x4569 (ite $x4552 true $x4560))) $x5802)))) +(let ((@x9247 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!18) (or $x5105 (= $x4569 (ite $x4552 true $x4560)))) @x8439 $x5802))) +(let ((@x10467 (mp (unit-resolution (def-axiom (or $x3080 $x2189)) (hypothesis $x3085) $x2189) (symm (monotonicity @x8210 (= $x4569 $x2189)) (= $x2189 $x4569)) $x4569))) +(let ((@x10247 (unit-resolution (def-axiom (or (not $x7915) (not $x4569) $x8064)) @x10467 (unit-resolution @x9247 @x3721 $x7915) $x8064))) +(let ((@x10216 (unit-resolution (def-axiom (or (not $x8064) $x4552 $x4560)) @x10247 (unit-resolution @x10063 @x10062 $x4584) $x4552))) +(let ((@x10847 (monotonicity @x10216 (= (pair$ ?v1!18 ?v0!19) (pair$ v_b_v_G_1$ ?v0!19))))) +(let ((@x10848 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x2191 ?x4936)) $x8037)) (monotonicity @x10847 (= ?x2191 ?x4936)) $x8037))) +(let (($x8038 (>= (+ ?x2198 ?x3395) 0))) +(let ((@x10005 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x2198 ?x3394)) $x8038)) (monotonicity @x10216 (= ?x2198 ?x3394)) $x8038))) +(let ((@x8468 ((_ th-lemma arith farkas -1 1 -1 -1 1 1) (hypothesis $x8038) @x8936 (hypothesis $x8037) (hypothesis $x7104) @x9207 @x9184 false))) +(let ((@x9577 (unit-resolution (lemma @x8468 (or (not $x7104) (not $x8038) (not $x8037) $x2202)) @x10005 @x9184 @x10848 (not $x7104)))) +(let ((@x8883 ((_ th-lemma arith farkas -1 1 -1 -1 1) (hypothesis $x8038) @x8936 (hypothesis $x8037) (hypothesis (>= (+ ?x204 ?x2200 ?x4936) 0)) @x9184 false))) +(let ((@x9326 (lemma @x8883 (or (not (>= (+ ?x204 ?x2200 ?x4936) 0)) (not $x8038) (not $x8037) $x2202)))) +(let ((@x9398 (unit-resolution @x9326 @x10848 @x9184 @x10005 (not (>= (+ ?x204 ?x2200 ?x4936) 0))))) +(let ((?x7186 (+ ?x204 ?x2200 ?x4936))) +(let (($x7258 (>= ?x7186 0))) +(let ((@x8781 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x7186 0)) $x7258)) @x9398 (not (= ?x7186 0))))) +(let (($x7111 (= ?x7186 0))) +(let (($x7222 (or $x4939 $x7104 $x7111))) +(let (($x7201 (or $x3923 $x4939 $x7104 $x7111))) +(let (($x4941 (<= (+ ?x4520 ?x1520 (* (- 1) ?x4936)) 0))) +(let (($x7208 (or $x3923 (or $x4939 $x4941 (= (+ ?x204 ?x4936 ?x2200) 0))))) +(let ((@x7190 (monotonicity (rewrite (= (+ ?x204 ?x4936 ?x2200) ?x7186)) (= (= (+ ?x204 ?x4936 ?x2200) 0) $x7111)))) +(let ((@x7077 (rewrite (= (+ ?x4520 ?x1520 (* (- 1) ?x4936)) (+ ?x1520 ?x4520 (* (- 1) ?x4936)))))) +(let ((@x7001 (monotonicity @x7077 (= $x4941 (<= (+ ?x1520 ?x4520 (* (- 1) ?x4936)) 0))))) +(let ((@x7110 (trans @x7001 (rewrite (= (<= (+ ?x1520 ?x4520 (* (- 1) ?x4936)) 0) $x7104)) (= $x4941 $x7104)))) +(let ((@x7200 (monotonicity @x7110 @x7190 (= (or $x4939 $x4941 (= (+ ?x204 ?x4936 ?x2200) 0)) $x7222)))) +(let ((@x7230 (trans (monotonicity @x7200 (= $x7208 (or $x3923 $x7222))) (rewrite (= (or $x3923 $x7222) $x7201)) (= $x7208 $x7201)))) +(let ((@x8782 (unit-resolution (unit-resolution (mp ((_ quant-inst ?v0!19) $x7208) @x7230 $x7201) @x8165 $x7222) @x8781 @x9577 $x4939))) +(let ((@x7246 ((_ th-lemma arith farkas 1 -1 1) @x10848 @x8782 (unit-resolution (def-axiom (or $x3080 $x2195)) (hypothesis $x3085) $x2195) false))) +(unit-resolution (lemma @x7246 (or $x3080 $x2202)) (unit-resolution (def-axiom (or $x3080 $x3626)) @x8697 $x3626) @x8697 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/Boogie_Max.certs --- a/src/HOL/SMT_Examples/Boogie_Max.certs Thu May 01 22:57:36 2014 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,2151 +0,0 @@ -2fe4278cefdf713c58d9bb38d221cd0a858eee31 2150 0 -#2 := false -#7 := 0::Int -decl ?v0!3 :: Int -#1165 := ?v0!3 -#688 := -1::Int -#1310 := (* -1::Int ?v0!3) -decl f8 :: Int -#31 := f8 -#2386 := (+ f8 #1310) -#2387 := (<= #2386 0::Int) -#2492 := (not #2387) -#2419 := (>= #2386 0::Int) -decl f16 :: Int -#82 := f16 -#797 := (* -1::Int f16) -#829 := (+ f8 #797) -#1830 := (>= #829 -1::Int) -#828 := (= #829 -1::Int) -decl f15 :: Int -#78 := f15 -decl f5 :: (-> S2 Int Int) -decl f14 :: Int -#76 := f14 -decl f6 :: S2 -#11 := f6 -#93 := (f5 f6 f14) -#94 := (= #93 f15) -#20 := (:var 0 Int) -#24 := (f5 f6 #20) -#2148 := (pattern #24) -#808 := (* -1::Int f15) -#809 := (+ #24 #808) -#810 := (<= #809 0::Int) -#798 := (+ #20 #797) -#796 := (>= #798 0::Int) -#677 := (>= #20 0::Int) -#1413 := (not #677) -#1587 := (or #1413 #796 #810) -#2182 := (forall (vars (?v0 Int)) (:pat #2148) #1587) -#2187 := (not #2182) -#2190 := (or #2187 #94) -#2193 := (not #2190) -#1172 := (f5 f6 ?v0!3) -#1332 := (* -1::Int #1172) -#1333 := (+ f15 #1332) -#1334 := (>= #1333 0::Int) -#1311 := (+ f16 #1310) -#1312 := (<= #1311 0::Int) -#1166 := (>= ?v0!3 0::Int) -#1550 := (not #1166) -#1565 := (or #1550 #1312 #1334) -#1570 := (not #1565) -#2196 := (or #1570 #2193) -#2199 := (not #2196) -#85 := 2::Int -#788 := (>= f16 2::Int) -#1612 := (not #788) -#785 := (>= f14 0::Int) -#1611 := (not #785) -#832 := (not #828) -#15 := 1::Int -#707 := (>= f8 1::Int) -#841 := (not #707) -decl f9 :: Int -#36 := f9 -#115 := (= f15 f9) -#453 := (not #115) -decl f7 :: Int -#29 := f7 -#114 := (= f14 f7) -#462 := (not #114) -#71 := (f5 f6 f8) -#846 := (* -1::Int #71) -#847 := (+ f9 #846) -#845 := (>= #847 0::Int) -#844 := (not #845) -#704 := (>= f7 0::Int) -#1542 := (not #704) -#2208 := (or #1542 #844 #462 #453 #841 #832 #1611 #1612 #2199) -#2211 := (not #2208) -decl f13 :: Int -#73 := f13 -#79 := (= f15 f13) -#386 := (not #79) -#77 := (= f14 f8) -#395 := (not #77) -#74 := (= f13 #71) -#420 := (not #74) -#2202 := (or #1542 #845 #420 #395 #386 #841 #832 #1611 #1612 #2199) -#2205 := (not #2202) -#2214 := (or #2205 #2211) -#2217 := (not #2214) -#753 := (* -1::Int f8) -decl f3 :: Int -#8 := f3 -#754 := (+ f3 #753) -#755 := (<= #754 0::Int) -#2220 := (or #1542 #841 #755 #2217) -#2223 := (not #2220) -decl ?v0!2 :: Int -#1110 := ?v0!2 -#1118 := (f5 f6 ?v0!2) -#1263 := (* -1::Int #1118) -decl f11 :: Int -#45 := f11 -#1264 := (+ f11 #1263) -#1265 := (>= #1264 0::Int) -#1112 := (* -1::Int ?v0!2) -#1113 := (+ f3 #1112) -#1114 := (<= #1113 0::Int) -#1111 := (>= ?v0!2 0::Int) -#1503 := (not #1111) -decl ?v0!1 :: Int -#1092 := ?v0!1 -#1100 := (f5 f6 ?v0!1) -#1101 := (= #1100 f11) -#1094 := (* -1::Int ?v0!1) -#1095 := (+ f3 #1094) -#1096 := (<= #1095 0::Int) -#1093 := (>= ?v0!1 0::Int) -#1483 := (not #1093) -#1498 := (or #1483 #1096 #1101) -#1529 := (not #1498) -#1530 := (or #1529 #1503 #1114 #1265) -#1531 := (not #1530) -#51 := (= #24 f11) -#715 := (* -1::Int #20) -#716 := (+ f3 #715) -#717 := (<= #716 0::Int) -#1472 := (or #1413 #717 #51) -#1477 := (not #1472) -#2165 := (forall (vars (?v0 Int)) (:pat #2148) #1477) -#2170 := (or #2165 #1531) -#2173 := (not #2170) -decl f12 :: Int -#47 := f12 -#48 := (= f12 f8) -#235 := (not #48) -#46 := (= f11 f9) -#244 := (not #46) -decl f10 :: Int -#43 := f10 -#44 := (= f10 f7) -#253 := (not #44) -#758 := (not #755) -#2176 := (or #1542 #841 #758 #253 #244 #235 #2173) -#2179 := (not #2176) -#2226 := (or #2179 #2223) -#2229 := (not #2226) -#40 := (f5 f6 f7) -#41 := (= #40 f9) -#556 := (not #41) -#953 := (* -1::Int f9) -#954 := (+ #24 #953) -#955 := (<= #954 0::Int) -#943 := (+ #20 #753) -#942 := (>= #943 0::Int) -#1450 := (or #1413 #942 #955) -#2157 := (forall (vars (?v0 Int)) (:pat #2148) #1450) -#2162 := (not #2157) -decl f4 :: Int -#10 := f4 -#12 := (f5 f6 0::Int) -#28 := (= #12 f4) -#589 := (not #28) -#2232 := (or #589 #1542 #841 #2162 #556 #2229) -#2235 := (not #2232) -#2238 := (or #589 #2235) -#2241 := (not #2238) -#691 := (* -1::Int #24) -#692 := (+ f4 #691) -#690 := (>= #692 0::Int) -#680 := (>= #20 1::Int) -#1428 := (or #1413 #680 #690) -#2149 := (forall (vars (?v0 Int)) (:pat #2148) #1428) -#2154 := (not #2149) -#2244 := (or #2154 #2241) -#2247 := (not #2244) -decl ?v0!0 :: Int -#1040 := ?v0!0 -#1034 := (f5 f6 ?v0!0) -#1035 := (* -1::Int #1034) -#1032 := (+ f4 #1035) -#1033 := (>= #1032 0::Int) -#1042 := (>= ?v0!0 1::Int) -#1041 := (>= ?v0!0 0::Int) -#1179 := (not #1041) -#1405 := (or #1179 #1042 #1033) -#1999 := (= f4 #1034) -#1925 := (= #12 #1034) -#1965 := (= #1034 #12) -#1975 := (= ?v0!0 0::Int) -#1043 := (not #1042) -#1410 := (not #1405) -#1998 := [hypothesis]: #1410 -#1735 := (or #1405 #1043) -#1820 := [def-axiom]: #1735 -#2000 := [unit-resolution #1820 #1998]: #1043 -#1734 := (or #1405 #1041) -#1819 := [def-axiom]: #1734 -#1968 := [unit-resolution #1819 #1998]: #1041 -#1934 := [th-lemma arith eq-propagate 0 0 #1968 #2000]: #1975 -#1967 := [monotonicity #1934]: #1965 -#1926 := [symm #1967]: #1925 -#13 := (= f4 #12) -#799 := (not #796) -#802 := (and #677 #799) -#805 := (not #802) -#813 := (or #805 #810) -#816 := (forall (vars (?v0 Int)) #813) -#819 := (not #816) -#822 := (or #819 #94) -#825 := (and #816 #822) -#790 := (and #785 #788) -#793 := (not #790) -#835 := (and #785 #707) -#838 := (not #835) -#709 := (and #704 #707) -#712 := (not #709) -#908 := (or #712 #844 #462 #453 #838 #832 #793 #825) -#884 := (or #712 #845 #420 #841 #395 #386 #838 #832 #793 #825) -#913 := (and #884 #908) -#934 := (or #712 #755 #913) -#736 := (* -1::Int f11) -#737 := (+ #24 #736) -#738 := (<= #737 0::Int) -#718 := (not #717) -#721 := (and #677 #718) -#724 := (not #721) -#741 := (or #724 #738) -#744 := (forall (vars (?v0 Int)) #741) -#727 := (or #724 #51) -#730 := (exists (vars (?v0 Int)) #727) -#733 := (not #730) -#747 := (or #733 #744) -#750 := (and #730 #747) -#779 := (or #712 #758 #253 #244 #235 #750) -#939 := (and #779 #934) -#944 := (not #942) -#947 := (and #677 #944) -#950 := (not #947) -#958 := (or #950 #955) -#961 := (forall (vars (?v0 Int)) #958) -#964 := (not #961) -#982 := (or #589 #712 #964 #556 #939) -#987 := (and #28 #982) -#678 := (not #680) -#682 := (and #677 #678) -#685 := (not #682) -#694 := (or #685 #690) -#697 := (forall (vars (?v0 Int)) #694) -#700 := (not #697) -#990 := (or #700 #987) -#993 := (and #697 #990) -#622 := (not #13) -#996 := (<= f3 0::Int) -#1016 := (or #996 #622 #993) -#1021 := (not #1016) -#1 := true -#95 := (implies false true) -#96 := (implies #94 #95) -#97 := (and #94 #96) -#90 := (<= #24 f15) -#88 := (< #20 f16) -#21 := (<= 0::Int #20) -#89 := (and #21 #88) -#91 := (implies #89 #90) -#92 := (forall (vars (?v0 Int)) #91) -#98 := (implies #92 #97) -#99 := (and #92 #98) -#100 := (implies true #99) -#86 := (<= 2::Int f16) -#80 := (<= 0::Int f14) -#87 := (and #80 #86) -#101 := (implies #87 #100) -#83 := (+ f8 1::Int) -#84 := (= f16 #83) -#102 := (implies #84 #101) -#32 := (<= 1::Int f8) -#81 := (and #80 #32) -#103 := (implies #81 #102) -#104 := (implies true #103) -#116 := (implies #115 #104) -#117 := (implies #114 #116) -#118 := (implies true #117) -#30 := (<= 0::Int f7) -#33 := (and #30 #32) -#119 := (implies #33 #118) -#113 := (<= #71 f9) -#120 := (implies #113 #119) -#121 := (implies #33 #120) -#122 := (implies true #121) -#105 := (implies #79 #104) -#106 := (implies #77 #105) -#107 := (implies true #106) -#75 := (and #32 #32) -#108 := (implies #75 #107) -#109 := (implies #74 #108) -#72 := (< f9 #71) -#110 := (implies #72 #109) -#111 := (implies #33 #110) -#112 := (implies true #111) -#123 := (and #112 #122) -#124 := (implies #33 #123) -#70 := (< f8 f3) -#125 := (implies #70 #124) -#126 := (implies #33 #125) -#127 := (implies true #126) -#54 := (<= #24 f11) -#49 := (< #20 f3) -#50 := (and #21 #49) -#55 := (implies #50 #54) -#56 := (forall (vars (?v0 Int)) #55) -#57 := (implies #56 true) -#58 := (and #56 #57) -#52 := (implies #50 #51) -#53 := (exists (vars (?v0 Int)) #52) -#59 := (implies #53 #58) -#60 := (and #53 #59) -#61 := (implies true #60) -#62 := (implies #48 #61) -#63 := (implies #46 #62) -#64 := (implies #44 #63) -#65 := (implies true #64) -#66 := (implies #33 #65) -#42 := (<= f3 f8) -#67 := (implies #42 #66) -#68 := (implies #33 #67) -#69 := (implies true #68) -#128 := (and #69 #127) -#129 := (implies #33 #128) -#130 := (implies #41 #129) -#37 := (<= #24 f9) -#34 := (< #20 f8) -#35 := (and #21 #34) -#38 := (implies #35 #37) -#39 := (forall (vars (?v0 Int)) #38) -#131 := (implies #39 #130) -#132 := (implies #33 #131) -#133 := (implies true #132) -#134 := (implies #28 #133) -#135 := (and #28 #134) -#25 := (<= #24 f4) -#22 := (< #20 1::Int) -#23 := (and #21 #22) -#26 := (implies #23 #25) -#27 := (forall (vars (?v0 Int)) #26) -#136 := (implies #27 #135) -#137 := (and #27 #136) -#16 := (<= 1::Int 1::Int) -#17 := (and #16 #16) -#14 := (<= 0::Int 0::Int) -#18 := (and #14 #17) -#19 := (and #14 #18) -#138 := (implies #19 #137) -#139 := (implies #13 #138) -#140 := (implies true #139) -#9 := (< 0::Int f3) -#141 := (implies #9 #140) -#142 := (implies true #141) -#143 := (not #142) -#1024 := (iff #143 #1021) -#307 := (not #89) -#308 := (or #307 #90) -#311 := (forall (vars (?v0 Int)) #308) -#333 := (not #311) -#334 := (or #333 #94) -#339 := (and #311 #334) -#352 := (not #87) -#353 := (or #352 #339) -#301 := (+ 1::Int f8) -#304 := (= f16 #301) -#361 := (not #304) -#362 := (or #361 #353) -#370 := (not #81) -#371 := (or #370 #362) -#454 := (or #453 #371) -#463 := (or #462 #454) -#269 := (not #33) -#478 := (or #269 #463) -#486 := (not #113) -#487 := (or #486 #478) -#495 := (or #269 #487) -#387 := (or #386 #371) -#396 := (or #395 #387) -#411 := (not #32) -#412 := (or #411 #396) -#421 := (or #420 #412) -#429 := (not #72) -#430 := (or #429 #421) -#438 := (or #269 #430) -#507 := (and #438 #495) -#513 := (or #269 #507) -#521 := (not #70) -#522 := (or #521 #513) -#530 := (or #269 #522) -#186 := (not #50) -#193 := (or #186 #54) -#196 := (forall (vars (?v0 Int)) #193) -#187 := (or #186 #51) -#190 := (exists (vars (?v0 Int)) #187) -#216 := (not #190) -#217 := (or #216 #196) -#222 := (and #190 #217) -#236 := (or #235 #222) -#245 := (or #244 #236) -#254 := (or #253 #245) -#270 := (or #269 #254) -#278 := (not #42) -#279 := (or #278 #270) -#287 := (or #269 #279) -#542 := (and #287 #530) -#548 := (or #269 #542) -#557 := (or #556 #548) -#179 := (not #35) -#180 := (or #179 #37) -#183 := (forall (vars (?v0 Int)) #180) -#565 := (not #183) -#566 := (or #565 #557) -#574 := (or #269 #566) -#590 := (or #589 #574) -#595 := (and #28 #590) -#172 := (not #23) -#173 := (or #172 #25) -#176 := (forall (vars (?v0 Int)) #173) -#601 := (not #176) -#602 := (or #601 #595) -#607 := (and #176 #602) -#166 := (and #14 #16) -#169 := (and #14 #166) -#613 := (not #169) -#614 := (or #613 #607) -#623 := (or #622 #614) -#638 := (not #9) -#639 := (or #638 #623) -#651 := (not #639) -#1022 := (iff #651 #1021) -#1019 := (iff #639 #1016) -#1007 := (or false #993) -#1010 := (or #622 #1007) -#1013 := (or #996 #1010) -#1017 := (iff #1013 #1016) -#1018 := [rewrite]: #1017 -#1014 := (iff #639 #1013) -#1011 := (iff #623 #1010) -#1008 := (iff #614 #1007) -#994 := (iff #607 #993) -#991 := (iff #602 #990) -#988 := (iff #595 #987) -#985 := (iff #590 #982) -#967 := (or #712 #939) -#970 := (or #556 #967) -#973 := (or #964 #970) -#976 := (or #712 #973) -#979 := (or #589 #976) -#983 := (iff #979 #982) -#984 := [rewrite]: #983 -#980 := (iff #590 #979) -#977 := (iff #574 #976) -#974 := (iff #566 #973) -#971 := (iff #557 #970) -#968 := (iff #548 #967) -#940 := (iff #542 #939) -#937 := (iff #530 #934) -#925 := (or #712 #913) -#928 := (or #755 #925) -#931 := (or #712 #928) -#935 := (iff #931 #934) -#936 := [rewrite]: #935 -#932 := (iff #530 #931) -#929 := (iff #522 #928) -#926 := (iff #513 #925) -#914 := (iff #507 #913) -#911 := (iff #495 #908) -#857 := (or #793 #825) -#860 := (or #832 #857) -#863 := (or #838 #860) -#893 := (or #453 #863) -#896 := (or #462 #893) -#899 := (or #712 #896) -#902 := (or #844 #899) -#905 := (or #712 #902) -#909 := (iff #905 #908) -#910 := [rewrite]: #909 -#906 := (iff #495 #905) -#903 := (iff #487 #902) -#900 := (iff #478 #899) -#897 := (iff #463 #896) -#894 := (iff #454 #893) -#864 := (iff #371 #863) -#861 := (iff #362 #860) -#858 := (iff #353 #857) -#826 := (iff #339 #825) -#823 := (iff #334 #822) -#820 := (iff #333 #819) -#817 := (iff #311 #816) -#814 := (iff #308 #813) -#811 := (iff #90 #810) -#812 := [rewrite]: #811 -#806 := (iff #307 #805) -#803 := (iff #89 #802) -#800 := (iff #88 #799) -#801 := [rewrite]: #800 -#675 := (iff #21 #677) -#676 := [rewrite]: #675 -#804 := [monotonicity #676 #801]: #803 -#807 := [monotonicity #804]: #806 -#815 := [monotonicity #807 #812]: #814 -#818 := [quant-intro #815]: #817 -#821 := [monotonicity #818]: #820 -#824 := [monotonicity #821]: #823 -#827 := [monotonicity #818 #824]: #826 -#794 := (iff #352 #793) -#791 := (iff #87 #790) -#787 := (iff #86 #788) -#789 := [rewrite]: #787 -#784 := (iff #80 #785) -#786 := [rewrite]: #784 -#792 := [monotonicity #786 #789]: #791 -#795 := [monotonicity #792]: #794 -#859 := [monotonicity #795 #827]: #858 -#833 := (iff #361 #832) -#830 := (iff #304 #828) -#831 := [rewrite]: #830 -#834 := [monotonicity #831]: #833 -#862 := [monotonicity #834 #859]: #861 -#839 := (iff #370 #838) -#836 := (iff #81 #835) -#706 := (iff #32 #707) -#708 := [rewrite]: #706 -#837 := [monotonicity #786 #708]: #836 -#840 := [monotonicity #837]: #839 -#865 := [monotonicity #840 #862]: #864 -#895 := [monotonicity #865]: #894 -#898 := [monotonicity #895]: #897 -#713 := (iff #269 #712) -#710 := (iff #33 #709) -#703 := (iff #30 #704) -#705 := [rewrite]: #703 -#711 := [monotonicity #705 #708]: #710 -#714 := [monotonicity #711]: #713 -#901 := [monotonicity #714 #898]: #900 -#891 := (iff #486 #844) -#889 := (iff #113 #845) -#890 := [rewrite]: #889 -#892 := [monotonicity #890]: #891 -#904 := [monotonicity #892 #901]: #903 -#907 := [monotonicity #714 #904]: #906 -#912 := [trans #907 #910]: #911 -#887 := (iff #438 #884) -#866 := (or #386 #863) -#869 := (or #395 #866) -#872 := (or #841 #869) -#875 := (or #420 #872) -#878 := (or #845 #875) -#881 := (or #712 #878) -#885 := (iff #881 #884) -#886 := [rewrite]: #885 -#882 := (iff #438 #881) -#879 := (iff #430 #878) -#876 := (iff #421 #875) -#873 := (iff #412 #872) -#870 := (iff #396 #869) -#867 := (iff #387 #866) -#868 := [monotonicity #865]: #867 -#871 := [monotonicity #868]: #870 -#842 := (iff #411 #841) -#843 := [monotonicity #708]: #842 -#874 := [monotonicity #843 #871]: #873 -#877 := [monotonicity #874]: #876 -#855 := (iff #429 #845) -#850 := (not #844) -#853 := (iff #850 #845) -#854 := [rewrite]: #853 -#851 := (iff #429 #850) -#848 := (iff #72 #844) -#849 := [rewrite]: #848 -#852 := [monotonicity #849]: #851 -#856 := [trans #852 #854]: #855 -#880 := [monotonicity #856 #877]: #879 -#883 := [monotonicity #714 #880]: #882 -#888 := [trans #883 #886]: #887 -#915 := [monotonicity #888 #912]: #914 -#927 := [monotonicity #714 #915]: #926 -#923 := (iff #521 #755) -#918 := (not #758) -#921 := (iff #918 #755) -#922 := [rewrite]: #921 -#919 := (iff #521 #918) -#916 := (iff #70 #758) -#917 := [rewrite]: #916 -#920 := [monotonicity #917]: #919 -#924 := [trans #920 #922]: #923 -#930 := [monotonicity #924 #927]: #929 -#933 := [monotonicity #714 #930]: #932 -#938 := [trans #933 #936]: #937 -#782 := (iff #287 #779) -#761 := (or #235 #750) -#764 := (or #244 #761) -#767 := (or #253 #764) -#770 := (or #712 #767) -#773 := (or #758 #770) -#776 := (or #712 #773) -#780 := (iff #776 #779) -#781 := [rewrite]: #780 -#777 := (iff #287 #776) -#774 := (iff #279 #773) -#771 := (iff #270 #770) -#768 := (iff #254 #767) -#765 := (iff #245 #764) -#762 := (iff #236 #761) -#751 := (iff #222 #750) -#748 := (iff #217 #747) -#745 := (iff #196 #744) -#742 := (iff #193 #741) -#739 := (iff #54 #738) -#740 := [rewrite]: #739 -#725 := (iff #186 #724) -#722 := (iff #50 #721) -#719 := (iff #49 #718) -#720 := [rewrite]: #719 -#723 := [monotonicity #676 #720]: #722 -#726 := [monotonicity #723]: #725 -#743 := [monotonicity #726 #740]: #742 -#746 := [quant-intro #743]: #745 -#734 := (iff #216 #733) -#731 := (iff #190 #730) -#728 := (iff #187 #727) -#729 := [monotonicity #726]: #728 -#732 := [quant-intro #729]: #731 -#735 := [monotonicity #732]: #734 -#749 := [monotonicity #735 #746]: #748 -#752 := [monotonicity #732 #749]: #751 -#763 := [monotonicity #752]: #762 -#766 := [monotonicity #763]: #765 -#769 := [monotonicity #766]: #768 -#772 := [monotonicity #714 #769]: #771 -#759 := (iff #278 #758) -#756 := (iff #42 #755) -#757 := [rewrite]: #756 -#760 := [monotonicity #757]: #759 -#775 := [monotonicity #760 #772]: #774 -#778 := [monotonicity #714 #775]: #777 -#783 := [trans #778 #781]: #782 -#941 := [monotonicity #783 #938]: #940 -#969 := [monotonicity #714 #941]: #968 -#972 := [monotonicity #969]: #971 -#965 := (iff #565 #964) -#962 := (iff #183 #961) -#959 := (iff #180 #958) -#956 := (iff #37 #955) -#957 := [rewrite]: #956 -#951 := (iff #179 #950) -#948 := (iff #35 #947) -#945 := (iff #34 #944) -#946 := [rewrite]: #945 -#949 := [monotonicity #676 #946]: #948 -#952 := [monotonicity #949]: #951 -#960 := [monotonicity #952 #957]: #959 -#963 := [quant-intro #960]: #962 -#966 := [monotonicity #963]: #965 -#975 := [monotonicity #966 #972]: #974 -#978 := [monotonicity #714 #975]: #977 -#981 := [monotonicity #978]: #980 -#986 := [trans #981 #984]: #985 -#989 := [monotonicity #986]: #988 -#701 := (iff #601 #700) -#698 := (iff #176 #697) -#695 := (iff #173 #694) -#689 := (iff #25 #690) -#693 := [rewrite]: #689 -#686 := (iff #172 #685) -#683 := (iff #23 #682) -#679 := (iff #22 #678) -#681 := [rewrite]: #679 -#684 := [monotonicity #676 #681]: #683 -#687 := [monotonicity #684]: #686 -#696 := [monotonicity #687 #693]: #695 -#699 := [quant-intro #696]: #698 -#702 := [monotonicity #699]: #701 -#992 := [monotonicity #702 #989]: #991 -#995 := [monotonicity #699 #992]: #994 -#673 := (iff #613 false) -#668 := (not true) -#671 := (iff #668 false) -#672 := [rewrite]: #671 -#669 := (iff #613 #668) -#666 := (iff #169 true) -#658 := (and true true) -#661 := (and true #658) -#664 := (iff #661 true) -#665 := [rewrite]: #664 -#662 := (iff #169 #661) -#659 := (iff #166 #658) -#656 := (iff #16 true) -#657 := [rewrite]: #656 -#654 := (iff #14 true) -#655 := [rewrite]: #654 -#660 := [monotonicity #655 #657]: #659 -#663 := [monotonicity #655 #660]: #662 -#667 := [trans #663 #665]: #666 -#670 := [monotonicity #667]: #669 -#674 := [trans #670 #672]: #673 -#1009 := [monotonicity #674 #995]: #1008 -#1012 := [monotonicity #1009]: #1011 -#1005 := (iff #638 #996) -#997 := (not #996) -#1000 := (not #997) -#1003 := (iff #1000 #996) -#1004 := [rewrite]: #1003 -#1001 := (iff #638 #1000) -#998 := (iff #9 #997) -#999 := [rewrite]: #998 -#1002 := [monotonicity #999]: #1001 -#1006 := [trans #1002 #1004]: #1005 -#1015 := [monotonicity #1006 #1012]: #1014 -#1020 := [trans #1015 #1018]: #1019 -#1023 := [monotonicity #1020]: #1022 -#652 := (iff #143 #651) -#649 := (iff #142 #639) -#644 := (implies true #639) -#647 := (iff #644 #639) -#648 := [rewrite]: #647 -#645 := (iff #142 #644) -#642 := (iff #141 #639) -#635 := (implies #9 #623) -#640 := (iff #635 #639) -#641 := [rewrite]: #640 -#636 := (iff #141 #635) -#633 := (iff #140 #623) -#628 := (implies true #623) -#631 := (iff #628 #623) -#632 := [rewrite]: #631 -#629 := (iff #140 #628) -#626 := (iff #139 #623) -#619 := (implies #13 #614) -#624 := (iff #619 #623) -#625 := [rewrite]: #624 -#620 := (iff #139 #619) -#617 := (iff #138 #614) -#610 := (implies #169 #607) -#615 := (iff #610 #614) -#616 := [rewrite]: #615 -#611 := (iff #138 #610) -#608 := (iff #137 #607) -#605 := (iff #136 #602) -#598 := (implies #176 #595) -#603 := (iff #598 #602) -#604 := [rewrite]: #603 -#599 := (iff #136 #598) -#596 := (iff #135 #595) -#593 := (iff #134 #590) -#586 := (implies #28 #574) -#591 := (iff #586 #590) -#592 := [rewrite]: #591 -#587 := (iff #134 #586) -#584 := (iff #133 #574) -#579 := (implies true #574) -#582 := (iff #579 #574) -#583 := [rewrite]: #582 -#580 := (iff #133 #579) -#577 := (iff #132 #574) -#571 := (implies #33 #566) -#575 := (iff #571 #574) -#576 := [rewrite]: #575 -#572 := (iff #132 #571) -#569 := (iff #131 #566) -#562 := (implies #183 #557) -#567 := (iff #562 #566) -#568 := [rewrite]: #567 -#563 := (iff #131 #562) -#560 := (iff #130 #557) -#553 := (implies #41 #548) -#558 := (iff #553 #557) -#559 := [rewrite]: #558 -#554 := (iff #130 #553) -#551 := (iff #129 #548) -#545 := (implies #33 #542) -#549 := (iff #545 #548) -#550 := [rewrite]: #549 -#546 := (iff #129 #545) -#543 := (iff #128 #542) -#540 := (iff #127 #530) -#535 := (implies true #530) -#538 := (iff #535 #530) -#539 := [rewrite]: #538 -#536 := (iff #127 #535) -#533 := (iff #126 #530) -#527 := (implies #33 #522) -#531 := (iff #527 #530) -#532 := [rewrite]: #531 -#528 := (iff #126 #527) -#525 := (iff #125 #522) -#518 := (implies #70 #513) -#523 := (iff #518 #522) -#524 := [rewrite]: #523 -#519 := (iff #125 #518) -#516 := (iff #124 #513) -#510 := (implies #33 #507) -#514 := (iff #510 #513) -#515 := [rewrite]: #514 -#511 := (iff #124 #510) -#508 := (iff #123 #507) -#505 := (iff #122 #495) -#500 := (implies true #495) -#503 := (iff #500 #495) -#504 := [rewrite]: #503 -#501 := (iff #122 #500) -#498 := (iff #121 #495) -#492 := (implies #33 #487) -#496 := (iff #492 #495) -#497 := [rewrite]: #496 -#493 := (iff #121 #492) -#490 := (iff #120 #487) -#483 := (implies #113 #478) -#488 := (iff #483 #487) -#489 := [rewrite]: #488 -#484 := (iff #120 #483) -#481 := (iff #119 #478) -#475 := (implies #33 #463) -#479 := (iff #475 #478) -#480 := [rewrite]: #479 -#476 := (iff #119 #475) -#473 := (iff #118 #463) -#468 := (implies true #463) -#471 := (iff #468 #463) -#472 := [rewrite]: #471 -#469 := (iff #118 #468) -#466 := (iff #117 #463) -#459 := (implies #114 #454) -#464 := (iff #459 #463) -#465 := [rewrite]: #464 -#460 := (iff #117 #459) -#457 := (iff #116 #454) -#450 := (implies #115 #371) -#455 := (iff #450 #454) -#456 := [rewrite]: #455 -#451 := (iff #116 #450) -#381 := (iff #104 #371) -#376 := (implies true #371) -#379 := (iff #376 #371) -#380 := [rewrite]: #379 -#377 := (iff #104 #376) -#374 := (iff #103 #371) -#367 := (implies #81 #362) -#372 := (iff #367 #371) -#373 := [rewrite]: #372 -#368 := (iff #103 #367) -#365 := (iff #102 #362) -#358 := (implies #304 #353) -#363 := (iff #358 #362) -#364 := [rewrite]: #363 -#359 := (iff #102 #358) -#356 := (iff #101 #353) -#349 := (implies #87 #339) -#354 := (iff #349 #353) -#355 := [rewrite]: #354 -#350 := (iff #101 #349) -#347 := (iff #100 #339) -#342 := (implies true #339) -#345 := (iff #342 #339) -#346 := [rewrite]: #345 -#343 := (iff #100 #342) -#340 := (iff #99 #339) -#337 := (iff #98 #334) -#330 := (implies #311 #94) -#335 := (iff #330 #334) -#336 := [rewrite]: #335 -#331 := (iff #98 #330) -#328 := (iff #97 #94) -#323 := (and #94 true) -#326 := (iff #323 #94) -#327 := [rewrite]: #326 -#324 := (iff #97 #323) -#321 := (iff #96 true) -#316 := (implies #94 true) -#319 := (iff #316 true) -#320 := [rewrite]: #319 -#317 := (iff #96 #316) -#314 := (iff #95 true) -#315 := [rewrite]: #314 -#318 := [monotonicity #315]: #317 -#322 := [trans #318 #320]: #321 -#325 := [monotonicity #322]: #324 -#329 := [trans #325 #327]: #328 -#312 := (iff #92 #311) -#309 := (iff #91 #308) -#310 := [rewrite]: #309 -#313 := [quant-intro #310]: #312 -#332 := [monotonicity #313 #329]: #331 -#338 := [trans #332 #336]: #337 -#341 := [monotonicity #313 #338]: #340 -#344 := [monotonicity #341]: #343 -#348 := [trans #344 #346]: #347 -#351 := [monotonicity #348]: #350 -#357 := [trans #351 #355]: #356 -#305 := (iff #84 #304) -#302 := (= #83 #301) -#303 := [rewrite]: #302 -#306 := [monotonicity #303]: #305 -#360 := [monotonicity #306 #357]: #359 -#366 := [trans #360 #364]: #365 -#369 := [monotonicity #366]: #368 -#375 := [trans #369 #373]: #374 -#378 := [monotonicity #375]: #377 -#382 := [trans #378 #380]: #381 -#452 := [monotonicity #382]: #451 -#458 := [trans #452 #456]: #457 -#461 := [monotonicity #458]: #460 -#467 := [trans #461 #465]: #466 -#470 := [monotonicity #467]: #469 -#474 := [trans #470 #472]: #473 -#477 := [monotonicity #474]: #476 -#482 := [trans #477 #480]: #481 -#485 := [monotonicity #482]: #484 -#491 := [trans #485 #489]: #490 -#494 := [monotonicity #491]: #493 -#499 := [trans #494 #497]: #498 -#502 := [monotonicity #499]: #501 -#506 := [trans #502 #504]: #505 -#448 := (iff #112 #438) -#443 := (implies true #438) -#446 := (iff #443 #438) -#447 := [rewrite]: #446 -#444 := (iff #112 #443) -#441 := (iff #111 #438) -#435 := (implies #33 #430) -#439 := (iff #435 #438) -#440 := [rewrite]: #439 -#436 := (iff #111 #435) -#433 := (iff #110 #430) -#426 := (implies #72 #421) -#431 := (iff #426 #430) -#432 := [rewrite]: #431 -#427 := (iff #110 #426) -#424 := (iff #109 #421) -#417 := (implies #74 #412) -#422 := (iff #417 #421) -#423 := [rewrite]: #422 -#418 := (iff #109 #417) -#415 := (iff #108 #412) -#408 := (implies #32 #396) -#413 := (iff #408 #412) -#414 := [rewrite]: #413 -#409 := (iff #108 #408) -#406 := (iff #107 #396) -#401 := (implies true #396) -#404 := (iff #401 #396) -#405 := [rewrite]: #404 -#402 := (iff #107 #401) -#399 := (iff #106 #396) -#392 := (implies #77 #387) -#397 := (iff #392 #396) -#398 := [rewrite]: #397 -#393 := (iff #106 #392) -#390 := (iff #105 #387) -#383 := (implies #79 #371) -#388 := (iff #383 #387) -#389 := [rewrite]: #388 -#384 := (iff #105 #383) -#385 := [monotonicity #382]: #384 -#391 := [trans #385 #389]: #390 -#394 := [monotonicity #391]: #393 -#400 := [trans #394 #398]: #399 -#403 := [monotonicity #400]: #402 -#407 := [trans #403 #405]: #406 -#299 := (iff #75 #32) -#300 := [rewrite]: #299 -#410 := [monotonicity #300 #407]: #409 -#416 := [trans #410 #414]: #415 -#419 := [monotonicity #416]: #418 -#425 := [trans #419 #423]: #424 -#428 := [monotonicity #425]: #427 -#434 := [trans #428 #432]: #433 -#437 := [monotonicity #434]: #436 -#442 := [trans #437 #440]: #441 -#445 := [monotonicity #442]: #444 -#449 := [trans #445 #447]: #448 -#509 := [monotonicity #449 #506]: #508 -#512 := [monotonicity #509]: #511 -#517 := [trans #512 #515]: #516 -#520 := [monotonicity #517]: #519 -#526 := [trans #520 #524]: #525 -#529 := [monotonicity #526]: #528 -#534 := [trans #529 #532]: #533 -#537 := [monotonicity #534]: #536 -#541 := [trans #537 #539]: #540 -#297 := (iff #69 #287) -#292 := (implies true #287) -#295 := (iff #292 #287) -#296 := [rewrite]: #295 -#293 := (iff #69 #292) -#290 := (iff #68 #287) -#284 := (implies #33 #279) -#288 := (iff #284 #287) -#289 := [rewrite]: #288 -#285 := (iff #68 #284) -#282 := (iff #67 #279) -#275 := (implies #42 #270) -#280 := (iff #275 #279) -#281 := [rewrite]: #280 -#276 := (iff #67 #275) -#273 := (iff #66 #270) -#266 := (implies #33 #254) -#271 := (iff #266 #270) -#272 := [rewrite]: #271 -#267 := (iff #66 #266) -#264 := (iff #65 #254) -#259 := (implies true #254) -#262 := (iff #259 #254) -#263 := [rewrite]: #262 -#260 := (iff #65 #259) -#257 := (iff #64 #254) -#250 := (implies #44 #245) -#255 := (iff #250 #254) -#256 := [rewrite]: #255 -#251 := (iff #64 #250) -#248 := (iff #63 #245) -#241 := (implies #46 #236) -#246 := (iff #241 #245) -#247 := [rewrite]: #246 -#242 := (iff #63 #241) -#239 := (iff #62 #236) -#232 := (implies #48 #222) -#237 := (iff #232 #236) -#238 := [rewrite]: #237 -#233 := (iff #62 #232) -#230 := (iff #61 #222) -#225 := (implies true #222) -#228 := (iff #225 #222) -#229 := [rewrite]: #228 -#226 := (iff #61 #225) -#223 := (iff #60 #222) -#220 := (iff #59 #217) -#213 := (implies #190 #196) -#218 := (iff #213 #217) -#219 := [rewrite]: #218 -#214 := (iff #59 #213) -#211 := (iff #58 #196) -#206 := (and #196 true) -#209 := (iff #206 #196) -#210 := [rewrite]: #209 -#207 := (iff #58 #206) -#204 := (iff #57 true) -#199 := (implies #196 true) -#202 := (iff #199 true) -#203 := [rewrite]: #202 -#200 := (iff #57 #199) -#197 := (iff #56 #196) -#194 := (iff #55 #193) -#195 := [rewrite]: #194 -#198 := [quant-intro #195]: #197 -#201 := [monotonicity #198]: #200 -#205 := [trans #201 #203]: #204 -#208 := [monotonicity #198 #205]: #207 -#212 := [trans #208 #210]: #211 -#191 := (iff #53 #190) -#188 := (iff #52 #187) -#189 := [rewrite]: #188 -#192 := [quant-intro #189]: #191 -#215 := [monotonicity #192 #212]: #214 -#221 := [trans #215 #219]: #220 -#224 := [monotonicity #192 #221]: #223 -#227 := [monotonicity #224]: #226 -#231 := [trans #227 #229]: #230 -#234 := [monotonicity #231]: #233 -#240 := [trans #234 #238]: #239 -#243 := [monotonicity #240]: #242 -#249 := [trans #243 #247]: #248 -#252 := [monotonicity #249]: #251 -#258 := [trans #252 #256]: #257 -#261 := [monotonicity #258]: #260 -#265 := [trans #261 #263]: #264 -#268 := [monotonicity #265]: #267 -#274 := [trans #268 #272]: #273 -#277 := [monotonicity #274]: #276 -#283 := [trans #277 #281]: #282 -#286 := [monotonicity #283]: #285 -#291 := [trans #286 #289]: #290 -#294 := [monotonicity #291]: #293 -#298 := [trans #294 #296]: #297 -#544 := [monotonicity #298 #541]: #543 -#547 := [monotonicity #544]: #546 -#552 := [trans #547 #550]: #551 -#555 := [monotonicity #552]: #554 -#561 := [trans #555 #559]: #560 -#184 := (iff #39 #183) -#181 := (iff #38 #180) -#182 := [rewrite]: #181 -#185 := [quant-intro #182]: #184 -#564 := [monotonicity #185 #561]: #563 -#570 := [trans #564 #568]: #569 -#573 := [monotonicity #570]: #572 -#578 := [trans #573 #576]: #577 -#581 := [monotonicity #578]: #580 -#585 := [trans #581 #583]: #584 -#588 := [monotonicity #585]: #587 -#594 := [trans #588 #592]: #593 -#597 := [monotonicity #594]: #596 -#177 := (iff #27 #176) -#174 := (iff #26 #173) -#175 := [rewrite]: #174 -#178 := [quant-intro #175]: #177 -#600 := [monotonicity #178 #597]: #599 -#606 := [trans #600 #604]: #605 -#609 := [monotonicity #178 #606]: #608 -#170 := (iff #19 #169) -#167 := (iff #18 #166) -#164 := (iff #17 #16) -#165 := [rewrite]: #164 -#168 := [monotonicity #165]: #167 -#171 := [monotonicity #168]: #170 -#612 := [monotonicity #171 #609]: #611 -#618 := [trans #612 #616]: #617 -#621 := [monotonicity #618]: #620 -#627 := [trans #621 #625]: #626 -#630 := [monotonicity #627]: #629 -#634 := [trans #630 #632]: #633 -#637 := [monotonicity #634]: #636 -#643 := [trans #637 #641]: #642 -#646 := [monotonicity #643]: #645 -#650 := [trans #646 #648]: #649 -#653 := [monotonicity #650]: #652 -#1025 := [trans #653 #1023]: #1024 -#163 := [asserted]: #143 -#1026 := [mp #163 #1025]: #1021 -#1028 := [not-or-elim #1026]: #13 -#1933 := [trans #1028 #1926]: #1999 -#1821 := (not #1033) -#1812 := (or #1405 #1821) -#1823 := [def-axiom]: #1812 -#1935 := [unit-resolution #1823 #1998]: #1821 -#1936 := (not #1999) -#1964 := (or #1936 #1033) -#1937 := [th-lemma arith triangle-eq]: #1964 -#1939 := [unit-resolution #1937 #1935 #1933]: false -#1940 := [lemma #1939]: #1405 -#2250 := (or #1410 #2247) -#1592 := (forall (vars (?v0 Int)) #1587) -#1598 := (not #1592) -#1599 := (or #1598 #94) -#1600 := (not #1599) -#1605 := (or #1570 #1600) -#1613 := (not #1605) -#1623 := (or #1542 #844 #462 #453 #841 #832 #1611 #1612 #1613) -#1624 := (not #1623) -#1614 := (or #1542 #845 #420 #395 #386 #841 #832 #1611 #1612 #1613) -#1615 := (not #1614) -#1629 := (or #1615 #1624) -#1635 := (not #1629) -#1636 := (or #1542 #841 #755 #1635) -#1637 := (not #1636) -#1480 := (forall (vars (?v0 Int)) #1477) -#1536 := (or #1480 #1531) -#1543 := (not #1536) -#1544 := (or #1542 #841 #758 #253 #244 #235 #1543) -#1545 := (not #1544) -#1642 := (or #1545 #1637) -#1649 := (not #1642) -#1455 := (forall (vars (?v0 Int)) #1450) -#1648 := (not #1455) -#1650 := (or #589 #1542 #841 #1648 #556 #1649) -#1651 := (not #1650) -#1656 := (or #589 #1651) -#1663 := (not #1656) -#1433 := (forall (vars (?v0 Int)) #1428) -#1662 := (not #1433) -#1664 := (or #1662 #1663) -#1665 := (not #1664) -#1670 := (or #1410 #1665) -#2251 := (iff #1670 #2250) -#2248 := (iff #1665 #2247) -#2245 := (iff #1664 #2244) -#2242 := (iff #1663 #2241) -#2239 := (iff #1656 #2238) -#2236 := (iff #1651 #2235) -#2233 := (iff #1650 #2232) -#2230 := (iff #1649 #2229) -#2227 := (iff #1642 #2226) -#2224 := (iff #1637 #2223) -#2221 := (iff #1636 #2220) -#2218 := (iff #1635 #2217) -#2215 := (iff #1629 #2214) -#2212 := (iff #1624 #2211) -#2209 := (iff #1623 #2208) -#2200 := (iff #1613 #2199) -#2197 := (iff #1605 #2196) -#2194 := (iff #1600 #2193) -#2191 := (iff #1599 #2190) -#2188 := (iff #1598 #2187) -#2185 := (iff #1592 #2182) -#2183 := (iff #1587 #1587) -#2184 := [refl]: #2183 -#2186 := [quant-intro #2184]: #2185 -#2189 := [monotonicity #2186]: #2188 -#2192 := [monotonicity #2189]: #2191 -#2195 := [monotonicity #2192]: #2194 -#2198 := [monotonicity #2195]: #2197 -#2201 := [monotonicity #2198]: #2200 -#2210 := [monotonicity #2201]: #2209 -#2213 := [monotonicity #2210]: #2212 -#2206 := (iff #1615 #2205) -#2203 := (iff #1614 #2202) -#2204 := [monotonicity #2201]: #2203 -#2207 := [monotonicity #2204]: #2206 -#2216 := [monotonicity #2207 #2213]: #2215 -#2219 := [monotonicity #2216]: #2218 -#2222 := [monotonicity #2219]: #2221 -#2225 := [monotonicity #2222]: #2224 -#2180 := (iff #1545 #2179) -#2177 := (iff #1544 #2176) -#2174 := (iff #1543 #2173) -#2171 := (iff #1536 #2170) -#2168 := (iff #1480 #2165) -#2166 := (iff #1477 #1477) -#2167 := [refl]: #2166 -#2169 := [quant-intro #2167]: #2168 -#2172 := [monotonicity #2169]: #2171 -#2175 := [monotonicity #2172]: #2174 -#2178 := [monotonicity #2175]: #2177 -#2181 := [monotonicity #2178]: #2180 -#2228 := [monotonicity #2181 #2225]: #2227 -#2231 := [monotonicity #2228]: #2230 -#2163 := (iff #1648 #2162) -#2160 := (iff #1455 #2157) -#2158 := (iff #1450 #1450) -#2159 := [refl]: #2158 -#2161 := [quant-intro #2159]: #2160 -#2164 := [monotonicity #2161]: #2163 -#2234 := [monotonicity #2164 #2231]: #2233 -#2237 := [monotonicity #2234]: #2236 -#2240 := [monotonicity #2237]: #2239 -#2243 := [monotonicity #2240]: #2242 -#2155 := (iff #1662 #2154) -#2152 := (iff #1433 #2149) -#2150 := (iff #1428 #1428) -#2151 := [refl]: #2150 -#2153 := [quant-intro #2151]: #2152 -#2156 := [monotonicity #2153]: #2155 -#2246 := [monotonicity #2156 #2243]: #2245 -#2249 := [monotonicity #2246]: #2248 -#2252 := [monotonicity #2249]: #2251 -#1188 := (not #94) -#1191 := (and #816 #1188) -#1317 := (not #1312) -#1320 := (and #1166 #1317) -#1323 := (not #1320) -#1339 := (or #1323 #1334) -#1342 := (not #1339) -#1345 := (or #1342 #1191) -#1363 := (and #704 #845 #114 #115 #707 #828 #785 #788 #1345) -#1351 := (and #704 #844 #74 #77 #79 #707 #828 #785 #788 #1345) -#1368 := (or #1351 #1363) -#1374 := (and #704 #707 #758 #1368) -#1115 := (not #1114) -#1116 := (and #1111 #1115) -#1117 := (not #1116) -#1270 := (or #1117 #1265) -#1273 := (not #1270) -#1097 := (not #1096) -#1098 := (and #1093 #1097) -#1099 := (not #1098) -#1102 := (or #1099 #1101) -#1276 := (and #1102 #1273) -#1086 := (not #727) -#1089 := (forall (vars (?v0 Int)) #1086) -#1279 := (or #1089 #1276) -#1285 := (and #704 #707 #755 #44 #46 #48 #1279) -#1379 := (or #1285 #1374) -#1385 := (and #28 #704 #707 #961 #41 #1379) -#1390 := (or #589 #1385) -#1393 := (and #697 #1390) -#1036 := (and #1041 #1043) -#1037 := (not #1036) -#1044 := (or #1037 #1033) -#1045 := (not #1044) -#1396 := (or #1045 #1393) -#1671 := (iff #1396 #1670) -#1668 := (iff #1393 #1665) -#1659 := (and #1433 #1656) -#1666 := (iff #1659 #1665) -#1667 := [rewrite]: #1666 -#1660 := (iff #1393 #1659) -#1657 := (iff #1390 #1656) -#1654 := (iff #1385 #1651) -#1645 := (and #28 #704 #707 #1455 #41 #1642) -#1652 := (iff #1645 #1651) -#1653 := [rewrite]: #1652 -#1646 := (iff #1385 #1645) -#1643 := (iff #1379 #1642) -#1640 := (iff #1374 #1637) -#1632 := (and #704 #707 #758 #1629) -#1638 := (iff #1632 #1637) -#1639 := [rewrite]: #1638 -#1633 := (iff #1374 #1632) -#1630 := (iff #1368 #1629) -#1627 := (iff #1363 #1624) -#1620 := (and #704 #845 #114 #115 #707 #828 #785 #788 #1605) -#1625 := (iff #1620 #1624) -#1626 := [rewrite]: #1625 -#1621 := (iff #1363 #1620) -#1606 := (iff #1345 #1605) -#1603 := (iff #1191 #1600) -#1595 := (and #1592 #1188) -#1601 := (iff #1595 #1600) -#1602 := [rewrite]: #1601 -#1596 := (iff #1191 #1595) -#1593 := (iff #816 #1592) -#1590 := (iff #813 #1587) -#1573 := (or #1413 #796) -#1584 := (or #1573 #810) -#1588 := (iff #1584 #1587) -#1589 := [rewrite]: #1588 -#1585 := (iff #813 #1584) -#1582 := (iff #805 #1573) -#1574 := (not #1573) -#1577 := (not #1574) -#1580 := (iff #1577 #1573) -#1581 := [rewrite]: #1580 -#1578 := (iff #805 #1577) -#1575 := (iff #802 #1574) -#1576 := [rewrite]: #1575 -#1579 := [monotonicity #1576]: #1578 -#1583 := [trans #1579 #1581]: #1582 -#1586 := [monotonicity #1583]: #1585 -#1591 := [trans #1586 #1589]: #1590 -#1594 := [quant-intro #1591]: #1593 -#1597 := [monotonicity #1594]: #1596 -#1604 := [trans #1597 #1602]: #1603 -#1571 := (iff #1342 #1570) -#1568 := (iff #1339 #1565) -#1551 := (or #1550 #1312) -#1562 := (or #1551 #1334) -#1566 := (iff #1562 #1565) -#1567 := [rewrite]: #1566 -#1563 := (iff #1339 #1562) -#1560 := (iff #1323 #1551) -#1552 := (not #1551) -#1555 := (not #1552) -#1558 := (iff #1555 #1551) -#1559 := [rewrite]: #1558 -#1556 := (iff #1323 #1555) -#1553 := (iff #1320 #1552) -#1554 := [rewrite]: #1553 -#1557 := [monotonicity #1554]: #1556 -#1561 := [trans #1557 #1559]: #1560 -#1564 := [monotonicity #1561]: #1563 -#1569 := [trans #1564 #1567]: #1568 -#1572 := [monotonicity #1569]: #1571 -#1607 := [monotonicity #1572 #1604]: #1606 -#1622 := [monotonicity #1607]: #1621 -#1628 := [trans #1622 #1626]: #1627 -#1618 := (iff #1351 #1615) -#1608 := (and #704 #844 #74 #77 #79 #707 #828 #785 #788 #1605) -#1616 := (iff #1608 #1615) -#1617 := [rewrite]: #1616 -#1609 := (iff #1351 #1608) -#1610 := [monotonicity #1607]: #1609 -#1619 := [trans #1610 #1617]: #1618 -#1631 := [monotonicity #1619 #1628]: #1630 -#1634 := [monotonicity #1631]: #1633 -#1641 := [trans #1634 #1639]: #1640 -#1548 := (iff #1285 #1545) -#1539 := (and #704 #707 #755 #44 #46 #48 #1536) -#1546 := (iff #1539 #1545) -#1547 := [rewrite]: #1546 -#1540 := (iff #1285 #1539) -#1537 := (iff #1279 #1536) -#1534 := (iff #1276 #1531) -#1518 := (or #1503 #1114 #1265) -#1523 := (not #1518) -#1526 := (and #1498 #1523) -#1532 := (iff #1526 #1531) -#1533 := [rewrite]: #1532 -#1527 := (iff #1276 #1526) -#1524 := (iff #1273 #1523) -#1521 := (iff #1270 #1518) -#1504 := (or #1503 #1114) -#1515 := (or #1504 #1265) -#1519 := (iff #1515 #1518) -#1520 := [rewrite]: #1519 -#1516 := (iff #1270 #1515) -#1513 := (iff #1117 #1504) -#1505 := (not #1504) -#1508 := (not #1505) -#1511 := (iff #1508 #1504) -#1512 := [rewrite]: #1511 -#1509 := (iff #1117 #1508) -#1506 := (iff #1116 #1505) -#1507 := [rewrite]: #1506 -#1510 := [monotonicity #1507]: #1509 -#1514 := [trans #1510 #1512]: #1513 -#1517 := [monotonicity #1514]: #1516 -#1522 := [trans #1517 #1520]: #1521 -#1525 := [monotonicity #1522]: #1524 -#1501 := (iff #1102 #1498) -#1484 := (or #1483 #1096) -#1495 := (or #1484 #1101) -#1499 := (iff #1495 #1498) -#1500 := [rewrite]: #1499 -#1496 := (iff #1102 #1495) -#1493 := (iff #1099 #1484) -#1485 := (not #1484) -#1488 := (not #1485) -#1491 := (iff #1488 #1484) -#1492 := [rewrite]: #1491 -#1489 := (iff #1099 #1488) -#1486 := (iff #1098 #1485) -#1487 := [rewrite]: #1486 -#1490 := [monotonicity #1487]: #1489 -#1494 := [trans #1490 #1492]: #1493 -#1497 := [monotonicity #1494]: #1496 -#1502 := [trans #1497 #1500]: #1501 -#1528 := [monotonicity #1502 #1525]: #1527 -#1535 := [trans #1528 #1533]: #1534 -#1481 := (iff #1089 #1480) -#1478 := (iff #1086 #1477) -#1475 := (iff #727 #1472) -#1458 := (or #1413 #717) -#1469 := (or #1458 #51) -#1473 := (iff #1469 #1472) -#1474 := [rewrite]: #1473 -#1470 := (iff #727 #1469) -#1467 := (iff #724 #1458) -#1459 := (not #1458) -#1462 := (not #1459) -#1465 := (iff #1462 #1458) -#1466 := [rewrite]: #1465 -#1463 := (iff #724 #1462) -#1460 := (iff #721 #1459) -#1461 := [rewrite]: #1460 -#1464 := [monotonicity #1461]: #1463 -#1468 := [trans #1464 #1466]: #1467 -#1471 := [monotonicity #1468]: #1470 -#1476 := [trans #1471 #1474]: #1475 -#1479 := [monotonicity #1476]: #1478 -#1482 := [quant-intro #1479]: #1481 -#1538 := [monotonicity #1482 #1535]: #1537 -#1541 := [monotonicity #1538]: #1540 -#1549 := [trans #1541 #1547]: #1548 -#1644 := [monotonicity #1549 #1641]: #1643 -#1456 := (iff #961 #1455) -#1453 := (iff #958 #1450) -#1436 := (or #1413 #942) -#1447 := (or #1436 #955) -#1451 := (iff #1447 #1450) -#1452 := [rewrite]: #1451 -#1448 := (iff #958 #1447) -#1445 := (iff #950 #1436) -#1437 := (not #1436) -#1440 := (not #1437) -#1443 := (iff #1440 #1436) -#1444 := [rewrite]: #1443 -#1441 := (iff #950 #1440) -#1438 := (iff #947 #1437) -#1439 := [rewrite]: #1438 -#1442 := [monotonicity #1439]: #1441 -#1446 := [trans #1442 #1444]: #1445 -#1449 := [monotonicity #1446]: #1448 -#1454 := [trans #1449 #1452]: #1453 -#1457 := [quant-intro #1454]: #1456 -#1647 := [monotonicity #1457 #1644]: #1646 -#1655 := [trans #1647 #1653]: #1654 -#1658 := [monotonicity #1655]: #1657 -#1434 := (iff #697 #1433) -#1431 := (iff #694 #1428) -#1414 := (or #1413 #680) -#1425 := (or #1414 #690) -#1429 := (iff #1425 #1428) -#1430 := [rewrite]: #1429 -#1426 := (iff #694 #1425) -#1423 := (iff #685 #1414) -#1415 := (not #1414) -#1418 := (not #1415) -#1421 := (iff #1418 #1414) -#1422 := [rewrite]: #1421 -#1419 := (iff #685 #1418) -#1416 := (iff #682 #1415) -#1417 := [rewrite]: #1416 -#1420 := [monotonicity #1417]: #1419 -#1424 := [trans #1420 #1422]: #1423 -#1427 := [monotonicity #1424]: #1426 -#1432 := [trans #1427 #1430]: #1431 -#1435 := [quant-intro #1432]: #1434 -#1661 := [monotonicity #1435 #1658]: #1660 -#1669 := [trans #1661 #1667]: #1668 -#1411 := (iff #1045 #1410) -#1408 := (iff #1044 #1405) -#1180 := (or #1179 #1042) -#1402 := (or #1180 #1033) -#1406 := (iff #1402 #1405) -#1407 := [rewrite]: #1406 -#1403 := (iff #1044 #1402) -#1400 := (iff #1037 #1180) -#1126 := (not #1180) -#1049 := (not #1126) -#1244 := (iff #1049 #1180) -#1399 := [rewrite]: #1244 -#1105 := (iff #1037 #1049) -#1127 := (iff #1036 #1126) -#1048 := [rewrite]: #1127 -#1106 := [monotonicity #1048]: #1105 -#1401 := [trans #1106 #1399]: #1400 -#1404 := [monotonicity #1401]: #1403 -#1409 := [trans #1404 #1407]: #1408 -#1412 := [monotonicity #1409]: #1411 -#1672 := [monotonicity #1412 #1669]: #1671 -#1173 := (+ #1172 #808) -#1174 := (<= #1173 0::Int) -#1167 := (+ ?v0!3 #797) -#1168 := (>= #1167 0::Int) -#1169 := (not #1168) -#1170 := (and #1166 #1169) -#1171 := (not #1170) -#1175 := (or #1171 #1174) -#1176 := (not #1175) -#1195 := (or #1176 #1191) -#1162 := (not #793) -#1159 := (not #832) -#1156 := (not #838) -#1208 := (not #453) -#1205 := (not #462) -#1062 := (not #712) -#1211 := (and #1062 #850 #1205 #1208 #1156 #1159 #1162 #1195) -#1153 := (not #386) -#1150 := (not #395) -#1147 := (not #841) -#1144 := (not #420) -#1199 := (and #1062 #844 #1144 #1147 #1150 #1153 #1156 #1159 #1162 #1195) -#1215 := (or #1199 #1211) -#1219 := (and #1062 #758 #1215) -#1119 := (+ #1118 #736) -#1120 := (<= #1119 0::Int) -#1121 := (or #1117 #1120) -#1122 := (not #1121) -#1128 := (and #1102 #1122) -#1132 := (or #1089 #1128) -#1083 := (not #235) -#1080 := (not #244) -#1077 := (not #253) -#1136 := (and #1062 #918 #1077 #1080 #1083 #1132) -#1223 := (or #1136 #1219) -#1072 := (not #556) -#1059 := (not #589) -#1227 := (and #1059 #1062 #961 #1072 #1223) -#1231 := (or #589 #1227) -#1235 := (and #697 #1231) -#1239 := (or #1045 #1235) -#1397 := (iff #1239 #1396) -#1394 := (iff #1235 #1393) -#1391 := (iff #1231 #1390) -#1388 := (iff #1227 #1385) -#1382 := (and #28 #709 #961 #41 #1379) -#1386 := (iff #1382 #1385) -#1387 := [rewrite]: #1386 -#1383 := (iff #1227 #1382) -#1380 := (iff #1223 #1379) -#1377 := (iff #1219 #1374) -#1371 := (and #709 #758 #1368) -#1375 := (iff #1371 #1374) -#1376 := [rewrite]: #1375 -#1372 := (iff #1219 #1371) -#1369 := (iff #1215 #1368) -#1366 := (iff #1211 #1363) -#1360 := (and #709 #845 #114 #115 #835 #828 #790 #1345) -#1364 := (iff #1360 #1363) -#1365 := [rewrite]: #1364 -#1361 := (iff #1211 #1360) -#1346 := (iff #1195 #1345) -#1343 := (iff #1176 #1342) -#1340 := (iff #1175 #1339) -#1337 := (iff #1174 #1334) -#1326 := (+ #808 #1172) -#1329 := (<= #1326 0::Int) -#1335 := (iff #1329 #1334) -#1336 := [rewrite]: #1335 -#1330 := (iff #1174 #1329) -#1327 := (= #1173 #1326) -#1328 := [rewrite]: #1327 -#1331 := [monotonicity #1328]: #1330 -#1338 := [trans #1331 #1336]: #1337 -#1324 := (iff #1171 #1323) -#1321 := (iff #1170 #1320) -#1318 := (iff #1169 #1317) -#1315 := (iff #1168 #1312) -#1304 := (+ #797 ?v0!3) -#1307 := (>= #1304 0::Int) -#1313 := (iff #1307 #1312) -#1314 := [rewrite]: #1313 -#1308 := (iff #1168 #1307) -#1305 := (= #1167 #1304) -#1306 := [rewrite]: #1305 -#1309 := [monotonicity #1306]: #1308 -#1316 := [trans #1309 #1314]: #1315 -#1319 := [monotonicity #1316]: #1318 -#1322 := [monotonicity #1319]: #1321 -#1325 := [monotonicity #1322]: #1324 -#1341 := [monotonicity #1325 #1338]: #1340 -#1344 := [monotonicity #1341]: #1343 -#1347 := [monotonicity #1344]: #1346 -#1302 := (iff #1162 #790) -#1303 := [rewrite]: #1302 -#1300 := (iff #1159 #828) -#1301 := [rewrite]: #1300 -#1298 := (iff #1156 #835) -#1299 := [rewrite]: #1298 -#1358 := (iff #1208 #115) -#1359 := [rewrite]: #1358 -#1356 := (iff #1205 #114) -#1357 := [rewrite]: #1356 -#1247 := (iff #1062 #709) -#1248 := [rewrite]: #1247 -#1362 := [monotonicity #1248 #854 #1357 #1359 #1299 #1301 #1303 #1347]: #1361 -#1367 := [trans #1362 #1365]: #1366 -#1354 := (iff #1199 #1351) -#1348 := (and #709 #844 #74 #707 #77 #79 #835 #828 #790 #1345) -#1352 := (iff #1348 #1351) -#1353 := [rewrite]: #1352 -#1349 := (iff #1199 #1348) -#1296 := (iff #1153 #79) -#1297 := [rewrite]: #1296 -#1294 := (iff #1150 #77) -#1295 := [rewrite]: #1294 -#1292 := (iff #1147 #707) -#1293 := [rewrite]: #1292 -#1290 := (iff #1144 #74) -#1291 := [rewrite]: #1290 -#1350 := [monotonicity #1248 #1291 #1293 #1295 #1297 #1299 #1301 #1303 #1347]: #1349 -#1355 := [trans #1350 #1353]: #1354 -#1370 := [monotonicity #1355 #1367]: #1369 -#1373 := [monotonicity #1248 #1370]: #1372 -#1378 := [trans #1373 #1376]: #1377 -#1288 := (iff #1136 #1285) -#1282 := (and #709 #755 #44 #46 #48 #1279) -#1286 := (iff #1282 #1285) -#1287 := [rewrite]: #1286 -#1283 := (iff #1136 #1282) -#1280 := (iff #1132 #1279) -#1277 := (iff #1128 #1276) -#1274 := (iff #1122 #1273) -#1271 := (iff #1121 #1270) -#1268 := (iff #1120 #1265) -#1257 := (+ #736 #1118) -#1260 := (<= #1257 0::Int) -#1266 := (iff #1260 #1265) -#1267 := [rewrite]: #1266 -#1261 := (iff #1120 #1260) -#1258 := (= #1119 #1257) -#1259 := [rewrite]: #1258 -#1262 := [monotonicity #1259]: #1261 -#1269 := [trans #1262 #1267]: #1268 -#1272 := [monotonicity #1269]: #1271 -#1275 := [monotonicity #1272]: #1274 -#1278 := [monotonicity #1275]: #1277 -#1281 := [monotonicity #1278]: #1280 -#1255 := (iff #1083 #48) -#1256 := [rewrite]: #1255 -#1253 := (iff #1080 #46) -#1254 := [rewrite]: #1253 -#1251 := (iff #1077 #44) -#1252 := [rewrite]: #1251 -#1284 := [monotonicity #1248 #922 #1252 #1254 #1256 #1281]: #1283 -#1289 := [trans #1284 #1287]: #1288 -#1381 := [monotonicity #1289 #1378]: #1380 -#1249 := (iff #1072 #41) -#1250 := [rewrite]: #1249 -#1245 := (iff #1059 #28) -#1246 := [rewrite]: #1245 -#1384 := [monotonicity #1246 #1248 #1250 #1381]: #1383 -#1389 := [trans #1384 #1387]: #1388 -#1392 := [monotonicity #1389]: #1391 -#1395 := [monotonicity #1392]: #1394 -#1398 := [monotonicity #1395]: #1397 -#1029 := (not #993) -#1240 := (~ #1029 #1239) -#1236 := (not #990) -#1237 := (~ #1236 #1235) -#1232 := (not #987) -#1233 := (~ #1232 #1231) -#1228 := (not #982) -#1229 := (~ #1228 #1227) -#1224 := (not #939) -#1225 := (~ #1224 #1223) -#1220 := (not #934) -#1221 := (~ #1220 #1219) -#1216 := (not #913) -#1217 := (~ #1216 #1215) -#1212 := (not #908) -#1213 := (~ #1212 #1211) -#1196 := (not #825) -#1197 := (~ #1196 #1195) -#1192 := (not #822) -#1193 := (~ #1192 #1191) -#1189 := (~ #1188 #1188) -#1190 := [refl]: #1189 -#1185 := (not #819) -#1186 := (~ #1185 #816) -#1183 := (~ #816 #816) -#1181 := (~ #813 #813) -#1182 := [refl]: #1181 -#1184 := [nnf-pos #1182]: #1183 -#1187 := [nnf-neg #1184]: #1186 -#1194 := [nnf-neg #1187 #1190]: #1193 -#1177 := (~ #819 #1176) -#1178 := [sk]: #1177 -#1198 := [nnf-neg #1178 #1194]: #1197 -#1163 := (~ #1162 #1162) -#1164 := [refl]: #1163 -#1160 := (~ #1159 #1159) -#1161 := [refl]: #1160 -#1157 := (~ #1156 #1156) -#1158 := [refl]: #1157 -#1209 := (~ #1208 #1208) -#1210 := [refl]: #1209 -#1206 := (~ #1205 #1205) -#1207 := [refl]: #1206 -#1203 := (~ #850 #850) -#1204 := [refl]: #1203 -#1063 := (~ #1062 #1062) -#1064 := [refl]: #1063 -#1214 := [nnf-neg #1064 #1204 #1207 #1210 #1158 #1161 #1164 #1198]: #1213 -#1200 := (not #884) -#1201 := (~ #1200 #1199) -#1154 := (~ #1153 #1153) -#1155 := [refl]: #1154 -#1151 := (~ #1150 #1150) -#1152 := [refl]: #1151 -#1148 := (~ #1147 #1147) -#1149 := [refl]: #1148 -#1145 := (~ #1144 #1144) -#1146 := [refl]: #1145 -#1142 := (~ #844 #844) -#1143 := [refl]: #1142 -#1202 := [nnf-neg #1064 #1143 #1146 #1149 #1152 #1155 #1158 #1161 #1164 #1198]: #1201 -#1218 := [nnf-neg #1202 #1214]: #1217 -#1140 := (~ #758 #758) -#1141 := [refl]: #1140 -#1222 := [nnf-neg #1064 #1141 #1218]: #1221 -#1137 := (not #779) -#1138 := (~ #1137 #1136) -#1133 := (not #750) -#1134 := (~ #1133 #1132) -#1129 := (not #747) -#1130 := (~ #1129 #1128) -#1123 := (not #744) -#1124 := (~ #1123 #1122) -#1125 := [sk]: #1124 -#1107 := (not #733) -#1108 := (~ #1107 #1102) -#1103 := (~ #730 #1102) -#1104 := [sk]: #1103 -#1109 := [nnf-neg #1104]: #1108 -#1131 := [nnf-neg #1109 #1125]: #1130 -#1090 := (~ #733 #1089) -#1087 := (~ #1086 #1086) -#1088 := [refl]: #1087 -#1091 := [nnf-neg #1088]: #1090 -#1135 := [nnf-neg #1091 #1131]: #1134 -#1084 := (~ #1083 #1083) -#1085 := [refl]: #1084 -#1081 := (~ #1080 #1080) -#1082 := [refl]: #1081 -#1078 := (~ #1077 #1077) -#1079 := [refl]: #1078 -#1075 := (~ #918 #918) -#1076 := [refl]: #1075 -#1139 := [nnf-neg #1064 #1076 #1079 #1082 #1085 #1135]: #1138 -#1226 := [nnf-neg #1139 #1222]: #1225 -#1073 := (~ #1072 #1072) -#1074 := [refl]: #1073 -#1069 := (not #964) -#1070 := (~ #1069 #961) -#1067 := (~ #961 #961) -#1065 := (~ #958 #958) -#1066 := [refl]: #1065 -#1068 := [nnf-pos #1066]: #1067 -#1071 := [nnf-neg #1068]: #1070 -#1060 := (~ #1059 #1059) -#1061 := [refl]: #1060 -#1230 := [nnf-neg #1061 #1064 #1071 #1074 #1226]: #1229 -#1057 := (~ #589 #589) -#1058 := [refl]: #1057 -#1234 := [nnf-neg #1058 #1230]: #1233 -#1054 := (not #700) -#1055 := (~ #1054 #697) -#1052 := (~ #697 #697) -#1050 := (~ #694 #694) -#1051 := [refl]: #1050 -#1053 := [nnf-pos #1051]: #1052 -#1056 := [nnf-neg #1053]: #1055 -#1238 := [nnf-neg #1056 #1234]: #1237 -#1046 := (~ #700 #1045) -#1047 := [sk]: #1046 -#1241 := [nnf-neg #1047 #1238]: #1240 -#1030 := [not-or-elim #1026]: #1029 -#1242 := [mp~ #1030 #1241]: #1239 -#1243 := [mp #1242 #1398]: #1396 -#1673 := [mp #1243 #1672]: #1670 -#2253 := [mp #1673 #2252]: #2250 -#1748 := [unit-resolution #2253 #1940]: #2247 -#2018 := (or #2244 #2238) -#2019 := [def-axiom]: #2018 -#1744 := [unit-resolution #2019 #1748]: #2238 -#1740 := (or #2241 #2235) -#1738 := (iff #13 #28) -#1749 := (iff #28 #13) -#1736 := [commutativity]: #1749 -#1739 := [symm #1736]: #1738 -#1737 := [mp #1028 #1739]: #28 -#2017 := (or #2241 #589 #2235) -#2013 := [def-axiom]: #2017 -#2254 := [unit-resolution #2013 #1737]: #1740 -#2255 := [unit-resolution #2254 #1744]: #2235 -#2024 := (or #2232 #2226) -#2026 := [def-axiom]: #2024 -#2335 := [unit-resolution #2026 #2255]: #2226 -#2293 := [hypothesis]: #2179 -#1841 := (or #2176 #2170) -#2115 := [def-axiom]: #1841 -#2294 := [unit-resolution #2115 #2293]: #2170 -#2130 := (not #2165) -#1741 := (or #2176 #46) -#2117 := [def-axiom]: #1741 -#2295 := [unit-resolution #2117 #2293]: #46 -#2328 := (or #2130 #244) -#2303 := (= #40 f11) -#2300 := (* -1::Int f7) -#2301 := (+ f3 #2300) -#2302 := (<= #2301 0::Int) -#2304 := (or #1542 #2302 #2303) -#1857 := (= f9 f11) -#2306 := [hypothesis]: #46 -#2323 := [symm #2306]: #1857 -#2045 := (or #2232 #41) -#2023 := [def-axiom]: #2045 -#2307 := [unit-resolution #2023 #2255]: #41 -#2324 := [trans #2307 #2323]: #2303 -#2318 := (not #2303) -#2319 := (or #2304 #2318) -#2320 := [def-axiom]: #2319 -#2325 := [unit-resolution #2320 #2324]: #2304 -#2326 := [hypothesis]: #2165 -#2305 := (not #2304) -#2308 := (or #2130 #2305) -#2309 := [quant-inst #29]: #2308 -#2327 := [unit-resolution #2309 #2326 #2325]: false -#2329 := [lemma #2327]: #2328 -#2296 := [unit-resolution #2329 #2295]: #2130 -#1774 := (or #2173 #2165 #1531) -#2134 := [def-axiom]: #1774 -#2297 := [unit-resolution #2134 #2296 #2294]: #1531 -#1787 := (or #1530 #1111) -#1788 := [def-axiom]: #1787 -#2298 := [unit-resolution #1788 #2297]: #1111 -#1816 := (+ f8 #1112) -#1817 := (<= #1816 0::Int) -#1767 := (not #1817) -#1844 := (or #2176 #755) -#1845 := [def-axiom]: #1844 -#2299 := [unit-resolution #1845 #2293]: #755 -#1789 := (or #1530 #1115) -#2125 := [def-axiom]: #1789 -#2282 := [unit-resolution #2125 #2297]: #1115 -#1750 := (or #1767 #758 #1114) -#1763 := [hypothesis]: #1115 -#1764 := [hypothesis]: #1817 -#1766 := [hypothesis]: #755 -#1762 := [th-lemma arith farkas -1 -1 1 #1766 #1764 #1763]: false -#1753 := [lemma #1762]: #1750 -#2283 := [unit-resolution #1753 #2282 #2299]: #1767 -#1793 := (+ f9 #1263) -#1794 := (>= #1793 0::Int) -#1752 := (not #1794) -#1859 := (+ f9 #736) -#1848 := (<= #1859 0::Int) -#2281 := [symm #2295]: #1857 -#2284 := (not #1857) -#2285 := (or #2284 #1848) -#2286 := [th-lemma arith triangle-eq]: #2285 -#2287 := [unit-resolution #2286 #2281]: #1848 -#2126 := (not #1265) -#2127 := (or #1530 #2126) -#2128 := [def-axiom]: #2127 -#2288 := [unit-resolution #2128 #2297]: #2126 -#1760 := (not #1848) -#1745 := (or #1752 #1265 #1760) -#1754 := [hypothesis]: #1848 -#1757 := [hypothesis]: #2126 -#1758 := [hypothesis]: #1794 -#1759 := [th-lemma arith farkas -1 1 1 #1758 #1757 #1754]: false -#1742 := [lemma #1759]: #1745 -#2289 := [unit-resolution #1742 #2288 #2287]: #1752 -#1779 := (or #1503 #1817 #1794) -#1743 := [hypothesis]: #1752 -#1746 := [hypothesis]: #1767 -#1747 := [hypothesis]: #1111 -#2044 := (or #2232 #2157) -#2034 := [def-axiom]: #2044 -#2256 := [unit-resolution #2034 #2255]: #2157 -#1835 := (or #2162 #1503 #1817 #1794) -#1829 := (+ #1118 #953) -#1839 := (<= #1829 0::Int) -#1843 := (+ ?v0!2 #753) -#1853 := (>= #1843 0::Int) -#1806 := (or #1503 #1853 #1839) -#1836 := (or #2162 #1806) -#1755 := (iff #1836 #1835) -#1775 := (or #2162 #1779) -#1776 := (iff #1775 #1835) -#1751 := [rewrite]: #1776 -#1770 := (iff #1836 #1775) -#1780 := (iff #1806 #1779) -#1796 := (iff #1839 #1794) -#1804 := (+ #953 #1118) -#1790 := (<= #1804 0::Int) -#1795 := (iff #1790 #1794) -#1784 := [rewrite]: #1795 -#1791 := (iff #1839 #1790) -#1783 := (= #1829 #1804) -#1785 := [rewrite]: #1783 -#1792 := [monotonicity #1785]: #1791 -#1777 := [trans #1792 #1784]: #1796 -#1801 := (iff #1853 #1817) -#1808 := (+ #753 ?v0!2) -#1813 := (>= #1808 0::Int) -#1807 := (iff #1813 #1817) -#1818 := [rewrite]: #1807 -#1814 := (iff #1853 #1813) -#1809 := (= #1843 #1808) -#1800 := [rewrite]: #1809 -#1815 := [monotonicity #1800]: #1814 -#1803 := [trans #1815 #1818]: #1801 -#1778 := [monotonicity #1803 #1777]: #1780 -#1781 := [monotonicity #1778]: #1770 -#1756 := [trans #1781 #1751]: #1755 -#1772 := [quant-inst #1110]: #1836 -#1761 := [mp #1772 #1756]: #1835 -#2257 := [unit-resolution #1761 #2256 #1747 #1746 #1743]: false -#2258 := [lemma #2257]: #1779 -#2313 := [unit-resolution #2258 #2289 #2283 #2298]: false -#2314 := [lemma #2313]: #2176 -#2036 := (or #2229 #2179 #2223) -#2037 := [def-axiom]: #2036 -#2333 := [unit-resolution #2037 #2314 #2335]: #2223 -#2049 := (or #2220 #2214) -#2050 := [def-axiom]: #2049 -#2499 := [unit-resolution #2050 #2333]: #2214 -#2420 := (= #71 #1172) -#2434 := (not #2420) -#2421 := (+ #71 #1332) -#2423 := (>= #2421 0::Int) -#2428 := (not #2423) -#2322 := (+ #71 #808) -#2290 := (<= #2322 0::Int) -#2321 := (= #71 f15) -#2455 := (= f13 f15) -#2450 := [hypothesis]: #2205 -#1931 := (or #2202 #79) -#2084 := [def-axiom]: #1931 -#2451 := [unit-resolution #2084 #2450]: #79 -#2456 := [symm #2451]: #2455 -#2453 := (= #71 f13) -#2092 := (or #2202 #74) -#2099 := [def-axiom]: #2092 -#2452 := [unit-resolution #2099 #2450]: #74 -#2454 := [symm #2452]: #2453 -#2457 := [trans #2454 #2456]: #2321 -#2458 := (not #2321) -#2459 := (or #2458 #2290) -#2460 := [th-lemma arith triangle-eq]: #2459 -#2461 := [unit-resolution #2460 #2457]: #2290 -#2112 := (not #1334) -#1932 := (or #2202 #2196) -#2080 := [def-axiom]: #1932 -#2462 := [unit-resolution #2080 #2450]: #2196 -#2466 := (= #93 f13) -#2464 := (= #93 #71) -#1928 := (or #2202 #77) -#1930 := [def-axiom]: #1928 -#2463 := [unit-resolution #1930 #2450]: #77 -#2465 := [monotonicity #2463]: #2464 -#2467 := [trans #2465 #2454]: #2466 -#2468 := [trans #2467 #2456]: #94 -#2104 := (or #2190 #1188) -#2100 := [def-axiom]: #2104 -#2469 := [unit-resolution #2100 #2468]: #2190 -#2095 := (or #2199 #1570 #2193) -#2096 := [def-axiom]: #2095 -#2470 := [unit-resolution #2096 #2469 #2462]: #1570 -#1827 := (or #1565 #2112) -#2109 := [def-axiom]: #1827 -#2471 := [unit-resolution #2109 #2470]: #2112 -#2429 := (not #2290) -#2430 := (or #2428 #1334 #2429) -#2424 := [hypothesis]: #2423 -#2425 := [hypothesis]: #2290 -#2426 := [hypothesis]: #2112 -#2427 := [th-lemma arith farkas -1 -1 1 #2426 #2425 #2424]: false -#2431 := [lemma #2427]: #2430 -#2472 := [unit-resolution #2431 #2471 #2461]: #2428 -#2435 := (or #2434 #2423) -#2436 := [th-lemma arith triangle-eq]: #2435 -#2473 := [unit-resolution #2436 #2472]: #2434 -#2422 := (= f8 ?v0!3) -#2088 := (or #2202 #828) -#2086 := [def-axiom]: #2088 -#2474 := [unit-resolution #2086 #2450]: #828 -#2475 := (or #832 #1830) -#2476 := [th-lemma arith triangle-eq]: #2475 -#2477 := [unit-resolution #2476 #2474]: #1830 -#1833 := (or #1565 #1317) -#2111 := [def-axiom]: #1833 -#2478 := [unit-resolution #2111 #2470]: #1317 -#2479 := (not #1830) -#2480 := (or #2419 #1312 #2479) -#2481 := [th-lemma arith assign-bounds 1 1]: #2480 -#2482 := [unit-resolution #2481 #2478 #2477]: #2419 -#2398 := (+ f9 #1332) -#2399 := (>= #2398 0::Int) -#2484 := (not #2399) -#2097 := (or #2202 #844) -#2098 := [def-axiom]: #2097 -#2483 := [unit-resolution #2098 #2450]: #844 -#2485 := (or #2484 #1334 #2429 #845) -#2486 := [th-lemma arith assign-bounds 1 1 1]: #2485 -#2487 := [unit-resolution #2486 #2471 #2461 #2483]: #2484 -#2489 := (or #2387 #2399) -#1831 := (or #1565 #1166) -#1832 := [def-axiom]: #1831 -#2488 := [unit-resolution #1832 #2470]: #1166 -#2407 := (or #2162 #1550 #2387 #2399) -#2377 := (+ #1172 #953) -#2378 := (<= #2377 0::Int) -#2369 := (+ ?v0!3 #753) -#2370 := (>= #2369 0::Int) -#2379 := (or #1550 #2370 #2378) -#2408 := (or #2162 #2379) -#2415 := (iff #2408 #2407) -#2404 := (or #1550 #2387 #2399) -#2410 := (or #2162 #2404) -#2413 := (iff #2410 #2407) -#2414 := [rewrite]: #2413 -#2411 := (iff #2408 #2410) -#2405 := (iff #2379 #2404) -#2402 := (iff #2378 #2399) -#2392 := (+ #953 #1172) -#2395 := (<= #2392 0::Int) -#2400 := (iff #2395 #2399) -#2401 := [rewrite]: #2400 -#2396 := (iff #2378 #2395) -#2393 := (= #2377 #2392) -#2394 := [rewrite]: #2393 -#2397 := [monotonicity #2394]: #2396 -#2403 := [trans #2397 #2401]: #2402 -#2390 := (iff #2370 #2387) -#2380 := (+ #753 ?v0!3) -#2383 := (>= #2380 0::Int) -#2388 := (iff #2383 #2387) -#2389 := [rewrite]: #2388 -#2384 := (iff #2370 #2383) -#2381 := (= #2369 #2380) -#2382 := [rewrite]: #2381 -#2385 := [monotonicity #2382]: #2384 -#2391 := [trans #2385 #2389]: #2390 -#2406 := [monotonicity #2391 #2403]: #2405 -#2412 := [monotonicity #2406]: #2411 -#2416 := [trans #2412 #2414]: #2415 -#2409 := [quant-inst #1165]: #2408 -#2417 := [mp #2409 #2416]: #2407 -#2490 := [unit-resolution #2417 #2256 #2488]: #2489 -#2491 := [unit-resolution #2490 #2487]: #2387 -#2493 := (not #2419) -#2494 := (or #2422 #2492 #2493) -#2495 := [th-lemma arith triangle-eq]: #2494 -#2496 := [unit-resolution #2495 #2491 #2482]: #2422 -#2447 := (not #2422) -#2448 := (or #2447 #2420) -#2443 := (= #1172 #71) -#2441 := (= ?v0!3 f8) -#2440 := [hypothesis]: #2422 -#2442 := [symm #2440]: #2441 -#2444 := [monotonicity #2442]: #2443 -#2445 := [symm #2444]: #2420 -#2439 := [hypothesis]: #2434 -#2446 := [unit-resolution #2439 #2445]: false -#2449 := [lemma #2446]: #2448 -#2497 := [unit-resolution #2449 #2496 #2473]: false -#2498 := [lemma #2497]: #2202 -#2056 := (or #2217 #2205 #2211) -#2057 := [def-axiom]: #2056 -#2500 := [unit-resolution #2057 #2498 #2499]: #2211 -#2063 := (or #2208 #828) -#2073 := [def-axiom]: #2063 -#2501 := [unit-resolution #2073 #2500]: #828 -#2502 := [unit-resolution #2476 #2501]: #1830 -#2065 := (or #2208 #2196) -#2066 := [def-axiom]: #2065 -#2503 := [unit-resolution #2066 #2500]: #2196 -#1984 := (= f9 f15) -#2070 := (or #2208 #115) -#2072 := [def-axiom]: #2070 -#2504 := [unit-resolution #2072 #2500]: #115 -#2508 := [symm #2504]: #1984 -#2509 := (= #93 f9) -#2506 := (= #93 #40) -#2079 := (or #2208 #114) -#2083 := [def-axiom]: #2079 -#2505 := [unit-resolution #2083 #2500]: #114 -#2507 := [monotonicity #2505]: #2506 -#2510 := [trans #2507 #2307]: #2509 -#2511 := [trans #2510 #2508]: #94 -#2512 := [unit-resolution #2100 #2511]: #2190 -#2513 := [unit-resolution #2096 #2512 #2503]: #1570 -#2514 := [unit-resolution #2111 #2513]: #1317 -#2515 := [unit-resolution #2481 #2514 #2502]: #2419 -#1989 := (or #2208 #845) -#2082 := [def-axiom]: #1989 -#2516 := [unit-resolution #2082 #2500]: #845 -#1977 := (+ f9 #808) -#1985 := (<= #1977 0::Int) -#1880 := (or #453 #1984) -#1876 := (iff #115 #1984) -#1874 := (iff #1984 #115) -#1875 := [commutativity]: #1874 -#1877 := [symm #1875]: #1876 -#1873 := [hypothesis]: #115 -#1878 := [mp #1873 #1877]: #1984 -#1870 := (not #1984) -#1872 := [hypothesis]: #1870 -#1879 := [unit-resolution #1872 #1878]: false -#1881 := [lemma #1879]: #1880 -#2517 := [unit-resolution #1881 #2504]: #1984 -#2518 := (or #1870 #1985) -#2519 := [th-lemma arith triangle-eq]: #2518 -#2520 := [unit-resolution #2519 #2517]: #1985 -#2521 := (not #1985) -#2522 := (or #2290 #844 #2521) -#2523 := [th-lemma arith assign-bounds 1 -1]: #2522 -#2524 := [unit-resolution #2523 #2520 #2516]: #2290 -#2525 := [unit-resolution #2109 #2513]: #2112 -#2526 := [unit-resolution #2431 #2525 #2524]: #2428 -#2527 := [unit-resolution #2436 #2526]: #2434 -#2528 := [unit-resolution #2449 #2527]: #2447 -#2529 := [unit-resolution #2495 #2528 #2515]: #2492 -#2530 := (or #2484 #1334 #2521) -#2531 := [th-lemma arith assign-bounds -1 -1]: #2530 -#2532 := [unit-resolution #2531 #2520 #2525]: #2484 -#2533 := [unit-resolution #1832 #2513]: #1166 -[unit-resolution #2417 #2256 #2533 #2532 #2529]: false -unsat diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/Boogie_Max.certs2 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/SMT_Examples/Boogie_Max.certs2 Thu May 01 22:57:38 2014 +0200 @@ -0,0 +1,844 @@ +336198ca2566b9b7e0ce4a688dd7f9094f37a0b9 843 0 +unsat +((set-logic AUFLIA) +(declare-fun ?v0!5 () Int) +(declare-fun ?v0!4 () Int) +(declare-fun ?v0!3 () Int) +(declare-fun ?v0!2 () Int) +(declare-fun k!10 () Bool) +(declare-fun k!00 () Bool) +(proof +(let (($x109 (= v_b_max_G_3$ v_b_max_G_2$))) +(let ((?x135 (v_b_array$ v_b_k_G_1$))) +(let (($x136 (= ?x135 v_b_max_G_3$))) +(let (($x2120 (forall ((?v0 Int) )(!(let (($x1020 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) +(let (($x1005 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(or $x1399 $x1005 $x1020))))) :pattern ( (v_b_array$ ?v0) ))) +)) +(let (($x2128 (or (not $x2120) $x136))) +(let (($x2131 (not $x2128))) +(let (($x1312 (>= (+ v_b_max_G_3$ (* (- 1) (v_b_array$ ?v0!5))) 0))) +(let (($x1290 (<= (+ v_b_p_G_1$ (* (- 1) ?v0!5)) 0))) +(let (($x1173 (>= ?v0!5 0))) +(let (($x1540 (not $x1173))) +(let (($x1555 (or $x1540 $x1290 $x1312))) +(let (($x1560 (not $x1555))) +(let (($x2134 (or $x1560 $x2131))) +(let (($x2137 (not $x2134))) +(let (($x996 (>= v_b_p_G_1$ 2))) +(let (($x1606 (not $x996))) +(let (($x991 (= (+ v_b_p_G_0$ (* (- 1) v_b_p_G_1$)) (- 1)))) +(let (($x1605 (not $x991))) +(let (($x989 (>= v_b_k_G_1$ 0))) +(let (($x1604 (not $x989))) +(let (($x1603 (not $x109))) +(let (($x107 (= v_b_k_G_1$ v_b_p_G_0$))) +(let (($x1602 (not $x107))) +(let ((?x101 (v_b_array$ v_b_p_G_0$))) +(let (($x104 (= v_b_max_G_2$ ?x101))) +(let (($x1601 (not $x104))) +(let (($x980 (>= (+ v_b_max_G_1$ (* (- 1) ?x101)) 0))) +(let (($x885 (>= v_b_p_G_0$ 1))) +(let (($x1529 (not $x885))) +(let (($x882 (>= v_b_k_G_0$ 0))) +(let (($x1528 (not $x882))) +(let (($x2140 (or $x1528 $x1529 $x980 $x1601 $x1602 $x1603 $x1604 $x1605 $x1606 $x2137))) +(let (($x2143 (not $x2140))) +(let (($x985 (not $x980))) +(let (($x2146 (or $x1528 $x1529 $x985 (not (= v_b_k_G_1$ v_b_k_G_0$)) (not (= v_b_max_G_3$ v_b_max_G_1$)) $x1604 $x1605 $x1606 $x2137))) +(let ((?x1179 (v_b_array$ ?v0!5))) +(let (($x1799 (= ?x101 ?x1179))) +(let (($x1803 (not $x1799))) +(let (($x1703 (>= (+ ?x101 (* (- 1) ?x1179)) 0))) +(let (($x1693 (not $x1703))) +(let (($x2149 (not $x2146))) +(let ((@x2389 (hypothesis $x2149))) +(let (($x2024 (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_3$)) 0))) +(let (($x2022 (= v_b_max_G_1$ v_b_max_G_3$))) +(let ((@x2401 (symm (commutativity (= $x2022 (= v_b_max_G_3$ v_b_max_G_1$))) (= (= v_b_max_G_3$ v_b_max_G_1$) $x2022)))) +(let (($x145 (= v_b_max_G_3$ v_b_max_G_1$))) +(let ((@x2406 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x2022) $x2024)) (mp (unit-resolution (def-axiom (or $x2146 $x145)) @x2389 $x145) @x2401 $x2022) $x2024))) +(let (($x1678 (not $x1312))) +(let ((?x62 (v_b_array$ v_b_k_G_0$))) +(let (($x63 (= ?x62 v_b_max_G_1$))) +(let (($x2152 (or $x2143 $x2149))) +(let (($x2155 (not $x2152))) +(let (($x919 (<= (+ v_b_length$ (* (- 1) v_b_p_G_0$)) 0))) +(let (($x2158 (or $x1528 $x1529 $x919 $x2155))) +(let (($x2161 (not $x2158))) +(let (($x1253 (>= (+ v_b_max_G_4$ (* (- 1) (v_b_array$ ?v0!4))) 0))) +(let (($x1142 (<= (+ v_b_length$ (* (- 1) ?v0!4)) 0))) +(let (($x1139 (>= ?v0!4 0))) +(let (($x1489 (not $x1139))) +(let (($x1131 (= (v_b_array$ ?v0!3) v_b_max_G_4$))) +(let (($x1126 (<= (+ v_b_length$ (* (- 1) ?v0!3)) 0))) +(let (($x1484 (or (not (>= ?v0!3 0)) $x1126 $x1131))) +(let (($x1516 (or (not $x1484) $x1489 $x1142 $x1253))) +(let (($x1517 (not $x1516))) +(let (($x2103 (forall ((?v0 Int) )(!(let ((?x46 (v_b_array$ ?v0))) +(let (($x86 (= ?x46 v_b_max_G_4$))) +(let (($x930 (<= (+ v_b_length$ (* (- 1) ?v0)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(let (($x1458 (or $x1399 $x930 $x86))) +(not $x1458))))))) :pattern ( (v_b_array$ ?v0) ))) +)) +(let (($x2108 (or $x2103 $x1517))) +(let (($x2111 (not $x2108))) +(let (($x73 (= v_b_max_G_4$ v_b_max_G_1$))) +(let (($x1531 (not $x73))) +(let (($x971 (not $x919))) +(let (($x2114 (or $x1528 $x1529 $x971 (not k!00) $x1531 (not k!10) $x2111))) +(let (($x2117 (not $x2114))) +(let (($x2164 (or $x2117 $x2161))) +(let (($x2167 (not $x2164))) +(let (($x2095 (forall ((?v0 Int) )(!(let (($x903 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x888 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(or $x1399 $x888 $x903))))) :pattern ( (v_b_array$ ?v0) ))) +)) +(let (($x2100 (not $x2095))) +(let (($x2170 (or $x1528 $x1529 $x2100 (not $x63) $x2167))) +(let (($x2173 (not $x2170))) +(let ((?x30 (v_b_array$ 0))) +(let (($x50 (= ?x30 v_b_max_G_0$))) +(let (($x1095 (not $x50))) +(let (($x2176 (or $x1095 $x2173))) +(let (($x2179 (not $x2176))) +(let (($x2087 (forall ((?v0 Int) )(!(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) +(let (($x841 (>= ?v0 1))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(or $x1399 $x841 $x851))))) :pattern ( (v_b_array$ ?v0) ))) +)) +(let (($x2182 (or (not $x2087) $x2179))) +(let (($x2185 (not $x2182))) +(let (($x1083 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0!2))) 0))) +(let (($x831 (>= ?v0!2 1))) +(let (($x1391 (or (not (>= ?v0!2 0)) $x831 $x1083))) +(let (($x1079 (not $x831))) +(let (($x1396 (not $x1391))) +(let ((@x1966 (hypothesis $x1396))) +(let (($x1078 (>= ?v0!2 0))) +(let ((@x1951 ((_ th-lemma arith eq-propagate 0 0) (unit-resolution (def-axiom (or $x1391 $x1078)) @x1966 $x1078) (unit-resolution (def-axiom (or $x1391 $x1079)) @x1966 $x1079) (= ?v0!2 0)))) +(let ((@x1955 (symm (monotonicity @x1951 (= (v_b_array$ ?v0!2) ?x30)) (= ?x30 (v_b_array$ ?v0!2))))) +(let (($x31 (= v_b_max_G_0$ ?x30))) +(let (($x201 (and (not (<= v_b_length$ 0)) $x31))) +(let (($x572 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x132 (<= ?x46 v_b_max_G_3$))) +(or (not (and (<= 0 ?v0) (not (<= v_b_p_G_1$ ?v0)))) $x132)))) +)) +(let (($x595 (or (not $x572) $x136))) +(let (($x600 (and $x572 $x595))) +(let (($x116 (<= 2 v_b_p_G_1$))) +(let (($x456 (= v_b_p_G_1$ (+ 1 v_b_p_G_0$)))) +(let (($x110 (<= 0 v_b_k_G_1$))) +(let (($x144 (= v_b_k_G_1$ v_b_k_G_0$))) +(let (($x143 (<= ?x101 v_b_max_G_1$))) +(let (($x54 (<= 1 v_b_p_G_0$))) +(let (($x52 (<= 0 v_b_k_G_0$))) +(let (($x654 (and $x52 $x54 $x143 $x144 $x145 $x110 $x456 $x116))) +(let (($x669 (not $x654))) +(let (($x670 (or $x669 $x600))) +(let (($x441 (not $x143))) +(let (($x544 (and $x52 $x54 $x441 $x104 $x107 $x109 $x110 $x456 $x116))) +(let (($x606 (not $x544))) +(let (($x607 (or $x606 $x600))) +(let (($x675 (and $x607 $x670))) +(let (($x69 (<= v_b_length$ v_b_p_G_0$))) +(let (($x415 (not $x69))) +(let (($x429 (and $x52 $x54 $x415))) +(let (($x681 (not $x429))) +(let (($x682 (or $x681 $x675))) +(let (($x377 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x89 (<= ?x46 v_b_max_G_4$))) +(let (($x351 (not (<= v_b_length$ ?v0)))) +(let (($x43 (<= 0 ?v0))) +(let (($x354 (and $x43 $x351))) +(let (($x360 (not $x354))) +(or $x360 $x89)))))))) +)) +(let (($x366 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x86 (= ?x46 v_b_max_G_4$))) +(let (($x351 (not (<= v_b_length$ ?v0)))) +(let (($x43 (<= 0 ?v0))) +(let (($x354 (and $x43 $x351))) +(let (($x360 (not $x354))) +(or $x360 $x86)))))))) +)) +(let (($x398 (or (not $x366) $x377))) +(let (($x403 (and $x366 $x398))) +(let (($x75 (= v_b_p_G_2$ v_b_p_G_0$))) +(let (($x71 (= v_b_k_G_2$ v_b_k_G_0$))) +(let (($x338 (and $x52 $x54 $x69 $x71 $x73 $x75))) +(let (($x409 (not $x338))) +(let (($x410 (or $x409 $x403))) +(let (($x687 (and $x410 $x682))) +(let (($x259 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x59 (<= ?x46 v_b_max_G_1$))) +(or (not (and (<= 0 ?v0) (not (<= v_b_p_G_0$ ?v0)))) $x59)))) +)) +(let (($x294 (and $x50 $x52 $x54 $x259 $x63))) +(let (($x694 (or (not $x294) $x687))) +(let (($x699 (and $x50 $x694))) +(let (($x234 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x47 (<= ?x46 v_b_max_G_0$))) +(or (not (and (<= 0 ?v0) (not (<= 1 ?v0)))) $x47)))) +)) +(let (($x705 (not $x234))) +(let (($x706 (or $x705 $x699))) +(let (($x711 (and $x234 $x706))) +(let (($x718 (or (not $x201) $x711))) +(let (($x138 (=> (and $x136 false) true))) +(let (($x139 (and $x136 $x138))) +(let (($x134 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x132 (<= ?x46 v_b_max_G_3$))) +(=> (and (<= 0 ?v0) (< ?v0 v_b_p_G_1$)) $x132)))) +)) +(let (($x140 (=> $x134 $x139))) +(let (($x141 (and $x134 $x140))) +(let (($x117 (and $x110 $x116))) +(let (($x118 (and $x117 true))) +(let (($x119 (and (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) $x118))) +(let (($x111 (and $x110 $x54))) +(let (($x120 (and $x111 $x119))) +(let (($x121 (and true $x120))) +(let (($x146 (and $x145 $x121))) +(let (($x147 (and $x144 $x146))) +(let (($x148 (and true $x147))) +(let (($x55 (and $x52 $x54))) +(let (($x149 (and $x55 $x148))) +(let (($x150 (and $x143 $x149))) +(let (($x151 (and $x55 $x150))) +(let (($x152 (and true $x151))) +(let (($x153 (=> $x152 $x141))) +(let (($x122 (and $x109 $x121))) +(let (($x123 (and $x107 $x122))) +(let (($x124 (and true $x123))) +(let (($x105 (and $x54 $x54))) +(let (($x125 (and $x105 $x124))) +(let (($x126 (and $x104 $x125))) +(let (($x127 (and (< v_b_max_G_1$ ?x101) $x126))) +(let (($x128 (and $x55 $x127))) +(let (($x129 (and true $x128))) +(let (($x142 (=> $x129 $x141))) +(let (($x98 (and (< v_b_p_G_0$ v_b_length$) $x55))) +(let (($x99 (and $x55 $x98))) +(let (($x100 (and true $x99))) +(let (($x155 (=> $x100 (and $x142 $x153)))) +(let (($x91 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x89 (<= ?x46 v_b_max_G_4$))) +(let (($x43 (<= 0 ?v0))) +(let (($x85 (and $x43 (< ?v0 v_b_length$)))) +(=> $x85 $x89)))))) +)) +(let (($x92 (=> $x91 true))) +(let (($x93 (and $x91 $x92))) +(let (($x88 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x86 (= ?x46 v_b_max_G_4$))) +(let (($x43 (<= 0 ?v0))) +(let (($x85 (and $x43 (< ?v0 v_b_length$)))) +(=> $x85 $x86)))))) +)) +(let (($x94 (=> $x88 $x93))) +(let (($x78 (and $x71 (and $x73 (and $x75 true))))) +(let (($x79 (and true $x78))) +(let (($x80 (and $x55 $x79))) +(let (($x81 (and $x69 $x80))) +(let (($x82 (and $x55 $x81))) +(let (($x83 (and true $x82))) +(let (($x96 (=> $x83 (and $x88 $x94)))) +(let (($x64 (and $x63 $x55))) +(let (($x61 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x59 (<= ?x46 v_b_max_G_1$))) +(=> (and (<= 0 ?v0) (< ?v0 v_b_p_G_0$)) $x59)))) +)) +(let (($x65 (and $x61 $x64))) +(let (($x66 (and $x55 $x65))) +(let (($x67 (and true $x66))) +(let (($x68 (and $x50 $x67))) +(let (($x157 (=> $x68 (and $x96 $x155)))) +(let (($x49 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x47 (<= ?x46 v_b_max_G_0$))) +(=> (and (<= 0 ?v0) (< ?v0 1)) $x47)))) +)) +(let (($x159 (=> $x49 (and $x50 $x157)))) +(let (($x34 (<= 1 1))) +(let (($x35 (and $x34 $x34))) +(let (($x32 (<= 0 0))) +(let (($x36 (and $x32 $x35))) +(let (($x37 (and $x32 $x36))) +(let (($x38 (and $x31 $x37))) +(let (($x39 (and true $x38))) +(let (($x41 (and true (and (< 0 v_b_length$) $x39)))) +(let (($x161 (=> $x41 (and $x49 $x159)))) +(let (($x162 (not $x161))) +(let ((@x579 (monotonicity (rewrite (= (and $x136 false) false)) (= $x138 (=> false true))))) +(let ((@x583 (trans @x579 (rewrite (= (=> false true) true)) (= $x138 true)))) +(let ((@x590 (trans (monotonicity @x583 (= $x139 (and $x136 true))) (rewrite (= (and $x136 true) $x136)) (= $x139 $x136)))) +(let ((?x46 (v_b_array$ ?0))) +(let (($x132 (<= ?x46 v_b_max_G_3$))) +(let (($x567 (or (not (and (<= 0 ?0) (not (<= v_b_p_G_1$ ?0)))) $x132))) +(let (($x133 (=> (and (<= 0 ?0) (< ?0 v_b_p_G_1$)) $x132))) +(let (($x568 (= (=> (and (<= 0 ?0) (not (<= v_b_p_G_1$ ?0))) $x132) $x567))) +(let (($x564 (= $x133 (=> (and (<= 0 ?0) (not (<= v_b_p_G_1$ ?0))) $x132)))) +(let (($x557 (not (<= v_b_p_G_1$ ?0)))) +(let (($x43 (<= 0 ?0))) +(let (($x560 (and $x43 $x557))) +(let ((@x212 (rewrite (= $x43 $x43)))) +(let ((@x562 (monotonicity @x212 (rewrite (= (< ?0 v_b_p_G_1$) $x557)) (= (and $x43 (< ?0 v_b_p_G_1$)) $x560)))) +(let ((@x574 (quant-intro (trans (monotonicity @x562 $x564) (rewrite $x568) (= $x133 $x567)) (= $x134 $x572)))) +(let ((@x599 (trans (monotonicity @x574 @x590 (= $x140 (=> $x572 $x136))) (rewrite (= (=> $x572 $x136) $x595)) (= $x140 $x595)))) +(let ((@x656 (rewrite (= (and $x55 (and $x143 $x52 $x54 $x144 $x145 $x110 $x456 $x116)) $x654)))) +(let (($x646 (and $x143 $x52 $x54 $x144 $x145 $x110 $x456 $x116))) +(let ((@x648 (rewrite (= (and $x143 (and $x52 $x54 $x144 $x145 $x110 $x456 $x116)) $x646)))) +(let (($x638 (and $x52 $x54 $x144 $x145 $x110 $x456 $x116))) +(let (($x623 (and $x144 $x145 $x110 $x54 $x456 $x116))) +(let (($x615 (and $x145 $x110 $x54 $x456 $x116))) +(let (($x482 (and $x110 $x54 $x456 $x116))) +(let ((@x463 (rewrite (= $x116 $x116)))) +(let ((@x450 (rewrite (= $x110 $x110)))) +(let ((@x467 (monotonicity (monotonicity @x450 @x463 (= $x117 $x117)) (= $x118 $x118)))) +(let ((@x460 (rewrite (= $x456 $x456)))) +(let ((@x458 (monotonicity (rewrite (= (+ v_b_p_G_0$ 1) (+ 1 v_b_p_G_0$))) (= (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) $x456)))) +(let ((@x473 (monotonicity (trans @x458 @x460 (= (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) $x456)) (trans @x467 (rewrite (= $x118 $x117)) (= $x118 $x117)) (= $x119 (and $x456 $x117))))) +(let ((@x478 (trans @x473 (rewrite (= (and $x456 $x117) (and $x456 $x110 $x116))) (= $x119 (and $x456 $x110 $x116))))) +(let ((@x481 (monotonicity (monotonicity @x450 (rewrite (= $x54 $x54)) (= $x111 $x111)) @x478 (= $x120 (and $x111 (and $x456 $x110 $x116)))))) +(let ((@x486 (trans @x481 (rewrite (= (and $x111 (and $x456 $x110 $x116)) $x482)) (= $x120 $x482)))) +(let ((@x493 (trans (monotonicity @x486 (= $x121 (and true $x482))) (rewrite (= (and true $x482) $x482)) (= $x121 $x482)))) +(let ((@x619 (trans (monotonicity @x493 (= $x146 (and $x145 $x482))) (rewrite (= (and $x145 $x482) $x615)) (= $x146 $x615)))) +(let ((@x627 (trans (monotonicity @x619 (= $x147 (and $x144 $x615))) (rewrite (= (and $x144 $x615) $x623)) (= $x147 $x623)))) +(let ((@x634 (trans (monotonicity @x627 (= $x148 (and true $x623))) (rewrite (= (and true $x623) $x623)) (= $x148 $x623)))) +(let ((@x240 (rewrite (= $x54 $x54)))) +(let ((@x238 (rewrite (= $x52 $x52)))) +(let ((@x242 (monotonicity @x238 @x240 (= $x55 $x55)))) +(let ((@x642 (trans (monotonicity @x242 @x634 (= $x149 (and $x55 $x623))) (rewrite (= (and $x55 $x623) $x638)) (= $x149 $x638)))) +(let ((@x650 (trans (monotonicity @x642 (= $x150 (and $x143 $x638))) @x648 (= $x150 $x646)))) +(let ((@x658 (trans (monotonicity @x242 @x650 (= $x151 (and $x55 $x646))) @x656 (= $x151 $x654)))) +(let ((@x665 (trans (monotonicity @x658 (= $x152 (and true $x654))) (rewrite (= (and true $x654) $x654)) (= $x152 $x654)))) +(let ((@x668 (monotonicity @x665 (monotonicity @x574 @x599 (= $x141 $x600)) (= $x153 (=> $x654 $x600))))) +(let ((@x546 (rewrite (= (and $x55 (and $x441 $x104 $x54 $x107 $x109 $x110 $x456 $x116)) $x544)))) +(let (($x536 (and $x441 $x104 $x54 $x107 $x109 $x110 $x456 $x116))) +(let ((@x538 (rewrite (= (and $x441 (and $x104 $x54 $x107 $x109 $x110 $x456 $x116)) $x536)))) +(let (($x528 (and $x104 $x54 $x107 $x109 $x110 $x456 $x116))) +(let (($x520 (and $x54 $x107 $x109 $x110 $x456 $x116))) +(let (($x505 (and $x107 $x109 $x110 $x54 $x456 $x116))) +(let ((@x501 (trans (monotonicity @x493 (= $x122 (and $x109 $x482))) (rewrite (= (and $x109 $x482) (and $x109 $x110 $x54 $x456 $x116))) (= $x122 (and $x109 $x110 $x54 $x456 $x116))))) +(let ((@x504 (monotonicity @x501 (= $x123 (and $x107 (and $x109 $x110 $x54 $x456 $x116)))))) +(let ((@x509 (trans @x504 (rewrite (= (and $x107 (and $x109 $x110 $x54 $x456 $x116)) $x505)) (= $x123 $x505)))) +(let ((@x516 (trans (monotonicity @x509 (= $x124 (and true $x505))) (rewrite (= (and true $x505) $x505)) (= $x124 $x505)))) +(let ((@x448 (trans (monotonicity @x240 @x240 (= $x105 $x105)) (rewrite (= $x105 $x54)) (= $x105 $x54)))) +(let ((@x524 (trans (monotonicity @x448 @x516 (= $x125 (and $x54 $x505))) (rewrite (= (and $x54 $x505) $x520)) (= $x125 $x520)))) +(let ((@x532 (trans (monotonicity @x524 (= $x126 (and $x104 $x520))) (rewrite (= (and $x104 $x520) $x528)) (= $x126 $x528)))) +(let ((@x535 (monotonicity (rewrite (= (< v_b_max_G_1$ ?x101) $x441)) @x532 (= $x127 (and $x441 $x528))))) +(let ((@x543 (monotonicity @x242 (trans @x535 @x538 (= $x127 $x536)) (= $x128 (and $x55 $x536))))) +(let ((@x551 (monotonicity (trans @x543 @x546 (= $x128 $x544)) (= $x129 (and true $x544))))) +(let ((@x605 (monotonicity (trans @x551 (rewrite (= (and true $x544) $x544)) (= $x129 $x544)) (monotonicity @x574 @x599 (= $x141 $x600)) (= $x142 (=> $x544 $x600))))) +(let ((@x677 (monotonicity (trans @x605 (rewrite (= (=> $x544 $x600) $x607)) (= $x142 $x607)) (trans @x668 (rewrite (= (=> $x654 $x600) $x670)) (= $x153 $x670)) (= (and $x142 $x153) $x675)))) +(let ((@x420 (monotonicity (rewrite (= (< v_b_p_G_0$ v_b_length$) $x415)) @x242 (= $x98 (and $x415 $x55))))) +(let ((@x425 (trans @x420 (rewrite (= (and $x415 $x55) (and $x415 $x52 $x54))) (= $x98 (and $x415 $x52 $x54))))) +(let ((@x433 (trans (monotonicity @x242 @x425 (= $x99 (and $x55 (and $x415 $x52 $x54)))) (rewrite (= (and $x55 (and $x415 $x52 $x54)) $x429)) (= $x99 $x429)))) +(let ((@x440 (trans (monotonicity @x433 (= $x100 (and true $x429))) (rewrite (= (and true $x429) $x429)) (= $x100 $x429)))) +(let ((@x686 (trans (monotonicity @x440 @x677 (= $x155 (=> $x429 $x675))) (rewrite (= (=> $x429 $x675) $x682)) (= $x155 $x682)))) +(let (($x89 (<= ?x46 v_b_max_G_4$))) +(let (($x351 (not (<= v_b_length$ ?0)))) +(let (($x354 (and $x43 $x351))) +(let (($x360 (not $x354))) +(let (($x372 (or $x360 $x89))) +(let (($x85 (and $x43 (< ?0 v_b_length$)))) +(let (($x90 (=> $x85 $x89))) +(let ((@x356 (monotonicity @x212 (rewrite (= (< ?0 v_b_length$) $x351)) (= $x85 $x354)))) +(let ((@x376 (trans (monotonicity @x356 (= $x90 (=> $x354 $x89))) (rewrite (= (=> $x354 $x89) $x372)) (= $x90 $x372)))) +(let ((@x382 (monotonicity (quant-intro @x376 (= $x91 $x377)) (= $x92 (=> $x377 true))))) +(let ((@x386 (trans @x382 (rewrite (= (=> $x377 true) true)) (= $x92 true)))) +(let ((@x389 (monotonicity (quant-intro @x376 (= $x91 $x377)) @x386 (= $x93 (and $x377 true))))) +(let (($x86 (= ?x46 v_b_max_G_4$))) +(let (($x361 (or $x360 $x86))) +(let (($x87 (=> $x85 $x86))) +(let ((@x365 (trans (monotonicity @x356 (= $x87 (=> $x354 $x86))) (rewrite (= (=> $x354 $x86) $x361)) (= $x87 $x361)))) +(let ((@x396 (monotonicity (quant-intro @x365 (= $x88 $x366)) (trans @x389 (rewrite (= (and $x377 true) $x377)) (= $x93 $x377)) (= $x94 (=> $x366 $x377))))) +(let ((@x405 (monotonicity (quant-intro @x365 (= $x88 $x366)) (trans @x396 (rewrite (= (=> $x366 $x377) $x398)) (= $x94 $x398)) (= (and $x88 $x94) $x403)))) +(let (($x330 (and $x69 $x52 $x54 $x71 $x73 $x75))) +(let (($x322 (and $x52 $x54 $x71 $x73 $x75))) +(let ((@x316 (rewrite (= (and true (and $x71 $x73 $x75)) (and $x71 $x73 $x75))))) +(let ((@x303 (monotonicity (rewrite (= (and $x75 true) $x75)) (= (and $x73 (and $x75 true)) (and $x73 $x75))))) +(let ((@x311 (trans (monotonicity @x303 (= $x78 (and $x71 (and $x73 $x75)))) (rewrite (= (and $x71 (and $x73 $x75)) (and $x71 $x73 $x75))) (= $x78 (and $x71 $x73 $x75))))) +(let ((@x318 (trans (monotonicity @x311 (= $x79 (and true (and $x71 $x73 $x75)))) @x316 (= $x79 (and $x71 $x73 $x75))))) +(let ((@x326 (trans (monotonicity @x242 @x318 (= $x80 (and $x55 (and $x71 $x73 $x75)))) (rewrite (= (and $x55 (and $x71 $x73 $x75)) $x322)) (= $x80 $x322)))) +(let ((@x334 (trans (monotonicity @x326 (= $x81 (and $x69 $x322))) (rewrite (= (and $x69 $x322) $x330)) (= $x81 $x330)))) +(let ((@x342 (trans (monotonicity @x242 @x334 (= $x82 (and $x55 $x330))) (rewrite (= (and $x55 $x330) $x338)) (= $x82 $x338)))) +(let ((@x349 (trans (monotonicity @x342 (= $x83 (and true $x338))) (rewrite (= (and true $x338) $x338)) (= $x83 $x338)))) +(let ((@x414 (trans (monotonicity @x349 @x405 (= $x96 (=> $x338 $x403))) (rewrite (= (=> $x338 $x403) $x410)) (= $x96 $x410)))) +(let (($x279 (and $x52 $x54 $x259 $x63))) +(let ((@x273 (rewrite (= (and $x259 (and $x63 $x52 $x54)) (and $x259 $x63 $x52 $x54))))) +(let ((@x267 (trans (monotonicity @x242 (= $x64 $x64)) (rewrite (= $x64 (and $x63 $x52 $x54))) (= $x64 (and $x63 $x52 $x54))))) +(let (($x59 (<= ?x46 v_b_max_G_1$))) +(let (($x254 (or (not (and $x43 (not (<= v_b_p_G_0$ ?0)))) $x59))) +(let (($x60 (=> (and $x43 (< ?0 v_b_p_G_0$)) $x59))) +(let ((@x256 (rewrite (= (=> (and $x43 (not (<= v_b_p_G_0$ ?0))) $x59) $x254)))) +(let (($x244 (not (<= v_b_p_G_0$ ?0)))) +(let (($x247 (and $x43 $x244))) +(let ((@x249 (monotonicity @x212 (rewrite (= (< ?0 v_b_p_G_0$) $x244)) (= (and $x43 (< ?0 v_b_p_G_0$)) $x247)))) +(let ((@x258 (trans (monotonicity @x249 (= $x60 (=> $x247 $x59))) @x256 (= $x60 $x254)))) +(let ((@x270 (monotonicity (quant-intro @x258 (= $x61 $x259)) @x267 (= $x65 (and $x259 (and $x63 $x52 $x54)))))) +(let ((@x278 (monotonicity @x242 (trans @x270 @x273 (= $x65 (and $x259 $x63 $x52 $x54))) (= $x66 (and $x55 (and $x259 $x63 $x52 $x54)))))) +(let ((@x283 (trans @x278 (rewrite (= (and $x55 (and $x259 $x63 $x52 $x54)) $x279)) (= $x66 $x279)))) +(let ((@x290 (trans (monotonicity @x283 (= $x67 (and true $x279))) (rewrite (= (and true $x279) $x279)) (= $x67 $x279)))) +(let ((@x298 (trans (monotonicity @x290 (= $x68 (and $x50 $x279))) (rewrite (= (and $x50 $x279) $x294)) (= $x68 $x294)))) +(let ((@x692 (monotonicity @x298 (monotonicity @x414 @x686 (= (and $x96 $x155) $x687)) (= $x157 (=> $x294 $x687))))) +(let ((@x701 (monotonicity (trans @x692 (rewrite (= (=> $x294 $x687) $x694)) (= $x157 $x694)) (= (and $x50 $x157) $x699)))) +(let (($x47 (<= ?x46 v_b_max_G_0$))) +(let (($x229 (or (not (and $x43 (not (<= 1 ?0)))) $x47))) +(let (($x48 (=> (and $x43 (< ?0 1)) $x47))) +(let ((@x220 (monotonicity (rewrite (= (<= 1 ?0) (<= 1 ?0))) (= (not (<= 1 ?0)) (not (<= 1 ?0)))))) +(let ((@x221 (trans (rewrite (= (< ?0 1) (not (<= 1 ?0)))) @x220 (= (< ?0 1) (not (<= 1 ?0)))))) +(let ((@x224 (monotonicity @x212 @x221 (= (and $x43 (< ?0 1)) (and $x43 (not (<= 1 ?0))))))) +(let ((@x227 (monotonicity @x224 (= $x48 (=> (and $x43 (not (<= 1 ?0))) $x47))))) +(let ((@x233 (trans @x227 (rewrite (= (=> (and $x43 (not (<= 1 ?0))) $x47) $x229)) (= $x48 $x229)))) +(let ((@x704 (monotonicity (quant-intro @x233 (= $x49 $x234)) @x701 (= $x159 (=> $x234 $x699))))) +(let ((@x713 (monotonicity (quant-intro @x233 (= $x49 $x234)) (trans @x704 (rewrite (= (=> $x234 $x699) $x706)) (= $x159 $x706)) (= (and $x49 $x159) $x711)))) +(let ((@x176 (rewrite (= (and true true) true)))) +(let ((@x174 (monotonicity (rewrite (= $x34 true)) (rewrite (= $x34 true)) (= $x35 (and true true))))) +(let ((@x180 (monotonicity (rewrite (= $x32 true)) (trans @x174 @x176 (= $x35 true)) (= $x36 (and true true))))) +(let ((@x184 (monotonicity (rewrite (= $x32 true)) (trans @x180 @x176 (= $x36 true)) (= $x37 (and true true))))) +(let ((@x189 (monotonicity (trans @x184 @x176 (= $x37 true)) (= $x38 (and $x31 true))))) +(let ((@x196 (monotonicity (trans @x189 (rewrite (= (and $x31 true) $x31)) (= $x38 $x31)) (= $x39 (and true $x31))))) +(let ((@x203 (monotonicity (rewrite (= (< 0 v_b_length$) (not (<= v_b_length$ 0)))) (trans @x196 (rewrite (= (and true $x31) $x31)) (= $x39 $x31)) (= (and (< 0 v_b_length$) $x39) $x201)))) +(let ((@x210 (trans (monotonicity @x203 (= $x41 (and true $x201))) (rewrite (= (and true $x201) $x201)) (= $x41 $x201)))) +(let ((@x722 (trans (monotonicity @x210 @x713 (= $x161 (=> $x201 $x711))) (rewrite (= (=> $x201 $x711) $x718)) (= $x161 $x718)))) +(let ((@x726 (mp (asserted $x162) (monotonicity @x722 (= $x162 (not $x718))) (not $x718)))) +(let ((@x737 (mp (and-elim (not-or-elim @x726 $x201) $x31) (rewrite* (= $x31 $x31)) $x31))) +(let ((@x1930 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_max_G_0$ (v_b_array$ ?v0!2))) $x1083)) (unit-resolution (def-axiom (or $x1391 (not $x1083))) @x1966 (not $x1083)) (trans @x737 @x1955 (= v_b_max_G_0$ (v_b_array$ ?v0!2))) false))) +(let (($x1582 (forall ((?v0 Int) )(let (($x1020 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) +(let (($x1005 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(or $x1399 $x1005 $x1020)))))) +)) +(let (($x1590 (not (or (not $x1582) $x136)))) +(let (($x1595 (or $x1560 $x1590))) +(let (($x1607 (not $x1595))) +(let (($x1620 (not (or $x1528 $x1529 $x985 (not $x144) (not $x145) $x1604 $x1605 $x1606 $x1607)))) +(let (($x1609 (not (or $x1528 $x1529 $x980 $x1601 $x1602 $x1603 $x1604 $x1605 $x1606 $x1607)))) +(let (($x1625 (or $x1609 $x1620))) +(let (($x1633 (not (or $x1528 $x1529 $x919 (not $x1625))))) +(let (($x1466 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x86 (= ?x46 v_b_max_G_4$))) +(let (($x930 (<= (+ v_b_length$ (* (- 1) ?v0)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(let (($x1458 (or $x1399 $x930 $x86))) +(not $x1458)))))))) +)) +(let (($x1522 (or $x1466 $x1517))) +(let (($x1535 (not (or $x1528 $x1529 $x971 (not k!00) $x1531 (not k!10) (not $x1522))))) +(let (($x1638 (or $x1535 $x1633))) +(let (($x1441 (forall ((?v0 Int) )(let (($x903 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x888 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(or $x1399 $x888 $x903)))))) +)) +(let (($x1648 (not (or $x1528 $x1529 (not $x1441) (not $x63) (not $x1638))))) +(let (($x1653 (or $x1095 $x1648))) +(let (($x1419 (forall ((?v0 Int) )(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) +(let (($x841 (>= ?v0 1))) +(let (($x838 (>= ?v0 0))) +(let (($x1399 (not $x838))) +(or $x1399 $x841 $x851)))))) +)) +(let (($x1662 (not (or (not $x1419) (not $x1653))))) +(let (($x1667 (or $x1396 $x1662))) +(let (($x2147 (= (or $x1528 $x1529 $x985 (not $x144) (not $x145) $x1604 $x1605 $x1606 $x1607) $x2146))) +(let (($x1020 (<= (+ ?x46 (* (- 1) v_b_max_G_3$)) 0))) +(let (($x1005 (>= (+ ?0 (* (- 1) v_b_p_G_1$)) 0))) +(let (($x838 (>= ?0 0))) +(let (($x1399 (not $x838))) +(let (($x1577 (or $x1399 $x1005 $x1020))) +(let ((@x2127 (monotonicity (quant-intro (refl (= $x1577 $x1577)) (= $x1582 $x2120)) (= (not $x1582) (not $x2120))))) +(let ((@x2133 (monotonicity (monotonicity @x2127 (= (or (not $x1582) $x136) $x2128)) (= $x1590 $x2131)))) +(let ((@x2148 (monotonicity (monotonicity (monotonicity @x2133 (= $x1595 $x2134)) (= $x1607 $x2137)) $x2147))) +(let ((@x2142 (monotonicity (monotonicity (monotonicity @x2133 (= $x1595 $x2134)) (= $x1607 $x2137)) (= (or $x1528 $x1529 $x980 $x1601 $x1602 $x1603 $x1604 $x1605 $x1606 $x1607) $x2140)))) +(let ((@x2154 (monotonicity (monotonicity @x2142 (= $x1609 $x2143)) (monotonicity @x2148 (= $x1620 $x2149)) (= $x1625 $x2152)))) +(let ((@x2160 (monotonicity (monotonicity @x2154 (= (not $x1625) $x2155)) (= (or $x1528 $x1529 $x919 (not $x1625)) $x2158)))) +(let (($x2115 (= (or $x1528 $x1529 $x971 (not k!00) $x1531 (not k!10) (not $x1522)) $x2114))) +(let (($x930 (<= (+ v_b_length$ (* (- 1) ?0)) 0))) +(let (($x1458 (or $x1399 $x930 $x86))) +(let (($x1463 (not $x1458))) +(let ((@x2110 (monotonicity (quant-intro (refl (= $x1463 $x1463)) (= $x1466 $x2103)) (= $x1522 $x2108)))) +(let ((@x2119 (monotonicity (monotonicity (monotonicity @x2110 (= (not $x1522) $x2111)) $x2115) (= $x1535 $x2117)))) +(let ((@x2166 (monotonicity @x2119 (monotonicity @x2160 (= $x1633 $x2161)) (= $x1638 $x2164)))) +(let (($x903 (<= (+ ?x46 (* (- 1) v_b_max_G_1$)) 0))) +(let (($x888 (>= (+ ?0 (* (- 1) v_b_p_G_0$)) 0))) +(let (($x1436 (or $x1399 $x888 $x903))) +(let ((@x2102 (monotonicity (quant-intro (refl (= $x1436 $x1436)) (= $x1441 $x2095)) (= (not $x1441) $x2100)))) +(let ((@x2172 (monotonicity @x2102 (monotonicity @x2166 (= (not $x1638) $x2167)) (= (or $x1528 $x1529 (not $x1441) (not $x63) (not $x1638)) $x2170)))) +(let ((@x2181 (monotonicity (monotonicity (monotonicity @x2172 (= $x1648 $x2173)) (= $x1653 $x2176)) (= (not $x1653) $x2179)))) +(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) ?x46)) 0))) +(let (($x841 (>= ?0 1))) +(let (($x1414 (or $x1399 $x841 $x851))) +(let ((@x2094 (monotonicity (quant-intro (refl (= $x1414 $x1414)) (= $x1419 $x2087)) (= (not $x1419) (not $x2087))))) +(let ((@x2187 (monotonicity (monotonicity @x2094 @x2181 (= (or (not $x1419) (not $x1653)) $x2182)) (= $x1662 $x2185)))) +(let (($x1193 (not $x136))) +(let (($x1026 (forall ((?v0 Int) )(let (($x1020 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x1012 (and $x838 (not (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0))))) +(let (($x1015 (not $x1012))) +(or $x1015 $x1020)))))) +)) +(let (($x1196 (and $x1026 $x1193))) +(let (($x1295 (not $x1290))) +(let (($x1298 (and $x1173 $x1295))) +(let (($x1301 (not $x1298))) +(let (($x1317 (or $x1301 $x1312))) +(let (($x1320 (not $x1317))) +(let (($x1323 (or $x1320 $x1196))) +(let (($x1339 (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996 $x1323))) +(let (($x1329 (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996 $x1323))) +(let (($x1344 (or $x1329 $x1339))) +(let (($x1350 (and $x882 $x885 $x971 $x1344))) +(let (($x1145 (not (and $x1139 (not $x1142))))) +(let (($x1258 (or $x1145 $x1253))) +(let (($x1261 (not $x1258))) +(let (($x1129 (not (and (>= ?v0!3 0) (not $x1126))))) +(let (($x1132 (or $x1129 $x1131))) +(let (($x1264 (and $x1132 $x1261))) +(let (($x1119 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x86 (= ?x46 v_b_max_G_4$))) +(let (($x838 (>= ?v0 0))) +(let (($x936 (and $x838 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0))))) +(let (($x939 (not $x936))) +(let (($x942 (or $x939 $x86))) +(not $x942)))))))) +)) +(let (($x1267 (or $x1119 $x1264))) +(let (($x1273 (and $x882 $x885 $x919 k!00 $x73 k!10 $x1267))) +(let (($x1355 (or $x1273 $x1350))) +(let (($x909 (forall ((?v0 Int) )(let (($x903 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x895 (and $x838 (not (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0))))) +(let (($x898 (not $x895))) +(or $x898 $x903)))))) +)) +(let (($x1361 (and $x882 $x885 $x909 $x63 $x1355))) +(let (($x1366 (or $x1095 $x1361))) +(let (($x862 (forall ((?v0 Int) )(let (($x851 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0))) +(let (($x838 (>= ?v0 0))) +(let (($x849 (and $x838 (not (>= ?v0 1))))) +(let (($x854 (not $x849))) +(or $x854 $x851)))))) +)) +(let (($x1369 (and $x862 $x1366))) +(let (($x1077 (not (and $x1078 $x1079)))) +(let (($x1084 (or $x1077 $x1083))) +(let (($x1085 (not $x1084))) +(let (($x1372 (or $x1085 $x1369))) +(let ((@x1622 (rewrite (= (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996 $x1595) $x1620)))) +(let (($x1012 (and $x838 (not $x1005)))) +(let (($x1015 (not $x1012))) +(let (($x1023 (or $x1015 $x1020))) +(let ((@x1569 (monotonicity (rewrite (= $x1012 (not (or $x1399 $x1005)))) (= $x1015 (not (not (or $x1399 $x1005))))))) +(let ((@x1573 (trans @x1569 (rewrite (= (not (not (or $x1399 $x1005))) (or $x1399 $x1005))) (= $x1015 (or $x1399 $x1005))))) +(let ((@x1581 (trans (monotonicity @x1573 (= $x1023 (or (or $x1399 $x1005) $x1020))) (rewrite (= (or (or $x1399 $x1005) $x1020) $x1577)) (= $x1023 $x1577)))) +(let ((@x1587 (monotonicity (quant-intro @x1581 (= $x1026 $x1582)) (= $x1196 (and $x1582 $x1193))))) +(let ((@x1547 (monotonicity (rewrite (= $x1298 (not (or $x1540 $x1290)))) (= $x1301 (not (not (or $x1540 $x1290))))))) +(let ((@x1551 (trans @x1547 (rewrite (= (not (not (or $x1540 $x1290))) (or $x1540 $x1290))) (= $x1301 (or $x1540 $x1290))))) +(let ((@x1559 (trans (monotonicity @x1551 (= $x1317 (or (or $x1540 $x1290) $x1312))) (rewrite (= (or (or $x1540 $x1290) $x1312) $x1555)) (= $x1317 $x1555)))) +(let ((@x1597 (monotonicity (monotonicity @x1559 (= $x1320 $x1560)) (trans @x1587 (rewrite (= (and $x1582 $x1193) $x1590)) (= $x1196 $x1590)) (= $x1323 $x1595)))) +(let ((@x1616 (monotonicity @x1597 (= $x1339 (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996 $x1595))))) +(let ((@x1611 (rewrite (= (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996 $x1595) $x1609)))) +(let ((@x1600 (monotonicity @x1597 (= $x1329 (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996 $x1595))))) +(let ((@x1627 (monotonicity (trans @x1600 @x1611 (= $x1329 $x1609)) (trans @x1616 @x1622 (= $x1339 $x1620)) (= $x1344 $x1625)))) +(let ((@x1637 (trans (monotonicity @x1627 (= $x1350 (and $x882 $x885 $x971 $x1625))) (rewrite (= (and $x882 $x885 $x971 $x1625) $x1633)) (= $x1350 $x1633)))) +(let ((@x1537 (rewrite (= (and $x882 $x885 $x919 k!00 $x73 k!10 $x1522) $x1535)))) +(let ((@x1496 (monotonicity (rewrite (= (and $x1139 (not $x1142)) (not (or $x1489 $x1142)))) (= $x1145 (not (not (or $x1489 $x1142))))))) +(let ((@x1500 (trans @x1496 (rewrite (= (not (not (or $x1489 $x1142))) (or $x1489 $x1142))) (= $x1145 (or $x1489 $x1142))))) +(let ((@x1508 (trans (monotonicity @x1500 (= $x1258 (or (or $x1489 $x1142) $x1253))) (rewrite (= (or (or $x1489 $x1142) $x1253) (or $x1489 $x1142 $x1253))) (= $x1258 (or $x1489 $x1142 $x1253))))) +(let (($x1470 (or (not (>= ?v0!3 0)) $x1126))) +(let ((@x1476 (monotonicity (rewrite (= (and (>= ?v0!3 0) (not $x1126)) (not $x1470))) (= $x1129 (not (not $x1470)))))) +(let ((@x1483 (monotonicity (trans @x1476 (rewrite (= (not (not $x1470)) $x1470)) (= $x1129 $x1470)) (= $x1132 (or $x1470 $x1131))))) +(let ((@x1514 (monotonicity (trans @x1483 (rewrite (= (or $x1470 $x1131) $x1484)) (= $x1132 $x1484)) (monotonicity @x1508 (= $x1261 (not (or $x1489 $x1142 $x1253)))) (= $x1264 (and $x1484 (not (or $x1489 $x1142 $x1253))))))) +(let ((@x1521 (trans @x1514 (rewrite (= (and $x1484 (not (or $x1489 $x1142 $x1253))) $x1517)) (= $x1264 $x1517)))) +(let (($x936 (and $x838 (not $x930)))) +(let (($x939 (not $x936))) +(let (($x942 (or $x939 $x86))) +(let ((@x1450 (monotonicity (rewrite (= $x936 (not (or $x1399 $x930)))) (= $x939 (not (not (or $x1399 $x930))))))) +(let ((@x1454 (trans @x1450 (rewrite (= (not (not (or $x1399 $x930))) (or $x1399 $x930))) (= $x939 (or $x1399 $x930))))) +(let ((@x1462 (trans (monotonicity @x1454 (= $x942 (or (or $x1399 $x930) $x86))) (rewrite (= (or (or $x1399 $x930) $x86) $x1458)) (= $x942 $x1458)))) +(let ((@x1468 (quant-intro (monotonicity @x1462 (= (not $x942) $x1463)) (= $x1119 $x1466)))) +(let ((@x1527 (monotonicity (monotonicity @x1468 @x1521 (= $x1267 $x1522)) (= $x1273 (and $x882 $x885 $x919 k!00 $x73 k!10 $x1522))))) +(let (($x895 (and $x838 (not $x888)))) +(let (($x898 (not $x895))) +(let (($x906 (or $x898 $x903))) +(let ((@x1428 (monotonicity (rewrite (= $x895 (not (or $x1399 $x888)))) (= $x898 (not (not (or $x1399 $x888))))))) +(let ((@x1432 (trans @x1428 (rewrite (= (not (not (or $x1399 $x888))) (or $x1399 $x888))) (= $x898 (or $x1399 $x888))))) +(let ((@x1440 (trans (monotonicity @x1432 (= $x906 (or (or $x1399 $x888) $x903))) (rewrite (= (or (or $x1399 $x888) $x903) $x1436)) (= $x906 $x1436)))) +(let ((@x1643 (monotonicity (quant-intro @x1440 (= $x909 $x1441)) (monotonicity (trans @x1527 @x1537 (= $x1273 $x1535)) @x1637 (= $x1355 $x1638)) (= $x1361 (and $x882 $x885 $x1441 $x63 $x1638))))) +(let ((@x1652 (trans @x1643 (rewrite (= (and $x882 $x885 $x1441 $x63 $x1638) $x1648)) (= $x1361 $x1648)))) +(let (($x849 (and $x838 (not $x841)))) +(let (($x854 (not $x849))) +(let (($x859 (or $x854 $x851))) +(let ((@x1406 (monotonicity (rewrite (= $x849 (not (or $x1399 $x841)))) (= $x854 (not (not (or $x1399 $x841))))))) +(let ((@x1410 (trans @x1406 (rewrite (= (not (not (or $x1399 $x841))) (or $x1399 $x841))) (= $x854 (or $x1399 $x841))))) +(let ((@x1418 (trans (monotonicity @x1410 (= $x859 (or (or $x1399 $x841) $x851))) (rewrite (= (or (or $x1399 $x841) $x851) $x1414)) (= $x859 $x1414)))) +(let ((@x1658 (monotonicity (quant-intro @x1418 (= $x862 $x1419)) (monotonicity @x1652 (= $x1366 $x1653)) (= $x1369 (and $x1419 $x1653))))) +(let ((@x1385 (rewrite (= (not (not (or (not $x1078) $x831))) (or (not $x1078) $x831))))) +(let ((@x1383 (monotonicity (rewrite (= (and $x1078 $x1079) (not (or (not $x1078) $x831)))) (= $x1077 (not (not (or (not $x1078) $x831))))))) +(let ((@x1390 (monotonicity (trans @x1383 @x1385 (= $x1077 (or (not $x1078) $x831))) (= $x1084 (or (or (not $x1078) $x831) $x1083))))) +(let ((@x1395 (trans @x1390 (rewrite (= (or (or (not $x1078) $x831) $x1083) $x1391)) (= $x1084 $x1391)))) +(let ((@x1669 (monotonicity (monotonicity @x1395 (= $x1085 $x1396)) (trans @x1658 (rewrite (= (and $x1419 $x1653) $x1662)) (= $x1369 $x1662)) (= $x1372 $x1667)))) +(let (($x1181 (<= (+ ?x1179 (* (- 1) v_b_max_G_3$)) 0))) +(let (($x1182 (or (not (and $x1173 (not (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0)))) $x1181))) +(let (($x1183 (not $x1182))) +(let (($x1200 (or $x1183 $x1196))) +(let (($x1041 (and $x882 $x885 $x980 $x144 $x145 $x989 $x991 $x996))) +(let (($x1044 (not $x1041))) +(let (($x1208 (not $x1044))) +(let (($x1211 (and $x1208 $x1200))) +(let (($x999 (and $x882 $x885 $x985 $x104 $x107 $x109 $x989 $x991 $x996))) +(let (($x1002 (not $x999))) +(let (($x1169 (not $x1002))) +(let (($x1204 (and $x1169 $x1200))) +(let (($x1215 (or $x1204 $x1211))) +(let (($x974 (and $x882 $x885 $x971))) +(let (($x977 (not $x974))) +(let (($x1166 (not $x977))) +(let (($x1219 (and $x1166 $x1215))) +(let (($x1150 (not (or $x1145 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) 0))))) +(let (($x1154 (and $x1132 $x1150))) +(let (($x1158 (or $x1119 $x1154))) +(let (($x922 (and $x882 $x885 $x919 k!00 $x73 k!10))) +(let (($x925 (not $x922))) +(let (($x1113 (not $x925))) +(let (($x1162 (and $x1113 $x1158))) +(let (($x1223 (or $x1162 $x1219))) +(let (($x912 (and $x882 $x885 $x909 $x63))) +(let (($x1227 (and $x912 $x1223))) +(let (($x1231 (or $x1095 $x1227))) +(let (($x1235 (and $x862 $x1231))) +(let (($x1239 (or $x1085 $x1235))) +(let (($x1305 (= (+ ?x1179 (* (- 1) v_b_max_G_3$)) (+ (* (- 1) v_b_max_G_3$) ?x1179)))) +(let ((@x1309 (monotonicity (rewrite $x1305) (= $x1181 (<= (+ (* (- 1) v_b_max_G_3$) ?x1179) 0))))) +(let ((@x1316 (trans @x1309 (rewrite (= (<= (+ (* (- 1) v_b_max_G_3$) ?x1179) 0) $x1312)) (= $x1181 $x1312)))) +(let (($x1302 (= (not (and $x1173 (not (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0)))) $x1301))) +(let (($x1299 (= (and $x1173 (not (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0))) $x1298))) +(let (($x1175 (>= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) 0))) +(let (($x1283 (= (+ ?v0!5 (* (- 1) v_b_p_G_1$)) (+ (* (- 1) v_b_p_G_1$) ?v0!5)))) +(let ((@x1287 (monotonicity (rewrite $x1283) (= $x1175 (>= (+ (* (- 1) v_b_p_G_1$) ?v0!5) 0))))) +(let ((@x1294 (trans @x1287 (rewrite (= (>= (+ (* (- 1) v_b_p_G_1$) ?v0!5) 0) $x1290)) (= $x1175 $x1290)))) +(let ((@x1303 (monotonicity (monotonicity (monotonicity @x1294 (= (not $x1175) $x1295)) $x1299) $x1302))) +(let ((@x1322 (monotonicity (monotonicity @x1303 @x1316 (= $x1182 $x1317)) (= $x1183 $x1320)))) +(let ((@x1338 (monotonicity (rewrite (= $x1208 $x1041)) (monotonicity @x1322 (= $x1200 $x1323)) (= $x1211 (and $x1041 $x1323))))) +(let ((@x1328 (monotonicity (rewrite (= $x1169 $x999)) (monotonicity @x1322 (= $x1200 $x1323)) (= $x1204 (and $x999 $x1323))))) +(let ((@x1346 (monotonicity (trans @x1328 (rewrite (= (and $x999 $x1323) $x1329)) (= $x1204 $x1329)) (trans @x1338 (rewrite (= (and $x1041 $x1323) $x1339)) (= $x1211 $x1339)) (= $x1215 $x1344)))) +(let ((@x1349 (monotonicity (rewrite (= $x1166 $x974)) @x1346 (= $x1219 (and $x974 $x1344))))) +(let (($x1259 (= (or $x1145 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) 0)) $x1258))) +(let (($x1148 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) 0))) +(let (($x1254 (= (<= (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!4)) 0) $x1253))) +(let (($x1249 (= $x1148 (<= (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!4)) 0)))) +(let (($x1246 (= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_4$)) (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!4))))) +(let ((@x1257 (trans (monotonicity (rewrite $x1246) $x1249) (rewrite $x1254) (= $x1148 $x1253)))) +(let ((@x1266 (monotonicity (monotonicity (monotonicity @x1257 $x1259) (= $x1150 $x1261)) (= $x1154 $x1264)))) +(let ((@x1272 (monotonicity (rewrite (= $x1113 $x922)) (monotonicity @x1266 (= $x1158 $x1267)) (= $x1162 (and $x922 $x1267))))) +(let ((@x1357 (monotonicity (trans @x1272 (rewrite (= (and $x922 $x1267) $x1273)) (= $x1162 $x1273)) (trans @x1349 (rewrite (= (and $x974 $x1344) $x1350)) (= $x1219 $x1350)) (= $x1223 $x1355)))) +(let ((@x1365 (trans (monotonicity @x1357 (= $x1227 (and $x912 $x1355))) (rewrite (= (and $x912 $x1355) $x1361)) (= $x1227 $x1361)))) +(let ((@x1374 (monotonicity (monotonicity (monotonicity @x1365 (= $x1231 $x1366)) (= $x1235 $x1369)) (= $x1239 $x1372)))) +(let (($x1029 (not $x1026))) +(let (($x1032 (or $x1029 $x136))) +(let (($x1035 (and $x1026 $x1032))) +(let (($x1047 (or $x1044 $x1035))) +(let (($x1038 (or $x1002 $x1035))) +(let (($x1050 (and $x1038 $x1047))) +(let (($x1053 (or $x977 $x1050))) +(let (($x959 (forall ((?v0 Int) )(let (($x838 (>= ?v0 0))) +(let (($x936 (and $x838 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0))))) +(let (($x939 (not $x936))) +(or $x939 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_4$)) 0)))))) +)) +(let (($x945 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0))) +(let (($x86 (= ?x46 v_b_max_G_4$))) +(let (($x838 (>= ?v0 0))) +(let (($x936 (and $x838 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0))))) +(let (($x939 (not $x936))) +(or $x939 $x86))))))) +)) +(let (($x948 (not $x945))) +(let (($x962 (or $x948 $x959))) +(let (($x965 (and $x945 $x962))) +(let (($x968 (or $x925 $x965))) +(let (($x1056 (and $x968 $x1053))) +(let (($x915 (not $x912))) +(let (($x1059 (or $x915 $x1056))) +(let (($x1062 (and $x50 $x1059))) +(let (($x878 (not $x862))) +(let (($x1065 (or $x878 $x1062))) +(let (($x1071 (not (and $x862 $x1065)))) +(let ((@x1192 (nnf-neg (nnf-pos (refl (~ $x1023 $x1023)) (~ $x1026 $x1026)) (~ (not $x1029) $x1026)))) +(let ((@x1203 (nnf-neg (sk (~ $x1029 $x1183)) (nnf-neg @x1192 (refl (~ $x1193 $x1193)) (~ (not $x1032) $x1196)) (~ (not $x1035) $x1200)))) +(let ((@x1218 (nnf-neg (nnf-neg (refl (~ $x1169 $x1169)) @x1203 (~ (not $x1038) $x1204)) (nnf-neg (refl (~ $x1208 $x1208)) @x1203 (~ (not $x1047) $x1211)) (~ (not $x1050) $x1215)))) +(let ((@x1157 (nnf-neg (nnf-neg (sk (~ $x945 $x1132)) (~ (not $x948) $x1132)) (sk (~ (not $x959) $x1150)) (~ (not $x962) $x1154)))) +(let ((@x1161 (nnf-neg (nnf-neg (refl (~ (not $x942) (not $x942))) (~ $x948 $x1119)) @x1157 (~ (not $x965) $x1158)))) +(let ((@x1226 (nnf-neg (nnf-neg (refl (~ $x1113 $x1113)) @x1161 (~ (not $x968) $x1162)) (nnf-neg (refl (~ $x1166 $x1166)) @x1218 (~ (not $x1053) $x1219)) (~ (not $x1056) $x1223)))) +(let ((@x1109 (monotonicity (refl (~ $x882 $x882)) (refl (~ $x885 $x885)) (nnf-pos (refl (~ $x906 $x906)) (~ $x909 $x909)) (refl (~ $x63 $x63)) (~ $x912 $x912)))) +(let ((@x1230 (nnf-neg (nnf-neg @x1109 (~ (not $x915) $x912)) @x1226 (~ (not $x1059) $x1227)))) +(let ((@x1094 (nnf-neg (nnf-pos (refl (~ $x859 $x859)) (~ $x862 $x862)) (~ (not $x878) $x862)))) +(let ((@x1238 (nnf-neg @x1094 (nnf-neg (refl (~ $x1095 $x1095)) @x1230 (~ (not $x1062) $x1231)) (~ (not $x1065) $x1235)))) +(let (($x749 (and $x52 $x54 $x69 k!00 $x73 k!10))) +(let (($x752 (not $x749))) +(let (($x785 (or $x752 $x403))) +(let (($x788 (and $x785 $x682))) +(let (($x738 (not $x279))) +(let (($x816 (or $x738 $x788))) +(let (($x819 (and $x50 $x816))) +(let (($x822 (or $x705 $x819))) +(let (($x825 (and $x234 $x822))) +(let (($x828 (not $x825))) +(let ((@x1011 (monotonicity (rewrite (= (<= v_b_p_G_1$ ?0) $x1005)) (= $x557 (not $x1005))))) +(let ((@x837 (rewrite (= $x43 $x838)))) +(let ((@x1017 (monotonicity (monotonicity @x837 @x1011 (= $x560 $x1012)) (= (not $x560) $x1015)))) +(let ((@x1028 (quant-intro (monotonicity @x1017 (rewrite (= $x132 $x1020)) (= $x567 $x1023)) (= $x572 $x1026)))) +(let ((@x1034 (monotonicity (monotonicity @x1028 (= (not $x572) $x1029)) (= $x595 $x1032)))) +(let ((@x886 (rewrite (= $x54 $x885)))) +(let ((@x883 (rewrite (= $x52 $x882)))) +(let ((@x1043 (monotonicity @x883 @x886 (rewrite (= $x143 $x980)) (rewrite (= $x110 $x989)) (rewrite (= $x456 $x991)) (rewrite (= $x116 $x996)) (= $x654 $x1041)))) +(let ((@x1049 (monotonicity (monotonicity @x1043 (= $x669 $x1044)) (monotonicity @x1028 @x1034 (= $x600 $x1035)) (= $x670 $x1047)))) +(let ((@x1001 (monotonicity @x883 @x886 (monotonicity (rewrite (= $x143 $x980)) (= $x441 $x985)) (rewrite (= $x110 $x989)) (rewrite (= $x456 $x991)) (rewrite (= $x116 $x996)) (= $x544 $x999)))) +(let ((@x1040 (monotonicity (monotonicity @x1001 (= $x606 $x1002)) (monotonicity @x1028 @x1034 (= $x600 $x1035)) (= $x607 $x1038)))) +(let ((@x976 (monotonicity @x883 @x886 (monotonicity (rewrite (= $x69 $x919)) (= $x415 $x971)) (= $x429 $x974)))) +(let ((@x1055 (monotonicity (monotonicity @x976 (= $x681 $x977)) (monotonicity @x1040 @x1049 (= $x675 $x1050)) (= $x682 $x1053)))) +(let ((@x935 (monotonicity (rewrite (= (<= v_b_length$ ?0) $x930)) (= $x351 (not $x930))))) +(let ((@x941 (monotonicity (monotonicity @x837 @x935 (= $x354 $x936)) (= $x360 $x939)))) +(let ((@x958 (monotonicity @x941 (rewrite (= $x89 (<= (+ ?x46 (* (- 1) v_b_max_G_4$)) 0))) (= $x372 (or $x939 (<= (+ ?x46 (* (- 1) v_b_max_G_4$)) 0)))))) +(let ((@x950 (monotonicity (quant-intro (monotonicity @x941 (= $x361 $x942)) (= $x366 $x945)) (= (not $x366) $x948)))) +(let ((@x967 (monotonicity (quant-intro (monotonicity @x941 (= $x361 $x942)) (= $x366 $x945)) (monotonicity @x950 (quant-intro @x958 (= $x377 $x959)) (= $x398 $x962)) (= $x403 $x965)))) +(let ((@x927 (monotonicity (monotonicity @x883 @x886 (rewrite (= $x69 $x919)) (= $x749 $x922)) (= $x752 $x925)))) +(let ((@x1058 (monotonicity (monotonicity @x927 @x967 (= $x785 $x968)) @x1055 (= $x788 $x1056)))) +(let ((@x894 (monotonicity (rewrite (= (<= v_b_p_G_0$ ?0) $x888)) (= $x244 (not $x888))))) +(let ((@x900 (monotonicity (monotonicity @x837 @x894 (= $x247 $x895)) (= (not $x247) $x898)))) +(let ((@x911 (quant-intro (monotonicity @x900 (rewrite (= $x59 $x903)) (= $x254 $x906)) (= $x259 $x909)))) +(let ((@x917 (monotonicity (monotonicity @x883 @x886 @x911 (= $x279 $x912)) (= $x738 $x915)))) +(let ((@x1064 (monotonicity (monotonicity @x917 @x1058 (= $x816 $x1059)) (= $x819 $x1062)))) +(let ((@x848 (monotonicity (rewrite (= (<= 1 ?0) $x841)) (= (not (<= 1 ?0)) (not $x841))))) +(let ((@x834 (monotonicity (monotonicity @x837 @x848 (= (and $x43 (not (<= 1 ?0))) $x849)) (= (not (and $x43 (not (<= 1 ?0)))) $x854)))) +(let ((@x877 (quant-intro (monotonicity @x834 (rewrite (= $x47 $x851)) (= $x229 $x859)) (= $x234 $x862)))) +(let ((@x1067 (monotonicity (monotonicity @x877 (= $x705 $x878)) @x1064 (= $x822 $x1065)))) +(let ((@x1073 (monotonicity (monotonicity @x877 @x1067 (= $x825 (and $x862 $x1065))) (= $x828 $x1071)))) +(let ((@x796 (monotonicity (monotonicity @x238 @x240 @x450 @x460 @x463 (= $x654 $x654)) (= $x669 $x669)))) +(let ((@x784 (monotonicity (monotonicity @x238 @x240 @x450 @x460 @x463 (= $x544 $x544)) (= $x606 $x606)))) +(let ((@x800 (monotonicity (monotonicity @x784 (= $x607 $x607)) (monotonicity @x796 (= $x670 $x670)) (= $x675 $x675)))) +(let ((@x780 (monotonicity (monotonicity @x238 @x240 (= $x429 $x429)) (= $x681 $x681)))) +(let ((@x846 (monotonicity (monotonicity @x238 @x240 (= $x749 $x749)) (= $x752 $x752)))) +(let ((@x864 (monotonicity (monotonicity @x846 (= $x785 $x785)) (monotonicity @x780 @x800 (= $x682 $x682)) (= $x788 $x788)))) +(let ((@x762 (monotonicity (monotonicity @x238 @x240 (= $x279 $x279)) (= $x738 $x738)))) +(let ((@x868 (monotonicity (monotonicity @x762 @x864 (= $x816 $x816)) (= $x819 $x819)))) +(let ((@x874 (monotonicity (monotonicity (monotonicity @x868 (= $x822 $x822)) (= $x825 $x825)) (= $x828 $x828)))) +(let ((@x751 (monotonicity (apply-def (intro-def (= $x71 k!00)) (~ $x71 k!00)) (apply-def (intro-def (= $x75 k!10)) (~ $x75 k!10)) (= $x338 $x749)))) +(let ((@x790 (monotonicity (monotonicity (monotonicity @x751 (= $x409 $x752)) (= $x410 $x785)) (= $x687 $x788)))) +(let ((@x821 (monotonicity (monotonicity @x790 (= (or $x738 $x687) $x816)) (= (and $x50 (or $x738 $x687)) $x819)))) +(let ((@x827 (monotonicity (monotonicity @x821 (= (or $x705 (and $x50 (or $x738 $x687))) $x822)) (= (and $x234 (or $x705 (and $x50 (or $x738 $x687)))) $x825)))) +(let ((@x830 (monotonicity @x827 (= (not (and $x234 (or $x705 (and $x50 (or $x738 $x687))))) $x828)))) +(let (($x739 (or $x738 $x687))) +(let (($x740 (and $x50 $x739))) +(let (($x741 (or $x705 $x740))) +(let (($x742 (and $x234 $x741))) +(let (($x743 (not $x742))) +(let ((@x766 (monotonicity (monotonicity @x238 @x240 (= $x338 $x338)) (= $x409 $x409)))) +(let ((@x804 (monotonicity (monotonicity @x766 (= $x410 $x410)) (monotonicity @x780 @x800 (= $x682 $x682)) (= $x687 $x687)))) +(let ((@x808 (monotonicity (monotonicity @x762 @x804 (= $x739 $x739)) (= $x740 $x740)))) +(let ((@x814 (monotonicity (monotonicity (monotonicity @x808 (= $x741 $x741)) (= $x742 $x742)) (= $x743 $x743)))) +(let ((@x746 (mp (not-or-elim @x726 (not $x711)) (rewrite* (= (not $x711) $x743)) $x743))) +(let ((@x1242 (mp~ (mp (mp (mp (mp @x746 @x814 $x743) @x830 $x828) @x874 $x828) @x1073 $x1071) (nnf-neg (sk (~ $x878 $x1085)) @x1238 (~ $x1071 $x1239)) $x1239))) +(let ((@x2191 (mp (mp (mp @x1242 @x1374 $x1372) @x1669 $x1667) (monotonicity @x2187 (= $x1667 (or $x1396 $x2185))) (or $x1396 $x2185)))) +(let ((@x2302 (unit-resolution (def-axiom (or $x2182 $x2176)) (unit-resolution @x2191 (lemma @x1930 $x1391) $x2185) $x2176))) +(let ((@x2309 (unit-resolution (def-axiom (or $x2179 $x1095 $x2173)) (mp @x737 (symm (commutativity (= $x50 $x31)) (= $x31 $x50)) $x50) (or $x2179 $x2173)))) +(let ((@x2310 (unit-resolution @x2309 @x2302 $x2173))) +(let ((@x2410 (monotonicity (unit-resolution (def-axiom (or $x2146 $x144)) @x2389 $x144) (= ?x135 ?x62)))) +(let ((@x2413 (trans @x2410 (unit-resolution (def-axiom (or $x2170 $x63)) @x2310 $x63) (= ?x135 v_b_max_G_1$)))) +(let ((@x2414 (trans @x2413 (symm (unit-resolution (def-axiom (or $x2146 $x145)) @x2389 $x145) $x2022) $x136))) +(let ((@x2416 (unit-resolution (def-axiom (or $x2137 $x1560 $x2131)) (unit-resolution (def-axiom (or $x2128 $x1193)) @x2414 $x2128) (unit-resolution (def-axiom (or $x2146 $x2134)) @x2389 $x2134) $x1560))) +(let ((@x2421 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) (or $x1693 $x985 $x1312 (not $x2024))) (unit-resolution (def-axiom (or $x1555 $x1678)) @x2416 $x1678) @x2406 (unit-resolution (def-axiom (or $x2146 $x980)) @x2389 $x980) $x1693))) +(let (($x1798 (= v_b_p_G_0$ ?v0!5))) +(let (($x1800 (>= (+ v_b_p_G_0$ (* (- 1) ?v0!5)) 0))) +(let (($x1764 (>= (+ v_b_p_G_0$ (* (- 1) v_b_p_G_1$)) (- 1)))) +(let ((@x2426 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1605 $x1764)) (unit-resolution (def-axiom (or $x2146 $x991)) @x2389 $x991) $x1764))) +(let ((@x2430 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1800 $x1290 (not $x1764))) (unit-resolution (def-axiom (or $x1555 $x1295)) @x2416 $x1295) @x2426 $x1800))) +(let (($x1751 (<= (+ v_b_p_G_0$ (* (- 1) ?v0!5)) 0))) +(let (($x1728 (>= (+ v_b_max_G_1$ (* (- 1) ?x1179)) 0))) +(let (($x2195 (not $x1728))) +(let ((@x2433 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x2195 $x1312 (not $x2024))) @x2406 (unit-resolution (def-axiom (or $x1555 $x1678)) @x2416 $x1678) $x2195))) +(let ((@x2333 (unit-resolution (def-axiom (or $x2170 $x2095)) @x2310 $x2095))) +(let (($x1716 (or $x2100 $x1540 $x1751 $x1728))) +(let (($x1775 (<= (+ ?x1179 (* (- 1) v_b_max_G_1$)) 0))) +(let (($x1789 (>= (+ ?v0!5 (* (- 1) v_b_p_G_0$)) 0))) +(let (($x1717 (or $x2100 (or $x1540 $x1789 $x1775)))) +(let (($x1739 (= (+ ?x1179 (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) ?x1179)))) +(let ((@x1726 (monotonicity (rewrite $x1739) (= $x1775 (<= (+ (* (- 1) v_b_max_G_1$) ?x1179) 0))))) +(let ((@x1732 (trans @x1726 (rewrite (= (<= (+ (* (- 1) v_b_max_G_1$) ?x1179) 0) $x1728)) (= $x1775 $x1728)))) +(let (($x1743 (= (+ ?v0!5 (* (- 1) v_b_p_G_0$)) (+ (* (- 1) v_b_p_G_0$) ?v0!5)))) +(let ((@x1749 (monotonicity (rewrite $x1743) (= $x1789 (>= (+ (* (- 1) v_b_p_G_0$) ?v0!5) 0))))) +(let ((@x1755 (trans @x1749 (rewrite (= (>= (+ (* (- 1) v_b_p_G_0$) ?v0!5) 0) $x1751)) (= $x1789 $x1751)))) +(let ((@x1715 (monotonicity @x1755 @x1732 (= (or $x1540 $x1789 $x1775) (or $x1540 $x1751 $x1728))))) +(let ((@x1690 (trans (monotonicity @x1715 (= $x1717 (or $x2100 (or $x1540 $x1751 $x1728)))) (rewrite (= (or $x2100 (or $x1540 $x1751 $x1728)) $x1716)) (= $x1717 $x1716)))) +(let ((@x2435 (unit-resolution (mp ((_ quant-inst ?v0!5) $x1717) @x1690 $x1716) @x2333 (unit-resolution (def-axiom (or $x1555 $x1173)) @x2416 $x1173) @x2433 $x1751))) +(let ((@x2436 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1798 (not $x1751) (not $x1800))) @x2435 @x2430 $x1798))) +(let ((@x1807 (monotonicity (symm (hypothesis $x1798) (= ?v0!5 v_b_p_G_0$)) (= ?x1179 ?x101)))) +(let ((@x1796 (lemma (unit-resolution (hypothesis $x1803) (symm @x1807 $x1799) false) (or (not $x1798) $x1799)))) +(let ((@x2437 (unit-resolution @x1796 @x2436 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1803 $x1703)) @x2421 $x1803) false))) +(let (($x2228 (= v_b_max_G_1$ v_b_max_G_4$))) +(let ((@x2349 (symm (unit-resolution (def-axiom (or $x2114 $x73)) (hypothesis $x2117) $x73) $x2228))) +(let ((@x2352 ((_ th-lemma arith triangle-eq) (or (not $x2228) (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0))))) +(let ((@x2353 (unit-resolution @x2352 @x2349 (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0)))) +(let (($x2265 (>= (+ v_b_max_G_1$ (* (- 1) (v_b_array$ ?v0!4))) 0))) +(let (($x1143 (not $x1142))) +(let (($x2077 (not $x2103))) +(let (($x2282 (= ?x62 v_b_max_G_4$))) +(let (($x2283 (or $x1528 (<= (+ v_b_length$ (* (- 1) v_b_k_G_0$)) 0) $x2282))) +(let ((@x2313 (trans (unit-resolution (def-axiom (or $x2170 $x63)) @x2310 $x63) (symm (hypothesis $x73) $x2228) $x2282))) +(let ((@x2316 (unit-resolution ((_ quant-inst v_b_k_G_0$) (or $x2077 (not $x2283))) (hypothesis $x2103) (unit-resolution (def-axiom (or $x2283 (not $x2282))) @x2313 $x2283) false))) +(let ((@x2355 (unit-resolution (lemma @x2316 (or $x2077 $x1531)) (unit-resolution (def-axiom (or $x2114 $x73)) (hypothesis $x2117) $x73) $x2077))) +(let ((@x2356 (unit-resolution (def-axiom (or $x2111 $x2103 $x1517)) @x2355 (unit-resolution (def-axiom (or $x2114 $x2108)) (hypothesis $x2117) $x2108) $x1517))) +(let ((@x2343 ((_ th-lemma arith farkas -1 -1 1) (hypothesis (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0)) (hypothesis $x919) (hypothesis $x1143) false))) +(let ((@x2346 (lemma @x2343 (or (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0)) $x971 $x1142)))) +(let ((@x2359 (unit-resolution @x2346 (unit-resolution (def-axiom (or $x2114 $x919)) (hypothesis $x2117) $x919) (unit-resolution (def-axiom (or $x1516 $x1143)) @x2356 $x1143) (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0))))) +(let (($x2272 (<= (+ v_b_p_G_0$ (* (- 1) ?v0!4)) 0))) +(let (($x2296 (or $x2100 $x1489 $x2272 $x2265))) +(let (($x2249 (<= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_1$)) 0))) +(let (($x2241 (>= (+ ?v0!4 (* (- 1) v_b_p_G_0$)) 0))) +(let (($x2300 (or $x2100 (or $x1489 $x2241 $x2249)))) +(let (($x2266 (= (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!4)) 0) $x2265))) +(let (($x2260 (= $x2249 (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!4)) 0)))) +(let (($x2278 (= (+ (v_b_array$ ?v0!4) (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!4))))) +(let ((@x2292 (trans (monotonicity (rewrite $x2278) $x2260) (rewrite $x2266) (= $x2249 $x2265)))) +(let (($x2253 (= (+ ?v0!4 (* (- 1) v_b_p_G_0$)) (+ (* (- 1) v_b_p_G_0$) ?v0!4)))) +(let ((@x2258 (monotonicity (rewrite $x2253) (= $x2241 (>= (+ (* (- 1) v_b_p_G_0$) ?v0!4) 0))))) +(let ((@x2276 (trans @x2258 (rewrite (= (>= (+ (* (- 1) v_b_p_G_0$) ?v0!4) 0) $x2272)) (= $x2241 $x2272)))) +(let ((@x2295 (monotonicity @x2276 @x2292 (= (or $x1489 $x2241 $x2249) (or $x1489 $x2272 $x2265))))) +(let ((@x2319 (trans (monotonicity @x2295 (= $x2300 (or $x2100 (or $x1489 $x2272 $x2265)))) (rewrite (= (or $x2100 (or $x1489 $x2272 $x2265)) $x2296)) (= $x2300 $x2296)))) +(let ((@x2362 (unit-resolution (mp ((_ quant-inst ?v0!4) $x2300) @x2319 $x2296) @x2333 (unit-resolution (def-axiom (or $x1516 $x1139)) @x2356 $x1139) (or $x2272 $x2265)))) +(let ((@x2365 ((_ th-lemma arith farkas 1 -1 1) (unit-resolution (def-axiom (or $x1516 (not $x1253))) @x2356 (not $x1253)) (unit-resolution @x2362 @x2359 $x2265) @x2353 false))) +(let ((@x2373 (unit-resolution (def-axiom (or $x2167 $x2117 $x2161)) (lemma @x2365 $x2114) (unit-resolution (def-axiom (or $x2170 $x2164)) @x2310 $x2164) $x2161))) +(let ((@x2243 (unit-resolution (def-axiom (or $x2155 $x2143 $x2149)) (unit-resolution (def-axiom (or $x2158 $x2152)) @x2373 $x2152) $x2152))) +(let ((@x2244 (unit-resolution @x2243 (lemma @x2437 $x2146) $x2143))) +(let ((@x1791 (trans (monotonicity (hypothesis $x107) (= ?x135 ?x101)) (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (= ?x135 v_b_max_G_2$)))) +(let ((@x1769 (trans @x1791 (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) $x136))) +(let ((@x1771 (lemma (unit-resolution (hypothesis $x1193) @x1769 false) (or $x136 $x1603 $x1601 $x1602)))) +(let ((@x2380 (unit-resolution @x1771 (unit-resolution (def-axiom (or $x2140 $x109)) @x2244 $x109) (unit-resolution (def-axiom (or $x2140 $x104)) @x2244 $x104) (unit-resolution (def-axiom (or $x2140 $x107)) @x2244 $x107) $x136))) +(let ((@x2368 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1605 $x1764)) (unit-resolution (def-axiom (or $x2140 $x991)) @x2244 $x991) $x1764))) +(let ((@x1699 (unit-resolution (def-axiom (or $x2137 $x1560 $x2131)) (unit-resolution (def-axiom (or $x2128 $x1193)) (hypothesis $x136) $x2128) (hypothesis $x2134) $x1560))) +(let (($x2205 (not $x1800))) +(let (($x1838 (<= (+ ?x101 (* (- 1) v_b_max_G_3$)) 0))) +(let ((@x1685 (trans (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) (= ?x101 v_b_max_G_3$)))) +(let ((@x1675 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x101 v_b_max_G_3$)) $x1838)) @x1685 $x1838))) +(let ((@x1696 (lemma ((_ th-lemma arith farkas -1 -1 1) (hypothesis $x1678) (hypothesis $x1838) (hypothesis $x1703) false) (or $x1693 $x1312 (not $x1838))))) +(let ((@x1677 (unit-resolution @x1696 (unit-resolution (def-axiom (or $x1555 $x1678)) @x1699 $x1678) @x1675 $x1693))) +(let ((@x2193 (unit-resolution @x1796 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1803 $x1703)) @x1677 $x1803) (not $x1798)))) +(let ((@x2198 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x2195 $x1312 (not $x1838) $x980)) (unit-resolution (def-axiom (or $x1555 $x1678)) @x1699 $x1678) @x1675 (hypothesis $x985) $x2195))) +(let ((@x2202 (unit-resolution (mp ((_ quant-inst ?v0!5) $x1717) @x1690 $x1716) (hypothesis $x2095) (unit-resolution (def-axiom (or $x1555 $x1173)) @x1699 $x1173) (or $x1751 $x1728)))) +(let ((@x2209 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1798 (not $x1751) $x2205)) (unit-resolution @x2202 @x2198 $x1751) (or $x1798 $x2205)))) +(let ((@x2211 ((_ th-lemma arith farkas -1 1 1) (unit-resolution @x2209 @x2193 $x2205) (hypothesis $x1764) (unit-resolution (def-axiom (or $x1555 $x1295)) @x1699 $x1295) false))) +(let ((@x2370 (unit-resolution (lemma @x2211 (or $x1193 (not $x1764) $x2100 $x980 $x2137 $x1601 $x1603)) @x2333 (or $x1193 (not $x1764) $x980 $x2137 $x1601 $x1603)))) +(unit-resolution @x2370 @x2368 @x2380 (unit-resolution (def-axiom (or $x2140 $x985)) @x2244 $x985) (unit-resolution (def-axiom (or $x2140 $x2134)) @x2244 $x2134) (unit-resolution (def-axiom (or $x2140 $x104)) @x2244 $x104) (unit-resolution (def-axiom (or $x2140 $x109)) @x2244 $x109) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/VCC_Max.certs --- a/src/HOL/SMT_Examples/VCC_Max.certs Thu May 01 22:57:36 2014 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,7207 +0,0 @@ -2122eda8d3638c072eaaa16a2c285fe3e5c83f7e 7206 0 -WARNING: For problems containing quantifiers, the model finding capabilities of Z3 work better when the formula does not contain nested quantifiers. You can use PULL_NESTED_QUANTIFIERS=true to eliminate nested quantifiers. -#2 := false -decl f470 :: Int -#4962 := f470 -decl f55 :: (-> S17 S11 Int) -decl f139 :: (-> S60 S4 S11) -decl f35 :: S4 -#356 := f35 -decl f140 :: (-> S61 Int S60) -decl f471 :: Int -#4964 := f471 -decl f153 :: (-> S68 S11 S61) -decl f87 :: (-> S34 Int S11) -decl f445 :: Int -#4655 := f445 -decl f113 :: (-> S49 S4 S34) -decl f114 :: S49 -#1136 := f114 -#4654 := (f113 f114 f35) -#4656 := (f87 #4654 f445) -decl f154 :: S68 -#1350 := f154 -#4734 := (f153 f154 #4656) -#4988 := (f140 #4734 f471) -#4989 := (f139 #4988 f35) -decl f103 :: (-> S42 S10 S17) -decl f444 :: S10 -#4649 := f444 -decl f199 :: S42 -#2434 := f199 -#4748 := (f103 f199 f444) -#4990 := (f55 #4748 #4989) -#4991 := (= #4990 f470) -#20985 := (not #4991) -#1138 := 0::Int -#6707 := -1::Int -#12718 := (* -1::Int f471) -decl f443 :: Int -#4646 := f443 -#12719 := (+ f443 #12718) -#12720 := (<= #12719 0::Int) -#20986 := (or #12720 #20985) -#20987 := (not #20986) -#1197 := (:var 0 Int) -#4773 := (f140 #4734 #1197) -#21878 := (pattern #4773) -#12696 := (* -1::Int f470) -#4774 := (f139 #4773 f35) -#4775 := (f55 #4748 #4774) -#12697 := (+ #4775 #12696) -#12698 := (<= #12697 0::Int) -decl f472 :: Int -#4972 := f472 -#12677 := (* -1::Int f472) -#12685 := (+ #1197 #12677) -#12684 := (>= #12685 0::Int) -#9359 := 4294967295::Int -#14917 := (<= #1197 4294967295::Int) -#18181 := (not #14917) -#6706 := (>= #1197 0::Int) -#7428 := (not #6706) -#20977 := (or #7428 #18181 #12684 #12698) -#21895 := (forall (vars (?v0 Int)) (:pat #21878) #20977) -#21900 := (not #21895) -#21903 := (or #21900 #20987) -#21906 := (not #21903) -decl ?v0!14 :: Int -#17232 := ?v0!14 -#17239 := (f140 #4734 ?v0!14) -#17240 := (f139 #17239 f35) -#17241 := (f55 #4748 #17240) -#17543 := (* -1::Int #17241) -#17544 := (+ f470 #17543) -#17545 := (>= #17544 0::Int) -#17530 := (* -1::Int ?v0!14) -#17531 := (+ f472 #17530) -#17532 := (<= #17531 0::Int) -#17234 := (<= ?v0!14 4294967295::Int) -#20951 := (not #17234) -#17233 := (>= ?v0!14 0::Int) -#20950 := (not #17233) -#20966 := (or #20950 #20951 #17532 #17545) -#20971 := (not #20966) -#21909 := (or #20971 #21906) -#21912 := (not #21909) -#12678 := (+ f443 #12677) -#12676 := (>= #12678 0::Int) -#12681 := (not #12676) -#21915 := (or #12681 #21912) -#21918 := (not #21915) -#21921 := (or #12681 #21918) -#21924 := (not #21921) -#12651 := (>= f471 0::Int) -#21027 := (not #12651) -#2098 := 2::Int -#12668 := (>= f472 2::Int) -#21026 := (not #12668) -decl f1 :: S1 -#3 := f1 -decl f45 :: (-> S7 S4 S1) -decl f33 :: S4 -#350 := f33 -decl f46 :: (-> S8 Int S7) -decl f449 :: (-> S178 S3 S8) -decl f20 :: S3 -#66 := f20 -decl f450 :: (-> S179 S3 S178) -decl f9 :: S3 -#33 := f9 -decl f451 :: (-> S180 S10 S179) -decl f452 :: S180 -#4695 := f452 -#4696 := (f451 f452 f444) -#4974 := (f450 #4696 f9) -#4975 := (f449 #4974 f20) -#4976 := (f46 #4975 f472) -#4977 := (f45 #4976 f33) -#4978 := (= #4977 f1) -#11705 := (not #4978) -decl f464 :: Int -#4790 := f464 -#12740 := (+ f464 #12677) -#12739 := (= #12740 -1::Int) -#12743 := (not #12739) -#13726 := 4294967294::Int -#13727 := (<= f464 4294967294::Int) -#17212 := (not #13727) -#12660 := (>= f464 -1::Int) -#17209 := (not #12660) -#21927 := (or #17209 #17212 #12743 #11705 #21026 #21027 #21924) -#21930 := (not #21927) -#21933 := (or #17209 #17212 #21930) -#21936 := (not #21933) -#968 := 1::Int -#12639 := (>= f464 1::Int) -#12777 := (not #12639) -#4965 := (= f471 f464) -#11751 := (not #4965) -decl f469 :: Int -#4949 := f469 -#4963 := (= f470 f469) -#11760 := (not #4963) -decl f10 :: S3 -#36 := f10 -decl f8 :: S3 -#30 := f8 -#4956 := (f450 #4696 f8) -#4957 := (f449 #4956 f10) -#4958 := (f46 #4957 f464) -#4959 := (f45 #4958 f33) -#4960 := (= #4959 f1) -#11785 := (not #4960) -decl f17 :: S3 -#57 := f17 -decl f11 :: S3 -#39 := f11 -#4951 := (f450 #4696 f11) -#4952 := (f449 #4951 f17) -#4953 := (f46 #4952 f469) -#4954 := (f45 #4953 f35) -#4955 := (= #4954 f1) -#11794 := (not #4955) -#4936 := (f140 #4734 f464) -#4937 := (f139 #4936 f35) -#4947 := (f55 #4748 #4937) -#4950 := (= f469 #4947) -#11803 := (not #4950) -decl f71 :: (-> S27 S11 S1) -decl f80 :: (-> S31 S10 S27) -decl f157 :: S31 -#1372 := f157 -#4743 := (f80 f157 f444) -#4944 := (f71 #4743 #4937) -#4945 := (= #4944 f1) -#17180 := (not #4945) -decl f118 :: (-> S51 S11 S7) -decl f123 :: S51 -#1172 := f123 -#4938 := (f118 f123 #4937) -#4939 := (f45 #4938 f35) -#4940 := (= #4939 f1) -#17171 := (not #4940) -#21939 := (or #17171 #17180 #11803 #11794 #11785 #11760 #11751 #12777 #21027 #21936) -#21942 := (not #21939) -#21945 := (or #17171 #17180 #21942) -#21948 := (not #21945) -decl f244 :: (-> S93 S4 Int) -decl f245 :: S93 -#2903 := f245 -#4624 := (f244 f245 f35) -#25629 := (* #4624 f464) -#4735 := (f140 #4734 0::Int) -#4736 := (f139 #4735 f35) -decl f206 :: S17 -#2483 := f206 -#23971 := (f55 f206 #4736) -#23991 := (f87 #4654 #23971) -#24379 := (f55 f206 #23991) -#25632 := (+ #24379 #25629) -#25639 := (f87 #4654 #25632) -decl f358 :: S31 -#3975 := f358 -#24190 := (f80 f358 f444) -#25878 := (f71 #24190 #25639) -#25879 := (= #25878 f1) -decl f85 :: S11 -#1075 := f85 -decl f82 :: (-> S32 S11 S11) -decl f83 :: (-> S33 S10 S32) -decl f84 :: S33 -#1072 := f84 -#4661 := (f83 f84 f444) -#25876 := (f82 #4661 #25639) -#25877 := (= #25876 f85) -#25880 := (or #25877 #25879) -#25881 := (not #25880) -decl f3 :: S2 -#7 := f3 -decl f61 :: (-> S4 S2) -decl f62 :: (-> S22 S11 S4) -decl f63 :: S22 -#999 := f63 -#25851 := (f62 f63 #25639) -#25852 := (f61 #25851) -#25853 := (= #25852 f3) -#25882 := (or #25853 #25881) -#25883 := (not #25882) -decl f235 :: (-> S88 S56 S11) -decl f134 :: (-> S55 S11 S56) -decl f135 :: (-> S57 S58 S55) -decl f137 :: (-> S59 S10 S58) -decl f138 :: S59 -#1302 := f138 -#4882 := (f137 f138 f444) -decl f136 :: S57 -#1301 := f136 -#4883 := (f135 f136 #4882) -#25855 := (f134 #4883 #25639) -decl f236 :: S88 -#2770 := f236 -#25859 := (f235 f236 #25855) -#25870 := (f71 #24190 #25859) -#25871 := (= #25870 f1) -#25868 := (f82 #4661 #25859) -#25869 := (= #25868 f85) -#25872 := (or #25869 #25871) -#25873 := (not #25872) -#25865 := (f62 f63 #25859) -#25866 := (f61 #25865) -#25867 := (= #25866 f3) -decl f86 :: S31 -#1078 := f86 -#4650 := (f80 f86 f444) -#25860 := (f71 #4650 #25859) -#25861 := (= #25860 f1) -#25862 := (not #25861) -decl f155 :: (-> S69 S56 S1) -decl f237 :: S69 -#2777 := f237 -#25856 := (f155 f237 #25855) -#25857 := (= #25856 f1) -#25858 := (not #25857) -#25863 := (or #25858 #25862) -#25864 := (not #25863) -#25854 := (not #25853) -#25874 := (or #25854 #25864 #25867 #25873) -#25875 := (not #25874) -#25884 := (or #25875 #25883) -#25885 := (not #25884) -decl f81 :: S31 -#1068 := f81 -#4667 := (f80 f81 f444) -#25848 := (f71 #4667 #25639) -#25849 := (= #25848 f1) -#4941 := (f71 #4667 #4937) -#4942 := (= #4941 f1) -#24580 := (f134 #4883 #4937) -#25782 := (f155 f237 #24580) -#25783 := (= #25782 f1) -#17174 := (not #4942) -#25784 := (or #17174 #25783) -#25785 := (not #25784) -#25916 := [hypothesis]: #25784 -decl f50 :: (-> S13 S12 S1) -decl f65 :: (-> S23 S11 S12) -#4657 := (f55 f206 #4656) -decl f215 :: (-> S78 Int S4) -decl f216 :: (-> S79 S4 S78) -decl f217 :: S79 -#2593 := f217 -#4651 := (f216 f217 f35) -#4652 := (f215 #4651 f443) -#4653 := (f113 f114 #4652) -#4658 := (f87 #4653 #4657) -#22490 := (f55 f206 #4658) -#23413 := (f87 #4653 #22490) -decl f66 :: (-> S24 S10 S23) -decl f67 :: S24 -#1018 := f67 -#23811 := (f66 f67 f444) -#23819 := (f65 #23811 #23413) -decl f51 :: (-> S14 S11 S13) -#24084 := (f87 #4653 f445) -decl f64 :: S14 -#1003 := f64 -#24085 := (f51 f64 #24084) -#24086 := (f50 #24085 #23819) -#24087 := (= #24086 f1) -#23810 := (f51 f64 #23413) -#23820 := (f50 #23810 #23819) -#23821 := (= #23820 f1) -decl f129 :: S24 -#1228 := f129 -#23570 := (f66 f129 f444) -#23825 := (f65 #23570 #23413) -#996 := (:var 0 S11) -#1004 := (f51 f64 #996) -#23826 := (f50 #1004 #23825) -#23835 := (pattern #23826) -decl f329 :: (-> S126 S19 S12) -decl f58 :: (-> S20 S11 S19) -decl f59 :: (-> S21 S10 S20) -decl f60 :: S21 -#991 := f60 -#23829 := (f59 f60 f444) -#23830 := (f58 #23829 #23413) -decl f330 :: S126 -#3503 := f330 -#23831 := (f329 f330 #23830) -decl f254 :: S14 -#2955 := f254 -#3762 := (f51 f254 #996) -#23832 := (f50 #3762 #23831) -#23833 := (= #23832 f1) -#23827 := (= #23826 f1) -#23828 := (not #23827) -#23693 := (f62 f63 #23413) -decl f337 :: S7 -#3683 := f337 -#23823 := (f45 f337 #23693) -#23824 := (= #23823 f1) -#23834 := (or #23824 #23828 #23833) -#23836 := (forall (vars (?v3 S11)) (:pat #23835) #23834) -#23837 := (not #23836) -#23704 := (f71 #4650 #23413) -#23705 := (= #23704 f1) -#23730 := (not #23705) -#23822 := (not #23821) -#23838 := (or #23822 #23730 #23837) -#23839 := (not #23838) -decl f125 :: (-> S54 S11 S27) -decl f334 :: (-> S128 S10 S54) -decl f336 :: S128 -#3670 := f336 -#23786 := (f334 f336 f444) -#23787 := (f125 #23786 #23413) -#23788 := (f71 #23787 #23413) -#23789 := (= #23788 f1) -decl f338 :: (-> S130 S129 S1) -decl f460 :: S129 -#4731 := f460 -decl f339 :: (-> S131 S11 S130) -decl f340 :: (-> S132 S11 S131) -decl f341 :: (-> S133 S10 S132) -decl f345 :: S133 -#3792 := f345 -#4728 := (f341 f345 f444) -#23775 := (f340 #4728 #23413) -#23776 := (f339 #23775 #23413) -#23784 := (f338 #23776 f460) -#23785 := (= #23784 f1) -#23790 := (iff #23785 #23789) -#3776 := (:var 0 S129) -#984 := (:var 1 S11) -#993 := (:var 2 S11) -#980 := (:var 3 S10) -#3793 := (f341 f345 #980) -#3794 := (f340 #3793 #993) -#3795 := (f339 #3794 #984) -#3796 := (f338 #3795 #3776) -#3797 := (pattern #3796) -#3720 := (f334 f336 #980) -#3799 := (f125 #3720 #993) -#3800 := (f71 #3799 #984) -#3801 := (= #3800 f1) -#3798 := (= #3796 f1) -#3802 := (iff #3798 #3801) -#3803 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11) (?v3 S129)) (:pat #3797) #3802) -#16565 := (~ #3803 #3803) -#16563 := (~ #3802 #3802) -#16564 := [refl]: #16563 -#16566 := [nnf-pos #16564]: #16565 -#10696 := [asserted]: #3803 -#16567 := [mp~ #10696 #16566]: #3803 -#23799 := (not #3803) -#23801 := (or #23799 #23790) -#23802 := [quant-inst #4649 #23413 #23413 #4731]: #23801 -#23945 := [unit-resolution #23802 #16567]: #23790 -#4729 := (f340 #4728 #4658) -#4730 := (f339 #4729 #4658) -#4732 := (f338 #4730 f460) -#4733 := (= #4732 f1) -#23865 := (f61 #23693) -#23866 := (= #23865 f3) -#23954 := (not #23866) -decl f6 :: S2 -#14 := f6 -#15 := (= f3 f6) -#16 := (not #15) -#23955 := (iff #16 #23954) -#23952 := (iff #15 #23866) -#23950 := (iff #23866 #15) -#23928 := (= f6 f3) -#23948 := (iff #23928 #15) -#23949 := [commutativity]: #23948 -#23929 := (iff #23866 #23928) -#23939 := (= #23865 f6) -#4670 := (f61 #4652) -#23587 := (= #4670 f6) -decl f248 :: S7 -#2922 := f248 -#23515 := (f45 f248 #4652) -#23516 := (= #23515 f1) -#23588 := (iff #23516 #23587) -#1287 := (:var 0 S4) -#3295 := (f45 f248 #1287) -#4521 := (pattern #3295) -#4530 := (f61 #1287) -#4534 := (= #4530 f6) -#3297 := (= #3295 f1) -#4535 := (iff #3297 #4534) -#4536 := (forall (vars (?v0 S4)) (:pat #4521) #4535) -#17000 := (~ #4536 #4536) -#16998 := (~ #4535 #4535) -#16999 := [refl]: #16998 -#17001 := [nnf-pos #16999]: #17000 -#11185 := [asserted]: #4536 -#17002 := [mp~ #11185 #17001]: #4536 -#23597 := (not #4536) -#23598 := (or #23597 #23588) -#23599 := [quant-inst #4652]: #23598 -#23796 := [unit-resolution #23599 #17002]: #23588 -#23600 := (not #23588) -#23798 := (or #23600 #23587) -#1426 := (:var 1 S4) -#2594 := (f216 f217 #1426) -#2595 := (f215 #2594 #1197) -#2917 := (pattern #2595) -#2923 := (f45 f248 #2595) -#2924 := (= #2923 f1) -#2925 := (forall (vars (?v0 S4) (?v1 Int)) (:pat #2917) #2924) -#16099 := (~ #2925 #2925) -#16097 := (~ #2924 #2924) -#16098 := [refl]: #16097 -#16100 := [nnf-pos #16098]: #16099 -#9874 := [asserted]: #2925 -#16101 := [mp~ #9874 #16100]: #2925 -#23522 := (not #2925) -#23523 := (or #23522 #23516) -#23524 := [quant-inst #356 #4646]: #23523 -#24987 := [unit-resolution #23524 #16101]: #23516 -#23604 := (not #23516) -#23605 := (or #23600 #23604 #23587) -#23606 := [def-axiom]: #23605 -#23914 := [unit-resolution #23606 #24987]: #23798 -#23915 := [unit-resolution #23914 #23796]: #23587 -#23937 := (= #23865 #4670) -#23935 := (= #23693 #4652) -#23428 := (f62 f63 #4658) -#23429 := (= #23428 #4652) -#2667 := (f113 f114 #1426) -#4356 := (f87 #2667 #1197) -#21823 := (pattern #4356) -#4360 := (f62 f63 #4356) -#4361 := (= #4360 #1426) -#21830 := (forall (vars (?v0 S4) (?v1 Int)) (:pat #21823) #4361) -#4362 := (forall (vars (?v0 S4) (?v1 Int)) #4361) -#21833 := (iff #4362 #21830) -#21831 := (iff #4361 #4361) -#21832 := [refl]: #21831 -#21834 := [quant-intro #21832]: #21833 -#16915 := (~ #4362 #4362) -#16913 := (~ #4361 #4361) -#16914 := [refl]: #16913 -#16916 := [nnf-pos #16914]: #16915 -#11104 := [asserted]: #4362 -#16917 := [mp~ #11104 #16916]: #4362 -#21835 := [mp #16917 #21834]: #21830 -#23455 := (not #21830) -#23494 := (or #23455 #23429) -#23495 := [quant-inst #4652 #4657]: #23494 -#23916 := [unit-resolution #23495 #21835]: #23429 -#23933 := (= #23693 #23428) -#23931 := (= #23413 #4658) -#23426 := (= #4658 #23413) -#4664 := (f118 f123 #4658) -#4665 := (f45 #4664 #4652) -#4666 := (= #4665 f1) -decl f79 :: S7 -#1064 := f79 -#4673 := (f45 f79 #4652) -#4674 := (= #4673 f1) -#4671 := (= #4670 f3) -#4672 := (not #4671) -#4668 := (f71 #4667 #4658) -#4669 := (= #4668 f1) -#4662 := (f82 #4661 #4658) -#4663 := (= #4662 f85) -#4659 := (f71 #4650 #4658) -#4660 := (= #4659 f1) -#13334 := (and #4660 #4663 #4666 #4669 #4672 #4674) -decl f468 :: Int -#4819 := f468 -#4826 := (= #4775 f468) -#12568 := (* -1::Int f443) -#12951 := (+ #1197 #12568) -#12950 := (>= #12951 0::Int) -#12952 := (not #12950) -decl f168 :: Int -#1519 := f168 -#6888 := (* -1::Int f168) -#6889 := (+ #1197 #6888) -#6890 := (<= #6889 0::Int) -#12993 := (and #6706 #6890 #12952 #4826) -#12998 := (exists (vars (?v0 Int)) #12993) -#12962 := (* -1::Int f468) -#12963 := (+ #4775 #12962) -#12964 := (<= #12963 0::Int) -#6897 := (and #6706 #6890) -#7910 := (not #6897) -#12973 := (or #7910 #12950 #12964) -#12978 := (forall (vars (?v0 Int)) #12973) -#12981 := (not #12978) -#13001 := (or #12981 #12998) -#13004 := (and #12978 #13001) -decl f462 :: Int -#4782 := f462 -#4820 := (= f468 f462) -#11361 := (not #4820) -decl f463 :: Int -#4786 := f463 -decl f467 :: Int -#4817 := f467 -#4818 := (= f467 f463) -#11370 := (not #4818) -decl f466 :: Int -#4815 := f466 -#4816 := (= f466 f464) -#11379 := (not #4816) -decl f465 :: Int -#4813 := f465 -#4814 := (= f465 f462) -#11388 := (not #4814) -#12642 := (>= f463 0::Int) -#12644 := (and #12639 #12642) -#12647 := (not #12644) -decl f367 :: S1 -#4071 := f367 -#4072 := (= f367 f1) -#11436 := (not #4072) -#13031 := (or #11436 #12647 #11388 #11379 #11370 #11361 #13004) -#13036 := (and #4072 #13031) -#12663 := (* -1::Int f464) -#12921 := (+ f443 #12663) -#12922 := (<= #12921 0::Int) -#12923 := (not #12922) -#13061 := (or #12647 #12923 #13036) -#12721 := (not #12720) -#12724 := (and #12721 #4991) -#12707 := (or #7910 #12684 #12698) -#12712 := (forall (vars (?v0 Int)) #12707) -#12715 := (not #12712) -#12727 := (or #12715 #12724) -#12730 := (and #12712 #12727) -#12733 := (or #12681 #12730) -#12736 := (and #12676 #12733) -#12670 := (and #12668 #12651) -#12673 := (not #12670) -#12664 := (+ f168 #12663) -#12662 := (>= #12664 1::Int) -#12746 := (and #12660 #12662) -#12749 := (not #12746) -#12764 := (or #12749 #12743 #11705 #12673 #12736) -#12772 := (and #12660 #12662 #12764) -#12653 := (and #12639 #12651) -#12656 := (not #12653) -#5027 := (= f471 f463) -#11883 := (not #5027) -#5026 := (= f470 f462) -#11892 := (not #5026) -#12830 := (* -1::Int #4947) -#12831 := (+ f462 #12830) -#12829 := (>= #12831 0::Int) -#12828 := (not #12829) -#12883 := (or #12647 #12828 #11892 #11883 #12656 #12772) -#4946 := (and #4940 #4945) -#11812 := (not #4946) -#12804 := (or #11812 #11803 #11794 #11785 #12777 #11760 #11751 #12656 #12772) -#12812 := (and #4940 #4945 #12804) -#4943 := (and #4940 #4942) -#11824 := (not #4943) -#12817 := (or #11824 #12812) -#12823 := (and #4940 #4942 #12817) -#12853 := (or #12647 #12829 #12823) -#12888 := (and #12853 #12883) -#12897 := (or #11812 #12647 #12888) -#12905 := (and #4940 #4945 #12897) -#12910 := (or #11824 #12905) -#12916 := (and #4940 #4942 #12910) -#12945 := (or #12647 #12922 #12916) -#13066 := (and #12945 #13061) -decl f48 :: (-> S9 S4 S4) -decl f49 :: S9 -#976 := f49 -#977 := (f48 f49 f35) -decl f453 :: (-> S181 S3 S51) -decl f19 :: S3 -#63 := f19 -decl f454 :: (-> S182 S3 S181) -decl f13 :: S3 -#45 := f13 -decl f455 :: (-> S183 S10 S182) -decl f456 :: S183 -#4703 := f456 -#4704 := (f455 f456 f444) -#4926 := (f454 #4704 f13) -#4927 := (f453 #4926 f19) -#4928 := (f118 #4927 #4656) -#4929 := (f45 #4928 #977) -#4930 := (= #4929 f1) -decl f89 :: S17 -#1094 := f89 -#4699 := (f55 f89 #4656) -#4905 := (f450 #4696 f13) -#4922 := (f449 #4905 f19) -#4923 := (f46 #4922 #4699) -#4924 := (f45 #4923 #977) -#4925 := (= #4924 f1) -#4931 := (and #4925 #4930) -#12108 := (not #4931) -decl f18 :: S3 -#60 := f18 -#4918 := (f449 #4905 f18) -#4919 := (f46 #4918 f443) -#4920 := (f45 #4919 f33) -#4921 := (= #4920 f1) -#12117 := (not #4921) -#4914 := (f449 #4905 f17) -#4915 := (f46 #4914 f462) -#4916 := (f45 #4915 f35) -#4917 := (= #4916 f1) -#12126 := (not #4917) -#4910 := (f449 #4905 f10) -#4911 := (f46 #4910 f463) -#4912 := (f45 #4911 f33) -#4913 := (= #4912 f1) -#12135 := (not #4913) -#4906 := (f449 #4905 f20) -#4907 := (f46 #4906 f464) -#4908 := (f45 #4907 f33) -#4909 := (= #4908 f1) -#12144 := (not #4909) -decl f115 :: (-> S50 S10 S1) -decl f131 :: S50 -#1279 := f131 -#4685 := (f115 f131 f444) -#4686 := (= #4685 f1) -decl f348 :: (-> S136 S3 S50) -decl f349 :: S136 -#3828 := f349 -#4809 := (f348 f349 f13) -#4810 := (f115 #4809 f444) -#4811 := (= #4810 f1) -#4812 := (and #4811 #4686) -#11471 := (not #4812) -decl f304 :: (-> S115 S10 S50) -decl f305 :: S115 -#3261 := f305 -#4896 := (f304 f305 f444) -#4897 := (f115 #4896 f444) -#4898 := (= #4897 f1) -#13090 := (not #4898) -#4803 := (f140 #4734 f463) -#4804 := (f139 #4803 f35) -#4805 := (f55 #4748 #4804) -#4806 := (= #4805 f462) -#13093 := (* -1::Int f463) -#13094 := (+ f443 #13093) -#13095 := (<= #13094 0::Int) -#13096 := (not #13095) -#13099 := (and #13096 #4806) -#13102 := (not #13099) -#13117 := (* -1::Int f462) -#13118 := (+ #4775 #13117) -#13119 := (<= #13118 0::Int) -#13106 := (+ #1197 #12663) -#13105 := (>= #13106 0::Int) -#13128 := (or #7910 #13105 #13119) -#13133 := (forall (vars (?v0 Int)) #13128) -#13136 := (not #13133) -#13139 := (>= #12921 0::Int) -#13142 := (not #13139) -#13148 := (>= #12664 0::Int) -#13145 := (>= f464 0::Int) -#13151 := (and #13145 #13148) -#13154 := (not #13151) -#13158 := (+ f168 #13093) -#13157 := (>= #13158 0::Int) -#13161 := (and #12642 #13157) -#13164 := (not #13161) -decl f170 :: Int -#1539 := f170 -#13171 := (+ f170 #13117) -#13170 := (>= #13171 0::Int) -#13167 := (>= f462 0::Int) -#13174 := (and #13167 #13170) -#13177 := (not #13174) -decl f461 :: Int -#4747 := f461 -#4749 := (f55 #4748 #4736) -#4780 := (= #4749 f461) -#12634 := (<= f443 0::Int) -#12635 := (not #12634) -#13180 := (and #12635 #4780) -#13183 := (not #13180) -#13249 := (or #13183 #13177 #13164 #13154 #12647 #13142 #13136 #13102 #13090 #11471 #12144 #12135 #12126 #12117 #12108 #13066) -#13257 := (and #12635 #4780 #13249) -#12614 := (* -1::Int #4775) -#12615 := (+ f461 #12614) -#12613 := (>= #12615 0::Int) -#12601 := (>= #1197 1::Int) -#12623 := (or #7910 #12601 #12613) -#12628 := (forall (vars (?v0 Int)) #12623) -#12631 := (not #12628) -#13262 := (or #12631 #13257) -#13265 := (and #12628 #13262) -#12595 := (>= f443 1::Int) -#12598 := (not #12595) -#13268 := (or #12598 #13265) -#13271 := (and #12595 #13268) -decl f12 :: S3 -#42 := f12 -#4761 := (f450 #4696 f12) -#4762 := (f449 #4761 f20) -#4763 := (f46 #4762 1::Int) -#4764 := (f45 #4763 f33) -#4765 := (= #4764 f1) -#12352 := (not #4765) -decl f14 :: S3 -#48 := f14 -#4756 := (f450 #4696 f14) -#4757 := (f449 #4756 f10) -#4758 := (f46 #4757 0::Int) -#4759 := (f45 #4758 f33) -#4760 := (= #4759 f1) -#12361 := (not #4760) -decl f15 :: S3 -#51 := f15 -#4751 := (f450 #4696 f15) -#4752 := (f449 #4751 f17) -#4753 := (f46 #4752 f461) -#4754 := (f45 #4753 f35) -#4755 := (= #4754 f1) -#12370 := (not #4755) -#4750 := (= f461 #4749) -#12379 := (not #4750) -#4744 := (f71 #4743 #4736) -#4745 := (= #4744 f1) -#4737 := (f118 f123 #4736) -#4738 := (f45 #4737 f35) -#4739 := (= #4738 f1) -#4746 := (and #4739 #4745) -#12388 := (not #4746) -#13292 := (or #12388 #12379 #12370 #12361 #12352 #13271) -#13300 := (and #4739 #4745 #13292) -#4740 := (f71 #4667 #4736) -#4741 := (= #4740 f1) -#4742 := (and #4739 #4741) -#12400 := (not #4742) -#13305 := (or #12400 #13300) -#13311 := (and #4739 #4741 #13305) -#12412 := (not #4733) -#13316 := (or #12412 #13311) -#13319 := (and #4733 #13316) -#12569 := (+ f168 #12568) -#12567 := (>= #12569 0::Int) -#12565 := (>= f443 0::Int) -#12572 := (and #12565 #12567) -#12575 := (not #12572) -decl f458 :: (-> S184 Int S27) -decl f457 :: Int -#4715 := f457 -decl f459 :: S184 -#4718 := f459 -#4719 := (f458 f459 f457) -#4720 := (f71 #4719 #996) -#4721 := (pattern #4720) -#4722 := (= #4720 f1) -#11269 := (not #4722) -#11272 := (forall (vars (?v0 S11)) (:pat #4721) #11269) -#12433 := (not #11272) -decl f292 :: (-> S108 S10 Int) -decl f293 :: S108 -#3194 := f293 -#4716 := (f292 f293 f444) -#4717 := (= f457 #4716) -#12442 := (not #4717) -decl f16 :: S3 -#54 := f16 -#4697 := (f450 #4696 f16) -#4711 := (f449 #4697 f18) -#4712 := (f46 #4711 f443) -#4713 := (f45 #4712 f33) -#4714 := (= #4713 f1) -#12451 := (not #4714) -#4705 := (f454 #4704 f16) -#4706 := (f453 #4705 f19) -#4707 := (f118 #4706 #4656) -#4708 := (f45 #4707 #977) -#4709 := (= #4708 f1) -#4698 := (f449 #4697 f19) -#4700 := (f46 #4698 #4699) -#4701 := (f45 #4700 #977) -#4702 := (= #4701 f1) -#4710 := (and #4702 #4709) -#12460 := (not #4710) -decl f446 :: (-> S177 S176 Int) -#4689 := (:var 0 S176) -decl f447 :: S177 -#4688 := f447 -#4690 := (f446 f447 #4689) -#4691 := (pattern #4690) -decl f448 :: Int -#4692 := f448 -#13324 := (* -1::Int f448) -#13325 := (+ #4690 #13324) -#13323 := (>= #13325 0::Int) -#13322 := (not #13323) -#13328 := (forall (vars (?v0 S176)) (:pat #4691) #13322) -#13331 := (not #13328) -#4682 := (f348 f349 f16) -#4683 := (f115 #4682 f444) -#4684 := (= #4683 f1) -#4687 := (and #4684 #4686) -#12478 := (not #4687) -decl f350 :: S50 -#3847 := f350 -#4680 := (f115 f350 f444) -#4681 := (= #4680 f1) -#12487 := (not #4681) -#13337 := (not #13334) -#2248 := 1099511627776::Int -#13347 := (>= f443 1099511627776::Int) -decl f442 :: Int -#4642 := f442 -#13362 := (* -1::Int f442) -#13363 := (+ f168 #13362) -#13361 := (>= #13363 0::Int) -#13359 := (>= f442 0::Int) -#13366 := (and #13359 #13361) -#13369 := (not #13366) -decl f441 :: Int -#4638 := f441 -#13376 := (* -1::Int f441) -#13377 := (+ f168 #13376) -#13375 := (>= #13377 0::Int) -#13373 := (>= f441 0::Int) -#13380 := (and #13373 #13375) -#13383 := (not #13380) -decl f440 :: Int -#4634 := f440 -#13390 := (* -1::Int f440) -#13391 := (+ f170 #13390) -#13389 := (>= #13391 0::Int) -#13387 := (>= f440 0::Int) -#13394 := (and #13387 #13389) -#13397 := (not #13394) -#13442 := (or #13397 #13383 #13369 #13347 #12634 #13337 #12487 #12478 #13331 #12460 #12451 #12442 #12433 #12575 #13319) -#13447 := (not #13442) -#1 := true -#4821 := (< #1197 f443) -#4827 := (and #4821 #4826) -#1521 := (<= #1197 f168) -#4828 := (and #1521 #4827) -#1363 := (<= 0::Int #1197) -#4829 := (and #1363 #4828) -#4830 := (exists (vars (?v0 Int)) #4829) -#4831 := (implies #4830 true) -#4832 := (and #4830 #4831) -#4822 := (<= #4775 f468) -#4823 := (implies #4821 #4822) -#1522 := (and #1363 #1521) -#4824 := (implies #1522 #4823) -#4825 := (forall (vars (?v0 Int)) #4824) -#4833 := (implies #4825 #4832) -#4834 := (and #4825 #4833) -#4835 := (implies true #4834) -#4836 := (implies #4820 #4835) -#4837 := (implies #4818 #4836) -#4838 := (implies #4816 #4837) -#4839 := (implies #4814 #4838) -#4840 := (implies true #4839) -#4787 := (<= 0::Int f463) -#4794 := (<= 1::Int f464) -#4795 := (and #4794 #4787) -#4841 := (implies #4795 #4840) -#4842 := (implies #4795 #4841) -#4843 := (implies true #4842) -#4844 := (implies #4795 #4843) -#4845 := (implies #4072 #4844) -#4846 := (and #4072 #4845) -#4847 := (implies #4795 #4846) -#4848 := (implies true #4847) -#4849 := (implies #4795 #4848) -#5051 := (implies #4795 #4849) -#5052 := (implies true #5051) -#5053 := (implies #4795 #5052) -#5050 := (<= f443 f464) -#5054 := (implies #5050 #5053) -#5055 := (implies #4795 #5054) -#5056 := (implies true #5055) -#4993 := (implies false true) -#4987 := (< f471 f443) -#4992 := (and #4987 #4991) -#4994 := (implies #4992 #4993) -#4995 := (and #4992 #4994) -#4983 := (<= #4775 f470) -#4982 := (< #1197 f472) -#4984 := (implies #4982 #4983) -#4985 := (implies #1522 #4984) -#4986 := (forall (vars (?v0 Int)) #4985) -#4996 := (implies #4986 #4995) -#4997 := (and #4986 #4996) -#4981 := (<= f472 f443) -#4998 := (implies #4981 #4997) -#4999 := (and #4981 #4998) -#5000 := (implies true #4999) -#4966 := (<= 0::Int f471) -#4979 := (<= 2::Int f472) -#4980 := (and #4979 #4966) -#5001 := (implies #4980 #5000) -#5002 := (implies #4978 #5001) -#4968 := (+ f464 1::Int) -#4973 := (= f472 #4968) -#5003 := (implies #4973 #5002) -#4970 := (<= #4968 f168) -#4969 := (<= 0::Int #4968) -#4971 := (and #4969 #4970) -#5004 := (implies #4971 #5003) -#5005 := (and #4971 #5004) -#4967 := (and #4794 #4966) -#5006 := (implies #4967 #5005) -#5007 := (implies true #5006) -#5028 := (implies #5027 #5007) -#5029 := (implies #5026 #5028) -#5030 := (implies true #5029) -#5031 := (implies #4795 #5030) -#5032 := (implies #4795 #5031) -#5033 := (implies true #5032) -#5034 := (implies #4795 #5033) -#5025 := (<= #4947 f462) -#5035 := (implies #5025 #5034) -#5036 := (implies #4795 #5035) -#5037 := (implies true #5036) -#5008 := (implies #4965 #5007) -#5009 := (implies #4963 #5008) -#5010 := (implies true #5009) -#4961 := (and #4794 #4794) -#5011 := (implies #4961 #5010) -#5012 := (implies #4960 #5011) -#5013 := (implies #4955 #5012) -#5014 := (implies #4950 #5013) -#5015 := (implies #4946 #5014) -#5016 := (and #4946 #5015) -#5017 := (implies #4943 #5016) -#5018 := (and #4943 #5017) -#5019 := (implies #4795 #5018) -#5020 := (implies true #5019) -#5021 := (implies #4795 #5020) -#4948 := (< f462 #4947) -#5022 := (implies #4948 #5021) -#5023 := (implies #4795 #5022) -#5024 := (implies true #5023) -#5038 := (and #5024 #5037) -#5039 := (implies #4795 #5038) -#5040 := (implies #4946 #5039) -#5041 := (and #4946 #5040) -#5042 := (implies #4943 #5041) -#5043 := (and #4943 #5042) -#5044 := (implies #4795 #5043) -#5045 := (implies true #5044) -#5046 := (implies #4795 #5045) -#4935 := (< f464 f443) -#5047 := (implies #4935 #5046) -#5048 := (implies #4795 #5047) -#5049 := (implies true #5048) -#5057 := (and #5049 #5056) -#5058 := (implies #4795 #5057) -decl f110 :: (-> S48 S10 S47) -decl f111 :: S48 -#1128 := f111 -#4857 := (f110 f111 f444) -#4933 := (= #4857 #4857) -#4932 := (= #4882 #4882) -#4934 := (and #4932 #4933) -#5059 := (implies #4934 #5058) -#5060 := (implies #4931 #5059) -#5061 := (implies #4921 #5060) -#5062 := (implies #4917 #5061) -#5063 := (implies #4913 #5062) -#5064 := (implies #4909 #5063) -#5065 := (implies #4812 #5064) -decl f291 :: S42 -#3191 := f291 -#4891 := (f103 f291 f444) -#4892 := (f55 #4891 #996) -#4893 := (pattern #4892) -#4894 := (<= #4892 #4892) -#4895 := (forall (vars (?v0 S11)) (:pat #4893) #4894) -#4899 := (and #4895 #4898) -#4890 := (<= #4716 #4716) -#4900 := (and #4890 #4899) -#5066 := (implies #4900 #5065) -#4884 := (f134 #4883 #996) -#4885 := (pattern #4884) -#4872 := (f71 #4743 #996) -#4873 := (= #4872 f1) -#4886 := (= #4884 #4884) -#4887 := (and #4886 #4873) -#4888 := (implies #4873 #4887) -#4889 := (forall (vars (?v0 S11)) (:pat #4885) #4888) -#4901 := (and #4889 #4900) -decl f107 :: (-> S45 S11 S44) -decl f108 :: (-> S46 S47 S45) -decl f109 :: S46 -#1127 := f109 -#4858 := (f108 f109 #4857) -#4859 := (f107 #4858 #996) -#4860 := (pattern #4859) -#4878 := (= #4859 #4859) -#4879 := (and #4878 #4873) -#4880 := (implies #4873 #4879) -#4881 := (forall (vars (?v0 S11)) (:pat #4860) #4880) -#4902 := (and #4881 #4901) -decl f73 :: (-> S28 S29 S17) -decl f75 :: (-> S30 S10 S29) -decl f76 :: S30 -#1039 := f76 -#4868 := (f75 f76 f444) -decl f74 :: S28 -#1038 := f74 -#4869 := (f73 f74 #4868) -#4870 := (f55 #4869 #996) -#4871 := (pattern #4870) -#4874 := (= #4870 #4870) -#4875 := (and #4874 #4873) -#4876 := (implies #4873 #4875) -#4877 := (forall (vars (?v0 S11)) (:pat #4871) #4876) -#4903 := (and #4877 #4902) -decl f5 :: S2 -#11 := f5 -#4861 := (f82 #4661 #996) -#4862 := (f62 f63 #4861) -#4863 := (f61 #4862) -#4864 := (= #4863 f5) -#4865 := (not #4864) -#4866 := (implies #4865 #4865) -#4867 := (forall (vars (?v0 S11)) (:pat #4860) #4866) -#4904 := (and #4867 #4903) -#5067 := (implies #4904 #5066) -#5068 := (implies #4795 #5067) -#5069 := (implies true #5068) -#5070 := (implies #4795 #5069) -#5071 := (implies true #5070) -#5072 := (implies #4795 #5071) -#5073 := (implies true #5072) -#4850 := (implies #4812 #4849) -#4851 := (implies #4795 #4850) -#4852 := (implies true #4851) -#4853 := (implies #4795 #4852) -#4808 := (not true) -#4854 := (implies #4808 #4853) -#4855 := (implies #4795 #4854) -#4856 := (implies true #4855) -#5074 := (and #4856 #5073) -#5075 := (implies #4795 #5074) -#4802 := (< f463 f443) -#4807 := (and #4802 #4806) -#5076 := (implies #4807 #5075) -#4798 := (<= #4775 f462) -#4797 := (< #1197 f464) -#4799 := (implies #4797 #4798) -#4800 := (implies #1522 #4799) -#4801 := (forall (vars (?v0 Int)) #4800) -#5077 := (implies #4801 #5076) -#4796 := (<= f464 f443) -#5078 := (implies #4796 #5077) -#5079 := (implies #4795 #5078) -#4792 := (<= f464 f168) -#4791 := (<= 0::Int f464) -#4793 := (and #4791 #4792) -#5080 := (implies #4793 #5079) -#4788 := (<= f463 f168) -#4789 := (and #4787 #4788) -#5081 := (implies #4789 #5080) -#4784 := (<= f462 f170) -#4783 := (<= 0::Int f462) -#4785 := (and #4783 #4784) -#5082 := (implies #4785 #5081) -#5083 := (implies true #5082) -#4648 := (< 0::Int f443) -#4781 := (and #4648 #4780) -#5084 := (implies #4781 #5083) -#5085 := (and #4781 #5084) -#4776 := (<= #4775 f461) -#4772 := (< #1197 1::Int) -#4777 := (implies #4772 #4776) -#4778 := (implies #1522 #4777) -#4779 := (forall (vars (?v0 Int)) #4778) -#5086 := (implies #4779 #5085) -#5087 := (and #4779 #5086) -#4771 := (<= 1::Int f443) -#5088 := (implies #4771 #5087) -#5089 := (and #4771 #5088) -#4767 := (<= 0::Int 0::Int) -#4768 := (and #4767 #4767) -#4766 := (<= 1::Int 1::Int) -#4769 := (and #4766 #4768) -#4770 := (and #4766 #4769) -#5090 := (implies #4770 #5089) -#5091 := (implies #4765 #5090) -#5092 := (implies #4760 #5091) -#5093 := (implies #4755 #5092) -#5094 := (implies #4750 #5093) -#5095 := (implies #4746 #5094) -#5096 := (and #4746 #5095) -#5097 := (implies #4742 #5096) -#5098 := (and #4742 #5097) -#5099 := (implies #4733 #5098) -#5100 := (and #4733 #5099) -#4726 := (<= f443 f168) -#4725 := (<= 0::Int f443) -#4727 := (and #4725 #4726) -#5101 := (implies #4727 #5100) -#4723 := (iff #4722 false) -#4724 := (forall (vars (?v0 S11)) (:pat #4721) #4723) -#5102 := (implies #4724 #5101) -#5103 := (implies #4717 #5102) -#5104 := (implies #4714 #5103) -#5105 := (implies #4710 #5104) -#4693 := (< #4690 f448) -#4694 := (forall (vars (?v0 S176)) (:pat #4691) #4693) -#5106 := (implies #4694 #5105) -#5107 := (implies #4687 #5106) -#5108 := (implies #4681 #5107) -#5109 := (implies true #5108) -#4675 := (and #4672 #4674) -#4676 := (and #4669 #4675) -#4677 := (and #4666 #4676) -#4678 := (and #4663 #4677) -#4679 := (and #4660 #4678) -#5110 := (implies #4679 #5109) -#5111 := (implies #4648 #5110) -#4647 := (< f443 1099511627776::Int) -#5112 := (implies #4647 #5111) -#4644 := (<= f442 f168) -#4643 := (<= 0::Int f442) -#4645 := (and #4643 #4644) -#5113 := (implies #4645 #5112) -#4640 := (<= f441 f168) -#4639 := (<= 0::Int f441) -#4641 := (and #4639 #4640) -#5114 := (implies #4641 #5113) -#4636 := (<= f440 f170) -#4635 := (<= 0::Int f440) -#4637 := (and #4635 #4636) -#5115 := (implies #4637 #5114) -#5116 := (implies true #5115) -#5117 := (not #5116) -#13450 := (iff #5117 #13447) -#11315 := (not #4821) -#11316 := (or #11315 #4822) -#7903 := (not #1522) -#11322 := (or #7903 #11316) -#11327 := (forall (vars (?v0 Int)) #11322) -#11342 := (not #11327) -#11343 := (or #11342 #4830) -#11348 := (and #11327 #11343) -#11362 := (or #11361 #11348) -#11371 := (or #11370 #11362) -#11380 := (or #11379 #11371) -#11389 := (or #11388 #11380) -#11404 := (not #4795) -#11405 := (or #11404 #11389) -#11413 := (or #11404 #11405) -#11428 := (or #11404 #11413) -#11437 := (or #11436 #11428) -#11442 := (and #4072 #11437) -#11448 := (or #11404 #11442) -#11463 := (or #11404 #11448) -#12043 := (or #11404 #11463) -#12058 := (or #11404 #12043) -#12066 := (not #5050) -#12067 := (or #12066 #12058) -#12075 := (or #11404 #12067) -#11631 := (not #4982) -#11632 := (or #11631 #4983) -#11638 := (or #7903 #11632) -#11643 := (forall (vars (?v0 Int)) #11638) -#11665 := (not #11643) -#11666 := (or #11665 #4992) -#11671 := (and #11643 #11666) -#11677 := (not #4981) -#11678 := (or #11677 #11671) -#11683 := (and #4981 #11678) -#11696 := (not #4980) -#11697 := (or #11696 #11683) -#11706 := (or #11705 #11697) -#11616 := (+ 1::Int f464) -#11628 := (= f472 #11616) -#11714 := (not #11628) -#11715 := (or #11714 #11706) -#11622 := (<= #11616 f168) -#11619 := (<= 0::Int #11616) -#11625 := (and #11619 #11622) -#11723 := (not #11625) -#11724 := (or #11723 #11715) -#11729 := (and #11625 #11724) -#11735 := (not #4967) -#11736 := (or #11735 #11729) -#11884 := (or #11883 #11736) -#11893 := (or #11892 #11884) -#11908 := (or #11404 #11893) -#11916 := (or #11404 #11908) -#11931 := (or #11404 #11916) -#11939 := (not #5025) -#11940 := (or #11939 #11931) -#11948 := (or #11404 #11940) -#11752 := (or #11751 #11736) -#11761 := (or #11760 #11752) -#11776 := (not #4794) -#11777 := (or #11776 #11761) -#11786 := (or #11785 #11777) -#11795 := (or #11794 #11786) -#11804 := (or #11803 #11795) -#11813 := (or #11812 #11804) -#11818 := (and #4946 #11813) -#11825 := (or #11824 #11818) -#11830 := (and #4943 #11825) -#11836 := (or #11404 #11830) -#11851 := (or #11404 #11836) -#11859 := (not #4948) -#11860 := (or #11859 #11851) -#11868 := (or #11404 #11860) -#11960 := (and #11868 #11948) -#11966 := (or #11404 #11960) -#11974 := (or #11812 #11966) -#11979 := (and #4946 #11974) -#11985 := (or #11824 #11979) -#11990 := (and #4943 #11985) -#11996 := (or #11404 #11990) -#12011 := (or #11404 #11996) -#12019 := (not #4935) -#12020 := (or #12019 #12011) -#12028 := (or #11404 #12020) -#12087 := (and #12028 #12075) -#12093 := (or #11404 #12087) -#12109 := (or #12108 #12093) -#12118 := (or #12117 #12109) -#12127 := (or #12126 #12118) -#12136 := (or #12135 #12127) -#12145 := (or #12144 #12136) -#12153 := (or #11471 #12145) -#12161 := (not #4900) -#12162 := (or #12161 #12153) -#12170 := (or #12161 #12162) -#12178 := (or #11404 #12170) -#12193 := (or #11404 #12178) -#12208 := (or #11404 #12193) -#12230 := (or #11404 #12208) -#12238 := (not #4807) -#12239 := (or #12238 #12230) -#11298 := (not #4797) -#11299 := (or #11298 #4798) -#11305 := (or #7903 #11299) -#11310 := (forall (vars (?v0 Int)) #11305) -#12247 := (not #11310) -#12248 := (or #12247 #12239) -#12256 := (not #4796) -#12257 := (or #12256 #12248) -#12265 := (or #11404 #12257) -#12273 := (not #4793) -#12274 := (or #12273 #12265) -#12282 := (not #4789) -#12283 := (or #12282 #12274) -#12291 := (not #4785) -#12292 := (or #12291 #12283) -#12307 := (not #4781) -#12308 := (or #12307 #12292) -#12313 := (and #4781 #12308) -#11283 := (not #4772) -#11284 := (or #11283 #4776) -#11290 := (or #7903 #11284) -#11295 := (forall (vars (?v0 Int)) #11290) -#12319 := (not #11295) -#12320 := (or #12319 #12313) -#12325 := (and #11295 #12320) -#12331 := (not #4771) -#12332 := (or #12331 #12325) -#12337 := (and #4771 #12332) -#11277 := (and #4766 #4767) -#11280 := (and #4766 #11277) -#12343 := (not #11280) -#12344 := (or #12343 #12337) -#12353 := (or #12352 #12344) -#12362 := (or #12361 #12353) -#12371 := (or #12370 #12362) -#12380 := (or #12379 #12371) -#12389 := (or #12388 #12380) -#12394 := (and #4746 #12389) -#12401 := (or #12400 #12394) -#12406 := (and #4742 #12401) -#12413 := (or #12412 #12406) -#12418 := (and #4733 #12413) -#12424 := (not #4727) -#12425 := (or #12424 #12418) -#12434 := (or #12433 #12425) -#12443 := (or #12442 #12434) -#12452 := (or #12451 #12443) -#12461 := (or #12460 #12452) -#12469 := (not #4694) -#12470 := (or #12469 #12461) -#12479 := (or #12478 #12470) -#12488 := (or #12487 #12479) -#12503 := (not #4679) -#12504 := (or #12503 #12488) -#12512 := (not #4648) -#12513 := (or #12512 #12504) -#12521 := (not #4647) -#12522 := (or #12521 #12513) -#12530 := (not #4645) -#12531 := (or #12530 #12522) -#12539 := (not #4641) -#12540 := (or #12539 #12531) -#12548 := (not #4637) -#12549 := (or #12548 #12540) -#12561 := (not #12549) -#13448 := (iff #12561 #13447) -#13445 := (iff #12549 #13442) -#13400 := (or #12575 #13319) -#13403 := (or #12433 #13400) -#13406 := (or #12442 #13403) -#13409 := (or #12451 #13406) -#13412 := (or #12460 #13409) -#13415 := (or #13331 #13412) -#13418 := (or #12478 #13415) -#13421 := (or #12487 #13418) -#13424 := (or #13337 #13421) -#13427 := (or #12634 #13424) -#13430 := (or #13347 #13427) -#13433 := (or #13369 #13430) -#13436 := (or #13383 #13433) -#13439 := (or #13397 #13436) -#13443 := (iff #13439 #13442) -#13444 := [rewrite]: #13443 -#13440 := (iff #12549 #13439) -#13437 := (iff #12540 #13436) -#13434 := (iff #12531 #13433) -#13431 := (iff #12522 #13430) -#13428 := (iff #12513 #13427) -#13425 := (iff #12504 #13424) -#13422 := (iff #12488 #13421) -#13419 := (iff #12479 #13418) -#13416 := (iff #12470 #13415) -#13413 := (iff #12461 #13412) -#13410 := (iff #12452 #13409) -#13407 := (iff #12443 #13406) -#13404 := (iff #12434 #13403) -#13401 := (iff #12425 #13400) -#13320 := (iff #12418 #13319) -#13317 := (iff #12413 #13316) -#13314 := (iff #12406 #13311) -#13308 := (and #4742 #13305) -#13312 := (iff #13308 #13311) -#13313 := [rewrite]: #13312 -#13309 := (iff #12406 #13308) -#13306 := (iff #12401 #13305) -#13303 := (iff #12394 #13300) -#13297 := (and #4746 #13292) -#13301 := (iff #13297 #13300) -#13302 := [rewrite]: #13301 -#13298 := (iff #12394 #13297) -#13295 := (iff #12389 #13292) -#13274 := (or false #13271) -#13277 := (or #12352 #13274) -#13280 := (or #12361 #13277) -#13283 := (or #12370 #13280) -#13286 := (or #12379 #13283) -#13289 := (or #12388 #13286) -#13293 := (iff #13289 #13292) -#13294 := [rewrite]: #13293 -#13290 := (iff #12389 #13289) -#13287 := (iff #12380 #13286) -#13284 := (iff #12371 #13283) -#13281 := (iff #12362 #13280) -#13278 := (iff #12353 #13277) -#13275 := (iff #12344 #13274) -#13272 := (iff #12337 #13271) -#13269 := (iff #12332 #13268) -#13266 := (iff #12325 #13265) -#13263 := (iff #12320 #13262) -#13260 := (iff #12313 #13257) -#13254 := (and #13180 #13249) -#13258 := (iff #13254 #13257) -#13259 := [rewrite]: #13258 -#13255 := (iff #12313 #13254) -#13252 := (iff #12308 #13249) -#13186 := (or #12647 #13066) -#13189 := (or #12108 #13186) -#13192 := (or #12117 #13189) -#13195 := (or #12126 #13192) -#13198 := (or #12135 #13195) -#13201 := (or #12144 #13198) -#13204 := (or #11471 #13201) -#13207 := (or #13090 #13204) -#13210 := (or #13090 #13207) -#13213 := (or #12647 #13210) -#13216 := (or #12647 #13213) -#13219 := (or #12647 #13216) -#13222 := (or #12647 #13219) -#13225 := (or #13102 #13222) -#13228 := (or #13136 #13225) -#13231 := (or #13142 #13228) -#13234 := (or #12647 #13231) -#13237 := (or #13154 #13234) -#13240 := (or #13164 #13237) -#13243 := (or #13177 #13240) -#13246 := (or #13183 #13243) -#13250 := (iff #13246 #13249) -#13251 := [rewrite]: #13250 -#13247 := (iff #12308 #13246) -#13244 := (iff #12292 #13243) -#13241 := (iff #12283 #13240) -#13238 := (iff #12274 #13237) -#13235 := (iff #12265 #13234) -#13232 := (iff #12257 #13231) -#13229 := (iff #12248 #13228) -#13226 := (iff #12239 #13225) -#13223 := (iff #12230 #13222) -#13220 := (iff #12208 #13219) -#13217 := (iff #12193 #13216) -#13214 := (iff #12178 #13213) -#13211 := (iff #12170 #13210) -#13208 := (iff #12162 #13207) -#13205 := (iff #12153 #13204) -#13202 := (iff #12145 #13201) -#13199 := (iff #12136 #13198) -#13196 := (iff #12127 #13195) -#13193 := (iff #12118 #13192) -#13190 := (iff #12109 #13189) -#13187 := (iff #12093 #13186) -#13067 := (iff #12087 #13066) -#13064 := (iff #12075 #13061) -#13043 := (or #12647 #13036) -#13046 := (or #12647 #13043) -#13049 := (or #12647 #13046) -#13052 := (or #12647 #13049) -#13055 := (or #12923 #13052) -#13058 := (or #12647 #13055) -#13062 := (iff #13058 #13061) -#13063 := [rewrite]: #13062 -#13059 := (iff #12075 #13058) -#13056 := (iff #12067 #13055) -#13053 := (iff #12058 #13052) -#13050 := (iff #12043 #13049) -#13047 := (iff #11463 #13046) -#13044 := (iff #11448 #13043) -#13037 := (iff #11442 #13036) -#13034 := (iff #11437 #13031) -#13007 := (or #11361 #13004) -#13010 := (or #11370 #13007) -#13013 := (or #11379 #13010) -#13016 := (or #11388 #13013) -#13019 := (or #12647 #13016) -#13022 := (or #12647 #13019) -#13025 := (or #12647 #13022) -#13028 := (or #11436 #13025) -#13032 := (iff #13028 #13031) -#13033 := [rewrite]: #13032 -#13029 := (iff #11437 #13028) -#13026 := (iff #11428 #13025) -#13023 := (iff #11413 #13022) -#13020 := (iff #11405 #13019) -#13017 := (iff #11389 #13016) -#13014 := (iff #11380 #13013) -#13011 := (iff #11371 #13010) -#13008 := (iff #11362 #13007) -#13005 := (iff #11348 #13004) -#13002 := (iff #11343 #13001) -#12999 := (iff #4830 #12998) -#12996 := (iff #4829 #12993) -#12984 := (and #12952 #4826) -#12987 := (and #6890 #12984) -#12990 := (and #6706 #12987) -#12994 := (iff #12990 #12993) -#12995 := [rewrite]: #12994 -#12991 := (iff #4829 #12990) -#12988 := (iff #4828 #12987) -#12985 := (iff #4827 #12984) -#12953 := (iff #4821 #12952) -#12954 := [rewrite]: #12953 -#12986 := [monotonicity #12954]: #12985 -#6891 := (iff #1521 #6890) -#6892 := [rewrite]: #6891 -#12989 := [monotonicity #6892 #12986]: #12988 -#6704 := (iff #1363 #6706) -#6705 := [rewrite]: #6704 -#12992 := [monotonicity #6705 #12989]: #12991 -#12997 := [trans #12992 #12995]: #12996 -#13000 := [quant-intro #12997]: #12999 -#12982 := (iff #11342 #12981) -#12979 := (iff #11327 #12978) -#12976 := (iff #11322 #12973) -#12967 := (or #12950 #12964) -#12970 := (or #7910 #12967) -#12974 := (iff #12970 #12973) -#12975 := [rewrite]: #12974 -#12971 := (iff #11322 #12970) -#12968 := (iff #11316 #12967) -#12965 := (iff #4822 #12964) -#12966 := [rewrite]: #12965 -#12960 := (iff #11315 #12950) -#12955 := (not #12952) -#12958 := (iff #12955 #12950) -#12959 := [rewrite]: #12958 -#12956 := (iff #11315 #12955) -#12957 := [monotonicity #12954]: #12956 -#12961 := [trans #12957 #12959]: #12960 -#12969 := [monotonicity #12961 #12966]: #12968 -#7911 := (iff #7903 #7910) -#6898 := (iff #1522 #6897) -#6899 := [monotonicity #6705 #6892]: #6898 -#7912 := [monotonicity #6899]: #7911 -#12972 := [monotonicity #7912 #12969]: #12971 -#12977 := [trans #12972 #12975]: #12976 -#12980 := [quant-intro #12977]: #12979 -#12983 := [monotonicity #12980]: #12982 -#13003 := [monotonicity #12983 #13000]: #13002 -#13006 := [monotonicity #12980 #13003]: #13005 -#13009 := [monotonicity #13006]: #13008 -#13012 := [monotonicity #13009]: #13011 -#13015 := [monotonicity #13012]: #13014 -#13018 := [monotonicity #13015]: #13017 -#12648 := (iff #11404 #12647) -#12645 := (iff #4795 #12644) -#12641 := (iff #4787 #12642) -#12643 := [rewrite]: #12641 -#12638 := (iff #4794 #12639) -#12640 := [rewrite]: #12638 -#12646 := [monotonicity #12640 #12643]: #12645 -#12649 := [monotonicity #12646]: #12648 -#13021 := [monotonicity #12649 #13018]: #13020 -#13024 := [monotonicity #12649 #13021]: #13023 -#13027 := [monotonicity #12649 #13024]: #13026 -#13030 := [monotonicity #13027]: #13029 -#13035 := [trans #13030 #13033]: #13034 -#13038 := [monotonicity #13035]: #13037 -#13045 := [monotonicity #12649 #13038]: #13044 -#13048 := [monotonicity #12649 #13045]: #13047 -#13051 := [monotonicity #12649 #13048]: #13050 -#13054 := [monotonicity #12649 #13051]: #13053 -#13041 := (iff #12066 #12923) -#13039 := (iff #5050 #12922) -#13040 := [rewrite]: #13039 -#13042 := [monotonicity #13040]: #13041 -#13057 := [monotonicity #13042 #13054]: #13056 -#13060 := [monotonicity #12649 #13057]: #13059 -#13065 := [trans #13060 #13063]: #13064 -#12948 := (iff #12028 #12945) -#12933 := (or #12647 #12916) -#12936 := (or #12647 #12933) -#12939 := (or #12922 #12936) -#12942 := (or #12647 #12939) -#12946 := (iff #12942 #12945) -#12947 := [rewrite]: #12946 -#12943 := (iff #12028 #12942) -#12940 := (iff #12020 #12939) -#12937 := (iff #12011 #12936) -#12934 := (iff #11996 #12933) -#12919 := (iff #11990 #12916) -#12913 := (and #4943 #12910) -#12917 := (iff #12913 #12916) -#12918 := [rewrite]: #12917 -#12914 := (iff #11990 #12913) -#12911 := (iff #11985 #12910) -#12908 := (iff #11979 #12905) -#12902 := (and #4946 #12897) -#12906 := (iff #12902 #12905) -#12907 := [rewrite]: #12906 -#12903 := (iff #11979 #12902) -#12900 := (iff #11974 #12897) -#12891 := (or #12647 #12888) -#12894 := (or #11812 #12891) -#12898 := (iff #12894 #12897) -#12899 := [rewrite]: #12898 -#12895 := (iff #11974 #12894) -#12892 := (iff #11966 #12891) -#12889 := (iff #11960 #12888) -#12886 := (iff #11948 #12883) -#12780 := (or #12656 #12772) -#12862 := (or #11883 #12780) -#12865 := (or #11892 #12862) -#12868 := (or #12647 #12865) -#12871 := (or #12647 #12868) -#12874 := (or #12647 #12871) -#12877 := (or #12828 #12874) -#12880 := (or #12647 #12877) -#12884 := (iff #12880 #12883) -#12885 := [rewrite]: #12884 -#12881 := (iff #11948 #12880) -#12878 := (iff #11940 #12877) -#12875 := (iff #11931 #12874) -#12872 := (iff #11916 #12871) -#12869 := (iff #11908 #12868) -#12866 := (iff #11893 #12865) -#12863 := (iff #11884 #12862) -#12781 := (iff #11736 #12780) -#12775 := (iff #11729 #12772) -#12769 := (and #12746 #12764) -#12773 := (iff #12769 #12772) -#12774 := [rewrite]: #12773 -#12770 := (iff #11729 #12769) -#12767 := (iff #11724 #12764) -#12752 := (or #12673 #12736) -#12755 := (or #11705 #12752) -#12758 := (or #12743 #12755) -#12761 := (or #12749 #12758) -#12765 := (iff #12761 #12764) -#12766 := [rewrite]: #12765 -#12762 := (iff #11724 #12761) -#12759 := (iff #11715 #12758) -#12756 := (iff #11706 #12755) -#12753 := (iff #11697 #12752) -#12737 := (iff #11683 #12736) -#12734 := (iff #11678 #12733) -#12731 := (iff #11671 #12730) -#12728 := (iff #11666 #12727) -#12725 := (iff #4992 #12724) -#12722 := (iff #4987 #12721) -#12723 := [rewrite]: #12722 -#12726 := [monotonicity #12723]: #12725 -#12716 := (iff #11665 #12715) -#12713 := (iff #11643 #12712) -#12710 := (iff #11638 #12707) -#12701 := (or #12684 #12698) -#12704 := (or #7910 #12701) -#12708 := (iff #12704 #12707) -#12709 := [rewrite]: #12708 -#12705 := (iff #11638 #12704) -#12702 := (iff #11632 #12701) -#12699 := (iff #4983 #12698) -#12700 := [rewrite]: #12699 -#12694 := (iff #11631 #12684) -#12686 := (not #12684) -#12689 := (not #12686) -#12692 := (iff #12689 #12684) -#12693 := [rewrite]: #12692 -#12690 := (iff #11631 #12689) -#12687 := (iff #4982 #12686) -#12688 := [rewrite]: #12687 -#12691 := [monotonicity #12688]: #12690 -#12695 := [trans #12691 #12693]: #12694 -#12703 := [monotonicity #12695 #12700]: #12702 -#12706 := [monotonicity #7912 #12703]: #12705 -#12711 := [trans #12706 #12709]: #12710 -#12714 := [quant-intro #12711]: #12713 -#12717 := [monotonicity #12714]: #12716 -#12729 := [monotonicity #12717 #12726]: #12728 -#12732 := [monotonicity #12714 #12729]: #12731 -#12682 := (iff #11677 #12681) -#12679 := (iff #4981 #12676) -#12680 := [rewrite]: #12679 -#12683 := [monotonicity #12680]: #12682 -#12735 := [monotonicity #12683 #12732]: #12734 -#12738 := [monotonicity #12680 #12735]: #12737 -#12674 := (iff #11696 #12673) -#12671 := (iff #4980 #12670) -#12650 := (iff #4966 #12651) -#12652 := [rewrite]: #12650 -#12667 := (iff #4979 #12668) -#12669 := [rewrite]: #12667 -#12672 := [monotonicity #12669 #12652]: #12671 -#12675 := [monotonicity #12672]: #12674 -#12754 := [monotonicity #12675 #12738]: #12753 -#12757 := [monotonicity #12754]: #12756 -#12744 := (iff #11714 #12743) -#12741 := (iff #11628 #12739) -#12742 := [rewrite]: #12741 -#12745 := [monotonicity #12742]: #12744 -#12760 := [monotonicity #12745 #12757]: #12759 -#12750 := (iff #11723 #12749) -#12747 := (iff #11625 #12746) -#12665 := (iff #11622 #12662) -#12666 := [rewrite]: #12665 -#12659 := (iff #11619 #12660) -#12661 := [rewrite]: #12659 -#12748 := [monotonicity #12661 #12666]: #12747 -#12751 := [monotonicity #12748]: #12750 -#12763 := [monotonicity #12751 #12760]: #12762 -#12768 := [trans #12763 #12766]: #12767 -#12771 := [monotonicity #12748 #12768]: #12770 -#12776 := [trans #12771 #12774]: #12775 -#12657 := (iff #11735 #12656) -#12654 := (iff #4967 #12653) -#12655 := [monotonicity #12640 #12652]: #12654 -#12658 := [monotonicity #12655]: #12657 -#12782 := [monotonicity #12658 #12776]: #12781 -#12864 := [monotonicity #12782]: #12863 -#12867 := [monotonicity #12864]: #12866 -#12870 := [monotonicity #12649 #12867]: #12869 -#12873 := [monotonicity #12649 #12870]: #12872 -#12876 := [monotonicity #12649 #12873]: #12875 -#12860 := (iff #11939 #12828) -#12858 := (iff #5025 #12829) -#12859 := [rewrite]: #12858 -#12861 := [monotonicity #12859]: #12860 -#12879 := [monotonicity #12861 #12876]: #12878 -#12882 := [monotonicity #12649 #12879]: #12881 -#12887 := [trans #12882 #12885]: #12886 -#12856 := (iff #11868 #12853) -#12841 := (or #12647 #12823) -#12844 := (or #12647 #12841) -#12847 := (or #12829 #12844) -#12850 := (or #12647 #12847) -#12854 := (iff #12850 #12853) -#12855 := [rewrite]: #12854 -#12851 := (iff #11868 #12850) -#12848 := (iff #11860 #12847) -#12845 := (iff #11851 #12844) -#12842 := (iff #11836 #12841) -#12826 := (iff #11830 #12823) -#12820 := (and #4943 #12817) -#12824 := (iff #12820 #12823) -#12825 := [rewrite]: #12824 -#12821 := (iff #11830 #12820) -#12818 := (iff #11825 #12817) -#12815 := (iff #11818 #12812) -#12809 := (and #4946 #12804) -#12813 := (iff #12809 #12812) -#12814 := [rewrite]: #12813 -#12810 := (iff #11818 #12809) -#12807 := (iff #11813 #12804) -#12783 := (or #11751 #12780) -#12786 := (or #11760 #12783) -#12789 := (or #12777 #12786) -#12792 := (or #11785 #12789) -#12795 := (or #11794 #12792) -#12798 := (or #11803 #12795) -#12801 := (or #11812 #12798) -#12805 := (iff #12801 #12804) -#12806 := [rewrite]: #12805 -#12802 := (iff #11813 #12801) -#12799 := (iff #11804 #12798) -#12796 := (iff #11795 #12795) -#12793 := (iff #11786 #12792) -#12790 := (iff #11777 #12789) -#12787 := (iff #11761 #12786) -#12784 := (iff #11752 #12783) -#12785 := [monotonicity #12782]: #12784 -#12788 := [monotonicity #12785]: #12787 -#12778 := (iff #11776 #12777) -#12779 := [monotonicity #12640]: #12778 -#12791 := [monotonicity #12779 #12788]: #12790 -#12794 := [monotonicity #12791]: #12793 -#12797 := [monotonicity #12794]: #12796 -#12800 := [monotonicity #12797]: #12799 -#12803 := [monotonicity #12800]: #12802 -#12808 := [trans #12803 #12806]: #12807 -#12811 := [monotonicity #12808]: #12810 -#12816 := [trans #12811 #12814]: #12815 -#12819 := [monotonicity #12816]: #12818 -#12822 := [monotonicity #12819]: #12821 -#12827 := [trans #12822 #12825]: #12826 -#12843 := [monotonicity #12649 #12827]: #12842 -#12846 := [monotonicity #12649 #12843]: #12845 -#12839 := (iff #11859 #12829) -#12834 := (not #12828) -#12837 := (iff #12834 #12829) -#12838 := [rewrite]: #12837 -#12835 := (iff #11859 #12834) -#12832 := (iff #4948 #12828) -#12833 := [rewrite]: #12832 -#12836 := [monotonicity #12833]: #12835 -#12840 := [trans #12836 #12838]: #12839 -#12849 := [monotonicity #12840 #12846]: #12848 -#12852 := [monotonicity #12649 #12849]: #12851 -#12857 := [trans #12852 #12855]: #12856 -#12890 := [monotonicity #12857 #12887]: #12889 -#12893 := [monotonicity #12649 #12890]: #12892 -#12896 := [monotonicity #12893]: #12895 -#12901 := [trans #12896 #12899]: #12900 -#12904 := [monotonicity #12901]: #12903 -#12909 := [trans #12904 #12907]: #12908 -#12912 := [monotonicity #12909]: #12911 -#12915 := [monotonicity #12912]: #12914 -#12920 := [trans #12915 #12918]: #12919 -#12935 := [monotonicity #12649 #12920]: #12934 -#12938 := [monotonicity #12649 #12935]: #12937 -#12931 := (iff #12019 #12922) -#12926 := (not #12923) -#12929 := (iff #12926 #12922) -#12930 := [rewrite]: #12929 -#12927 := (iff #12019 #12926) -#12924 := (iff #4935 #12923) -#12925 := [rewrite]: #12924 -#12928 := [monotonicity #12925]: #12927 -#12932 := [trans #12928 #12930]: #12931 -#12941 := [monotonicity #12932 #12938]: #12940 -#12944 := [monotonicity #12649 #12941]: #12943 -#12949 := [trans #12944 #12947]: #12948 -#13068 := [monotonicity #12949 #13065]: #13067 -#13188 := [monotonicity #12649 #13068]: #13187 -#13191 := [monotonicity #13188]: #13190 -#13194 := [monotonicity #13191]: #13193 -#13197 := [monotonicity #13194]: #13196 -#13200 := [monotonicity #13197]: #13199 -#13203 := [monotonicity #13200]: #13202 -#13206 := [monotonicity #13203]: #13205 -#13091 := (iff #12161 #13090) -#13088 := (iff #4900 #4898) -#13080 := (and true #4898) -#13083 := (and true #13080) -#13086 := (iff #13083 #4898) -#13087 := [rewrite]: #13086 -#13084 := (iff #4900 #13083) -#13081 := (iff #4899 #13080) -#13076 := (iff #4895 true) -#13071 := (forall (vars (?v0 S11)) (:pat #4893) true) -#13074 := (iff #13071 true) -#13075 := [elim-unused]: #13074 -#13072 := (iff #4895 #13071) -#13069 := (iff #4894 true) -#13070 := [rewrite]: #13069 -#13073 := [quant-intro #13070]: #13072 -#13077 := [trans #13073 #13075]: #13076 -#13082 := [monotonicity #13077]: #13081 -#13078 := (iff #4890 true) -#13079 := [rewrite]: #13078 -#13085 := [monotonicity #13079 #13082]: #13084 -#13089 := [trans #13085 #13087]: #13088 -#13092 := [monotonicity #13089]: #13091 -#13209 := [monotonicity #13092 #13206]: #13208 -#13212 := [monotonicity #13092 #13209]: #13211 -#13215 := [monotonicity #12649 #13212]: #13214 -#13218 := [monotonicity #12649 #13215]: #13217 -#13221 := [monotonicity #12649 #13218]: #13220 -#13224 := [monotonicity #12649 #13221]: #13223 -#13103 := (iff #12238 #13102) -#13100 := (iff #4807 #13099) -#13097 := (iff #4802 #13096) -#13098 := [rewrite]: #13097 -#13101 := [monotonicity #13098]: #13100 -#13104 := [monotonicity #13101]: #13103 -#13227 := [monotonicity #13104 #13224]: #13226 -#13137 := (iff #12247 #13136) -#13134 := (iff #11310 #13133) -#13131 := (iff #11305 #13128) -#13122 := (or #13105 #13119) -#13125 := (or #7910 #13122) -#13129 := (iff #13125 #13128) -#13130 := [rewrite]: #13129 -#13126 := (iff #11305 #13125) -#13123 := (iff #11299 #13122) -#13120 := (iff #4798 #13119) -#13121 := [rewrite]: #13120 -#13115 := (iff #11298 #13105) -#13107 := (not #13105) -#13110 := (not #13107) -#13113 := (iff #13110 #13105) -#13114 := [rewrite]: #13113 -#13111 := (iff #11298 #13110) -#13108 := (iff #4797 #13107) -#13109 := [rewrite]: #13108 -#13112 := [monotonicity #13109]: #13111 -#13116 := [trans #13112 #13114]: #13115 -#13124 := [monotonicity #13116 #13121]: #13123 -#13127 := [monotonicity #7912 #13124]: #13126 -#13132 := [trans #13127 #13130]: #13131 -#13135 := [quant-intro #13132]: #13134 -#13138 := [monotonicity #13135]: #13137 -#13230 := [monotonicity #13138 #13227]: #13229 -#13143 := (iff #12256 #13142) -#13140 := (iff #4796 #13139) -#13141 := [rewrite]: #13140 -#13144 := [monotonicity #13141]: #13143 -#13233 := [monotonicity #13144 #13230]: #13232 -#13236 := [monotonicity #12649 #13233]: #13235 -#13155 := (iff #12273 #13154) -#13152 := (iff #4793 #13151) -#13149 := (iff #4792 #13148) -#13150 := [rewrite]: #13149 -#13146 := (iff #4791 #13145) -#13147 := [rewrite]: #13146 -#13153 := [monotonicity #13147 #13150]: #13152 -#13156 := [monotonicity #13153]: #13155 -#13239 := [monotonicity #13156 #13236]: #13238 -#13165 := (iff #12282 #13164) -#13162 := (iff #4789 #13161) -#13159 := (iff #4788 #13157) -#13160 := [rewrite]: #13159 -#13163 := [monotonicity #12643 #13160]: #13162 -#13166 := [monotonicity #13163]: #13165 -#13242 := [monotonicity #13166 #13239]: #13241 -#13178 := (iff #12291 #13177) -#13175 := (iff #4785 #13174) -#13172 := (iff #4784 #13170) -#13173 := [rewrite]: #13172 -#13168 := (iff #4783 #13167) -#13169 := [rewrite]: #13168 -#13176 := [monotonicity #13169 #13173]: #13175 -#13179 := [monotonicity #13176]: #13178 -#13245 := [monotonicity #13179 #13242]: #13244 -#13184 := (iff #12307 #13183) -#13181 := (iff #4781 #13180) -#12636 := (iff #4648 #12635) -#12637 := [rewrite]: #12636 -#13182 := [monotonicity #12637]: #13181 -#13185 := [monotonicity #13182]: #13184 -#13248 := [monotonicity #13185 #13245]: #13247 -#13253 := [trans #13248 #13251]: #13252 -#13256 := [monotonicity #13182 #13253]: #13255 -#13261 := [trans #13256 #13259]: #13260 -#12632 := (iff #12319 #12631) -#12629 := (iff #11295 #12628) -#12626 := (iff #11290 #12623) -#12617 := (or #12601 #12613) -#12620 := (or #7910 #12617) -#12624 := (iff #12620 #12623) -#12625 := [rewrite]: #12624 -#12621 := (iff #11290 #12620) -#12618 := (iff #11284 #12617) -#12612 := (iff #4776 #12613) -#12616 := [rewrite]: #12612 -#12610 := (iff #11283 #12601) -#12602 := (not #12601) -#12605 := (not #12602) -#12608 := (iff #12605 #12601) -#12609 := [rewrite]: #12608 -#12606 := (iff #11283 #12605) -#12603 := (iff #4772 #12602) -#12604 := [rewrite]: #12603 -#12607 := [monotonicity #12604]: #12606 -#12611 := [trans #12607 #12609]: #12610 -#12619 := [monotonicity #12611 #12616]: #12618 -#12622 := [monotonicity #7912 #12619]: #12621 -#12627 := [trans #12622 #12625]: #12626 -#12630 := [quant-intro #12627]: #12629 -#12633 := [monotonicity #12630]: #12632 -#13264 := [monotonicity #12633 #13261]: #13263 -#13267 := [monotonicity #12630 #13264]: #13266 -#12599 := (iff #12331 #12598) -#12596 := (iff #4771 #12595) -#12597 := [rewrite]: #12596 -#12600 := [monotonicity #12597]: #12599 -#13270 := [monotonicity #12600 #13267]: #13269 -#13273 := [monotonicity #12597 #13270]: #13272 -#12593 := (iff #12343 false) -#11313 := (iff #4808 false) -#11314 := [rewrite]: #11313 -#12591 := (iff #12343 #4808) -#12589 := (iff #11280 true) -#11607 := (and true true) -#12584 := (and true #11607) -#12587 := (iff #12584 true) -#12588 := [rewrite]: #12587 -#12585 := (iff #11280 #12584) -#12582 := (iff #11277 #11607) -#12580 := (iff #4767 true) -#12581 := [rewrite]: #12580 -#12578 := (iff #4766 true) -#12579 := [rewrite]: #12578 -#12583 := [monotonicity #12579 #12581]: #12582 -#12586 := [monotonicity #12579 #12583]: #12585 -#12590 := [trans #12586 #12588]: #12589 -#12592 := [monotonicity #12590]: #12591 -#12594 := [trans #12592 #11314]: #12593 -#13276 := [monotonicity #12594 #13273]: #13275 -#13279 := [monotonicity #13276]: #13278 -#13282 := [monotonicity #13279]: #13281 -#13285 := [monotonicity #13282]: #13284 -#13288 := [monotonicity #13285]: #13287 -#13291 := [monotonicity #13288]: #13290 -#13296 := [trans #13291 #13294]: #13295 -#13299 := [monotonicity #13296]: #13298 -#13304 := [trans #13299 #13302]: #13303 -#13307 := [monotonicity #13304]: #13306 -#13310 := [monotonicity #13307]: #13309 -#13315 := [trans #13310 #13313]: #13314 -#13318 := [monotonicity #13315]: #13317 -#13321 := [monotonicity #13318]: #13320 -#12576 := (iff #12424 #12575) -#12573 := (iff #4727 #12572) -#12570 := (iff #4726 #12567) -#12571 := [rewrite]: #12570 -#12564 := (iff #4725 #12565) -#12566 := [rewrite]: #12564 -#12574 := [monotonicity #12566 #12571]: #12573 -#12577 := [monotonicity #12574]: #12576 -#13402 := [monotonicity #12577 #13321]: #13401 -#13405 := [monotonicity #13402]: #13404 -#13408 := [monotonicity #13405]: #13407 -#13411 := [monotonicity #13408]: #13410 -#13414 := [monotonicity #13411]: #13413 -#13332 := (iff #12469 #13331) -#13329 := (iff #4694 #13328) -#13326 := (iff #4693 #13322) -#13327 := [rewrite]: #13326 -#13330 := [quant-intro #13327]: #13329 -#13333 := [monotonicity #13330]: #13332 -#13417 := [monotonicity #13333 #13414]: #13416 -#13420 := [monotonicity #13417]: #13419 -#13423 := [monotonicity #13420]: #13422 -#13338 := (iff #12503 #13337) -#13335 := (iff #4679 #13334) -#13336 := [rewrite]: #13335 -#13339 := [monotonicity #13336]: #13338 -#13426 := [monotonicity #13339 #13423]: #13425 -#13345 := (iff #12512 #12634) -#13340 := (not #12635) -#13343 := (iff #13340 #12634) -#13344 := [rewrite]: #13343 -#13341 := (iff #12512 #13340) -#13342 := [monotonicity #12637]: #13341 -#13346 := [trans #13342 #13344]: #13345 -#13429 := [monotonicity #13346 #13426]: #13428 -#13356 := (iff #12521 #13347) -#13348 := (not #13347) -#13351 := (not #13348) -#13354 := (iff #13351 #13347) -#13355 := [rewrite]: #13354 -#13352 := (iff #12521 #13351) -#13349 := (iff #4647 #13348) -#13350 := [rewrite]: #13349 -#13353 := [monotonicity #13350]: #13352 -#13357 := [trans #13353 #13355]: #13356 -#13432 := [monotonicity #13357 #13429]: #13431 -#13370 := (iff #12530 #13369) -#13367 := (iff #4645 #13366) -#13364 := (iff #4644 #13361) -#13365 := [rewrite]: #13364 -#13358 := (iff #4643 #13359) -#13360 := [rewrite]: #13358 -#13368 := [monotonicity #13360 #13365]: #13367 -#13371 := [monotonicity #13368]: #13370 -#13435 := [monotonicity #13371 #13432]: #13434 -#13384 := (iff #12539 #13383) -#13381 := (iff #4641 #13380) -#13378 := (iff #4640 #13375) -#13379 := [rewrite]: #13378 -#13372 := (iff #4639 #13373) -#13374 := [rewrite]: #13372 -#13382 := [monotonicity #13374 #13379]: #13381 -#13385 := [monotonicity #13382]: #13384 -#13438 := [monotonicity #13385 #13435]: #13437 -#13398 := (iff #12548 #13397) -#13395 := (iff #4637 #13394) -#13392 := (iff #4636 #13389) -#13393 := [rewrite]: #13392 -#13386 := (iff #4635 #13387) -#13388 := [rewrite]: #13386 -#13396 := [monotonicity #13388 #13393]: #13395 -#13399 := [monotonicity #13396]: #13398 -#13441 := [monotonicity #13399 #13438]: #13440 -#13446 := [trans #13441 #13444]: #13445 -#13449 := [monotonicity #13446]: #13448 -#12562 := (iff #5117 #12561) -#12559 := (iff #5116 #12549) -#12554 := (implies true #12549) -#12557 := (iff #12554 #12549) -#12558 := [rewrite]: #12557 -#12555 := (iff #5116 #12554) -#12552 := (iff #5115 #12549) -#12545 := (implies #4637 #12540) -#12550 := (iff #12545 #12549) -#12551 := [rewrite]: #12550 -#12546 := (iff #5115 #12545) -#12543 := (iff #5114 #12540) -#12536 := (implies #4641 #12531) -#12541 := (iff #12536 #12540) -#12542 := [rewrite]: #12541 -#12537 := (iff #5114 #12536) -#12534 := (iff #5113 #12531) -#12527 := (implies #4645 #12522) -#12532 := (iff #12527 #12531) -#12533 := [rewrite]: #12532 -#12528 := (iff #5113 #12527) -#12525 := (iff #5112 #12522) -#12518 := (implies #4647 #12513) -#12523 := (iff #12518 #12522) -#12524 := [rewrite]: #12523 -#12519 := (iff #5112 #12518) -#12516 := (iff #5111 #12513) -#12509 := (implies #4648 #12504) -#12514 := (iff #12509 #12513) -#12515 := [rewrite]: #12514 -#12510 := (iff #5111 #12509) -#12507 := (iff #5110 #12504) -#12500 := (implies #4679 #12488) -#12505 := (iff #12500 #12504) -#12506 := [rewrite]: #12505 -#12501 := (iff #5110 #12500) -#12498 := (iff #5109 #12488) -#12493 := (implies true #12488) -#12496 := (iff #12493 #12488) -#12497 := [rewrite]: #12496 -#12494 := (iff #5109 #12493) -#12491 := (iff #5108 #12488) -#12484 := (implies #4681 #12479) -#12489 := (iff #12484 #12488) -#12490 := [rewrite]: #12489 -#12485 := (iff #5108 #12484) -#12482 := (iff #5107 #12479) -#12475 := (implies #4687 #12470) -#12480 := (iff #12475 #12479) -#12481 := [rewrite]: #12480 -#12476 := (iff #5107 #12475) -#12473 := (iff #5106 #12470) -#12466 := (implies #4694 #12461) -#12471 := (iff #12466 #12470) -#12472 := [rewrite]: #12471 -#12467 := (iff #5106 #12466) -#12464 := (iff #5105 #12461) -#12457 := (implies #4710 #12452) -#12462 := (iff #12457 #12461) -#12463 := [rewrite]: #12462 -#12458 := (iff #5105 #12457) -#12455 := (iff #5104 #12452) -#12448 := (implies #4714 #12443) -#12453 := (iff #12448 #12452) -#12454 := [rewrite]: #12453 -#12449 := (iff #5104 #12448) -#12446 := (iff #5103 #12443) -#12439 := (implies #4717 #12434) -#12444 := (iff #12439 #12443) -#12445 := [rewrite]: #12444 -#12440 := (iff #5103 #12439) -#12437 := (iff #5102 #12434) -#12430 := (implies #11272 #12425) -#12435 := (iff #12430 #12434) -#12436 := [rewrite]: #12435 -#12431 := (iff #5102 #12430) -#12428 := (iff #5101 #12425) -#12421 := (implies #4727 #12418) -#12426 := (iff #12421 #12425) -#12427 := [rewrite]: #12426 -#12422 := (iff #5101 #12421) -#12419 := (iff #5100 #12418) -#12416 := (iff #5099 #12413) -#12409 := (implies #4733 #12406) -#12414 := (iff #12409 #12413) -#12415 := [rewrite]: #12414 -#12410 := (iff #5099 #12409) -#12407 := (iff #5098 #12406) -#12404 := (iff #5097 #12401) -#12397 := (implies #4742 #12394) -#12402 := (iff #12397 #12401) -#12403 := [rewrite]: #12402 -#12398 := (iff #5097 #12397) -#12395 := (iff #5096 #12394) -#12392 := (iff #5095 #12389) -#12385 := (implies #4746 #12380) -#12390 := (iff #12385 #12389) -#12391 := [rewrite]: #12390 -#12386 := (iff #5095 #12385) -#12383 := (iff #5094 #12380) -#12376 := (implies #4750 #12371) -#12381 := (iff #12376 #12380) -#12382 := [rewrite]: #12381 -#12377 := (iff #5094 #12376) -#12374 := (iff #5093 #12371) -#12367 := (implies #4755 #12362) -#12372 := (iff #12367 #12371) -#12373 := [rewrite]: #12372 -#12368 := (iff #5093 #12367) -#12365 := (iff #5092 #12362) -#12358 := (implies #4760 #12353) -#12363 := (iff #12358 #12362) -#12364 := [rewrite]: #12363 -#12359 := (iff #5092 #12358) -#12356 := (iff #5091 #12353) -#12349 := (implies #4765 #12344) -#12354 := (iff #12349 #12353) -#12355 := [rewrite]: #12354 -#12350 := (iff #5091 #12349) -#12347 := (iff #5090 #12344) -#12340 := (implies #11280 #12337) -#12345 := (iff #12340 #12344) -#12346 := [rewrite]: #12345 -#12341 := (iff #5090 #12340) -#12338 := (iff #5089 #12337) -#12335 := (iff #5088 #12332) -#12328 := (implies #4771 #12325) -#12333 := (iff #12328 #12332) -#12334 := [rewrite]: #12333 -#12329 := (iff #5088 #12328) -#12326 := (iff #5087 #12325) -#12323 := (iff #5086 #12320) -#12316 := (implies #11295 #12313) -#12321 := (iff #12316 #12320) -#12322 := [rewrite]: #12321 -#12317 := (iff #5086 #12316) -#12314 := (iff #5085 #12313) -#12311 := (iff #5084 #12308) -#12304 := (implies #4781 #12292) -#12309 := (iff #12304 #12308) -#12310 := [rewrite]: #12309 -#12305 := (iff #5084 #12304) -#12302 := (iff #5083 #12292) -#12297 := (implies true #12292) -#12300 := (iff #12297 #12292) -#12301 := [rewrite]: #12300 -#12298 := (iff #5083 #12297) -#12295 := (iff #5082 #12292) -#12288 := (implies #4785 #12283) -#12293 := (iff #12288 #12292) -#12294 := [rewrite]: #12293 -#12289 := (iff #5082 #12288) -#12286 := (iff #5081 #12283) -#12279 := (implies #4789 #12274) -#12284 := (iff #12279 #12283) -#12285 := [rewrite]: #12284 -#12280 := (iff #5081 #12279) -#12277 := (iff #5080 #12274) -#12270 := (implies #4793 #12265) -#12275 := (iff #12270 #12274) -#12276 := [rewrite]: #12275 -#12271 := (iff #5080 #12270) -#12268 := (iff #5079 #12265) -#12262 := (implies #4795 #12257) -#12266 := (iff #12262 #12265) -#12267 := [rewrite]: #12266 -#12263 := (iff #5079 #12262) -#12260 := (iff #5078 #12257) -#12253 := (implies #4796 #12248) -#12258 := (iff #12253 #12257) -#12259 := [rewrite]: #12258 -#12254 := (iff #5078 #12253) -#12251 := (iff #5077 #12248) -#12244 := (implies #11310 #12239) -#12249 := (iff #12244 #12248) -#12250 := [rewrite]: #12249 -#12245 := (iff #5077 #12244) -#12242 := (iff #5076 #12239) -#12235 := (implies #4807 #12230) -#12240 := (iff #12235 #12239) -#12241 := [rewrite]: #12240 -#12236 := (iff #5076 #12235) -#12233 := (iff #5075 #12230) -#12227 := (implies #4795 #12208) -#12231 := (iff #12227 #12230) -#12232 := [rewrite]: #12231 -#12228 := (iff #5075 #12227) -#12225 := (iff #5074 #12208) -#12220 := (and true #12208) -#12223 := (iff #12220 #12208) -#12224 := [rewrite]: #12223 -#12221 := (iff #5074 #12220) -#12218 := (iff #5073 #12208) -#12213 := (implies true #12208) -#12216 := (iff #12213 #12208) -#12217 := [rewrite]: #12216 -#12214 := (iff #5073 #12213) -#12211 := (iff #5072 #12208) -#12205 := (implies #4795 #12193) -#12209 := (iff #12205 #12208) -#12210 := [rewrite]: #12209 -#12206 := (iff #5072 #12205) -#12203 := (iff #5071 #12193) -#12198 := (implies true #12193) -#12201 := (iff #12198 #12193) -#12202 := [rewrite]: #12201 -#12199 := (iff #5071 #12198) -#12196 := (iff #5070 #12193) -#12190 := (implies #4795 #12178) -#12194 := (iff #12190 #12193) -#12195 := [rewrite]: #12194 -#12191 := (iff #5070 #12190) -#12188 := (iff #5069 #12178) -#12183 := (implies true #12178) -#12186 := (iff #12183 #12178) -#12187 := [rewrite]: #12186 -#12184 := (iff #5069 #12183) -#12181 := (iff #5068 #12178) -#12175 := (implies #4795 #12170) -#12179 := (iff #12175 #12178) -#12180 := [rewrite]: #12179 -#12176 := (iff #5068 #12175) -#12173 := (iff #5067 #12170) -#12167 := (implies #4900 #12162) -#12171 := (iff #12167 #12170) -#12172 := [rewrite]: #12171 -#12168 := (iff #5067 #12167) -#12165 := (iff #5066 #12162) -#12158 := (implies #4900 #12153) -#12163 := (iff #12158 #12162) -#12164 := [rewrite]: #12163 -#12159 := (iff #5066 #12158) -#12156 := (iff #5065 #12153) -#12150 := (implies #4812 #12145) -#12154 := (iff #12150 #12153) -#12155 := [rewrite]: #12154 -#12151 := (iff #5065 #12150) -#12148 := (iff #5064 #12145) -#12141 := (implies #4909 #12136) -#12146 := (iff #12141 #12145) -#12147 := [rewrite]: #12146 -#12142 := (iff #5064 #12141) -#12139 := (iff #5063 #12136) -#12132 := (implies #4913 #12127) -#12137 := (iff #12132 #12136) -#12138 := [rewrite]: #12137 -#12133 := (iff #5063 #12132) -#12130 := (iff #5062 #12127) -#12123 := (implies #4917 #12118) -#12128 := (iff #12123 #12127) -#12129 := [rewrite]: #12128 -#12124 := (iff #5062 #12123) -#12121 := (iff #5061 #12118) -#12114 := (implies #4921 #12109) -#12119 := (iff #12114 #12118) -#12120 := [rewrite]: #12119 -#12115 := (iff #5061 #12114) -#12112 := (iff #5060 #12109) -#12105 := (implies #4931 #12093) -#12110 := (iff #12105 #12109) -#12111 := [rewrite]: #12110 -#12106 := (iff #5060 #12105) -#12103 := (iff #5059 #12093) -#12098 := (implies true #12093) -#12101 := (iff #12098 #12093) -#12102 := [rewrite]: #12101 -#12099 := (iff #5059 #12098) -#12096 := (iff #5058 #12093) -#12090 := (implies #4795 #12087) -#12094 := (iff #12090 #12093) -#12095 := [rewrite]: #12094 -#12091 := (iff #5058 #12090) -#12088 := (iff #5057 #12087) -#12085 := (iff #5056 #12075) -#12080 := (implies true #12075) -#12083 := (iff #12080 #12075) -#12084 := [rewrite]: #12083 -#12081 := (iff #5056 #12080) -#12078 := (iff #5055 #12075) -#12072 := (implies #4795 #12067) -#12076 := (iff #12072 #12075) -#12077 := [rewrite]: #12076 -#12073 := (iff #5055 #12072) -#12070 := (iff #5054 #12067) -#12063 := (implies #5050 #12058) -#12068 := (iff #12063 #12067) -#12069 := [rewrite]: #12068 -#12064 := (iff #5054 #12063) -#12061 := (iff #5053 #12058) -#12055 := (implies #4795 #12043) -#12059 := (iff #12055 #12058) -#12060 := [rewrite]: #12059 -#12056 := (iff #5053 #12055) -#12053 := (iff #5052 #12043) -#12048 := (implies true #12043) -#12051 := (iff #12048 #12043) -#12052 := [rewrite]: #12051 -#12049 := (iff #5052 #12048) -#12046 := (iff #5051 #12043) -#12040 := (implies #4795 #11463) -#12044 := (iff #12040 #12043) -#12045 := [rewrite]: #12044 -#12041 := (iff #5051 #12040) -#11466 := (iff #4849 #11463) -#11460 := (implies #4795 #11448) -#11464 := (iff #11460 #11463) -#11465 := [rewrite]: #11464 -#11461 := (iff #4849 #11460) -#11458 := (iff #4848 #11448) -#11453 := (implies true #11448) -#11456 := (iff #11453 #11448) -#11457 := [rewrite]: #11456 -#11454 := (iff #4848 #11453) -#11451 := (iff #4847 #11448) -#11445 := (implies #4795 #11442) -#11449 := (iff #11445 #11448) -#11450 := [rewrite]: #11449 -#11446 := (iff #4847 #11445) -#11443 := (iff #4846 #11442) -#11440 := (iff #4845 #11437) -#11433 := (implies #4072 #11428) -#11438 := (iff #11433 #11437) -#11439 := [rewrite]: #11438 -#11434 := (iff #4845 #11433) -#11431 := (iff #4844 #11428) -#11425 := (implies #4795 #11413) -#11429 := (iff #11425 #11428) -#11430 := [rewrite]: #11429 -#11426 := (iff #4844 #11425) -#11423 := (iff #4843 #11413) -#11418 := (implies true #11413) -#11421 := (iff #11418 #11413) -#11422 := [rewrite]: #11421 -#11419 := (iff #4843 #11418) -#11416 := (iff #4842 #11413) -#11410 := (implies #4795 #11405) -#11414 := (iff #11410 #11413) -#11415 := [rewrite]: #11414 -#11411 := (iff #4842 #11410) -#11408 := (iff #4841 #11405) -#11401 := (implies #4795 #11389) -#11406 := (iff #11401 #11405) -#11407 := [rewrite]: #11406 -#11402 := (iff #4841 #11401) -#11399 := (iff #4840 #11389) -#11394 := (implies true #11389) -#11397 := (iff #11394 #11389) -#11398 := [rewrite]: #11397 -#11395 := (iff #4840 #11394) -#11392 := (iff #4839 #11389) -#11385 := (implies #4814 #11380) -#11390 := (iff #11385 #11389) -#11391 := [rewrite]: #11390 -#11386 := (iff #4839 #11385) -#11383 := (iff #4838 #11380) -#11376 := (implies #4816 #11371) -#11381 := (iff #11376 #11380) -#11382 := [rewrite]: #11381 -#11377 := (iff #4838 #11376) -#11374 := (iff #4837 #11371) -#11367 := (implies #4818 #11362) -#11372 := (iff #11367 #11371) -#11373 := [rewrite]: #11372 -#11368 := (iff #4837 #11367) -#11365 := (iff #4836 #11362) -#11358 := (implies #4820 #11348) -#11363 := (iff #11358 #11362) -#11364 := [rewrite]: #11363 -#11359 := (iff #4836 #11358) -#11356 := (iff #4835 #11348) -#11351 := (implies true #11348) -#11354 := (iff #11351 #11348) -#11355 := [rewrite]: #11354 -#11352 := (iff #4835 #11351) -#11349 := (iff #4834 #11348) -#11346 := (iff #4833 #11343) -#11339 := (implies #11327 #4830) -#11344 := (iff #11339 #11343) -#11345 := [rewrite]: #11344 -#11340 := (iff #4833 #11339) -#11337 := (iff #4832 #4830) -#11332 := (and #4830 true) -#11335 := (iff #11332 #4830) -#11336 := [rewrite]: #11335 -#11333 := (iff #4832 #11332) -#11330 := (iff #4831 true) -#11331 := [rewrite]: #11330 -#11334 := [monotonicity #11331]: #11333 -#11338 := [trans #11334 #11336]: #11337 -#11328 := (iff #4825 #11327) -#11325 := (iff #4824 #11322) -#11319 := (implies #1522 #11316) -#11323 := (iff #11319 #11322) -#11324 := [rewrite]: #11323 -#11320 := (iff #4824 #11319) -#11317 := (iff #4823 #11316) -#11318 := [rewrite]: #11317 -#11321 := [monotonicity #11318]: #11320 -#11326 := [trans #11321 #11324]: #11325 -#11329 := [quant-intro #11326]: #11328 -#11341 := [monotonicity #11329 #11338]: #11340 -#11347 := [trans #11341 #11345]: #11346 -#11350 := [monotonicity #11329 #11347]: #11349 -#11353 := [monotonicity #11350]: #11352 -#11357 := [trans #11353 #11355]: #11356 -#11360 := [monotonicity #11357]: #11359 -#11366 := [trans #11360 #11364]: #11365 -#11369 := [monotonicity #11366]: #11368 -#11375 := [trans #11369 #11373]: #11374 -#11378 := [monotonicity #11375]: #11377 -#11384 := [trans #11378 #11382]: #11383 -#11387 := [monotonicity #11384]: #11386 -#11393 := [trans #11387 #11391]: #11392 -#11396 := [monotonicity #11393]: #11395 -#11400 := [trans #11396 #11398]: #11399 -#11403 := [monotonicity #11400]: #11402 -#11409 := [trans #11403 #11407]: #11408 -#11412 := [monotonicity #11409]: #11411 -#11417 := [trans #11412 #11415]: #11416 -#11420 := [monotonicity #11417]: #11419 -#11424 := [trans #11420 #11422]: #11423 -#11427 := [monotonicity #11424]: #11426 -#11432 := [trans #11427 #11430]: #11431 -#11435 := [monotonicity #11432]: #11434 -#11441 := [trans #11435 #11439]: #11440 -#11444 := [monotonicity #11441]: #11443 -#11447 := [monotonicity #11444]: #11446 -#11452 := [trans #11447 #11450]: #11451 -#11455 := [monotonicity #11452]: #11454 -#11459 := [trans #11455 #11457]: #11458 -#11462 := [monotonicity #11459]: #11461 -#11467 := [trans #11462 #11465]: #11466 -#12042 := [monotonicity #11467]: #12041 -#12047 := [trans #12042 #12045]: #12046 -#12050 := [monotonicity #12047]: #12049 -#12054 := [trans #12050 #12052]: #12053 -#12057 := [monotonicity #12054]: #12056 -#12062 := [trans #12057 #12060]: #12061 -#12065 := [monotonicity #12062]: #12064 -#12071 := [trans #12065 #12069]: #12070 -#12074 := [monotonicity #12071]: #12073 -#12079 := [trans #12074 #12077]: #12078 -#12082 := [monotonicity #12079]: #12081 -#12086 := [trans #12082 #12084]: #12085 -#12038 := (iff #5049 #12028) -#12033 := (implies true #12028) -#12036 := (iff #12033 #12028) -#12037 := [rewrite]: #12036 -#12034 := (iff #5049 #12033) -#12031 := (iff #5048 #12028) -#12025 := (implies #4795 #12020) -#12029 := (iff #12025 #12028) -#12030 := [rewrite]: #12029 -#12026 := (iff #5048 #12025) -#12023 := (iff #5047 #12020) -#12016 := (implies #4935 #12011) -#12021 := (iff #12016 #12020) -#12022 := [rewrite]: #12021 -#12017 := (iff #5047 #12016) -#12014 := (iff #5046 #12011) -#12008 := (implies #4795 #11996) -#12012 := (iff #12008 #12011) -#12013 := [rewrite]: #12012 -#12009 := (iff #5046 #12008) -#12006 := (iff #5045 #11996) -#12001 := (implies true #11996) -#12004 := (iff #12001 #11996) -#12005 := [rewrite]: #12004 -#12002 := (iff #5045 #12001) -#11999 := (iff #5044 #11996) -#11993 := (implies #4795 #11990) -#11997 := (iff #11993 #11996) -#11998 := [rewrite]: #11997 -#11994 := (iff #5044 #11993) -#11991 := (iff #5043 #11990) -#11988 := (iff #5042 #11985) -#11982 := (implies #4943 #11979) -#11986 := (iff #11982 #11985) -#11987 := [rewrite]: #11986 -#11983 := (iff #5042 #11982) -#11980 := (iff #5041 #11979) -#11977 := (iff #5040 #11974) -#11971 := (implies #4946 #11966) -#11975 := (iff #11971 #11974) -#11976 := [rewrite]: #11975 -#11972 := (iff #5040 #11971) -#11969 := (iff #5039 #11966) -#11963 := (implies #4795 #11960) -#11967 := (iff #11963 #11966) -#11968 := [rewrite]: #11967 -#11964 := (iff #5039 #11963) -#11961 := (iff #5038 #11960) -#11958 := (iff #5037 #11948) -#11953 := (implies true #11948) -#11956 := (iff #11953 #11948) -#11957 := [rewrite]: #11956 -#11954 := (iff #5037 #11953) -#11951 := (iff #5036 #11948) -#11945 := (implies #4795 #11940) -#11949 := (iff #11945 #11948) -#11950 := [rewrite]: #11949 -#11946 := (iff #5036 #11945) -#11943 := (iff #5035 #11940) -#11936 := (implies #5025 #11931) -#11941 := (iff #11936 #11940) -#11942 := [rewrite]: #11941 -#11937 := (iff #5035 #11936) -#11934 := (iff #5034 #11931) -#11928 := (implies #4795 #11916) -#11932 := (iff #11928 #11931) -#11933 := [rewrite]: #11932 -#11929 := (iff #5034 #11928) -#11926 := (iff #5033 #11916) -#11921 := (implies true #11916) -#11924 := (iff #11921 #11916) -#11925 := [rewrite]: #11924 -#11922 := (iff #5033 #11921) -#11919 := (iff #5032 #11916) -#11913 := (implies #4795 #11908) -#11917 := (iff #11913 #11916) -#11918 := [rewrite]: #11917 -#11914 := (iff #5032 #11913) -#11911 := (iff #5031 #11908) -#11905 := (implies #4795 #11893) -#11909 := (iff #11905 #11908) -#11910 := [rewrite]: #11909 -#11906 := (iff #5031 #11905) -#11903 := (iff #5030 #11893) -#11898 := (implies true #11893) -#11901 := (iff #11898 #11893) -#11902 := [rewrite]: #11901 -#11899 := (iff #5030 #11898) -#11896 := (iff #5029 #11893) -#11889 := (implies #5026 #11884) -#11894 := (iff #11889 #11893) -#11895 := [rewrite]: #11894 -#11890 := (iff #5029 #11889) -#11887 := (iff #5028 #11884) -#11880 := (implies #5027 #11736) -#11885 := (iff #11880 #11884) -#11886 := [rewrite]: #11885 -#11881 := (iff #5028 #11880) -#11746 := (iff #5007 #11736) -#11741 := (implies true #11736) -#11744 := (iff #11741 #11736) -#11745 := [rewrite]: #11744 -#11742 := (iff #5007 #11741) -#11739 := (iff #5006 #11736) -#11732 := (implies #4967 #11729) -#11737 := (iff #11732 #11736) -#11738 := [rewrite]: #11737 -#11733 := (iff #5006 #11732) -#11730 := (iff #5005 #11729) -#11727 := (iff #5004 #11724) -#11720 := (implies #11625 #11715) -#11725 := (iff #11720 #11724) -#11726 := [rewrite]: #11725 -#11721 := (iff #5004 #11720) -#11718 := (iff #5003 #11715) -#11711 := (implies #11628 #11706) -#11716 := (iff #11711 #11715) -#11717 := [rewrite]: #11716 -#11712 := (iff #5003 #11711) -#11709 := (iff #5002 #11706) -#11702 := (implies #4978 #11697) -#11707 := (iff #11702 #11706) -#11708 := [rewrite]: #11707 -#11703 := (iff #5002 #11702) -#11700 := (iff #5001 #11697) -#11693 := (implies #4980 #11683) -#11698 := (iff #11693 #11697) -#11699 := [rewrite]: #11698 -#11694 := (iff #5001 #11693) -#11691 := (iff #5000 #11683) -#11686 := (implies true #11683) -#11689 := (iff #11686 #11683) -#11690 := [rewrite]: #11689 -#11687 := (iff #5000 #11686) -#11684 := (iff #4999 #11683) -#11681 := (iff #4998 #11678) -#11674 := (implies #4981 #11671) -#11679 := (iff #11674 #11678) -#11680 := [rewrite]: #11679 -#11675 := (iff #4998 #11674) -#11672 := (iff #4997 #11671) -#11669 := (iff #4996 #11666) -#11662 := (implies #11643 #4992) -#11667 := (iff #11662 #11666) -#11668 := [rewrite]: #11667 -#11663 := (iff #4996 #11662) -#11660 := (iff #4995 #4992) -#11655 := (and #4992 true) -#11658 := (iff #11655 #4992) -#11659 := [rewrite]: #11658 -#11656 := (iff #4995 #11655) -#11653 := (iff #4994 true) -#11648 := (implies #4992 true) -#11651 := (iff #11648 true) -#11652 := [rewrite]: #11651 -#11649 := (iff #4994 #11648) -#11646 := (iff #4993 true) -#11647 := [rewrite]: #11646 -#11650 := [monotonicity #11647]: #11649 -#11654 := [trans #11650 #11652]: #11653 -#11657 := [monotonicity #11654]: #11656 -#11661 := [trans #11657 #11659]: #11660 -#11644 := (iff #4986 #11643) -#11641 := (iff #4985 #11638) -#11635 := (implies #1522 #11632) -#11639 := (iff #11635 #11638) -#11640 := [rewrite]: #11639 -#11636 := (iff #4985 #11635) -#11633 := (iff #4984 #11632) -#11634 := [rewrite]: #11633 -#11637 := [monotonicity #11634]: #11636 -#11642 := [trans #11637 #11640]: #11641 -#11645 := [quant-intro #11642]: #11644 -#11664 := [monotonicity #11645 #11661]: #11663 -#11670 := [trans #11664 #11668]: #11669 -#11673 := [monotonicity #11645 #11670]: #11672 -#11676 := [monotonicity #11673]: #11675 -#11682 := [trans #11676 #11680]: #11681 -#11685 := [monotonicity #11682]: #11684 -#11688 := [monotonicity #11685]: #11687 -#11692 := [trans #11688 #11690]: #11691 -#11695 := [monotonicity #11692]: #11694 -#11701 := [trans #11695 #11699]: #11700 -#11704 := [monotonicity #11701]: #11703 -#11710 := [trans #11704 #11708]: #11709 -#11629 := (iff #4973 #11628) -#11617 := (= #4968 #11616) -#11618 := [rewrite]: #11617 -#11630 := [monotonicity #11618]: #11629 -#11713 := [monotonicity #11630 #11710]: #11712 -#11719 := [trans #11713 #11717]: #11718 -#11626 := (iff #4971 #11625) -#11623 := (iff #4970 #11622) -#11624 := [monotonicity #11618]: #11623 -#11620 := (iff #4969 #11619) -#11621 := [monotonicity #11618]: #11620 -#11627 := [monotonicity #11621 #11624]: #11626 -#11722 := [monotonicity #11627 #11719]: #11721 -#11728 := [trans #11722 #11726]: #11727 -#11731 := [monotonicity #11627 #11728]: #11730 -#11734 := [monotonicity #11731]: #11733 -#11740 := [trans #11734 #11738]: #11739 -#11743 := [monotonicity #11740]: #11742 -#11747 := [trans #11743 #11745]: #11746 -#11882 := [monotonicity #11747]: #11881 -#11888 := [trans #11882 #11886]: #11887 -#11891 := [monotonicity #11888]: #11890 -#11897 := [trans #11891 #11895]: #11896 -#11900 := [monotonicity #11897]: #11899 -#11904 := [trans #11900 #11902]: #11903 -#11907 := [monotonicity #11904]: #11906 -#11912 := [trans #11907 #11910]: #11911 -#11915 := [monotonicity #11912]: #11914 -#11920 := [trans #11915 #11918]: #11919 -#11923 := [monotonicity #11920]: #11922 -#11927 := [trans #11923 #11925]: #11926 -#11930 := [monotonicity #11927]: #11929 -#11935 := [trans #11930 #11933]: #11934 -#11938 := [monotonicity #11935]: #11937 -#11944 := [trans #11938 #11942]: #11943 -#11947 := [monotonicity #11944]: #11946 -#11952 := [trans #11947 #11950]: #11951 -#11955 := [monotonicity #11952]: #11954 -#11959 := [trans #11955 #11957]: #11958 -#11878 := (iff #5024 #11868) -#11873 := (implies true #11868) -#11876 := (iff #11873 #11868) -#11877 := [rewrite]: #11876 -#11874 := (iff #5024 #11873) -#11871 := (iff #5023 #11868) -#11865 := (implies #4795 #11860) -#11869 := (iff #11865 #11868) -#11870 := [rewrite]: #11869 -#11866 := (iff #5023 #11865) -#11863 := (iff #5022 #11860) -#11856 := (implies #4948 #11851) -#11861 := (iff #11856 #11860) -#11862 := [rewrite]: #11861 -#11857 := (iff #5022 #11856) -#11854 := (iff #5021 #11851) -#11848 := (implies #4795 #11836) -#11852 := (iff #11848 #11851) -#11853 := [rewrite]: #11852 -#11849 := (iff #5021 #11848) -#11846 := (iff #5020 #11836) -#11841 := (implies true #11836) -#11844 := (iff #11841 #11836) -#11845 := [rewrite]: #11844 -#11842 := (iff #5020 #11841) -#11839 := (iff #5019 #11836) -#11833 := (implies #4795 #11830) -#11837 := (iff #11833 #11836) -#11838 := [rewrite]: #11837 -#11834 := (iff #5019 #11833) -#11831 := (iff #5018 #11830) -#11828 := (iff #5017 #11825) -#11821 := (implies #4943 #11818) -#11826 := (iff #11821 #11825) -#11827 := [rewrite]: #11826 -#11822 := (iff #5017 #11821) -#11819 := (iff #5016 #11818) -#11816 := (iff #5015 #11813) -#11809 := (implies #4946 #11804) -#11814 := (iff #11809 #11813) -#11815 := [rewrite]: #11814 -#11810 := (iff #5015 #11809) -#11807 := (iff #5014 #11804) -#11800 := (implies #4950 #11795) -#11805 := (iff #11800 #11804) -#11806 := [rewrite]: #11805 -#11801 := (iff #5014 #11800) -#11798 := (iff #5013 #11795) -#11791 := (implies #4955 #11786) -#11796 := (iff #11791 #11795) -#11797 := [rewrite]: #11796 -#11792 := (iff #5013 #11791) -#11789 := (iff #5012 #11786) -#11782 := (implies #4960 #11777) -#11787 := (iff #11782 #11786) -#11788 := [rewrite]: #11787 -#11783 := (iff #5012 #11782) -#11780 := (iff #5011 #11777) -#11773 := (implies #4794 #11761) -#11778 := (iff #11773 #11777) -#11779 := [rewrite]: #11778 -#11774 := (iff #5011 #11773) -#11771 := (iff #5010 #11761) -#11766 := (implies true #11761) -#11769 := (iff #11766 #11761) -#11770 := [rewrite]: #11769 -#11767 := (iff #5010 #11766) -#11764 := (iff #5009 #11761) -#11757 := (implies #4963 #11752) -#11762 := (iff #11757 #11761) -#11763 := [rewrite]: #11762 -#11758 := (iff #5009 #11757) -#11755 := (iff #5008 #11752) -#11748 := (implies #4965 #11736) -#11753 := (iff #11748 #11752) -#11754 := [rewrite]: #11753 -#11749 := (iff #5008 #11748) -#11750 := [monotonicity #11747]: #11749 -#11756 := [trans #11750 #11754]: #11755 -#11759 := [monotonicity #11756]: #11758 -#11765 := [trans #11759 #11763]: #11764 -#11768 := [monotonicity #11765]: #11767 -#11772 := [trans #11768 #11770]: #11771 -#11614 := (iff #4961 #4794) -#11615 := [rewrite]: #11614 -#11775 := [monotonicity #11615 #11772]: #11774 -#11781 := [trans #11775 #11779]: #11780 -#11784 := [monotonicity #11781]: #11783 -#11790 := [trans #11784 #11788]: #11789 -#11793 := [monotonicity #11790]: #11792 -#11799 := [trans #11793 #11797]: #11798 -#11802 := [monotonicity #11799]: #11801 -#11808 := [trans #11802 #11806]: #11807 -#11811 := [monotonicity #11808]: #11810 -#11817 := [trans #11811 #11815]: #11816 -#11820 := [monotonicity #11817]: #11819 -#11823 := [monotonicity #11820]: #11822 -#11829 := [trans #11823 #11827]: #11828 -#11832 := [monotonicity #11829]: #11831 -#11835 := [monotonicity #11832]: #11834 -#11840 := [trans #11835 #11838]: #11839 -#11843 := [monotonicity #11840]: #11842 -#11847 := [trans #11843 #11845]: #11846 -#11850 := [monotonicity #11847]: #11849 -#11855 := [trans #11850 #11853]: #11854 -#11858 := [monotonicity #11855]: #11857 -#11864 := [trans #11858 #11862]: #11863 -#11867 := [monotonicity #11864]: #11866 -#11872 := [trans #11867 #11870]: #11871 -#11875 := [monotonicity #11872]: #11874 -#11879 := [trans #11875 #11877]: #11878 -#11962 := [monotonicity #11879 #11959]: #11961 -#11965 := [monotonicity #11962]: #11964 -#11970 := [trans #11965 #11968]: #11969 -#11973 := [monotonicity #11970]: #11972 -#11978 := [trans #11973 #11976]: #11977 -#11981 := [monotonicity #11978]: #11980 -#11984 := [monotonicity #11981]: #11983 -#11989 := [trans #11984 #11987]: #11988 -#11992 := [monotonicity #11989]: #11991 -#11995 := [monotonicity #11992]: #11994 -#12000 := [trans #11995 #11998]: #11999 -#12003 := [monotonicity #12000]: #12002 -#12007 := [trans #12003 #12005]: #12006 -#12010 := [monotonicity #12007]: #12009 -#12015 := [trans #12010 #12013]: #12014 -#12018 := [monotonicity #12015]: #12017 -#12024 := [trans #12018 #12022]: #12023 -#12027 := [monotonicity #12024]: #12026 -#12032 := [trans #12027 #12030]: #12031 -#12035 := [monotonicity #12032]: #12034 -#12039 := [trans #12035 #12037]: #12038 -#12089 := [monotonicity #12039 #12086]: #12088 -#12092 := [monotonicity #12089]: #12091 -#12097 := [trans #12092 #12095]: #12096 -#11612 := (iff #4934 true) -#11610 := (iff #11607 true) -#11611 := [rewrite]: #11610 -#11608 := (iff #4934 #11607) -#11605 := (iff #4933 true) -#11606 := [rewrite]: #11605 -#11603 := (iff #4932 true) -#11604 := [rewrite]: #11603 -#11609 := [monotonicity #11604 #11606]: #11608 -#11613 := [trans #11609 #11611]: #11612 -#12100 := [monotonicity #11613 #12097]: #12099 -#12104 := [trans #12100 #12102]: #12103 -#12107 := [monotonicity #12104]: #12106 -#12113 := [trans #12107 #12111]: #12112 -#12116 := [monotonicity #12113]: #12115 -#12122 := [trans #12116 #12120]: #12121 -#12125 := [monotonicity #12122]: #12124 -#12131 := [trans #12125 #12129]: #12130 -#12134 := [monotonicity #12131]: #12133 -#12140 := [trans #12134 #12138]: #12139 -#12143 := [monotonicity #12140]: #12142 -#12149 := [trans #12143 #12147]: #12148 -#12152 := [monotonicity #12149]: #12151 -#12157 := [trans #12152 #12155]: #12156 -#12160 := [monotonicity #12157]: #12159 -#12166 := [trans #12160 #12164]: #12165 -#11601 := (iff #4904 #4900) -#11584 := (and true #4900) -#11587 := (iff #11584 #4900) -#11588 := [rewrite]: #11587 -#11599 := (iff #4904 #11584) -#11597 := (iff #4903 #4900) -#11595 := (iff #4903 #11584) -#11593 := (iff #4902 #4900) -#11591 := (iff #4902 #11584) -#11589 := (iff #4901 #4900) -#11585 := (iff #4901 #11584) -#11582 := (iff #4889 true) -#11577 := (forall (vars (?v0 S11)) (:pat #4885) true) -#11580 := (iff #11577 true) -#11581 := [elim-unused]: #11580 -#11578 := (iff #4889 #11577) -#11575 := (iff #4888 true) -#11539 := (implies #4873 #4873) -#11542 := (iff #11539 true) -#11543 := [rewrite]: #11542 -#11573 := (iff #4888 #11539) -#11571 := (iff #4887 #4873) -#11532 := (and true #4873) -#11535 := (iff #11532 #4873) -#11536 := [rewrite]: #11535 -#11569 := (iff #4887 #11532) -#11567 := (iff #4886 true) -#11568 := [rewrite]: #11567 -#11570 := [monotonicity #11568]: #11569 -#11572 := [trans #11570 #11536]: #11571 -#11574 := [monotonicity #11572]: #11573 -#11576 := [trans #11574 #11543]: #11575 -#11579 := [quant-intro #11576]: #11578 -#11583 := [trans #11579 #11581]: #11582 -#11586 := [monotonicity #11583]: #11585 -#11590 := [trans #11586 #11588]: #11589 -#11565 := (iff #4881 true) -#11523 := (forall (vars (?v0 S11)) (:pat #4860) true) -#11526 := (iff #11523 true) -#11527 := [elim-unused]: #11526 -#11563 := (iff #4881 #11523) -#11561 := (iff #4880 true) -#11559 := (iff #4880 #11539) -#11557 := (iff #4879 #4873) -#11555 := (iff #4879 #11532) -#11553 := (iff #4878 true) -#11554 := [rewrite]: #11553 -#11556 := [monotonicity #11554]: #11555 -#11558 := [trans #11556 #11536]: #11557 -#11560 := [monotonicity #11558]: #11559 -#11562 := [trans #11560 #11543]: #11561 -#11564 := [quant-intro #11562]: #11563 -#11566 := [trans #11564 #11527]: #11565 -#11592 := [monotonicity #11566 #11590]: #11591 -#11594 := [trans #11592 #11588]: #11593 -#11551 := (iff #4877 true) -#11546 := (forall (vars (?v0 S11)) (:pat #4871) true) -#11549 := (iff #11546 true) -#11550 := [elim-unused]: #11549 -#11547 := (iff #4877 #11546) -#11544 := (iff #4876 true) -#11540 := (iff #4876 #11539) -#11537 := (iff #4875 #4873) -#11533 := (iff #4875 #11532) -#11530 := (iff #4874 true) -#11531 := [rewrite]: #11530 -#11534 := [monotonicity #11531]: #11533 -#11538 := [trans #11534 #11536]: #11537 -#11541 := [monotonicity #11538]: #11540 -#11545 := [trans #11541 #11543]: #11544 -#11548 := [quant-intro #11545]: #11547 -#11552 := [trans #11548 #11550]: #11551 -#11596 := [monotonicity #11552 #11594]: #11595 -#11598 := [trans #11596 #11588]: #11597 -#11528 := (iff #4867 true) -#11524 := (iff #4867 #11523) -#11521 := (iff #4866 true) -#11522 := [rewrite]: #11521 -#11525 := [quant-intro #11522]: #11524 -#11529 := [trans #11525 #11527]: #11528 -#11600 := [monotonicity #11529 #11598]: #11599 -#11602 := [trans #11600 #11588]: #11601 -#12169 := [monotonicity #11602 #12166]: #12168 -#12174 := [trans #12169 #12172]: #12173 -#12177 := [monotonicity #12174]: #12176 -#12182 := [trans #12177 #12180]: #12181 -#12185 := [monotonicity #12182]: #12184 -#12189 := [trans #12185 #12187]: #12188 -#12192 := [monotonicity #12189]: #12191 -#12197 := [trans #12192 #12195]: #12196 -#12200 := [monotonicity #12197]: #12199 -#12204 := [trans #12200 #12202]: #12203 -#12207 := [monotonicity #12204]: #12206 -#12212 := [trans #12207 #12210]: #12211 -#12215 := [monotonicity #12212]: #12214 -#12219 := [trans #12215 #12217]: #12218 -#11519 := (iff #4856 true) -#11514 := (implies true true) -#11517 := (iff #11514 true) -#11518 := [rewrite]: #11517 -#11515 := (iff #4856 #11514) -#11512 := (iff #4855 true) -#11507 := (implies #4795 true) -#11510 := (iff #11507 true) -#11511 := [rewrite]: #11510 -#11508 := (iff #4855 #11507) -#11505 := (iff #4854 true) -#11472 := (or #11471 #11463) -#11480 := (or #11404 #11472) -#11495 := (or #11404 #11480) -#11500 := (implies false #11495) -#11503 := (iff #11500 true) -#11504 := [rewrite]: #11503 -#11501 := (iff #4854 #11500) -#11498 := (iff #4853 #11495) -#11492 := (implies #4795 #11480) -#11496 := (iff #11492 #11495) -#11497 := [rewrite]: #11496 -#11493 := (iff #4853 #11492) -#11490 := (iff #4852 #11480) -#11485 := (implies true #11480) -#11488 := (iff #11485 #11480) -#11489 := [rewrite]: #11488 -#11486 := (iff #4852 #11485) -#11483 := (iff #4851 #11480) -#11477 := (implies #4795 #11472) -#11481 := (iff #11477 #11480) -#11482 := [rewrite]: #11481 -#11478 := (iff #4851 #11477) -#11475 := (iff #4850 #11472) -#11468 := (implies #4812 #11463) -#11473 := (iff #11468 #11472) -#11474 := [rewrite]: #11473 -#11469 := (iff #4850 #11468) -#11470 := [monotonicity #11467]: #11469 -#11476 := [trans #11470 #11474]: #11475 -#11479 := [monotonicity #11476]: #11478 -#11484 := [trans #11479 #11482]: #11483 -#11487 := [monotonicity #11484]: #11486 -#11491 := [trans #11487 #11489]: #11490 -#11494 := [monotonicity #11491]: #11493 -#11499 := [trans #11494 #11497]: #11498 -#11502 := [monotonicity #11314 #11499]: #11501 -#11506 := [trans #11502 #11504]: #11505 -#11509 := [monotonicity #11506]: #11508 -#11513 := [trans #11509 #11511]: #11512 -#11516 := [monotonicity #11513]: #11515 -#11520 := [trans #11516 #11518]: #11519 -#12222 := [monotonicity #11520 #12219]: #12221 -#12226 := [trans #12222 #12224]: #12225 -#12229 := [monotonicity #12226]: #12228 -#12234 := [trans #12229 #12232]: #12233 -#12237 := [monotonicity #12234]: #12236 -#12243 := [trans #12237 #12241]: #12242 -#11311 := (iff #4801 #11310) -#11308 := (iff #4800 #11305) -#11302 := (implies #1522 #11299) -#11306 := (iff #11302 #11305) -#11307 := [rewrite]: #11306 -#11303 := (iff #4800 #11302) -#11300 := (iff #4799 #11299) -#11301 := [rewrite]: #11300 -#11304 := [monotonicity #11301]: #11303 -#11309 := [trans #11304 #11307]: #11308 -#11312 := [quant-intro #11309]: #11311 -#12246 := [monotonicity #11312 #12243]: #12245 -#12252 := [trans #12246 #12250]: #12251 -#12255 := [monotonicity #12252]: #12254 -#12261 := [trans #12255 #12259]: #12260 -#12264 := [monotonicity #12261]: #12263 -#12269 := [trans #12264 #12267]: #12268 -#12272 := [monotonicity #12269]: #12271 -#12278 := [trans #12272 #12276]: #12277 -#12281 := [monotonicity #12278]: #12280 -#12287 := [trans #12281 #12285]: #12286 -#12290 := [monotonicity #12287]: #12289 -#12296 := [trans #12290 #12294]: #12295 -#12299 := [monotonicity #12296]: #12298 -#12303 := [trans #12299 #12301]: #12302 -#12306 := [monotonicity #12303]: #12305 -#12312 := [trans #12306 #12310]: #12311 -#12315 := [monotonicity #12312]: #12314 -#11296 := (iff #4779 #11295) -#11293 := (iff #4778 #11290) -#11287 := (implies #1522 #11284) -#11291 := (iff #11287 #11290) -#11292 := [rewrite]: #11291 -#11288 := (iff #4778 #11287) -#11285 := (iff #4777 #11284) -#11286 := [rewrite]: #11285 -#11289 := [monotonicity #11286]: #11288 -#11294 := [trans #11289 #11292]: #11293 -#11297 := [quant-intro #11294]: #11296 -#12318 := [monotonicity #11297 #12315]: #12317 -#12324 := [trans #12318 #12322]: #12323 -#12327 := [monotonicity #11297 #12324]: #12326 -#12330 := [monotonicity #12327]: #12329 -#12336 := [trans #12330 #12334]: #12335 -#12339 := [monotonicity #12336]: #12338 -#11281 := (iff #4770 #11280) -#11278 := (iff #4769 #11277) -#11275 := (iff #4768 #4767) -#11276 := [rewrite]: #11275 -#11279 := [monotonicity #11276]: #11278 -#11282 := [monotonicity #11279]: #11281 -#12342 := [monotonicity #11282 #12339]: #12341 -#12348 := [trans #12342 #12346]: #12347 -#12351 := [monotonicity #12348]: #12350 -#12357 := [trans #12351 #12355]: #12356 -#12360 := [monotonicity #12357]: #12359 -#12366 := [trans #12360 #12364]: #12365 -#12369 := [monotonicity #12366]: #12368 -#12375 := [trans #12369 #12373]: #12374 -#12378 := [monotonicity #12375]: #12377 -#12384 := [trans #12378 #12382]: #12383 -#12387 := [monotonicity #12384]: #12386 -#12393 := [trans #12387 #12391]: #12392 -#12396 := [monotonicity #12393]: #12395 -#12399 := [monotonicity #12396]: #12398 -#12405 := [trans #12399 #12403]: #12404 -#12408 := [monotonicity #12405]: #12407 -#12411 := [monotonicity #12408]: #12410 -#12417 := [trans #12411 #12415]: #12416 -#12420 := [monotonicity #12417]: #12419 -#12423 := [monotonicity #12420]: #12422 -#12429 := [trans #12423 #12427]: #12428 -#11273 := (iff #4724 #11272) -#11270 := (iff #4723 #11269) -#11271 := [rewrite]: #11270 -#11274 := [quant-intro #11271]: #11273 -#12432 := [monotonicity #11274 #12429]: #12431 -#12438 := [trans #12432 #12436]: #12437 -#12441 := [monotonicity #12438]: #12440 -#12447 := [trans #12441 #12445]: #12446 -#12450 := [monotonicity #12447]: #12449 -#12456 := [trans #12450 #12454]: #12455 -#12459 := [monotonicity #12456]: #12458 -#12465 := [trans #12459 #12463]: #12464 -#12468 := [monotonicity #12465]: #12467 -#12474 := [trans #12468 #12472]: #12473 -#12477 := [monotonicity #12474]: #12476 -#12483 := [trans #12477 #12481]: #12482 -#12486 := [monotonicity #12483]: #12485 -#12492 := [trans #12486 #12490]: #12491 -#12495 := [monotonicity #12492]: #12494 -#12499 := [trans #12495 #12497]: #12498 -#12502 := [monotonicity #12499]: #12501 -#12508 := [trans #12502 #12506]: #12507 -#12511 := [monotonicity #12508]: #12510 -#12517 := [trans #12511 #12515]: #12516 -#12520 := [monotonicity #12517]: #12519 -#12526 := [trans #12520 #12524]: #12525 -#12529 := [monotonicity #12526]: #12528 -#12535 := [trans #12529 #12533]: #12534 -#12538 := [monotonicity #12535]: #12537 -#12544 := [trans #12538 #12542]: #12543 -#12547 := [monotonicity #12544]: #12546 -#12553 := [trans #12547 #12551]: #12552 -#12556 := [monotonicity #12553]: #12555 -#12560 := [trans #12556 #12558]: #12559 -#12563 := [monotonicity #12560]: #12562 -#13451 := [trans #12563 #13449]: #13450 -#11268 := [asserted]: #5117 -#13452 := [mp #11268 #13451]: #13447 -#13464 := [not-or-elim #13452]: #13334 -#13467 := [and-elim #13464]: #4666 -#1254 := (f118 f123 #984) -#4317 := (f45 #1254 #1287) -#4318 := (pattern #4317) -#2484 := (f55 f206 #984) -#1329 := (f113 f114 #1287) -#4320 := (f87 #1329 #2484) -#4321 := (= #984 #4320) -#4319 := (= #4317 f1) -#11084 := (not #4319) -#11085 := (or #11084 #4321) -#11088 := (forall (vars (?v0 S11) (?v1 S4)) (:pat #4318) #11085) -#16890 := (~ #11088 #11088) -#16888 := (~ #11085 #11085) -#16889 := [refl]: #16888 -#16891 := [nnf-pos #16889]: #16890 -#4322 := (implies #4319 #4321) -#4323 := (forall (vars (?v0 S11) (?v1 S4)) (:pat #4318) #4322) -#11089 := (iff #4323 #11088) -#11086 := (iff #4322 #11085) -#11087 := [rewrite]: #11086 -#11090 := [quant-intro #11087]: #11089 -#11083 := [asserted]: #4323 -#11093 := [mp #11083 #11090]: #11088 -#16892 := [mp~ #11093 #16891]: #11088 -#23412 := (not #4666) -#23430 := (not #11088) -#23431 := (or #23430 #23412 #23426) -#23427 := (or #23412 #23426) -#23432 := (or #23430 #23427) -#23434 := (iff #23432 #23431) -#23435 := [rewrite]: #23434 -#23433 := [quant-inst #4658 #4652]: #23432 -#23436 := [mp #23433 #23435]: #23431 -#24979 := [unit-resolution #23436 #16892 #13467]: #23426 -#23932 := [symm #24979]: #23931 -#23934 := [monotonicity #23932]: #23933 -#23936 := [trans #23934 #23916]: #23935 -#23938 := [monotonicity #23936]: #23937 -#23940 := [trans #23938 #23915]: #23939 -#23930 := [monotonicity #23940]: #23929 -#23951 := [trans #23930 #23949]: #23950 -#23953 := [symm #23951]: #23952 -#23956 := [monotonicity #23953]: #23955 -#21 := (= f5 f6) -#22 := (not #21) -decl f4 :: S2 -#8 := f4 -#19 := (= f4 f6) -#20 := (not #19) -#17 := (= f4 f5) -#18 := (not #17) -#12 := (= f3 f5) -#13 := (not #12) -#9 := (= f3 f4) -#10 := (not #9) -#5155 := (and #10 #13 #16 #18 #20 #22) -#23 := (and #22 true) -#24 := (and #20 #23) -#25 := (and #18 #24) -#26 := (and #16 #25) -#27 := (and #13 #26) -#28 := (and #10 #27) -#5158 := (iff #28 #5155) -#5140 := (and #20 #22) -#5143 := (and #18 #5140) -#5146 := (and #16 #5143) -#5149 := (and #13 #5146) -#5152 := (and #10 #5149) -#5156 := (iff #5152 #5155) -#5157 := [rewrite]: #5156 -#5153 := (iff #28 #5152) -#5150 := (iff #27 #5149) -#5147 := (iff #26 #5146) -#5144 := (iff #25 #5143) -#5141 := (iff #24 #5140) -#5138 := (iff #23 #22) -#5139 := [rewrite]: #5138 -#5142 := [monotonicity #5139]: #5141 -#5145 := [monotonicity #5142]: #5144 -#5148 := [monotonicity #5145]: #5147 -#5151 := [monotonicity #5148]: #5150 -#5154 := [monotonicity #5151]: #5153 -#5159 := [trans #5154 #5157]: #5158 -#5137 := [asserted]: #28 -#5160 := [mp #5137 #5159]: #5155 -#5163 := [and-elim #5160]: #16 -#23957 := [mp #5163 #23956]: #23954 -#23797 := (not #23789) -#23800 := (not #23785) -#23982 := (iff #12412 #23800) -#23980 := (iff #4733 #23785) -#23967 := (iff #23785 #4733) -#23965 := (= #23784 #4732) -#23960 := (= #23776 #4730) -#23947 := (= #23775 #4729) -#23959 := [monotonicity #23932]: #23947 -#23961 := [monotonicity #23959 #23932]: #23960 -#23966 := [monotonicity #23961]: #23965 -#23979 := [monotonicity #23966]: #23967 -#23981 := [symm #23979]: #23980 -#23983 := [monotonicity #23981]: #23982 -#23946 := [hypothesis]: #12412 -#23984 := [mp #23946 #23983]: #23800 -#23803 := (not #23790) -#23804 := (or #23803 #23785 #23797) -#23805 := [def-axiom]: #23804 -#23985 := [unit-resolution #23805 #23984 #23945]: #23797 -#23862 := (f71 #4667 #23413) -#23863 := (= #23862 f1) -#13468 := [and-elim #13464]: #4669 -#23986 := (= #23862 #4668) -#23987 := [monotonicity #23932]: #23986 -#23988 := [trans #23987 #13468]: #23863 -#23858 := (f118 f123 #23413) -#23859 := (f45 #23858 #23693) -#23860 := (= #23859 f1) -#23973 := (= #23859 #4665) -#23974 := (= #23858 #4664) -#23975 := [monotonicity #23932]: #23974 -#23976 := [monotonicity #23975 #23936]: #23973 -#23977 := [trans #23976 #13467]: #23860 -#23864 := (not #23863) -#23861 := (not #23860) -#24002 := (or #23861 #23864 #23866 #23789) -#23699 := (f82 #4661 #23413) -#23841 := (= #23699 f85) -#13466 := [and-elim #13464]: #4663 -#23978 := (= #23699 #4662) -#23994 := [monotonicity #23932]: #23978 -#23995 := [trans #23994 #13466]: #23841 -#13465 := [and-elim #13464]: #4660 -#23993 := (= #23704 #4659) -#23996 := [monotonicity #23932]: #23993 -#23997 := [trans #23996 #13465]: #23705 -#23694 := (f45 f79 #23693) -#23697 := (= #23694 f1) -#13470 := [and-elim #13464]: #4674 -#23998 := (= #23694 #4673) -#24003 := [monotonicity #23936]: #23998 -#24004 := [trans #24003 #13470]: #23697 -#13472 := [not-or-elim #13452]: #4687 -#13474 := [and-elim #13472]: #4686 -#1029 := (:var 1 S10) -#3740 := (f334 f336 #1029) -#3741 := (f125 #3740 #996) -#3742 := (f71 #3741 #996) -#3743 := (pattern #3742) -#3750 := (= #3742 f1) -#1000 := (f62 f63 #996) -#1065 := (f45 f79 #1000) -#1066 := (= #1065 f1) -#10922 := (not #1066) -#1001 := (f61 #1000) -#1002 := (= #1001 f3) -#1176 := (f80 f81 #1029) -#1177 := (f71 #1176 #996) -#1178 := (= #1177 f1) -#11048 := (not #1178) -#1173 := (f118 f123 #996) -#1174 := (f45 #1173 #1000) -#1175 := (= #1174 f1) -#17928 := (not #1175) -#1169 := (f83 f84 #1029) -#1170 := (f82 #1169 #996) -#1171 := (= #1170 f85) -#17927 := (not #1171) -#1159 := (f80 f86 #1029) -#1160 := (f71 #1159 #996) -#1161 := (= #1160 f1) -#4045 := (not #1161) -#1280 := (f115 f131 #1029) -#1282 := (= #1280 f1) -#18054 := (not #1282) -#20507 := (or #18054 #4045 #17927 #17928 #11048 #1002 #10922 #3750) -#20512 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #20507) -#1036 := (not #1002) -#10634 := (and #1282 #1161 #1171 #1175 #1178 #1036 #1066) -#10637 := (not #10634) -#10640 := (or #10637 #3750) -#10643 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #10640) -#20513 := (iff #10643 #20512) -#20510 := (iff #10640 #20507) -#20493 := (or #18054 #4045 #17927 #17928 #11048 #1002 #10922) -#20504 := (or #20493 #3750) -#20508 := (iff #20504 #20507) -#20509 := [rewrite]: #20508 -#20505 := (iff #10640 #20504) -#20502 := (iff #10637 #20493) -#20494 := (not #20493) -#20497 := (not #20494) -#20500 := (iff #20497 #20493) -#20501 := [rewrite]: #20500 -#20498 := (iff #10637 #20497) -#20495 := (iff #10634 #20494) -#20496 := [rewrite]: #20495 -#20499 := [monotonicity #20496]: #20498 -#20503 := [trans #20499 #20501]: #20502 -#20506 := [monotonicity #20503]: #20505 -#20511 := [trans #20506 #20509]: #20510 -#20514 := [quant-intro #20511]: #20513 -#16533 := (~ #10643 #10643) -#16531 := (~ #10640 #10640) -#16532 := [refl]: #16531 -#16534 := [nnf-pos #16532]: #16533 -#3744 := (and #1036 #1066) -#3745 := (and #1178 #3744) -#3746 := (and #1175 #3745) -#3747 := (and #1171 #3746) -#3748 := (and #1161 #3747) -#3749 := (and #1282 #3748) -#3751 := (implies #3749 #3750) -#3752 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #3751) -#10646 := (iff #3752 #10643) -#10626 := (not #3749) -#10628 := (or #10626 #3750) -#10631 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3743) #10628) -#10644 := (iff #10631 #10643) -#10641 := (iff #10628 #10640) -#10638 := (iff #10626 #10637) -#10635 := (iff #3749 #10634) -#10636 := [rewrite]: #10635 -#10639 := [monotonicity #10636]: #10638 -#10642 := [monotonicity #10639]: #10641 -#10645 := [quant-intro #10642]: #10644 -#10632 := (iff #3752 #10631) -#10629 := (iff #3751 #10628) -#10630 := [rewrite]: #10629 -#10633 := [quant-intro #10630]: #10632 -#10647 := [trans #10633 #10645]: #10646 -#10625 := [asserted]: #3752 -#10648 := [mp #10625 #10647]: #10643 -#16535 := [mp~ #10648 #16534]: #10643 -#20515 := [mp #16535 #20514]: #20512 -#23698 := (not #23697) -#23842 := (not #23841) -#22428 := (not #4686) -#23846 := (not #20512) -#23844 := (or #23846 #22428 #23730 #23842 #23861 #23864 #23866 #23698 #23789) -#23867 := (or #22428 #23730 #23842 #23861 #23864 #23866 #23698 #23789) -#23847 := (or #23846 #23867) -#23849 := (iff #23847 #23844) -#23870 := [rewrite]: #23849 -#23848 := [quant-inst #4649 #23413]: #23847 -#23872 := [mp #23848 #23870]: #23844 -#24005 := [unit-resolution #23872 #20515 #13474 #24004 #23997 #23995]: #24002 -#24006 := [unit-resolution #24005 #23977 #23988 #23985 #23957]: false -#24007 := [lemma #24006]: #4733 -#24421 := [trans #23966 #24007]: #23785 -#23794 := (or #23803 #23800 #23789) -#23795 := [def-axiom]: #23794 -#24422 := [unit-resolution #23795 #24421 #23945]: #23789 -#23840 := (or #23797 #23839) -#982 := (:var 2 S10) -#3671 := (f334 f336 #982) -#3672 := (f125 #3671 #984) -#3673 := (f71 #3672 #996) -#3753 := (pattern #3673) -#3713 := (f66 f129 #980) -#3754 := (f65 #3713 #993) -#3755 := (f50 #1004 #3754) -#3756 := (pattern #3755) -#992 := (f59 f60 #980) -#3658 := (f58 #992 #984) -#3763 := (f329 f330 #3658) -#3764 := (f50 #3762 #3763) -#3765 := (= #3764 f1) -#3760 := (= #3755 f1) -#20516 := (not #3760) -#2628 := (f62 f63 #993) -#3757 := (f45 f337 #2628) -#3758 := (= #3757 f1) -#20531 := (or #3758 #20516 #3765) -#20536 := (forall (vars (?v3 S11)) (:pat #3756) #20531) -#20542 := (not #20536) -#1219 := (f80 f86 #982) -#1220 := (f71 #1219 #984) -#1225 := (= #1220 f1) -#3930 := (not #1225) -#1021 := (f66 f67 #982) -#3645 := (f65 #1021 #996) -#2942 := (f51 f64 #984) -#3646 := (f50 #2942 #3645) -#3651 := (= #3646 f1) -#20351 := (not #3651) -#20543 := (or #20351 #3930 #20542) -#20544 := (not #20543) -#3674 := (= #3673 f1) -#10666 := (not #3674) -#20549 := (or #10666 #20544) -#20552 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #20549) -#3759 := (not #3758) -#3761 := (and #3759 #3760) -#10650 := (not #3761) -#10651 := (or #10650 #3765) -#10654 := (forall (vars (?v3 S11)) (:pat #3756) #10651) -#10675 := (and #3651 #1225 #10654) -#10678 := (or #10666 #10675) -#10681 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #10678) -#20553 := (iff #10681 #20552) -#20550 := (iff #10678 #20549) -#20547 := (iff #10675 #20544) -#20539 := (and #3651 #1225 #20536) -#20545 := (iff #20539 #20544) -#20546 := [rewrite]: #20545 -#20540 := (iff #10675 #20539) -#20537 := (iff #10654 #20536) -#20534 := (iff #10651 #20531) -#20517 := (or #3758 #20516) -#20528 := (or #20517 #3765) -#20532 := (iff #20528 #20531) -#20533 := [rewrite]: #20532 -#20529 := (iff #10651 #20528) -#20526 := (iff #10650 #20517) -#20518 := (not #20517) -#20521 := (not #20518) -#20524 := (iff #20521 #20517) -#20525 := [rewrite]: #20524 -#20522 := (iff #10650 #20521) -#20519 := (iff #3761 #20518) -#20520 := [rewrite]: #20519 -#20523 := [monotonicity #20520]: #20522 -#20527 := [trans #20523 #20525]: #20526 -#20530 := [monotonicity #20527]: #20529 -#20535 := [trans #20530 #20533]: #20534 -#20538 := [quant-intro #20535]: #20537 -#20541 := [monotonicity #20538]: #20540 -#20548 := [trans #20541 #20546]: #20547 -#20551 := [monotonicity #20548]: #20550 -#20554 := [quant-intro #20551]: #20553 -#16550 := (~ #10681 #10681) -#16548 := (~ #10678 #10678) -#16546 := (~ #10675 #10675) -#16544 := (~ #10654 #10654) -#16542 := (~ #10651 #10651) -#16543 := [refl]: #16542 -#16545 := [nnf-pos #16543]: #16544 -#16540 := (~ #1225 #1225) -#16541 := [refl]: #16540 -#16538 := (~ #3651 #3651) -#16539 := [refl]: #16538 -#16547 := [monotonicity #16539 #16541 #16545]: #16546 -#16536 := (~ #10666 #10666) -#16537 := [refl]: #16536 -#16549 := [monotonicity #16537 #16547]: #16548 -#16551 := [nnf-pos #16549]: #16550 -#3766 := (implies #3761 #3765) -#3767 := (forall (vars (?v3 S11)) (:pat #3756) #3766) -#3768 := (and #1225 #3767) -#3769 := (and #3651 #3768) -#3770 := (implies #3674 #3769) -#3771 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #3770) -#10684 := (iff #3771 #10681) -#10657 := (and #1225 #10654) -#10660 := (and #3651 #10657) -#10667 := (or #10666 #10660) -#10672 := (forall (vars (?v0 S10) (?v1 S11) (?v2 S11)) (:pat #3753) #10667) -#10682 := (iff #10672 #10681) -#10679 := (iff #10667 #10678) -#10676 := (iff #10660 #10675) -#10677 := [rewrite]: #10676 -#10680 := [monotonicity #10677]: #10679 -#10683 := [quant-intro #10680]: #10682 -#10673 := (iff #3771 #10672) -#10670 := (iff #3770 #10667) -#10663 := (implies #3674 #10660) -#10668 := (iff #10663 #10667) -#10669 := [rewrite]: #10668 -#10664 := (iff #3770 #10663) -#10661 := (iff #3769 #10660) -#10658 := (iff #3768 #10657) -#10655 := (iff #3767 #10654) -#10652 := (iff #3766 #10651) -#10653 := [rewrite]: #10652 -#10656 := [quant-intro #10653]: #10655 -#10659 := [monotonicity #10656]: #10658 -#10662 := [monotonicity #10659]: #10661 -#10665 := [monotonicity #10662]: #10664 -#10671 := [trans #10665 #10669]: #10670 -#10674 := [quant-intro #10671]: #10673 -#10685 := [trans #10674 #10683]: #10684 -#10649 := [asserted]: #3771 -#10686 := [mp #10649 #10685]: #10681 -#16552 := [mp~ #10686 #16551]: #10681 -#20555 := [mp #16552 #20554]: #20552 -#23816 := (not #20552) -#23817 := (or #23816 #23797 #23839) -#23813 := (or #23816 #23840) -#23850 := (iff #23813 #23817) -#23851 := [rewrite]: #23850 -#23818 := [quant-inst #4649 #23413 #23413]: #23813 -#23873 := [mp #23818 #23851]: #23817 -#24409 := [unit-resolution #23873 #20555]: #23840 -#24410 := [unit-resolution #24409 #24422]: #23839 -#23874 := (or #23838 #23821) -#23875 := [def-axiom]: #23874 -#24408 := [unit-resolution #23875 #24410]: #23821 -#24413 := (= #24086 #23820) -#24411 := (= #24085 #23810) -#24985 := (= #24084 #23413) -#24983 := (= #24084 #4658) -#24981 := (= f445 #4657) -#23487 := (= #4657 f445) -#4357 := (f55 f206 #4356) -#4358 := (= #4357 #1197) -#21824 := (forall (vars (?v0 S4) (?v1 Int)) (:pat #21823) #4358) -#4359 := (forall (vars (?v0 S4) (?v1 Int)) #4358) -#21827 := (iff #4359 #21824) -#21825 := (iff #4358 #4358) -#21826 := [refl]: #21825 -#21828 := [quant-intro #21826]: #21827 -#16910 := (~ #4359 #4359) -#16908 := (~ #4358 #4358) -#16909 := [refl]: #16908 -#16911 := [nnf-pos #16909]: #16910 -#11096 := [asserted]: #4359 -#16912 := [mp~ #11096 #16911]: #4359 -#21829 := [mp #16912 #21828]: #21824 -#23460 := (not #21824) -#23492 := (or #23460 #23487) -#23493 := [quant-inst #356 #4655]: #23492 -#24980 := [unit-resolution #23493 #21829]: #23487 -#24982 := [symm #24980]: #24981 -#24984 := [monotonicity #24982]: #24983 -#24986 := [trans #24984 #24979]: #24985 -#24412 := [monotonicity #24986]: #24411 -#24414 := [monotonicity #24412]: #24413 -#24415 := [trans #24414 #24408]: #24087 -#24088 := (not #24087) -#24420 := [hypothesis]: #24088 -#24416 := [unit-resolution #24420 #24415]: false -#24429 := [lemma #24416]: #24087 -#21067 := (not #12642) -#21969 := (or #21067 #12828 #11892 #11883 #12777 #21027 #21936) -#21972 := (not #21969) -#21951 := (or #17171 #17174 #21948) -#21954 := (not #21951) -#21957 := (or #17171 #17174 #21954) -#21960 := (not #21957) -#21963 := (or #12777 #21067 #12829 #21960) -#21966 := (not #21963) -#21975 := (or #21966 #21972) -#21978 := (not #21975) -#21981 := (or #17171 #17180 #12777 #21067 #21978) -#21984 := (not #21981) -#21987 := (or #17171 #17180 #21984) -#21990 := (not #21987) -#21993 := (or #17171 #17174 #21990) -#21996 := (not #21993) -#21999 := (or #17171 #17174 #21996) -#22002 := (not #21999) -#22005 := (or #12777 #21067 #12922 #22002) -#22008 := (not #22005) -#21158 := (not #4826) -#21159 := (or #7428 #18181 #12950 #21158) -#22019 := (forall (vars (?v0 Int)) (:pat #21878) #21159) -#22024 := (not #22019) -#21150 := (or #7428 #18181 #12950 #12964) -#22011 := (forall (vars (?v0 Int)) (:pat #21878) #21150) -#22016 := (not #22011) -#22027 := (or #22016 #22024) -#22030 := (not #22027) -decl ?v0!15 :: Int -#17354 := ?v0!15 -#17361 := (f140 #4734 ?v0!15) -#17362 := (f139 #17361 f35) -#17363 := (f55 #4748 #17362) -#17678 := (* -1::Int #17363) -#17679 := (+ f468 #17678) -#17680 := (>= #17679 0::Int) -#17665 := (* -1::Int ?v0!15) -#17666 := (+ f443 #17665) -#17667 := (<= #17666 0::Int) -#17356 := (<= ?v0!15 4294967295::Int) -#21124 := (not #17356) -#17355 := (>= ?v0!15 0::Int) -#21123 := (not #17355) -#21139 := (or #21123 #21124 #17667 #17680) -#21144 := (not #21139) -#22033 := (or #21144 #22030) -#22036 := (not #22033) -#22039 := (or #12923 #12777 #21067 #11388 #11379 #11370 #11361 #22036) -#22042 := (not #22039) -#22045 := (or #22008 #22042) -#22048 := (not #22045) -#21211 := (not #4930) -#21210 := (not #4925) -#15031 := (not #4811) -#21209 := (not #4806) -#20942 := (or #7428 #18181 #13105 #13119) -#21887 := (forall (vars (?v0 Int)) (:pat #21878) #20942) -#21892 := (not #21887) -#13751 := (<= f464 4294967295::Int) -#21207 := (not #13751) -#21206 := (not #13145) -#13766 := (<= f463 4294967295::Int) -#21205 := (not #13766) -#2561 := 255::Int -#13785 := (<= f462 255::Int) -#21204 := (not #13785) -#21203 := (not #13167) -#17117 := (not #4780) -#22051 := (or #12634 #17117 #21203 #21204 #21205 #21206 #21207 #12777 #21067 #13142 #21892 #13095 #21209 #13090 #15031 #12144 #12135 #12126 #12117 #21210 #21211 #22048) -#22054 := (not #22051) -#25641 := (iff #4750 #4780) -#25637 := (iff #4780 #4750) -#25638 := [commutativity]: #25637 -#25642 := [symm #25638]: #25641 -#22057 := (or #12634 #17117 #22054) -#22060 := (not #22057) -#20931 := (or #7428 #18181 #12601 #12613) -#21879 := (forall (vars (?v0 Int)) (:pat #21878) #20931) -#21884 := (not #21879) -#22063 := (or #21884 #22060) -#22066 := (not #22063) -decl ?v0!13 :: Int -#17090 := ?v0!13 -#17096 := (f140 #4734 ?v0!13) -#17097 := (f139 #17096 f35) -#17098 := (f55 #4748 #17097) -#17099 := (* -1::Int #17098) -#17100 := (+ f461 #17099) -#17101 := (>= #17100 0::Int) -#17095 := (>= ?v0!13 1::Int) -#17092 := (<= ?v0!13 4294967295::Int) -#20905 := (not #17092) -#17091 := (>= ?v0!13 0::Int) -#20904 := (not #17091) -#20920 := (or #20904 #20905 #17095 #17101) -#20925 := (not #20920) -#22069 := (or #20925 #22066) -#22072 := (not #22069) -#22075 := (or #12598 #22072) -#22078 := (not #22075) -#22081 := (or #12598 #22078) -#22084 := (not #22081) -#17067 := (not #4745) -#17058 := (not #4739) -#22087 := (or #17058 #17067 #12379 #12370 #12361 #12352 #22084) -#22090 := (not #22087) -#24199 := (f71 #24190 #23991) -#24200 := (= #24199 f1) -#24197 := (f82 #4661 #23991) -#24198 := (= #24197 f85) -#24201 := (or #24198 #24200) -#24202 := (not #24201) -#24171 := (f62 f63 #23991) -#24172 := (f61 #24171) -#24173 := (= #24172 f3) -#24203 := (or #24173 #24202) -#24204 := (not #24203) -#24175 := (f134 #4883 #23991) -#24179 := (f235 f236 #24175) -#24191 := (f71 #24190 #24179) -#24192 := (= #24191 f1) -#24188 := (f82 #4661 #24179) -#24189 := (= #24188 f85) -#24193 := (or #24189 #24192) -#24194 := (not #24193) -#24185 := (f62 f63 #24179) -#24186 := (f61 #24185) -#24187 := (= #24186 f3) -#24180 := (f71 #4650 #24179) -#24181 := (= #24180 f1) -#24182 := (not #24181) -#24176 := (f155 f237 #24175) -#24177 := (= #24176 f1) -#24178 := (not #24177) -#24183 := (or #24178 #24182) -#24184 := (not #24183) -#24174 := (not #24173) -#24195 := (or #24174 #24184 #24187 #24194) -#24196 := (not #24195) -#24205 := (or #24196 #24204) -#24206 := (not #24205) -#24168 := (f71 #4667 #23991) -#24169 := (= #24168 f1) -#23963 := (f134 #4883 #4736) -#24093 := (f155 f237 #23963) -#24094 := (= #24093 f1) -#17061 := (not #4741) -#24095 := (or #17061 #24094) -#24096 := (not #24095) -#24430 := [hypothesis]: #24095 -#13463 := [not-or-elim #13452]: #12635 -decl f78 :: S7 -#1061 := f78 -#4476 := (f45 f78 f35) -#4477 := (= #4476 f1) -#11138 := [asserted]: #4477 -#1291 := (f45 f78 #1287) -#1306 := (:var 1 Int) -#1917 := (:var 4 Int) -#3555 := (f87 #1329 #1917) -#3556 := (f153 f154 #3555) -#3557 := (f140 #3556 #1306) -#3558 := (f139 #3557 #1287) -#2614 := (:var 5 S10) -#3576 := (f83 f84 #2614) -#3577 := (f82 #3576 #3558) -#2604 := (:var 3 S11) -#3552 := (f66 f67 #2614) -#3553 := (f65 #3552 #2604) -#1336 := (:var 2 Int) -#3547 := (f216 f217 #1287) -#3548 := (f215 #3547 #1336) -#3549 := (f113 f114 #3548) -#3550 := (f87 #3549 #1917) -#3551 := (f51 f64 #3550) -#3554 := (f50 #3551 #3553) -#3578 := (pattern #3554 #3577 #1291) -#2858 := (f137 f138 #2614) -#2859 := (f135 f136 #2858) -#3574 := (f134 #2859 #3558) -#3575 := (pattern #3554 #3574 #1291) -#3581 := (f155 f237 #3574) -#3582 := (= #3581 f1) -#2871 := (f80 f81 #2614) -#3579 := (f71 #2871 #3558) -#3580 := (= #3579 f1) -#20261 := (not #3580) -#20262 := (or #20261 #3582) -#20263 := (not #20262) -#6710 := (* -1::Int #1336) -#8256 := (+ #1306 #6710) -#8810 := (>= #8256 0::Int) -#6842 := (>= #1306 0::Int) -#18148 := (not #6842) -#3563 := (= #3554 f1) -#20237 := (not #3563) -#1292 := (= #1291 f1) -#10761 := (not #1292) -#3561 := (f115 f131 #2614) -#3562 := (= #3561 f1) -#20236 := (not #3562) -#20269 := (or #20236 #10761 #20237 #18148 #8810 #20263) -#20274 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #20269) -#3583 := (not #3582) -#3584 := (and #3580 #3583) -#9575 := (not #8810) -#10400 := (and #3562 #1292 #3563 #6842 #9575) -#10405 := (not #10400) -#10424 := (or #10405 #3584) -#10427 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #10424) -#20275 := (iff #10427 #20274) -#20272 := (iff #10424 #20269) -#20238 := (or #20236 #10761 #20237 #18148 #8810) -#20266 := (or #20238 #20263) -#20270 := (iff #20266 #20269) -#20271 := [rewrite]: #20270 -#20267 := (iff #10424 #20266) -#20264 := (iff #3584 #20263) -#20265 := [rewrite]: #20264 -#20247 := (iff #10405 #20238) -#20239 := (not #20238) -#20242 := (not #20239) -#20245 := (iff #20242 #20238) -#20246 := [rewrite]: #20245 -#20243 := (iff #10405 #20242) -#20240 := (iff #10400 #20239) -#20241 := [rewrite]: #20240 -#20244 := [monotonicity #20241]: #20243 -#20248 := [trans #20244 #20246]: #20247 -#20268 := [monotonicity #20248 #20265]: #20267 -#20273 := [trans #20268 #20271]: #20272 -#20276 := [quant-intro #20273]: #20275 -#16441 := (~ #10427 #10427) -#16439 := (~ #10424 #10424) -#16440 := [refl]: #16439 -#16442 := [nnf-pos #16440]: #16441 -#2706 := (< #1306 #1336) -#1507 := (<= 0::Int #1306) -#2707 := (and #1507 #2706) -#3564 := (and #3563 #2707) -#3565 := (and #1292 #3564) -#3566 := (and #3562 #3565) -#3585 := (implies #3566 #3584) -#3586 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #3585) -#10430 := (iff #3586 #10427) -#10384 := (not #3566) -#10418 := (or #10384 #3584) -#10421 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S11) (?v3 Int) (?v4 Int) (?v5 S4)) (:pat #3575 #3578) #10418) -#10428 := (iff #10421 #10427) -#10425 := (iff #10418 #10424) -#10406 := (iff #10384 #10405) -#10403 := (iff #3566 #10400) -#9578 := (and #6842 #9575) -#10391 := (and #3563 #9578) -#10394 := (and #1292 #10391) -#10397 := (and #3562 #10394) -#10401 := (iff #10397 #10400) -#10402 := [rewrite]: #10401 -#10398 := (iff #3566 #10397) -#10395 := (iff #3565 #10394) -#10392 := (iff #3564 #10391) -#9579 := (iff #2707 #9578) -#9576 := (iff #2706 #9575) -#9577 := [rewrite]: #9576 -#6841 := (iff #1507 #6842) -#6843 := [rewrite]: #6841 -#9580 := [monotonicity #6843 #9577]: #9579 -#10393 := [monotonicity #9580]: #10392 -#10396 := [monotonicity #10393]: #10395 -#10399 := [monotonicity #10396]: #10398 -#10404 := [trans #10399 #10402]: #10403 -#10407 := [monotonicity #10404]: #10406 -#10426 := [monotonicity #10407]: #10425 -#10429 := [quant-intro #10426]: #10428 -#10422 := (iff #3586 #10421) -#10419 := (iff #3585 #10418) -#10420 := [rewrite]: #10419 -#10423 := [quant-intro #10420]: #10422 -#10431 := [trans #10423 #10429]: #10430 -#10417 := [asserted]: #3586 -#10432 := [mp #10417 #10431]: #10427 -#16443 := [mp~ #10432 #16442]: #10427 -#20277 := [mp #16443 #20276]: #20274 -#22809 := (not #4477) -#24348 := (not #20274) -#24349 := (or #24348 #22428 #22809 #24088 #12634 #24096) -#24091 := (+ 0::Int #12568) -#24092 := (>= #24091 0::Int) -#24089 := (>= 0::Int 0::Int) -#24090 := (not #24089) -#24097 := (or #22428 #22809 #24088 #24090 #24092 #24096) -#24372 := (or #24348 #24097) -#24365 := (iff #24372 #24349) -#24116 := (or #22428 #22809 #24088 #12634 #24096) -#24417 := (or #24348 #24116) -#24344 := (iff #24417 #24349) -#24364 := [rewrite]: #24344 -#24418 := (iff #24372 #24417) -#24119 := (iff #24097 #24116) -#24113 := (or #22428 #22809 #24088 false #12634 #24096) -#24117 := (iff #24113 #24116) -#24118 := [rewrite]: #24117 -#24114 := (iff #24097 #24113) -#24111 := (iff #24092 #12634) -#24106 := (>= #12568 0::Int) -#24109 := (iff #24106 #12634) -#24110 := [rewrite]: #24109 -#24107 := (iff #24092 #24106) -#24104 := (= #24091 #12568) -#24105 := [rewrite]: #24104 -#24108 := [monotonicity #24105]: #24107 -#24112 := [trans #24108 #24110]: #24111 -#24102 := (iff #24090 false) -#24100 := (iff #24090 #4808) -#24098 := (iff #24089 true) -#24099 := [rewrite]: #24098 -#24101 := [monotonicity #24099]: #24100 -#24103 := [trans #24101 #11314]: #24102 -#24115 := [monotonicity #24103 #24112]: #24114 -#24120 := [trans #24115 #24118]: #24119 -#24419 := [monotonicity #24120]: #24418 -#24366 := [trans #24419 #24364]: #24365 -#24373 := [quant-inst #4649 #4655 #23413 #4646 #1138 #356]: #24372 -#24367 := [mp #24373 #24366]: #24349 -#24452 := [unit-resolution #24367 #20277 #11138 #13463 #13474 #24429 #24430]: false -#24453 := [lemma #24452]: #24096 -#24325 := (or #24095 #4741) -#24326 := [def-axiom]: #24325 -#25074 := [unit-resolution #24326 #24453]: #4741 -#25101 := (= #24168 #4740) -#25097 := (= #23991 #4736) -#23992 := (= #4736 #23991) -#24000 := (f62 f63 #4736) -#24001 := (= #24000 f35) -#23483 := (f62 f63 #4656) -#23484 := (= #23483 f35) -#23489 := (or #23455 #23484) -#23490 := [quant-inst #356 #4655]: #23489 -#24454 := [unit-resolution #23490 #21835]: #23484 -#24485 := (= #24000 #23483) -#24459 := (= #4736 #4656) -#24041 := (f87 #4654 #4657) -#24457 := (= #24041 #4656) -#24458 := [monotonicity #24980]: #24457 -#24044 := (= #4736 #24041) -#24047 := (not #24044) -decl f243 :: S54 -#2898 := f243 -#24009 := (f125 f243 #4736) -#24010 := (f71 #24009 #4656) -#24023 := (= #24010 f1) -#24024 := (not #24023) -#24050 := (or #24024 #24047) -#24053 := (not #24050) -#2626 := (f153 f154 #993) -#2627 := (f140 #2626 #1306) -#2896 := (f139 #2627 #1287) -#2897 := (pattern #2896) -#2904 := (f244 f245 #1287) -#2905 := (* #1306 #2904) -#2902 := (f55 f206 #993) -#2906 := (+ #2902 #2905) -#2907 := (f87 #1329 #2906) -#2908 := (= #2896 #2907) -#19805 := (not #2908) -#2899 := (f125 f243 #2896) -#2900 := (f71 #2899 #993) -#2901 := (= #2900 f1) -#19804 := (not #2901) -#19806 := (or #19804 #19805) -#19807 := (not #19806) -#19810 := (forall (vars (?v0 S11) (?v1 Int) (?v2 S4)) (:pat #2897) #19807) -#2909 := (and #2901 #2908) -#2910 := (forall (vars (?v0 S11) (?v1 Int) (?v2 S4)) (:pat #2897) #2909) -#19811 := (iff #2910 #19810) -#19808 := (iff #2909 #19807) -#19809 := [rewrite]: #19808 -#19812 := [quant-intro #19809]: #19811 -#16084 := (~ #2910 #2910) -#16082 := (~ #2909 #2909) -#16083 := [refl]: #16082 -#16085 := [nnf-pos #16083]: #16084 -#9870 := [asserted]: #2910 -#16086 := [mp~ #9870 #16085]: #2910 -#19813 := [mp #16086 #19812]: #19810 -#24299 := (not #19810) -#24336 := (or #24299 #24053) -#24025 := (* 0::Int #4624) -#24026 := (+ #4657 #24025) -#24027 := (f87 #4654 #24026) -#24028 := (= #4736 #24027) -#24029 := (not #24028) -#24030 := (or #24024 #24029) -#24031 := (not #24030) -#24335 := (or #24299 #24031) -#24337 := (iff #24335 #24336) -#24301 := (iff #24336 #24336) -#24339 := [rewrite]: #24301 -#24054 := (iff #24031 #24053) -#24051 := (iff #24030 #24050) -#24048 := (iff #24029 #24047) -#24045 := (iff #24028 #24044) -#24042 := (= #24027 #24041) -#24039 := (= #24026 #4657) -#24034 := (+ #4657 0::Int) -#24037 := (= #24034 #4657) -#24038 := [rewrite]: #24037 -#24035 := (= #24026 #24034) -#24032 := (= #24025 0::Int) -#24033 := [rewrite]: #24032 -#24036 := [monotonicity #24033]: #24035 -#24040 := [trans #24036 #24038]: #24039 -#24043 := [monotonicity #24040]: #24042 -#24046 := [monotonicity #24043]: #24045 -#24049 := [monotonicity #24046]: #24048 -#24052 := [monotonicity #24049]: #24051 -#24055 := [monotonicity #24052]: #24054 -#24338 := [monotonicity #24055]: #24337 -#24343 := [trans #24338 #24339]: #24337 -#24300 := [quant-inst #4656 #1138 #356]: #24335 -#24292 := [mp #24300 #24343]: #24336 -#24455 := [unit-resolution #24292 #19813]: #24053 -#24294 := (or #24050 #24044) -#24350 := [def-axiom]: #24294 -#24456 := [unit-resolution #24350 #24455]: #24044 -#24484 := [trans #24456 #24458]: #24459 -#24486 := [monotonicity #24484]: #24485 -#24487 := [trans #24486 #24454]: #24001 -#24302 := (not #24001) -#24008 := (iff #4739 #24001) -#2640 := (f62 f63 #984) -#3307 := (= #2640 #1287) -#4324 := (iff #4319 #3307) -#21817 := (forall (vars (?v0 S11) (?v1 S4)) (:pat #4318) #4324) -#4325 := (forall (vars (?v0 S11) (?v1 S4)) #4324) -#21820 := (iff #4325 #21817) -#21818 := (iff #4324 #4324) -#21819 := [refl]: #21818 -#21821 := [quant-intro #21819]: #21820 -#16895 := (~ #4325 #4325) -#16893 := (~ #4324 #4324) -#16894 := [refl]: #16893 -#16896 := [nnf-pos #16894]: #16895 -#11091 := [asserted]: #4325 -#16897 := [mp~ #11091 #16896]: #4325 -#21822 := [mp #16897 #21821]: #21817 -#23440 := (not #21817) -#24334 := (or #23440 #24008) -#24303 := [quant-inst #4736 #356]: #24334 -#24368 := [unit-resolution #24303 #21822]: #24008 -#24309 := (not #24008) -#24358 := (or #24309 #24302) -#24345 := [hypothesis]: #17058 -#24310 := (or #24309 #4739 #24302) -#24323 := [def-axiom]: #24310 -#24361 := [unit-resolution #24323 #24345]: #24358 -#24451 := [unit-resolution #24361 #24368]: #24302 -#24488 := [unit-resolution #24451 #24487]: false -#24483 := [lemma #24488]: #4739 -#24526 := (or #23430 #17058 #23992) -#23999 := (or #17058 #23992) -#24527 := (or #23430 #23999) -#24529 := (iff #24527 #24526) -#24530 := [rewrite]: #24529 -#24528 := [quant-inst #4736 #356]: #24527 -#24525 := [mp #24528 #24530]: #24526 -#25084 := [unit-resolution #24525 #16892 #24483]: #23992 -#25100 := [symm #25084]: #25097 -#25102 := [monotonicity #25100]: #25101 -#25104 := [trans #25102 #25074]: #24169 -#24170 := (not #24169) -#24207 := (or #24170 #24206) -#24208 := (not #24207) -#24163 := (f71 #4743 #23991) -#24164 := (= #24163 f1) -#24209 := (iff #24164 #24208) -#1373 := (f80 f157 #1029) -#3957 := (f71 #1373 #996) -#3958 := (pattern #3957) -#3976 := (f80 f358 #1029) -#3983 := (f71 #3976 #996) -#3984 := (= #3983 f1) -#3985 := (or #1171 #3984) -#20658 := (not #3985) -#20659 := (or #1002 #20658) -#20660 := (not #20659) -#1359 := (f137 f138 #1029) -#1360 := (f135 f136 #1359) -#3960 := (f134 #1360 #996) -#3964 := (f235 f236 #3960) -#3977 := (f71 #3976 #3964) -#3978 := (= #3977 f1) -#3973 := (f82 #1169 #3964) -#3974 := (= #3973 f85) -#3979 := (or #3974 #3978) -#20653 := (not #3979) -#3969 := (f62 f63 #3964) -#3970 := (f61 #3969) -#3971 := (= #3970 f3) -#3965 := (f71 #1159 #3964) -#3966 := (= #3965 f1) -#3967 := (not #3966) -#3961 := (f155 f237 #3960) -#3962 := (= #3961 f1) -#3963 := (not #3962) -#3968 := (or #3963 #3967) -#20652 := (not #3968) -#20654 := (or #1036 #20652 #3971 #20653) -#20655 := (not #20654) -#20663 := (or #20655 #20660) -#20669 := (not #20663) -#20670 := (or #11048 #20669) -#20671 := (not #20670) -#3959 := (= #3957 f1) -#20676 := (iff #3959 #20671) -#20679 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3958) #20676) -#3986 := (and #1036 #3985) -#3972 := (not #3971) -#10834 := (and #1002 #3968 #3972 #3979) -#10837 := (or #10834 #3986) -#10840 := (and #1178 #10837) -#10843 := (iff #3959 #10840) -#10846 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3958) #10843) -#20680 := (iff #10846 #20679) -#20677 := (iff #10843 #20676) -#20674 := (iff #10840 #20671) -#20666 := (and #1178 #20663) -#20672 := (iff #20666 #20671) -#20673 := [rewrite]: #20672 -#20667 := (iff #10840 #20666) -#20664 := (iff #10837 #20663) -#20661 := (iff #3986 #20660) -#20662 := [rewrite]: #20661 -#20656 := (iff #10834 #20655) -#20657 := [rewrite]: #20656 -#20665 := [monotonicity #20657 #20662]: #20664 -#20668 := [monotonicity #20665]: #20667 -#20675 := [trans #20668 #20673]: #20674 -#20678 := [monotonicity #20675]: #20677 -#20681 := [quant-intro #20678]: #20680 -#16655 := (~ #10846 #10846) -#16653 := (~ #10843 #10843) -#16654 := [refl]: #16653 -#16656 := [nnf-pos #16654]: #16655 -#3980 := (and #3972 #3979) -#3981 := (and #3968 #3980) -#3982 := (and #1002 #3981) -#3987 := (or #3982 #3986) -#3988 := (and #1178 #3987) -#3989 := (iff #3959 #3988) -#3990 := (forall (vars (?v0 S10) (?v1 S11)) (:pat #3958) #3989) -#10847 := (iff #3990 #10846) -#10844 := (iff #3989 #10843) -#10841 := (iff #3988 #10840) -#10838 := (iff #3987 #10837) -#10835 := (iff #3982 #10834) -#10836 := [rewrite]: #10835 -#10839 := [monotonicity #10836]: #10838 -#10842 := [monotonicity #10839]: #10841 -#10845 := [monotonicity #10842]: #10844 -#10848 := [quant-intro #10845]: #10847 -#10830 := [asserted]: #3990 -#10849 := [mp #10830 #10848]: #10846 -#16657 := [mp~ #10849 #16656]: #10846 -#20682 := [mp #16657 #20681]: #20679 -#24794 := (not #20679) -#24803 := (or #24794 #24209) -#24804 := [quant-inst #4649 #23991]: #24803 -#24792 := [unit-resolution #24804 #20682]: #24209 -#24544 := (not #24164) -#25021 := (iff #17067 #24544) -#25015 := (iff #4745 #24164) -#24960 := (iff #24164 #4745) -#24958 := (= #24163 #4744) -#24959 := [monotonicity #25100]: #24958 -#25018 := [monotonicity #24959]: #24960 -#25016 := [symm #25018]: #25015 -#25022 := [monotonicity #25016]: #25021 -#24793 := [hypothesis]: #17067 -#25004 := [mp #24793 #25022]: #24544 -#24541 := (not #24209) -#24542 := (or #24541 #24164 #24207) -#24543 := [def-axiom]: #24542 -#25051 := [unit-resolution #24543 #25004 #24792]: #24207 -#24751 := (or #24208 #24170 #24206) -#24540 := [def-axiom]: #24751 -#25052 := [unit-resolution #24540 #25051 #25104]: #24206 -#22792 := (f61 f35) -#22793 := (= #22792 f3) -#22800 := (iff #4477 #22793) -#3856 := (pattern #1291) -#4540 := (= #4530 f3) -#4541 := (iff #1292 #4540) -#4542 := (forall (vars (?v0 S4)) (:pat #3856) #4541) -#17010 := (~ #4542 #4542) -#17008 := (~ #4541 #4541) -#17009 := [refl]: #17008 -#17011 := [nnf-pos #17009]: #17010 -#11188 := [asserted]: #4542 -#17012 := [mp~ #11188 #17011]: #4542 -#22524 := (not #4542) -#22803 := (or #22524 #22800) -#22804 := [quant-inst #356]: #22803 -#25017 := [unit-resolution #22804 #17012]: #22800 -#22805 := (not #22800) -#24919 := (or #22805 #22793) -#22810 := (or #22805 #22809 #22793) -#22811 := [def-axiom]: #22810 -#24920 := [unit-resolution #22811 #11138]: #24919 -#24539 := [unit-resolution #24920 #25017]: #22793 -#25055 := (= #24172 #22792) -#25063 := (= #24171 f35) -#25049 := (or #24309 #24001) -#24531 := (or #24309 #17058 #24001) -#24532 := [def-axiom]: #24531 -#25050 := [unit-resolution #24532 #24483]: #25049 -#25053 := [unit-resolution #25050 #24368]: #24001 -#25054 := (= #24171 #24000) -#24643 := [monotonicity #25100]: #25054 -#25064 := [trans #24643 #25053]: #25063 -#25056 := [monotonicity #25064]: #25055 -#25048 := [trans #25056 #24539]: #24173 -#24296 := (not #24094) -#25070 := (iff #24296 #24178) -#24731 := (iff #24094 #24177) -#25057 := (iff #24177 #24094) -#24648 := (= #24176 #24093) -#25286 := (= #24175 #23963) -#25287 := [monotonicity #25100]: #25286 -#25068 := [monotonicity #25287]: #24648 -#25047 := [monotonicity #25068]: #25057 -#24629 := [symm #25047]: #24731 -#25072 := [monotonicity #24629]: #25070 -#24297 := (or #24095 #24296) -#24295 := [def-axiom]: #24297 -#24647 := [unit-resolution #24295 #24453]: #24296 -#25073 := [mp #24647 #25072]: #24178 -#24805 := (or #24183 #24177) -#24806 := [def-axiom]: #24805 -#25108 := [unit-resolution #24806 #25073]: #24183 -#25117 := (or #24196 #24174 #24184) -#24890 := (f55 f206 #23413) -#25219 := (f87 #4654 #24890) -#25193 := (f153 f154 #23413) -#25194 := (f140 #25193 0::Int) -#25201 := (f139 #25194 f35) -#25222 := (= #25201 #25219) -#25225 := (not #25222) -#25202 := (f125 f243 #25201) -#25203 := (f71 #25202 #23413) -#25204 := (= #25203 f1) -#25205 := (not #25204) -#25228 := (or #25205 #25225) -#25231 := (not #25228) -#25337 := [hypothesis]: #25228 -#25234 := (or #24299 #25231) -#25206 := (+ #24890 #24025) -#25207 := (f87 #4654 #25206) -#25208 := (= #25201 #25207) -#25209 := (not #25208) -#25210 := (or #25205 #25209) -#25211 := (not #25210) -#25235 := (or #24299 #25211) -#25237 := (iff #25235 #25234) -#25239 := (iff #25234 #25234) -#25240 := [rewrite]: #25239 -#25232 := (iff #25211 #25231) -#25229 := (iff #25210 #25228) -#25226 := (iff #25209 #25225) -#25223 := (iff #25208 #25222) -#25220 := (= #25207 #25219) -#25217 := (= #25206 #24890) -#25212 := (+ #24890 0::Int) -#25215 := (= #25212 #24890) -#25216 := [rewrite]: #25215 -#25213 := (= #25206 #25212) -#25214 := [monotonicity #24033]: #25213 -#25218 := [trans #25214 #25216]: #25217 -#25221 := [monotonicity #25218]: #25220 -#25224 := [monotonicity #25221]: #25223 -#25227 := [monotonicity #25224]: #25226 -#25230 := [monotonicity #25227]: #25229 -#25233 := [monotonicity #25230]: #25232 -#25238 := [monotonicity #25233]: #25237 -#25241 := [trans #25238 #25240]: #25237 -#25236 := [quant-inst #23413 #1138 #356]: #25235 -#25242 := [mp #25236 #25241]: #25234 -#25338 := [unit-resolution #25242 #19813 #25337]: false -#25339 := [lemma #25338]: #25231 -#25245 := (or #25228 #25222) -#25246 := [def-axiom]: #25245 -#25109 := [unit-resolution #25246 #25339]: #25222 -#25335 := (or #25225 #24189) -#25331 := (= #24188 #4662) -#25298 := (= #24179 #4658) -#25296 := (= #24179 #24084) -#25120 := (f153 f154 #24084) -#25121 := (f140 #25120 0::Int) -#25122 := (f139 #25121 f35) -#25123 := (f134 #4883 #25122) -#25124 := (f235 f236 #25123) -#25125 := (= #25124 #24084) -#25132 := (f71 #4667 #25122) -#25133 := (= #25132 f1) -#25134 := (not #25133) -decl f156 :: S69 -#1366 := f156 -#25129 := (f155 f156 #25123) -#25130 := (= #25129 f1) -#25131 := (not #25130) -#25127 := (f155 f237 #25123) -#25128 := (= #25127 f1) -#25126 := (not #25125) -#25135 := (or #25126 #25128 #25131 #25134) -#25136 := (not #25135) -#25190 := [hypothesis]: #25135 -#25111 := (f71 #4667 #24084) -#25112 := (= #25111 f1) -#25182 := (= #25111 #4668) -#25183 := [monotonicity #24984]: #25182 -#25184 := [trans #25183 #13468]: #25112 -#25119 := (not #25112) -#25181 := [hypothesis]: #25119 -#25185 := [unit-resolution #25181 #25184]: false -#25186 := [lemma #25185]: #25112 -#1351 := (:var 3 Int) -#1398 := (:var 2 S4) -#2758 := (f216 f217 #1398) -#2759 := (f215 #2758 #1306) -#2760 := (f113 f114 #2759) -#2761 := (f87 #2760 #1351) -#2603 := (f113 f114 #1398) -#2753 := (f87 #2603 #1351) -#2754 := (f153 f154 #2753) -#2755 := (f140 #2754 #1197) -#2756 := (f139 #2755 #1398) -#1010 := (:var 4 S10) -#2763 := (f137 f138 #1010) -#2764 := (f135 f136 #2763) -#2765 := (f134 #2764 #2756) -#2766 := (pattern #2765 #2761) -#2751 := (f110 f111 #1010) -#2752 := (f108 f109 #2751) -#2757 := (f107 #2752 #2756) -#2762 := (pattern #2757 #2761) -#2771 := (f153 f154 #2761) -#2772 := (f140 #2771 #1197) -#2773 := (f139 #2772 #1398) -#2767 := (f80 f81 #1010) -#2783 := (f71 #2767 #2773) -#2784 := (= #2783 f1) -#19581 := (not #2784) -#2774 := (f134 #2764 #2773) -#2781 := (f155 f156 #2774) -#2782 := (= #2781 f1) -#19580 := (not #2782) -#2778 := (f155 f237 #2774) -#2779 := (= #2778 f1) -#2775 := (f235 f236 #2774) -#2776 := (= #2775 #2761) -#19579 := (not #2776) -#19582 := (or #19579 #2779 #19580 #19581) -#19583 := (not #19582) -#7650 := (* -1::Int #1306) -#8261 := (+ #1197 #7650) -#8262 := (>= #8261 0::Int) -#2768 := (f71 #2767 #2761) -#2769 := (= #2768 f1) -#9684 := (not #2769) -#19589 := (or #9684 #7428 #8262 #19583) -#19594 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #19589) -#2780 := (not #2779) -#9693 := (and #2776 #2780 #2782 #2784) -#9479 := (not #8262) -#9482 := (and #6706 #9479) -#9485 := (not #9482) -#9702 := (or #9684 #9485 #9693) -#9707 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #9702) -#19595 := (iff #9707 #19594) -#19592 := (iff #9702 #19589) -#19464 := (or #7428 #8262) -#19586 := (or #9684 #19464 #19583) -#19590 := (iff #19586 #19589) -#19591 := [rewrite]: #19590 -#19587 := (iff #9702 #19586) -#19584 := (iff #9693 #19583) -#19585 := [rewrite]: #19584 -#19473 := (iff #9485 #19464) -#19465 := (not #19464) -#19468 := (not #19465) -#19471 := (iff #19468 #19464) -#19472 := [rewrite]: #19471 -#19469 := (iff #9485 #19468) -#19466 := (iff #9482 #19465) -#19467 := [rewrite]: #19466 -#19470 := [monotonicity #19467]: #19469 -#19474 := [trans #19470 #19472]: #19473 -#19588 := [monotonicity #19474 #19585]: #19587 -#19593 := [trans #19588 #19591]: #19592 -#19596 := [quant-intro #19593]: #19595 -#15871 := (~ #9707 #9707) -#15869 := (~ #9702 #9702) -#15870 := [refl]: #15869 -#15872 := [nnf-pos #15870]: #15871 -#2785 := (and #2782 #2784) -#2786 := (and #2780 #2785) -#2787 := (and #2776 #2786) -#2612 := (< #1197 #1306) -#2613 := (and #1363 #2612) -#2788 := (implies #2613 #2787) -#2789 := (implies #2769 #2788) -#2790 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #2789) -#9710 := (iff #2790 #9707) -#9451 := (not #2613) -#9678 := (or #9451 #2787) -#9685 := (or #9684 #9678) -#9690 := (forall (vars (?v0 S10) (?v1 Int) (?v2 S4) (?v3 Int) (?v4 Int)) (:pat #2762 #2766) #9685) -#9708 := (iff #9690 #9707) -#9705 := (iff #9685 #9702) -#9696 := (or #9485 #9693) -#9699 := (or #9684 #9696) -#9703 := (iff #9699 #9702) -#9704 := [rewrite]: #9703 -#9700 := (iff #9685 #9699) -#9697 := (iff #9678 #9696) -#9694 := (iff #2787 #9693) -#9695 := [rewrite]: #9694 -#9486 := (iff #9451 #9485) -#9483 := (iff #2613 #9482) -#9480 := (iff #2612 #9479) -#9481 := [rewrite]: #9480 -#9484 := [monotonicity #6705 #9481]: #9483 -#9487 := [monotonicity #9484]: #9486 -#9698 := [monotonicity #9487 #9695]: #9697 -#9701 := [monotonicity #9698]: #9700 -#9706 := [trans #9701 #9704]: #9705 -#9709 := [quant-intro #9706]: #9708 -#9691 := (iff #2790 #9690) -#9688 := (iff #2789 #9685) -#9681 := (implies #2769 #9678) -#9686 := (iff #9681 #9685) -#9687 := [rewrite]: #9686 -#9682 := (iff #2789 #9681) -#9679 := (iff #2788 #9678) -#9680 := [rewrite]: #9679 -#9683 := [monotonicity #9680]: #9682 -#9689 := [trans #9683 #9687]: #9688 -#9692 := [quant-intro #9689]: #9691 -#9711 := [trans #9692 #9709]: #9710 -#9677 := [asserted]: #2790 -#9712 := [mp #9677 #9711]: #9707 -#15873 := [mp~ #9712 #15872]: #9707 -#19597 := [mp #15873 #19596]: #19594 -#25115 := (not #19594) -#25113 := (or #25115 #25119 #12634 #25136) -#25137 := (or #25119 #24090 #24092 #25136) -#25147 := (or #25115 #25137) -#25160 := (iff #25147 #25113) -#25141 := (or #25119 #12634 #25136) -#25154 := (or #25115 #25141) -#25157 := (iff #25154 #25113) -#25158 := [rewrite]: #25157 -#25155 := (iff #25147 #25154) -#25144 := (iff #25137 #25141) -#25138 := (or #25119 false #12634 #25136) -#25142 := (iff #25138 #25141) -#25143 := [rewrite]: #25142 -#25139 := (iff #25137 #25138) -#25140 := [monotonicity #24103 #24112]: #25139 -#25145 := [trans #25140 #25143]: #25144 -#25156 := [monotonicity #25145]: #25155 -#25161 := [trans #25156 #25158]: #25160 -#25153 := [quant-inst #4649 #4655 #356 #4646 #1138]: #25147 -#25162 := [mp #25153 #25161]: #25113 -#25176 := [unit-resolution #25162 #19597 #13463 #25186 #25190]: false -#25177 := [lemma #25176]: #25136 -#24735 := (or #25135 #25125) -#24722 := [def-axiom]: #24735 -#25319 := [unit-resolution #24722 #25177]: #25125 -#25294 := (= #24179 #25124) -#25292 := (= #24175 #25123) -#25290 := (= #23963 #25123) -#25288 := (= #25123 #23963) -#25284 := (= #25122 #4736) -#25276 := (= #24041 #4736) -#25277 := [symm #24456]: #25276 -#25282 := (= #25122 #24041) -#25274 := (= #4656 #24041) -#25275 := [monotonicity #24982]: #25274 -#25280 := (= #25122 #4656) -#25272 := (= #25219 #4656) -#25256 := (= #24890 f445) -#25254 := (= #24890 #4657) -#23488 := (= #22490 #4657) -#23497 := (or #23460 #23488) -#23498 := [quant-inst #4652 #4657]: #23497 -#25251 := [unit-resolution #23498 #21829]: #23488 -#25252 := (= #24890 #22490) -#25253 := [monotonicity #23932]: #25252 -#25255 := [trans #25253 #25251]: #25254 -#25257 := [trans #25255 #24980]: #25256 -#25273 := [monotonicity #25257]: #25272 -#25278 := (= #25122 #25219) -#25320 := [hypothesis]: #25222 -#25270 := (= #25122 #25201) -#25268 := (= #25121 #25194) -#25266 := (= #25194 #25121) -#25264 := (= #25193 #25120) -#25262 := (= #23413 #24084) -#25260 := (= #4658 #24084) -#25261 := [symm #24984]: #25260 -#25263 := [trans #23932 #25261]: #25262 -#25265 := [monotonicity #25263]: #25264 -#25267 := [monotonicity #25265]: #25266 -#25269 := [symm #25267]: #25268 -#25271 := [monotonicity #25269]: #25270 -#25321 := [trans #25271 #25320]: #25278 -#25322 := [trans #25321 #25273]: #25280 -#25323 := [trans #25322 #25275]: #25282 -#25324 := [trans #25323 #25277]: #25284 -#25325 := [monotonicity #25324]: #25288 -#25326 := [symm #25325]: #25290 -#25327 := [trans #25287 #25326]: #25292 -#25328 := [monotonicity #25327]: #25294 -#25329 := [trans #25328 #25319]: #25296 -#25330 := [trans #25329 #24984]: #25298 -#25332 := [monotonicity #25330]: #25331 -#25333 := [trans #25332 #13466]: #24189 -#24789 := (not #24189) -#25318 := [hypothesis]: #24789 -#25334 := [unit-resolution #25318 #25333]: false -#25336 := [lemma #25334]: #25335 -#25114 := [unit-resolution #25336 #25109]: #24189 -#24940 := (or #24193 #24789) -#24941 := [def-axiom]: #24940 -#25116 := [unit-resolution #24941 #25114]: #24193 -#24945 := (not #24187) -#24307 := (f235 f236 #23963) -#24308 := (f62 f63 #24307) -#24311 := (f61 #24308) -#24312 := (= #24311 f3) -#25019 := [hypothesis]: #24187 -#25005 := (= #24311 #24186) -#24955 := (= #24308 #24185) -#24834 := (= #24307 #24179) -#24835 := (= #23963 #24175) -#25001 := [symm #25287]: #24835 -#24954 := [monotonicity #25001]: #24834 -#24972 := [monotonicity #24954]: #24955 -#25006 := [monotonicity #24972]: #25005 -#25023 := [trans #25006 #25019]: #24312 -#24939 := (not #24312) -#24313 := (f45 f79 #24308) -#24314 := (= #24313 f1) -#24315 := (not #24314) -#24316 := (or #24312 #24315) -#24317 := (not #24316) -#4275 := (:var 0 S56) -#4276 := (f235 f236 #4275) -#4277 := (pattern #4276) -#4278 := (f62 f63 #4276) -#4282 := (f45 f79 #4278) -#4283 := (= #4282 f1) -#20836 := (not #4283) -#4279 := (f61 #4278) -#4280 := (= #4279 f3) -#20837 := (or #4280 #20836) -#20838 := (not #20837) -#20841 := (forall (vars (?v0 S56)) (:pat #4277) #20838) -#4281 := (not #4280) -#4284 := (and #4281 #4283) -#4285 := (forall (vars (?v0 S56)) (:pat #4277) #4284) -#20842 := (iff #4285 #20841) -#20839 := (iff #4284 #20838) -#20840 := [rewrite]: #20839 -#20843 := [quant-intro #20840]: #20842 -#16870 := (~ #4285 #4285) -#16868 := (~ #4284 #4284) -#16869 := [refl]: #16868 -#16871 := [nnf-pos #16869]: #16870 -#11056 := [asserted]: #4285 -#16872 := [mp~ #11056 #16871]: #4285 -#20844 := [mp #16872 #20843]: #20841 -#24538 := (not #20841) -#24950 := (or #24538 #24317) -#24938 := [quant-inst #23963]: #24950 -#24787 := [unit-resolution #24938 #20844]: #24317 -#25002 := (or #24316 #24939) -#25003 := [def-axiom]: #25002 -#24788 := [unit-resolution #25003 #24787]: #24939 -#25024 := [unit-resolution #24788 #25023]: false -#25020 := [lemma #25024]: #24945 -#24628 := (or #24196 #24174 #24184 #24187 #24194) -#24644 := [def-axiom]: #24628 -#25071 := [unit-resolution #24644 #25020 #25116]: #25117 -#25069 := [unit-resolution #25071 #25108 #25048]: #24196 -#24082 := (or #24205 #24195) -#24083 := [def-axiom]: #24082 -#24730 := [unit-resolution #24083 #25069 #25052]: false -#24749 := [lemma #24730]: #4745 -#25458 := (or #17067 #22090) -#22093 := (or #17058 #17067 #22090) -#22096 := (not #22093) -#22099 := (or #17058 #17061 #22096) -#22102 := (not #22099) -#22105 := (or #17058 #17061 #22102) -#22108 := (not #22105) -#22111 := (or #12412 #22108) -#22114 := (not #22111) -#22117 := (or #12412 #22114) -#21170 := (forall (vars (?v0 Int)) #21159) -#21177 := (not #21170) -#21155 := (forall (vars (?v0 Int)) #21150) -#21176 := (not #21155) -#21178 := (or #21176 #21177) -#21179 := (not #21178) -#21184 := (or #21144 #21179) -#21190 := (not #21184) -#21191 := (or #12923 #12777 #21067 #11388 #11379 #11370 #11361 #21190) -#21192 := (not #21191) -#20982 := (forall (vars (?v0 Int)) #20977) -#21000 := (not #20982) -#21001 := (or #21000 #20987) -#21002 := (not #21001) -#21007 := (or #20971 #21002) -#21013 := (not #21007) -#21014 := (or #12681 #21013) -#21015 := (not #21014) -#21020 := (or #12681 #21015) -#21028 := (not #21020) -#21029 := (or #17209 #17212 #12743 #11705 #21026 #21027 #21028) -#21030 := (not #21029) -#21035 := (or #17209 #17212 #21030) -#21041 := (not #21035) -#21078 := (or #21067 #12828 #11892 #11883 #12777 #21027 #21041) -#21079 := (not #21078) -#21042 := (or #17171 #17180 #11803 #11794 #11785 #11760 #11751 #12777 #21027 #21041) -#21043 := (not #21042) -#21048 := (or #17171 #17180 #21043) -#21054 := (not #21048) -#21055 := (or #17171 #17174 #21054) -#21056 := (not #21055) -#21061 := (or #17171 #17174 #21056) -#21068 := (not #21061) -#21069 := (or #12777 #21067 #12829 #21068) -#21070 := (not #21069) -#21084 := (or #21070 #21079) -#21090 := (not #21084) -#21091 := (or #17171 #17180 #12777 #21067 #21090) -#21092 := (not #21091) -#21097 := (or #17171 #17180 #21092) -#21103 := (not #21097) -#21104 := (or #17171 #17174 #21103) -#21105 := (not #21104) -#21110 := (or #17171 #17174 #21105) -#21116 := (not #21110) -#21117 := (or #12777 #21067 #12922 #21116) -#21118 := (not #21117) -#21197 := (or #21118 #21192) -#21212 := (not #21197) -#20947 := (forall (vars (?v0 Int)) #20942) -#21208 := (not #20947) -#21213 := (or #12634 #17117 #21203 #21204 #21205 #21206 #21207 #12777 #21067 #13142 #21208 #13095 #21209 #13090 #15031 #12144 #12135 #12126 #12117 #21210 #21211 #21212) -#21214 := (not #21213) -#21219 := (or #12634 #17117 #21214) -#21226 := (not #21219) -#20936 := (forall (vars (?v0 Int)) #20931) -#21225 := (not #20936) -#21227 := (or #21225 #21226) -#21228 := (not #21227) -#21233 := (or #20925 #21228) -#21239 := (not #21233) -#21240 := (or #12598 #21239) -#21241 := (not #21240) -#21246 := (or #12598 #21241) -#21252 := (not #21246) -#21253 := (or #17058 #17067 #12379 #12370 #12361 #12352 #21252) -#21254 := (not #21253) -#21259 := (or #17058 #17067 #21254) -#21265 := (not #21259) -#21266 := (or #17058 #17061 #21265) -#21267 := (not #21266) -#21272 := (or #17058 #17061 #21267) -#21278 := (not #21272) -#21279 := (or #12412 #21278) -#21280 := (not #21279) -#21285 := (or #12412 #21280) -#22118 := (iff #21285 #22117) -#22115 := (iff #21280 #22114) -#22112 := (iff #21279 #22111) -#22109 := (iff #21278 #22108) -#22106 := (iff #21272 #22105) -#22103 := (iff #21267 #22102) -#22100 := (iff #21266 #22099) -#22097 := (iff #21265 #22096) -#22094 := (iff #21259 #22093) -#22091 := (iff #21254 #22090) -#22088 := (iff #21253 #22087) -#22085 := (iff #21252 #22084) -#22082 := (iff #21246 #22081) -#22079 := (iff #21241 #22078) -#22076 := (iff #21240 #22075) -#22073 := (iff #21239 #22072) -#22070 := (iff #21233 #22069) -#22067 := (iff #21228 #22066) -#22064 := (iff #21227 #22063) -#22061 := (iff #21226 #22060) -#22058 := (iff #21219 #22057) -#22055 := (iff #21214 #22054) -#22052 := (iff #21213 #22051) -#22049 := (iff #21212 #22048) -#22046 := (iff #21197 #22045) -#22043 := (iff #21192 #22042) -#22040 := (iff #21191 #22039) -#22037 := (iff #21190 #22036) -#22034 := (iff #21184 #22033) -#22031 := (iff #21179 #22030) -#22028 := (iff #21178 #22027) -#22025 := (iff #21177 #22024) -#22022 := (iff #21170 #22019) -#22020 := (iff #21159 #21159) -#22021 := [refl]: #22020 -#22023 := [quant-intro #22021]: #22022 -#22026 := [monotonicity #22023]: #22025 -#22017 := (iff #21176 #22016) -#22014 := (iff #21155 #22011) -#22012 := (iff #21150 #21150) -#22013 := [refl]: #22012 -#22015 := [quant-intro #22013]: #22014 -#22018 := [monotonicity #22015]: #22017 -#22029 := [monotonicity #22018 #22026]: #22028 -#22032 := [monotonicity #22029]: #22031 -#22035 := [monotonicity #22032]: #22034 -#22038 := [monotonicity #22035]: #22037 -#22041 := [monotonicity #22038]: #22040 -#22044 := [monotonicity #22041]: #22043 -#22009 := (iff #21118 #22008) -#22006 := (iff #21117 #22005) -#22003 := (iff #21116 #22002) -#22000 := (iff #21110 #21999) -#21997 := (iff #21105 #21996) -#21994 := (iff #21104 #21993) -#21991 := (iff #21103 #21990) -#21988 := (iff #21097 #21987) -#21985 := (iff #21092 #21984) -#21982 := (iff #21091 #21981) -#21979 := (iff #21090 #21978) -#21976 := (iff #21084 #21975) -#21973 := (iff #21079 #21972) -#21970 := (iff #21078 #21969) -#21937 := (iff #21041 #21936) -#21934 := (iff #21035 #21933) -#21931 := (iff #21030 #21930) -#21928 := (iff #21029 #21927) -#21925 := (iff #21028 #21924) -#21922 := (iff #21020 #21921) -#21919 := (iff #21015 #21918) -#21916 := (iff #21014 #21915) -#21913 := (iff #21013 #21912) -#21910 := (iff #21007 #21909) -#21907 := (iff #21002 #21906) -#21904 := (iff #21001 #21903) -#21901 := (iff #21000 #21900) -#21898 := (iff #20982 #21895) -#21896 := (iff #20977 #20977) -#21897 := [refl]: #21896 -#21899 := [quant-intro #21897]: #21898 -#21902 := [monotonicity #21899]: #21901 -#21905 := [monotonicity #21902]: #21904 -#21908 := [monotonicity #21905]: #21907 -#21911 := [monotonicity #21908]: #21910 -#21914 := [monotonicity #21911]: #21913 -#21917 := [monotonicity #21914]: #21916 -#21920 := [monotonicity #21917]: #21919 -#21923 := [monotonicity #21920]: #21922 -#21926 := [monotonicity #21923]: #21925 -#21929 := [monotonicity #21926]: #21928 -#21932 := [monotonicity #21929]: #21931 -#21935 := [monotonicity #21932]: #21934 -#21938 := [monotonicity #21935]: #21937 -#21971 := [monotonicity #21938]: #21970 -#21974 := [monotonicity #21971]: #21973 -#21967 := (iff #21070 #21966) -#21964 := (iff #21069 #21963) -#21961 := (iff #21068 #21960) -#21958 := (iff #21061 #21957) -#21955 := (iff #21056 #21954) -#21952 := (iff #21055 #21951) -#21949 := (iff #21054 #21948) -#21946 := (iff #21048 #21945) -#21943 := (iff #21043 #21942) -#21940 := (iff #21042 #21939) -#21941 := [monotonicity #21938]: #21940 -#21944 := [monotonicity #21941]: #21943 -#21947 := [monotonicity #21944]: #21946 -#21950 := [monotonicity #21947]: #21949 -#21953 := [monotonicity #21950]: #21952 -#21956 := [monotonicity #21953]: #21955 -#21959 := [monotonicity #21956]: #21958 -#21962 := [monotonicity #21959]: #21961 -#21965 := [monotonicity #21962]: #21964 -#21968 := [monotonicity #21965]: #21967 -#21977 := [monotonicity #21968 #21974]: #21976 -#21980 := [monotonicity #21977]: #21979 -#21983 := [monotonicity #21980]: #21982 -#21986 := [monotonicity #21983]: #21985 -#21989 := [monotonicity #21986]: #21988 -#21992 := [monotonicity #21989]: #21991 -#21995 := [monotonicity #21992]: #21994 -#21998 := [monotonicity #21995]: #21997 -#22001 := [monotonicity #21998]: #22000 -#22004 := [monotonicity #22001]: #22003 -#22007 := [monotonicity #22004]: #22006 -#22010 := [monotonicity #22007]: #22009 -#22047 := [monotonicity #22010 #22044]: #22046 -#22050 := [monotonicity #22047]: #22049 -#21893 := (iff #21208 #21892) -#21890 := (iff #20947 #21887) -#21888 := (iff #20942 #20942) -#21889 := [refl]: #21888 -#21891 := [quant-intro #21889]: #21890 -#21894 := [monotonicity #21891]: #21893 -#22053 := [monotonicity #21894 #22050]: #22052 -#22056 := [monotonicity #22053]: #22055 -#22059 := [monotonicity #22056]: #22058 -#22062 := [monotonicity #22059]: #22061 -#21885 := (iff #21225 #21884) -#21882 := (iff #20936 #21879) -#21880 := (iff #20931 #20931) -#21881 := [refl]: #21880 -#21883 := [quant-intro #21881]: #21882 -#21886 := [monotonicity #21883]: #21885 -#22065 := [monotonicity #21886 #22062]: #22064 -#22068 := [monotonicity #22065]: #22067 -#22071 := [monotonicity #22068]: #22070 -#22074 := [monotonicity #22071]: #22073 -#22077 := [monotonicity #22074]: #22076 -#22080 := [monotonicity #22077]: #22079 -#22083 := [monotonicity #22080]: #22082 -#22086 := [monotonicity #22083]: #22085 -#22089 := [monotonicity #22086]: #22088 -#22092 := [monotonicity #22089]: #22091 -#22095 := [monotonicity #22092]: #22094 -#22098 := [monotonicity #22095]: #22097 -#22101 := [monotonicity #22098]: #22100 -#22104 := [monotonicity #22101]: #22103 -#22107 := [monotonicity #22104]: #22106 -#22110 := [monotonicity #22107]: #22109 -#22113 := [monotonicity #22110]: #22112 -#22116 := [monotonicity #22113]: #22115 -#22119 := [monotonicity #22116]: #22118 -#13642 := (and #6706 #14917 #12952 #4826) -#17379 := (not #13642) -#17382 := (forall (vars (?v0 Int)) #17379) -#14273 := (and #6706 #14917) -#14268 := (not #14273) -#13653 := (or #14268 #12950 #12964) -#13648 := (forall (vars (?v0 Int)) #13653) -#17386 := (and #13648 #17382) -#17357 := (and #17355 #17356) -#17358 := (not #17357) -#17685 := (or #17358 #17667 #17680) -#17688 := (not #17685) -#17691 := (or #17688 #17386) -#17697 := (and #12922 #12639 #12642 #4814 #4816 #4818 #4820 #17691) -#17257 := (not #12724) -#13714 := (or #14268 #12684 #12698) -#13713 := (forall (vars (?v0 Int)) #13714) -#17260 := (and #13713 #17257) -#17235 := (and #17233 #17234) -#17236 := (not #17235) -#17550 := (or #17236 #17532 #17545) -#17553 := (not #17550) -#17556 := (or #17553 #17260) -#17559 := (and #12676 #17556) -#17562 := (or #12681 #17559) -#17568 := (and #12660 #13727 #12739 #4978 #12668 #12651 #17562) -#17573 := (or #17209 #17212 #17568) -#17613 := (and #12642 #12829 #5026 #5027 #12639 #12651 #17573) -#17579 := (and #4940 #4945 #4950 #4955 #4960 #4963 #4965 #12639 #12651 #17573) -#17584 := (or #17171 #17180 #17579) -#17590 := (and #4940 #4942 #17584) -#17595 := (or #17171 #17174 #17590) -#17601 := (and #12639 #12642 #12828 #17595) -#17618 := (or #17601 #17613) -#17624 := (and #4940 #4945 #12639 #12642 #17618) -#17629 := (or #17171 #17180 #17624) -#17635 := (and #4940 #4942 #17629) -#17640 := (or #17171 #17174 #17635) -#17646 := (and #12639 #12642 #12923 #17640) -#17702 := (or #17646 #17697) -#13738 := (or #14268 #13105 #13119) -#13737 := (forall (vars (?v0 Int)) #13738) -#17708 := (and #12635 #4780 #13167 #13785 #13766 #13145 #13751 #12639 #12642 #13139 #13737 #13096 #4806 #4898 #4811 #4909 #4913 #4917 #4921 #4925 #4930 #17702) -#17713 := (or #12634 #17117 #17708) -#13798 := (or #14268 #12601 #12613) -#13797 := (forall (vars (?v0 Int)) #13798) -#17716 := (and #13797 #17713) -#17093 := (and #17091 #17092) -#17094 := (not #17093) -#17102 := (or #17094 #17095 #17101) -#17103 := (not #17102) -#17719 := (or #17103 #17716) -#17722 := (and #12595 #17719) -#17725 := (or #12598 #17722) -#17731 := (and #4739 #4745 #4750 #4755 #4760 #4765 #17725) -#17736 := (or #17058 #17067 #17731) -#17742 := (and #4739 #4741 #17736) -#17747 := (or #17058 #17061 #17742) -#17750 := (and #4733 #17747) -#17753 := (or #12412 #17750) -#21286 := (iff #17753 #21285) -#21283 := (iff #17750 #21280) -#21275 := (and #4733 #21272) -#21281 := (iff #21275 #21280) -#21282 := [rewrite]: #21281 -#21276 := (iff #17750 #21275) -#21273 := (iff #17747 #21272) -#21270 := (iff #17742 #21267) -#21262 := (and #4739 #4741 #21259) -#21268 := (iff #21262 #21267) -#21269 := [rewrite]: #21268 -#21263 := (iff #17742 #21262) -#21260 := (iff #17736 #21259) -#21257 := (iff #17731 #21254) -#21249 := (and #4739 #4745 #4750 #4755 #4760 #4765 #21246) -#21255 := (iff #21249 #21254) -#21256 := [rewrite]: #21255 -#21250 := (iff #17731 #21249) -#21247 := (iff #17725 #21246) -#21244 := (iff #17722 #21241) -#21236 := (and #12595 #21233) -#21242 := (iff #21236 #21241) -#21243 := [rewrite]: #21242 -#21237 := (iff #17722 #21236) -#21234 := (iff #17719 #21233) -#21231 := (iff #17716 #21228) -#21222 := (and #20936 #21219) -#21229 := (iff #21222 #21228) -#21230 := [rewrite]: #21229 -#21223 := (iff #17716 #21222) -#21220 := (iff #17713 #21219) -#21217 := (iff #17708 #21214) -#21200 := (and #12635 #4780 #13167 #13785 #13766 #13145 #13751 #12639 #12642 #13139 #20947 #13096 #4806 #4898 #4811 #4909 #4913 #4917 #4921 #4925 #4930 #21197) -#21215 := (iff #21200 #21214) -#21216 := [rewrite]: #21215 -#21201 := (iff #17708 #21200) -#21198 := (iff #17702 #21197) -#21195 := (iff #17697 #21192) -#21187 := (and #12922 #12639 #12642 #4814 #4816 #4818 #4820 #21184) -#21193 := (iff #21187 #21192) -#21194 := [rewrite]: #21193 -#21188 := (iff #17697 #21187) -#21185 := (iff #17691 #21184) -#21182 := (iff #17386 #21179) -#21173 := (and #21155 #21170) -#21180 := (iff #21173 #21179) -#21181 := [rewrite]: #21180 -#21174 := (iff #17386 #21173) -#21171 := (iff #17382 #21170) -#21168 := (iff #17379 #21159) -#21160 := (not #21159) -#21163 := (not #21160) -#21166 := (iff #21163 #21159) -#21167 := [rewrite]: #21166 -#21164 := (iff #17379 #21163) -#21161 := (iff #13642 #21160) -#21162 := [rewrite]: #21161 -#21165 := [monotonicity #21162]: #21164 -#21169 := [trans #21165 #21167]: #21168 -#21172 := [quant-intro #21169]: #21171 -#21156 := (iff #13648 #21155) -#21153 := (iff #13653 #21150) -#18824 := (or #7428 #18181) -#21147 := (or #18824 #12950 #12964) -#21151 := (iff #21147 #21150) -#21152 := [rewrite]: #21151 -#21148 := (iff #13653 #21147) -#18833 := (iff #14268 #18824) -#18825 := (not #18824) -#18828 := (not #18825) -#18831 := (iff #18828 #18824) -#18832 := [rewrite]: #18831 -#18829 := (iff #14268 #18828) -#18826 := (iff #14273 #18825) -#18827 := [rewrite]: #18826 -#18830 := [monotonicity #18827]: #18829 -#18834 := [trans #18830 #18832]: #18833 -#21149 := [monotonicity #18834]: #21148 -#21154 := [trans #21149 #21152]: #21153 -#21157 := [quant-intro #21154]: #21156 -#21175 := [monotonicity #21157 #21172]: #21174 -#21183 := [trans #21175 #21181]: #21182 -#21145 := (iff #17688 #21144) -#21142 := (iff #17685 #21139) -#21125 := (or #21123 #21124) -#21136 := (or #21125 #17667 #17680) -#21140 := (iff #21136 #21139) -#21141 := [rewrite]: #21140 -#21137 := (iff #17685 #21136) -#21134 := (iff #17358 #21125) -#21126 := (not #21125) -#21129 := (not #21126) -#21132 := (iff #21129 #21125) -#21133 := [rewrite]: #21132 -#21130 := (iff #17358 #21129) -#21127 := (iff #17357 #21126) -#21128 := [rewrite]: #21127 -#21131 := [monotonicity #21128]: #21130 -#21135 := [trans #21131 #21133]: #21134 -#21138 := [monotonicity #21135]: #21137 -#21143 := [trans #21138 #21141]: #21142 -#21146 := [monotonicity #21143]: #21145 -#21186 := [monotonicity #21146 #21183]: #21185 -#21189 := [monotonicity #21186]: #21188 -#21196 := [trans #21189 #21194]: #21195 -#21121 := (iff #17646 #21118) -#21113 := (and #12639 #12642 #12923 #21110) -#21119 := (iff #21113 #21118) -#21120 := [rewrite]: #21119 -#21114 := (iff #17646 #21113) -#21111 := (iff #17640 #21110) -#21108 := (iff #17635 #21105) -#21100 := (and #4940 #4942 #21097) -#21106 := (iff #21100 #21105) -#21107 := [rewrite]: #21106 -#21101 := (iff #17635 #21100) -#21098 := (iff #17629 #21097) -#21095 := (iff #17624 #21092) -#21087 := (and #4940 #4945 #12639 #12642 #21084) -#21093 := (iff #21087 #21092) -#21094 := [rewrite]: #21093 -#21088 := (iff #17624 #21087) -#21085 := (iff #17618 #21084) -#21082 := (iff #17613 #21079) -#21075 := (and #12642 #12829 #5026 #5027 #12639 #12651 #21035) -#21080 := (iff #21075 #21079) -#21081 := [rewrite]: #21080 -#21076 := (iff #17613 #21075) -#21036 := (iff #17573 #21035) -#21033 := (iff #17568 #21030) -#21023 := (and #12660 #13727 #12739 #4978 #12668 #12651 #21020) -#21031 := (iff #21023 #21030) -#21032 := [rewrite]: #21031 -#21024 := (iff #17568 #21023) -#21021 := (iff #17562 #21020) -#21018 := (iff #17559 #21015) -#21010 := (and #12676 #21007) -#21016 := (iff #21010 #21015) -#21017 := [rewrite]: #21016 -#21011 := (iff #17559 #21010) -#21008 := (iff #17556 #21007) -#21005 := (iff #17260 #21002) -#20997 := (and #20982 #20986) -#21003 := (iff #20997 #21002) -#21004 := [rewrite]: #21003 -#20998 := (iff #17260 #20997) -#20995 := (iff #17257 #20986) -#20990 := (not #20987) -#20993 := (iff #20990 #20986) -#20994 := [rewrite]: #20993 -#20991 := (iff #17257 #20990) -#20988 := (iff #12724 #20987) -#20989 := [rewrite]: #20988 -#20992 := [monotonicity #20989]: #20991 -#20996 := [trans #20992 #20994]: #20995 -#20983 := (iff #13713 #20982) -#20980 := (iff #13714 #20977) -#20974 := (or #18824 #12684 #12698) -#20978 := (iff #20974 #20977) -#20979 := [rewrite]: #20978 -#20975 := (iff #13714 #20974) -#20976 := [monotonicity #18834]: #20975 -#20981 := [trans #20976 #20979]: #20980 -#20984 := [quant-intro #20981]: #20983 -#20999 := [monotonicity #20984 #20996]: #20998 -#21006 := [trans #20999 #21004]: #21005 -#20972 := (iff #17553 #20971) -#20969 := (iff #17550 #20966) -#20952 := (or #20950 #20951) -#20963 := (or #20952 #17532 #17545) -#20967 := (iff #20963 #20966) -#20968 := [rewrite]: #20967 -#20964 := (iff #17550 #20963) -#20961 := (iff #17236 #20952) -#20953 := (not #20952) -#20956 := (not #20953) -#20959 := (iff #20956 #20952) -#20960 := [rewrite]: #20959 -#20957 := (iff #17236 #20956) -#20954 := (iff #17235 #20953) -#20955 := [rewrite]: #20954 -#20958 := [monotonicity #20955]: #20957 -#20962 := [trans #20958 #20960]: #20961 -#20965 := [monotonicity #20962]: #20964 -#20970 := [trans #20965 #20968]: #20969 -#20973 := [monotonicity #20970]: #20972 -#21009 := [monotonicity #20973 #21006]: #21008 -#21012 := [monotonicity #21009]: #21011 -#21019 := [trans #21012 #21017]: #21018 -#21022 := [monotonicity #21019]: #21021 -#21025 := [monotonicity #21022]: #21024 -#21034 := [trans #21025 #21032]: #21033 -#21037 := [monotonicity #21034]: #21036 -#21077 := [monotonicity #21037]: #21076 -#21083 := [trans #21077 #21081]: #21082 -#21073 := (iff #17601 #21070) -#21064 := (and #12639 #12642 #12828 #21061) -#21071 := (iff #21064 #21070) -#21072 := [rewrite]: #21071 -#21065 := (iff #17601 #21064) -#21062 := (iff #17595 #21061) -#21059 := (iff #17590 #21056) -#21051 := (and #4940 #4942 #21048) -#21057 := (iff #21051 #21056) -#21058 := [rewrite]: #21057 -#21052 := (iff #17590 #21051) -#21049 := (iff #17584 #21048) -#21046 := (iff #17579 #21043) -#21038 := (and #4940 #4945 #4950 #4955 #4960 #4963 #4965 #12639 #12651 #21035) -#21044 := (iff #21038 #21043) -#21045 := [rewrite]: #21044 -#21039 := (iff #17579 #21038) -#21040 := [monotonicity #21037]: #21039 -#21047 := [trans #21040 #21045]: #21046 -#21050 := [monotonicity #21047]: #21049 -#21053 := [monotonicity #21050]: #21052 -#21060 := [trans #21053 #21058]: #21059 -#21063 := [monotonicity #21060]: #21062 -#21066 := [monotonicity #21063]: #21065 -#21074 := [trans #21066 #21072]: #21073 -#21086 := [monotonicity #21074 #21083]: #21085 -#21089 := [monotonicity #21086]: #21088 -#21096 := [trans #21089 #21094]: #21095 -#21099 := [monotonicity #21096]: #21098 -#21102 := [monotonicity #21099]: #21101 -#21109 := [trans #21102 #21107]: #21108 -#21112 := [monotonicity #21109]: #21111 -#21115 := [monotonicity #21112]: #21114 -#21122 := [trans #21115 #21120]: #21121 -#21199 := [monotonicity #21122 #21196]: #21198 -#20948 := (iff #13737 #20947) -#20945 := (iff #13738 #20942) -#20939 := (or #18824 #13105 #13119) -#20943 := (iff #20939 #20942) -#20944 := [rewrite]: #20943 -#20940 := (iff #13738 #20939) -#20941 := [monotonicity #18834]: #20940 -#20946 := [trans #20941 #20944]: #20945 -#20949 := [quant-intro #20946]: #20948 -#21202 := [monotonicity #20949 #21199]: #21201 -#21218 := [trans #21202 #21216]: #21217 -#21221 := [monotonicity #21218]: #21220 -#20937 := (iff #13797 #20936) -#20934 := (iff #13798 #20931) -#20928 := (or #18824 #12601 #12613) -#20932 := (iff #20928 #20931) -#20933 := [rewrite]: #20932 -#20929 := (iff #13798 #20928) -#20930 := [monotonicity #18834]: #20929 -#20935 := [trans #20930 #20933]: #20934 -#20938 := [quant-intro #20935]: #20937 -#21224 := [monotonicity #20938 #21221]: #21223 -#21232 := [trans #21224 #21230]: #21231 -#20926 := (iff #17103 #20925) -#20923 := (iff #17102 #20920) -#20906 := (or #20904 #20905) -#20917 := (or #20906 #17095 #17101) -#20921 := (iff #20917 #20920) -#20922 := [rewrite]: #20921 -#20918 := (iff #17102 #20917) -#20915 := (iff #17094 #20906) -#20907 := (not #20906) -#20910 := (not #20907) -#20913 := (iff #20910 #20906) -#20914 := [rewrite]: #20913 -#20911 := (iff #17094 #20910) -#20908 := (iff #17093 #20907) -#20909 := [rewrite]: #20908 -#20912 := [monotonicity #20909]: #20911 -#20916 := [trans #20912 #20914]: #20915 -#20919 := [monotonicity #20916]: #20918 -#20924 := [trans #20919 #20922]: #20923 -#20927 := [monotonicity #20924]: #20926 -#21235 := [monotonicity #20927 #21232]: #21234 -#21238 := [monotonicity #21235]: #21237 -#21245 := [trans #21238 #21243]: #21244 -#21248 := [monotonicity #21245]: #21247 -#21251 := [monotonicity #21248]: #21250 -#21258 := [trans #21251 #21256]: #21257 -#21261 := [monotonicity #21258]: #21260 -#21264 := [monotonicity #21261]: #21263 -#21271 := [trans #21264 #21269]: #21270 -#21274 := [monotonicity #21271]: #21273 -#21277 := [monotonicity #21274]: #21276 -#21284 := [trans #21277 #21282]: #21283 -#21287 := [monotonicity #21284]: #21286 -#17364 := (+ #17363 #12962) -#17365 := (<= #17364 0::Int) -#17359 := (+ ?v0!15 #12568) -#17360 := (>= #17359 0::Int) -#17366 := (or #17358 #17360 #17365) -#17367 := (not #17366) -#17390 := (or #17367 #17386) -#17351 := (not #11361) -#17348 := (not #11370) -#17345 := (not #11379) -#17342 := (not #11388) -#17132 := (not #12647) -#17394 := (and #12926 #17132 #17342 #17345 #17348 #17351 #17390) -#17242 := (+ #17241 #12696) -#17243 := (<= #17242 0::Int) -#17237 := (+ ?v0!14 #12677) -#17238 := (>= #17237 0::Int) -#17244 := (or #17236 #17238 #17243) -#17245 := (not #17244) -#17264 := (or #17245 #17260) -#17229 := (not #12681) -#17268 := (and #17229 #17264) -#17272 := (or #12681 #17268) -#17224 := (not #12673) -#17221 := (not #11705) -#17218 := (not #12743) -#13720 := (and #12660 #13727) -#13719 := (not #13720) -#17215 := (not #13719) -#17276 := (and #17215 #17218 #17221 #17224 #17272) -#17280 := (or #17209 #17212 #17276) -#17206 := (not #12656) -#17309 := (not #11883) -#17306 := (not #11892) -#17312 := (and #17132 #12834 #17306 #17309 #17206 #17280) -#17203 := (not #11751) -#17200 := (not #11760) -#17197 := (not #12777) -#17194 := (not #11785) -#17191 := (not #11794) -#17188 := (not #11803) -#17183 := (not #11812) -#17284 := (and #17183 #17188 #17191 #17194 #17197 #17200 #17203 #17206 #17280) -#17288 := (or #17171 #17180 #17284) -#17177 := (not #11824) -#17292 := (and #17177 #17288) -#17296 := (or #17171 #17174 #17292) -#17300 := (and #17132 #12828 #17296) -#17316 := (or #17300 #17312) -#17320 := (and #17183 #17132 #17316) -#17324 := (or #17171 #17180 #17320) -#17328 := (and #17177 #17324) -#17332 := (or #17171 #17174 #17328) -#17336 := (and #17132 #12923 #17332) -#17398 := (or #17336 #17394) -#17166 := (not #12108) -#17163 := (not #12117) -#17160 := (not #12126) -#17157 := (not #12135) -#17154 := (not #12144) -#17151 := (not #15031) -#17148 := (not #13090) -#17145 := (not #13102) -#17135 := (not #13142) -#13744 := (and #13145 #13751) -#13743 := (not #13744) -#17129 := (not #13743) -#13763 := (and #12642 #13766) -#13758 := (not #13763) -#17126 := (not #13758) -#13778 := (and #13167 #13785) -#13777 := (not #13778) -#17123 := (not #13777) -#17120 := (not #13183) -#17402 := (and #17120 #17123 #17126 #17129 #17132 #17135 #13737 #17145 #17148 #17151 #17154 #17157 #17160 #17163 #17166 #17398) -#17406 := (or #13340 #17117 #17402) -#17410 := (and #13797 #17406) -#17414 := (or #17103 #17410) -#17087 := (not #12598) -#17418 := (and #17087 #17414) -#17422 := (or #12598 #17418) -#17082 := (not #12352) -#17079 := (not #12361) -#17076 := (not #12370) -#17073 := (not #12379) -#17070 := (not #12388) -#17426 := (and #17070 #17073 #17076 #17079 #17082 #17422) -#17430 := (or #17058 #17067 #17426) -#17064 := (not #12400) -#17434 := (and #17064 #17430) -#17438 := (or #17058 #17061 #17434) -#17055 := (not #12412) -#17442 := (and #17055 #17438) -#17446 := (or #12412 #17442) -#17754 := (iff #17446 #17753) -#17751 := (iff #17442 #17750) -#17748 := (iff #17438 #17747) -#17745 := (iff #17434 #17742) -#17739 := (and #4742 #17736) -#17743 := (iff #17739 #17742) -#17744 := [rewrite]: #17743 -#17740 := (iff #17434 #17739) -#17737 := (iff #17430 #17736) -#17734 := (iff #17426 #17731) -#17728 := (and #4746 #4750 #4755 #4760 #4765 #17725) -#17732 := (iff #17728 #17731) -#17733 := [rewrite]: #17732 -#17729 := (iff #17426 #17728) -#17726 := (iff #17422 #17725) -#17723 := (iff #17418 #17722) -#17720 := (iff #17414 #17719) -#17717 := (iff #17410 #17716) -#17714 := (iff #17406 #17713) -#17711 := (iff #17402 #17708) -#17705 := (and #13180 #13778 #13763 #13744 #12644 #13139 #13737 #13099 #4898 #4811 #4909 #4913 #4917 #4921 #4931 #17702) -#17709 := (iff #17705 #17708) -#17710 := [rewrite]: #17709 -#17706 := (iff #17402 #17705) -#17703 := (iff #17398 #17702) -#17700 := (iff #17394 #17697) -#17694 := (and #12922 #12644 #4814 #4816 #4818 #4820 #17691) -#17698 := (iff #17694 #17697) -#17699 := [rewrite]: #17698 -#17695 := (iff #17394 #17694) -#17692 := (iff #17390 #17691) -#17689 := (iff #17367 #17688) -#17686 := (iff #17366 #17685) -#17683 := (iff #17365 #17680) -#17672 := (+ #12962 #17363) -#17675 := (<= #17672 0::Int) -#17681 := (iff #17675 #17680) -#17682 := [rewrite]: #17681 -#17676 := (iff #17365 #17675) -#17673 := (= #17364 #17672) -#17674 := [rewrite]: #17673 -#17677 := [monotonicity #17674]: #17676 -#17684 := [trans #17677 #17682]: #17683 -#17670 := (iff #17360 #17667) -#17659 := (+ #12568 ?v0!15) -#17662 := (>= #17659 0::Int) -#17668 := (iff #17662 #17667) -#17669 := [rewrite]: #17668 -#17663 := (iff #17360 #17662) -#17660 := (= #17359 #17659) -#17661 := [rewrite]: #17660 -#17664 := [monotonicity #17661]: #17663 -#17671 := [trans #17664 #17669]: #17670 -#17687 := [monotonicity #17671 #17684]: #17686 -#17690 := [monotonicity #17687]: #17689 -#17693 := [monotonicity #17690]: #17692 -#17657 := (iff #17351 #4820) -#17658 := [rewrite]: #17657 -#17655 := (iff #17348 #4818) -#17656 := [rewrite]: #17655 -#17653 := (iff #17345 #4816) -#17654 := [rewrite]: #17653 -#17651 := (iff #17342 #4814) -#17652 := [rewrite]: #17651 -#17476 := (iff #17132 #12644) -#17477 := [rewrite]: #17476 -#17696 := [monotonicity #12930 #17477 #17652 #17654 #17656 #17658 #17693]: #17695 -#17701 := [trans #17696 #17699]: #17700 -#17649 := (iff #17336 #17646) -#17643 := (and #12644 #12923 #17640) -#17647 := (iff #17643 #17646) -#17648 := [rewrite]: #17647 -#17644 := (iff #17336 #17643) -#17641 := (iff #17332 #17640) -#17638 := (iff #17328 #17635) -#17632 := (and #4943 #17629) -#17636 := (iff #17632 #17635) -#17637 := [rewrite]: #17636 -#17633 := (iff #17328 #17632) -#17630 := (iff #17324 #17629) -#17627 := (iff #17320 #17624) -#17621 := (and #4946 #12644 #17618) -#17625 := (iff #17621 #17624) -#17626 := [rewrite]: #17625 -#17622 := (iff #17320 #17621) -#17619 := (iff #17316 #17618) -#17616 := (iff #17312 #17613) -#17610 := (and #12644 #12829 #5026 #5027 #12653 #17573) -#17614 := (iff #17610 #17613) -#17615 := [rewrite]: #17614 -#17611 := (iff #17312 #17610) -#17574 := (iff #17280 #17573) -#17571 := (iff #17276 #17568) -#17565 := (and #13720 #12739 #4978 #12670 #17562) -#17569 := (iff #17565 #17568) -#17570 := [rewrite]: #17569 -#17566 := (iff #17276 #17565) -#17563 := (iff #17272 #17562) -#17560 := (iff #17268 #17559) -#17557 := (iff #17264 #17556) -#17554 := (iff #17245 #17553) -#17551 := (iff #17244 #17550) -#17548 := (iff #17243 #17545) -#17537 := (+ #12696 #17241) -#17540 := (<= #17537 0::Int) -#17546 := (iff #17540 #17545) -#17547 := [rewrite]: #17546 -#17541 := (iff #17243 #17540) -#17538 := (= #17242 #17537) -#17539 := [rewrite]: #17538 -#17542 := [monotonicity #17539]: #17541 -#17549 := [trans #17542 #17547]: #17548 -#17535 := (iff #17238 #17532) -#17524 := (+ #12677 ?v0!14) -#17527 := (>= #17524 0::Int) -#17533 := (iff #17527 #17532) -#17534 := [rewrite]: #17533 -#17528 := (iff #17238 #17527) -#17525 := (= #17237 #17524) -#17526 := [rewrite]: #17525 -#17529 := [monotonicity #17526]: #17528 -#17536 := [trans #17529 #17534]: #17535 -#17552 := [monotonicity #17536 #17549]: #17551 -#17555 := [monotonicity #17552]: #17554 -#17558 := [monotonicity #17555]: #17557 -#17522 := (iff #17229 #12676) -#17523 := [rewrite]: #17522 -#17561 := [monotonicity #17523 #17558]: #17560 -#17564 := [monotonicity #17561]: #17563 -#17520 := (iff #17224 #12670) -#17521 := [rewrite]: #17520 -#17518 := (iff #17221 #4978) -#17519 := [rewrite]: #17518 -#17516 := (iff #17218 #12739) -#17517 := [rewrite]: #17516 -#17514 := (iff #17215 #13720) -#17515 := [rewrite]: #17514 -#17567 := [monotonicity #17515 #17517 #17519 #17521 #17564]: #17566 -#17572 := [trans #17567 #17570]: #17571 -#17575 := [monotonicity #17572]: #17574 -#17512 := (iff #17206 #12653) -#17513 := [rewrite]: #17512 -#17608 := (iff #17309 #5027) -#17609 := [rewrite]: #17608 -#17606 := (iff #17306 #5026) -#17607 := [rewrite]: #17606 -#17612 := [monotonicity #17477 #12838 #17607 #17609 #17513 #17575]: #17611 -#17617 := [trans #17612 #17615]: #17616 -#17604 := (iff #17300 #17601) -#17598 := (and #12644 #12828 #17595) -#17602 := (iff #17598 #17601) -#17603 := [rewrite]: #17602 -#17599 := (iff #17300 #17598) -#17596 := (iff #17296 #17595) -#17593 := (iff #17292 #17590) -#17587 := (and #4943 #17584) -#17591 := (iff #17587 #17590) -#17592 := [rewrite]: #17591 -#17588 := (iff #17292 #17587) -#17585 := (iff #17288 #17584) -#17582 := (iff #17284 #17579) -#17576 := (and #4946 #4950 #4955 #4960 #12639 #4963 #4965 #12653 #17573) -#17580 := (iff #17576 #17579) -#17581 := [rewrite]: #17580 -#17577 := (iff #17284 #17576) -#17510 := (iff #17203 #4965) -#17511 := [rewrite]: #17510 -#17508 := (iff #17200 #4963) -#17509 := [rewrite]: #17508 -#17506 := (iff #17197 #12639) -#17507 := [rewrite]: #17506 -#17504 := (iff #17194 #4960) -#17505 := [rewrite]: #17504 -#17502 := (iff #17191 #4955) -#17503 := [rewrite]: #17502 -#17500 := (iff #17188 #4950) -#17501 := [rewrite]: #17500 -#17498 := (iff #17183 #4946) -#17499 := [rewrite]: #17498 -#17578 := [monotonicity #17499 #17501 #17503 #17505 #17507 #17509 #17511 #17513 #17575]: #17577 -#17583 := [trans #17578 #17581]: #17582 -#17586 := [monotonicity #17583]: #17585 -#17496 := (iff #17177 #4943) -#17497 := [rewrite]: #17496 -#17589 := [monotonicity #17497 #17586]: #17588 -#17594 := [trans #17589 #17592]: #17593 -#17597 := [monotonicity #17594]: #17596 -#17600 := [monotonicity #17477 #17597]: #17599 -#17605 := [trans #17600 #17603]: #17604 -#17620 := [monotonicity #17605 #17617]: #17619 -#17623 := [monotonicity #17499 #17477 #17620]: #17622 -#17628 := [trans #17623 #17626]: #17627 -#17631 := [monotonicity #17628]: #17630 -#17634 := [monotonicity #17497 #17631]: #17633 -#17639 := [trans #17634 #17637]: #17638 -#17642 := [monotonicity #17639]: #17641 -#17645 := [monotonicity #17477 #17642]: #17644 -#17650 := [trans #17645 #17648]: #17649 -#17704 := [monotonicity #17650 #17701]: #17703 -#17494 := (iff #17166 #4931) -#17495 := [rewrite]: #17494 -#17492 := (iff #17163 #4921) -#17493 := [rewrite]: #17492 -#17490 := (iff #17160 #4917) -#17491 := [rewrite]: #17490 -#17488 := (iff #17157 #4913) -#17489 := [rewrite]: #17488 -#17486 := (iff #17154 #4909) -#17487 := [rewrite]: #17486 -#17484 := (iff #17151 #4811) -#17485 := [rewrite]: #17484 -#17482 := (iff #17148 #4898) -#17483 := [rewrite]: #17482 -#17480 := (iff #17145 #13099) -#17481 := [rewrite]: #17480 -#17478 := (iff #17135 #13139) -#17479 := [rewrite]: #17478 -#17474 := (iff #17129 #13744) -#17475 := [rewrite]: #17474 -#17472 := (iff #17126 #13763) -#17473 := [rewrite]: #17472 -#17470 := (iff #17123 #13778) -#17471 := [rewrite]: #17470 -#17468 := (iff #17120 #13180) -#17469 := [rewrite]: #17468 -#17707 := [monotonicity #17469 #17471 #17473 #17475 #17477 #17479 #17481 #17483 #17485 #17487 #17489 #17491 #17493 #17495 #17704]: #17706 -#17712 := [trans #17707 #17710]: #17711 -#17715 := [monotonicity #13344 #17712]: #17714 -#17718 := [monotonicity #17715]: #17717 -#17721 := [monotonicity #17718]: #17720 -#17466 := (iff #17087 #12595) -#17467 := [rewrite]: #17466 -#17724 := [monotonicity #17467 #17721]: #17723 -#17727 := [monotonicity #17724]: #17726 -#17464 := (iff #17082 #4765) -#17465 := [rewrite]: #17464 -#17462 := (iff #17079 #4760) -#17463 := [rewrite]: #17462 -#17460 := (iff #17076 #4755) -#17461 := [rewrite]: #17460 -#17458 := (iff #17073 #4750) -#17459 := [rewrite]: #17458 -#17456 := (iff #17070 #4746) -#17457 := [rewrite]: #17456 -#17730 := [monotonicity #17457 #17459 #17461 #17463 #17465 #17727]: #17729 -#17735 := [trans #17730 #17733]: #17734 -#17738 := [monotonicity #17735]: #17737 -#17454 := (iff #17064 #4742) -#17455 := [rewrite]: #17454 -#17741 := [monotonicity #17455 #17738]: #17740 -#17746 := [trans #17741 #17744]: #17745 -#17749 := [monotonicity #17746]: #17748 -#17452 := (iff #17055 #4733) -#17453 := [rewrite]: #17452 -#17752 := [monotonicity #17453 #17749]: #17751 -#17755 := [monotonicity #17752]: #17754 -#13641 := (exists (vars (?v0 Int)) #13642) -#13647 := (not #13648) -#13636 := (or #13647 #13641) -#13635 := (and #13648 #13636) -#13630 := (or #12923 #12647 #11388 #11379 #11370 #11361 #13635) -#13708 := (not #13713) -#13707 := (or #13708 #12724) -#13702 := (and #13713 #13707) -#13701 := (or #12681 #13702) -#13696 := (and #12676 #13701) -#13695 := (or #13719 #12743 #11705 #12673 #13696) -#13690 := (and #12660 #13727 #13695) -#13672 := (or #12647 #12828 #11892 #11883 #12656 #13690) -#13689 := (or #11812 #11803 #11794 #11785 #12777 #11760 #11751 #12656 #13690) -#13684 := (and #4940 #4945 #13689) -#13683 := (or #11824 #13684) -#13678 := (and #4940 #4942 #13683) -#13677 := (or #12647 #12829 #13678) -#13671 := (and #13677 #13672) -#13666 := (or #11812 #12647 #13671) -#13665 := (and #4940 #4945 #13666) -#13660 := (or #11824 #13665) -#13659 := (and #4940 #4942 #13660) -#13654 := (or #12647 #12922 #13659) -#13629 := (and #13654 #13630) -#13732 := (not #13737) -#13624 := (or #13183 #13777 #13758 #13743 #12647 #13142 #13732 #13102 #13090 #15031 #12144 #12135 #12126 #12117 #12108 #13629) -#13623 := (and #12635 #4780 #13624) -#13792 := (not #13797) -#13618 := (or #13792 #13623) -#13617 := (and #13797 #13618) -#13612 := (or #12598 #13617) -#13611 := (and #12595 #13612) -#13606 := (or #12388 #12379 #12370 #12361 #12352 #13611) -#13605 := (and #4739 #4745 #13606) -#13600 := (or #12400 #13605) -#13599 := (and #4739 #4741 #13600) -#13594 := (or #12412 #13599) -#13593 := (and #4733 #13594) -#13588 := (not #13593) -#17447 := (~ #13588 #17446) -#17443 := (not #13594) -#17444 := (~ #17443 #17442) -#17439 := (not #13599) -#17440 := (~ #17439 #17438) -#17435 := (not #13600) -#17436 := (~ #17435 #17434) -#17431 := (not #13605) -#17432 := (~ #17431 #17430) -#17427 := (not #13606) -#17428 := (~ #17427 #17426) -#17423 := (not #13611) -#17424 := (~ #17423 #17422) -#17419 := (not #13612) -#17420 := (~ #17419 #17418) -#17415 := (not #13617) -#17416 := (~ #17415 #17414) -#17411 := (not #13618) -#17412 := (~ #17411 #17410) -#17407 := (not #13623) -#17408 := (~ #17407 #17406) -#17403 := (not #13624) -#17404 := (~ #17403 #17402) -#17399 := (not #13629) -#17400 := (~ #17399 #17398) -#17395 := (not #13630) -#17396 := (~ #17395 #17394) -#17391 := (not #13635) -#17392 := (~ #17391 #17390) -#17387 := (not #13636) -#17388 := (~ #17387 #17386) -#17383 := (not #13641) -#17384 := (~ #17383 #17382) -#17380 := (~ #17379 #17379) -#17381 := [refl]: #17380 -#17385 := [nnf-neg #17381]: #17384 -#17376 := (not #13647) -#17377 := (~ #17376 #13648) -#17374 := (~ #13648 #13648) -#17372 := (~ #13653 #13653) -#17373 := [refl]: #17372 -#17375 := [nnf-pos #17373]: #17374 -#17378 := [nnf-neg #17375]: #17377 -#17389 := [nnf-neg #17378 #17385]: #17388 -#17368 := (~ #13647 #17367) -#17369 := [sk]: #17368 -#17393 := [nnf-neg #17369 #17389]: #17392 -#17352 := (~ #17351 #17351) -#17353 := [refl]: #17352 -#17349 := (~ #17348 #17348) -#17350 := [refl]: #17349 -#17346 := (~ #17345 #17345) -#17347 := [refl]: #17346 -#17343 := (~ #17342 #17342) -#17344 := [refl]: #17343 -#17133 := (~ #17132 #17132) -#17134 := [refl]: #17133 -#17340 := (~ #12926 #12926) -#17341 := [refl]: #17340 -#17397 := [nnf-neg #17341 #17134 #17344 #17347 #17350 #17353 #17393]: #17396 -#17337 := (not #13654) -#17338 := (~ #17337 #17336) -#17333 := (not #13659) -#17334 := (~ #17333 #17332) -#17329 := (not #13660) -#17330 := (~ #17329 #17328) -#17325 := (not #13665) -#17326 := (~ #17325 #17324) -#17321 := (not #13666) -#17322 := (~ #17321 #17320) -#17317 := (not #13671) -#17318 := (~ #17317 #17316) -#17313 := (not #13672) -#17314 := (~ #17313 #17312) -#17281 := (not #13690) -#17282 := (~ #17281 #17280) -#17277 := (not #13695) -#17278 := (~ #17277 #17276) -#17273 := (not #13696) -#17274 := (~ #17273 #17272) -#17269 := (not #13701) -#17270 := (~ #17269 #17268) -#17265 := (not #13702) -#17266 := (~ #17265 #17264) -#17261 := (not #13707) -#17262 := (~ #17261 #17260) -#17258 := (~ #17257 #17257) -#17259 := [refl]: #17258 -#17254 := (not #13708) -#17255 := (~ #17254 #13713) -#17252 := (~ #13713 #13713) -#17250 := (~ #13714 #13714) -#17251 := [refl]: #17250 -#17253 := [nnf-pos #17251]: #17252 -#17256 := [nnf-neg #17253]: #17255 -#17263 := [nnf-neg #17256 #17259]: #17262 -#17246 := (~ #13708 #17245) -#17247 := [sk]: #17246 -#17267 := [nnf-neg #17247 #17263]: #17266 -#17230 := (~ #17229 #17229) -#17231 := [refl]: #17230 -#17271 := [nnf-neg #17231 #17267]: #17270 -#17227 := (~ #12681 #12681) -#17228 := [refl]: #17227 -#17275 := [nnf-neg #17228 #17271]: #17274 -#17225 := (~ #17224 #17224) -#17226 := [refl]: #17225 -#17222 := (~ #17221 #17221) -#17223 := [refl]: #17222 -#17219 := (~ #17218 #17218) -#17220 := [refl]: #17219 -#17216 := (~ #17215 #17215) -#17217 := [refl]: #17216 -#17279 := [nnf-neg #17217 #17220 #17223 #17226 #17275]: #17278 -#17213 := (~ #17212 #17212) -#17214 := [refl]: #17213 -#17210 := (~ #17209 #17209) -#17211 := [refl]: #17210 -#17283 := [nnf-neg #17211 #17214 #17279]: #17282 -#17207 := (~ #17206 #17206) -#17208 := [refl]: #17207 -#17310 := (~ #17309 #17309) -#17311 := [refl]: #17310 -#17307 := (~ #17306 #17306) -#17308 := [refl]: #17307 -#17304 := (~ #12834 #12834) -#17305 := [refl]: #17304 -#17315 := [nnf-neg #17134 #17305 #17308 #17311 #17208 #17283]: #17314 -#17301 := (not #13677) -#17302 := (~ #17301 #17300) -#17297 := (not #13678) -#17298 := (~ #17297 #17296) -#17293 := (not #13683) -#17294 := (~ #17293 #17292) -#17289 := (not #13684) -#17290 := (~ #17289 #17288) -#17285 := (not #13689) -#17286 := (~ #17285 #17284) -#17204 := (~ #17203 #17203) -#17205 := [refl]: #17204 -#17201 := (~ #17200 #17200) -#17202 := [refl]: #17201 -#17198 := (~ #17197 #17197) -#17199 := [refl]: #17198 -#17195 := (~ #17194 #17194) -#17196 := [refl]: #17195 -#17192 := (~ #17191 #17191) -#17193 := [refl]: #17192 -#17189 := (~ #17188 #17188) -#17190 := [refl]: #17189 -#17184 := (~ #17183 #17183) -#17185 := [refl]: #17184 -#17287 := [nnf-neg #17185 #17190 #17193 #17196 #17199 #17202 #17205 #17208 #17283]: #17286 -#17181 := (~ #17180 #17180) -#17182 := [refl]: #17181 -#17172 := (~ #17171 #17171) -#17173 := [refl]: #17172 -#17291 := [nnf-neg #17173 #17182 #17287]: #17290 -#17178 := (~ #17177 #17177) -#17179 := [refl]: #17178 -#17295 := [nnf-neg #17179 #17291]: #17294 -#17175 := (~ #17174 #17174) -#17176 := [refl]: #17175 -#17299 := [nnf-neg #17173 #17176 #17295]: #17298 -#17186 := (~ #12828 #12828) -#17187 := [refl]: #17186 -#17303 := [nnf-neg #17134 #17187 #17299]: #17302 -#17319 := [nnf-neg #17303 #17315]: #17318 -#17323 := [nnf-neg #17185 #17134 #17319]: #17322 -#17327 := [nnf-neg #17173 #17182 #17323]: #17326 -#17331 := [nnf-neg #17179 #17327]: #17330 -#17335 := [nnf-neg #17173 #17176 #17331]: #17334 -#17169 := (~ #12923 #12923) -#17170 := [refl]: #17169 -#17339 := [nnf-neg #17134 #17170 #17335]: #17338 -#17401 := [nnf-neg #17339 #17397]: #17400 -#17167 := (~ #17166 #17166) -#17168 := [refl]: #17167 -#17164 := (~ #17163 #17163) -#17165 := [refl]: #17164 -#17161 := (~ #17160 #17160) -#17162 := [refl]: #17161 -#17158 := (~ #17157 #17157) -#17159 := [refl]: #17158 -#17155 := (~ #17154 #17154) -#17156 := [refl]: #17155 -#17152 := (~ #17151 #17151) -#17153 := [refl]: #17152 -#17149 := (~ #17148 #17148) -#17150 := [refl]: #17149 -#17146 := (~ #17145 #17145) -#17147 := [refl]: #17146 -#17142 := (not #13732) -#17143 := (~ #17142 #13737) -#17140 := (~ #13737 #13737) -#17138 := (~ #13738 #13738) -#17139 := [refl]: #17138 -#17141 := [nnf-pos #17139]: #17140 -#17144 := [nnf-neg #17141]: #17143 -#17136 := (~ #17135 #17135) -#17137 := [refl]: #17136 -#17130 := (~ #17129 #17129) -#17131 := [refl]: #17130 -#17127 := (~ #17126 #17126) -#17128 := [refl]: #17127 -#17124 := (~ #17123 #17123) -#17125 := [refl]: #17124 -#17121 := (~ #17120 #17120) -#17122 := [refl]: #17121 -#17405 := [nnf-neg #17122 #17125 #17128 #17131 #17134 #17137 #17144 #17147 #17150 #17153 #17156 #17159 #17162 #17165 #17168 #17401]: #17404 -#17118 := (~ #17117 #17117) -#17119 := [refl]: #17118 -#17115 := (~ #13340 #13340) -#17116 := [refl]: #17115 -#17409 := [nnf-neg #17116 #17119 #17405]: #17408 -#17112 := (not #13792) -#17113 := (~ #17112 #13797) -#17110 := (~ #13797 #13797) -#17108 := (~ #13798 #13798) -#17109 := [refl]: #17108 -#17111 := [nnf-pos #17109]: #17110 -#17114 := [nnf-neg #17111]: #17113 -#17413 := [nnf-neg #17114 #17409]: #17412 -#17104 := (~ #13792 #17103) -#17105 := [sk]: #17104 -#17417 := [nnf-neg #17105 #17413]: #17416 -#17088 := (~ #17087 #17087) -#17089 := [refl]: #17088 -#17421 := [nnf-neg #17089 #17417]: #17420 -#17085 := (~ #12598 #12598) -#17086 := [refl]: #17085 -#17425 := [nnf-neg #17086 #17421]: #17424 -#17083 := (~ #17082 #17082) -#17084 := [refl]: #17083 -#17080 := (~ #17079 #17079) -#17081 := [refl]: #17080 -#17077 := (~ #17076 #17076) -#17078 := [refl]: #17077 -#17074 := (~ #17073 #17073) -#17075 := [refl]: #17074 -#17071 := (~ #17070 #17070) -#17072 := [refl]: #17071 -#17429 := [nnf-neg #17072 #17075 #17078 #17081 #17084 #17425]: #17428 -#17068 := (~ #17067 #17067) -#17069 := [refl]: #17068 -#17059 := (~ #17058 #17058) -#17060 := [refl]: #17059 -#17433 := [nnf-neg #17060 #17069 #17429]: #17432 -#17065 := (~ #17064 #17064) -#17066 := [refl]: #17065 -#17437 := [nnf-neg #17066 #17433]: #17436 -#17062 := (~ #17061 #17061) -#17063 := [refl]: #17062 -#17441 := [nnf-neg #17060 #17063 #17437]: #17440 -#17056 := (~ #17055 #17055) -#17057 := [refl]: #17056 -#17445 := [nnf-neg #17057 #17441]: #17444 -#17053 := (~ #12412 #12412) -#17054 := [refl]: #17053 -#17448 := [nnf-neg #17054 #17445]: #17447 -#15056 := (or #12923 #12647 #11388 #11379 #11370 #11361 #13004) -#15061 := (and #12945 #15056) -#15064 := (or #13183 #13177 #13164 #13154 #12647 #13142 #13136 #13102 #13090 #15031 #12144 #12135 #12126 #12117 #12108 #15061) -#15067 := (and #12635 #4780 #15064) -#15070 := (or #12631 #15067) -#15073 := (and #12628 #15070) -#15076 := (or #12598 #15073) -#15079 := (and #12595 #15076) -#15082 := (or #12388 #12379 #12370 #12361 #12352 #15079) -#15085 := (and #4739 #4745 #15082) -#15088 := (or #12400 #15085) -#15091 := (and #4739 #4741 #15088) -#15094 := (or #12412 #15091) -#15097 := (and #4733 #15094) -#15100 := (not #15097) -#13589 := (iff #15100 #13588) -#13590 := (iff #15097 #13593) -#13595 := (iff #15094 #13594) -#13596 := (iff #15091 #13599) -#13601 := (iff #15088 #13600) -#13602 := (iff #15085 #13605) -#13607 := (iff #15082 #13606) -#13608 := (iff #15079 #13611) -#13613 := (iff #15076 #13612) -#13614 := (iff #15073 #13617) -#13619 := (iff #15070 #13618) -#13620 := (iff #15067 #13623) -#13625 := (iff #15064 #13624) -#13626 := (iff #15061 #13629) -#13631 := (iff #15056 #13630) -#13632 := (iff #13004 #13635) -#13637 := (iff #13001 #13636) -#13638 := (iff #12998 #13641) -#13643 := (iff #12993 #13642) -#14912 := (iff #6890 #14917) -#14949 := -4294967295::Int -#14925 := (+ -4294967295::Int #1197) -#14918 := (<= #14925 0::Int) -#14914 := (iff #14918 #14917) -#14915 := [rewrite]: #14914 -#14919 := (iff #6890 #14918) -#14920 := (= #6889 #14925) -#14926 := (+ #1197 -4294967295::Int) -#14922 := (= #14926 #14925) -#14923 := [rewrite]: #14922 -#14927 := (= #6889 #14926) -#14944 := (= #6888 -4294967295::Int) -#14950 := (* -1::Int 4294967295::Int) -#14946 := (= #14950 -4294967295::Int) -#14947 := [rewrite]: #14946 -#14951 := (= #6888 #14950) -#9364 := (= f168 4294967295::Int) -#2153 := 65536::Int -#2552 := (* 65536::Int 65536::Int) -#2557 := (- #2552 1::Int) -#2558 := (= f168 #2557) -#9365 := (iff #2558 #9364) -#9362 := (= #2557 4294967295::Int) -#2216 := 4294967296::Int -#9355 := (- 4294967296::Int 1::Int) -#9360 := (= #9355 4294967295::Int) -#9361 := [rewrite]: #9360 -#9357 := (= #2557 #9355) -#9326 := (= #2552 4294967296::Int) -#9327 := [rewrite]: #9326 -#9358 := [monotonicity #9327]: #9357 -#9363 := [trans #9358 #9361]: #9362 -#9366 := [monotonicity #9363]: #9365 -#9354 := [asserted]: #2558 -#9369 := [mp #9354 #9366]: #9364 -#14948 := [monotonicity #9369]: #14951 -#14945 := [trans #14948 #14947]: #14944 -#14924 := [monotonicity #14945]: #14927 -#14921 := [trans #14924 #14923]: #14920 -#14916 := [monotonicity #14921]: #14919 -#14913 := [trans #14916 #14915]: #14912 -#13640 := [monotonicity #14913]: #13643 -#13639 := [quant-intro #13640]: #13638 -#13644 := (iff #12981 #13647) -#13649 := (iff #12978 #13648) -#13650 := (iff #12973 #13653) -#14269 := (iff #7910 #14268) -#14270 := (iff #6897 #14273) -#14271 := [monotonicity #14913]: #14270 -#14266 := [monotonicity #14271]: #14269 -#13651 := [monotonicity #14266]: #13650 -#13646 := [quant-intro #13651]: #13649 -#13645 := [monotonicity #13646]: #13644 -#13634 := [monotonicity #13645 #13639]: #13637 -#13633 := [monotonicity #13646 #13634]: #13632 -#13628 := [monotonicity #13633]: #13631 -#13655 := (iff #12945 #13654) -#13656 := (iff #12916 #13659) -#13661 := (iff #12910 #13660) -#13662 := (iff #12905 #13665) -#13667 := (iff #12897 #13666) -#13668 := (iff #12888 #13671) -#13673 := (iff #12883 #13672) -#13691 := (iff #12772 #13690) -#13692 := (iff #12764 #13695) -#13697 := (iff #12736 #13696) -#13698 := (iff #12733 #13701) -#13703 := (iff #12730 #13702) -#13704 := (iff #12727 #13707) -#13709 := (iff #12715 #13708) -#13710 := (iff #12712 #13713) -#13715 := (iff #12707 #13714) -#13712 := [monotonicity #14266]: #13715 -#13711 := [quant-intro #13712]: #13710 -#13706 := [monotonicity #13711]: #13709 -#13705 := [monotonicity #13706]: #13704 -#13700 := [monotonicity #13711 #13705]: #13703 -#13699 := [monotonicity #13700]: #13698 -#13694 := [monotonicity #13699]: #13697 -#13716 := (iff #12749 #13719) -#13721 := (iff #12746 #13720) -#13722 := (iff #12662 #13727) -#13757 := (+ 4294967295::Int #12663) -#13731 := (>= #13757 1::Int) -#13724 := (iff #13731 #13727) -#13725 := [rewrite]: #13724 -#13728 := (iff #12662 #13731) -#13754 := (= #12664 #13757) -#13755 := [monotonicity #9369]: #13754 -#13729 := [monotonicity #13755]: #13728 -#13723 := [trans #13729 #13725]: #13722 -#13718 := [monotonicity #13723]: #13721 -#13717 := [monotonicity #13718]: #13716 -#13693 := [monotonicity #13717 #13694]: #13692 -#13688 := [monotonicity #13723 #13693]: #13691 -#13670 := [monotonicity #13688]: #13673 -#13674 := (iff #12853 #13677) -#13679 := (iff #12823 #13678) -#13680 := (iff #12817 #13683) -#13685 := (iff #12812 #13684) -#13686 := (iff #12804 #13689) -#13687 := [monotonicity #13688]: #13686 -#13682 := [monotonicity #13687]: #13685 -#13681 := [monotonicity #13682]: #13680 -#13676 := [monotonicity #13681]: #13679 -#13675 := [monotonicity #13676]: #13674 -#13669 := [monotonicity #13675 #13670]: #13668 -#13664 := [monotonicity #13669]: #13667 -#13663 := [monotonicity #13664]: #13662 -#13658 := [monotonicity #13663]: #13661 -#13657 := [monotonicity #13658]: #13656 -#13652 := [monotonicity #13657]: #13655 -#13627 := [monotonicity #13652 #13628]: #13626 -#13733 := (iff #13136 #13732) -#13734 := (iff #13133 #13737) -#13739 := (iff #13128 #13738) -#13736 := [monotonicity #14266]: #13739 -#13735 := [quant-intro #13736]: #13734 -#13730 := [monotonicity #13735]: #13733 -#13740 := (iff #13154 #13743) -#13745 := (iff #13151 #13744) -#13746 := (iff #13148 #13751) -#13752 := (>= #13757 0::Int) -#13748 := (iff #13752 #13751) -#13749 := [rewrite]: #13748 -#13753 := (iff #13148 #13752) -#13750 := [monotonicity #13755]: #13753 -#13747 := [trans #13750 #13749]: #13746 -#13742 := [monotonicity #13747]: #13745 -#13741 := [monotonicity #13742]: #13740 -#13759 := (iff #13164 #13758) -#13760 := (iff #13161 #13763) -#13765 := (iff #13157 #13766) -#13772 := (+ 4294967295::Int #13093) -#13771 := (>= #13772 0::Int) -#13767 := (iff #13771 #13766) -#13764 := [rewrite]: #13767 -#13768 := (iff #13157 #13771) -#13773 := (= #13158 #13772) -#13770 := [monotonicity #9369]: #13773 -#13769 := [monotonicity #13770]: #13768 -#13762 := [trans #13769 #13764]: #13765 -#13761 := [monotonicity #13762]: #13760 -#13756 := [monotonicity #13761]: #13759 -#13774 := (iff #13177 #13777) -#13779 := (iff #13174 #13778) -#13780 := (iff #13170 #13785) -#13791 := (+ 255::Int #13117) -#13786 := (>= #13791 0::Int) -#13782 := (iff #13786 #13785) -#13783 := [rewrite]: #13782 -#13787 := (iff #13170 #13786) -#13788 := (= #13171 #13791) -#2562 := (= f170 255::Int) -#9368 := [asserted]: #2562 -#13789 := [monotonicity #9368]: #13788 -#13784 := [monotonicity #13789]: #13787 -#13781 := [trans #13784 #13783]: #13780 -#13776 := [monotonicity #13781]: #13779 -#13775 := [monotonicity #13776]: #13774 -#13622 := [monotonicity #13775 #13756 #13741 #13730 #13627]: #13625 -#13621 := [monotonicity #13622]: #13620 -#13793 := (iff #12631 #13792) -#13794 := (iff #12628 #13797) -#13799 := (iff #12623 #13798) -#13796 := [monotonicity #14266]: #13799 -#13795 := [quant-intro #13796]: #13794 -#13790 := [monotonicity #13795]: #13793 -#13616 := [monotonicity #13790 #13621]: #13619 -#13615 := [monotonicity #13795 #13616]: #13614 -#13610 := [monotonicity #13615]: #13613 -#13609 := [monotonicity #13610]: #13608 -#13604 := [monotonicity #13609]: #13607 -#13603 := [monotonicity #13604]: #13602 -#13598 := [monotonicity #13603]: #13601 -#13597 := [monotonicity #13598]: #13596 -#13592 := [monotonicity #13597]: #13595 -#13591 := [monotonicity #13592]: #13590 -#13586 := [monotonicity #13591]: #13589 -#13485 := (not #13319) -#15101 := (iff #13485 #15100) -#15098 := (iff #13319 #15097) -#15095 := (iff #13316 #15094) -#15092 := (iff #13311 #15091) -#15089 := (iff #13305 #15088) -#15086 := (iff #13300 #15085) -#15083 := (iff #13292 #15082) -#15080 := (iff #13271 #15079) -#15077 := (iff #13268 #15076) -#15074 := (iff #13265 #15073) -#15071 := (iff #13262 #15070) -#15068 := (iff #13257 #15067) -#15065 := (iff #13249 #15064) -#15062 := (iff #13066 #15061) -#15059 := (iff #13061 #15056) -#15041 := (or #12647 #11388 #11379 #11370 #11361 #13004) -#15053 := (or #12647 #12923 #15041) -#15057 := (iff #15053 #15056) -#15058 := [rewrite]: #15057 -#15054 := (iff #13061 #15053) -#15051 := (iff #13036 #15041) -#15046 := (and true #15041) -#15049 := (iff #15046 #15041) -#15050 := [rewrite]: #15049 -#15047 := (iff #13036 #15046) -#15044 := (iff #13031 #15041) -#15038 := (or false #12647 #11388 #11379 #11370 #11361 #13004) -#15042 := (iff #15038 #15041) -#15043 := [rewrite]: #15042 -#15039 := (iff #13031 #15038) -#15036 := (iff #11436 false) -#15034 := (iff #11436 #4808) -#14750 := (iff #4072 true) -#10920 := [asserted]: #4072 -#14751 := [iff-true #10920]: #14750 -#15035 := [monotonicity #14751]: #15034 -#15037 := [trans #15035 #11314]: #15036 -#15040 := [monotonicity #15037]: #15039 -#15045 := [trans #15040 #15043]: #15044 -#15048 := [monotonicity #14751 #15045]: #15047 -#15052 := [trans #15048 #15050]: #15051 -#15055 := [monotonicity #15052]: #15054 -#15060 := [trans #15055 #15058]: #15059 -#15063 := [monotonicity #15060]: #15062 -#15032 := (iff #11471 #15031) -#15029 := (iff #4812 #4811) -#15024 := (and #4811 true) -#15027 := (iff #15024 #4811) -#15028 := [rewrite]: #15027 -#15025 := (iff #4812 #15024) -#15006 := (iff #4686 true) -#15007 := [iff-true #13474]: #15006 -#15026 := [monotonicity #15007]: #15025 -#15030 := [trans #15026 #15028]: #15029 -#15033 := [monotonicity #15030]: #15032 -#15066 := [monotonicity #15033 #15063]: #15065 -#15069 := [monotonicity #15066]: #15068 -#15072 := [monotonicity #15069]: #15071 -#15075 := [monotonicity #15072]: #15074 -#15078 := [monotonicity #15075]: #15077 -#15081 := [monotonicity #15078]: #15080 -#15084 := [monotonicity #15081]: #15083 -#15087 := [monotonicity #15084]: #15086 -#15090 := [monotonicity #15087]: #15089 -#15093 := [monotonicity #15090]: #15092 -#15096 := [monotonicity #15093]: #15095 -#15099 := [monotonicity #15096]: #15098 -#15102 := [monotonicity #15099]: #15101 -#13486 := [not-or-elim #13452]: #13485 -#15103 := [mp #13486 #15102]: #15100 -#13587 := [mp #15103 #13586]: #13588 -#17449 := [mp~ #13587 #17448]: #17446 -#17450 := [mp #17449 #17755]: #17753 -#21288 := [mp #17450 #21287]: #21285 -#22120 := [mp #21288 #22119]: #22117 -#25454 := [unit-resolution #22120 #24007]: #22114 -#22345 := (or #22111 #22105) -#22346 := [def-axiom]: #22345 -#25455 := [unit-resolution #22346 #25454]: #22105 -#22341 := (or #22108 #17058 #17061 #22102) -#22342 := [def-axiom]: #22341 -#25456 := [unit-resolution #22342 #24483 #25074 #25455]: #22102 -#22331 := (or #22099 #22093) -#22332 := [def-axiom]: #22331 -#25457 := [unit-resolution #22332 #25456]: #22093 -#22325 := (or #22096 #17058 #17067 #22090) -#22326 := [def-axiom]: #22325 -#25459 := [unit-resolution #22326 #24483 #25457]: #25458 -#25460 := [unit-resolution #25459 #24749]: #22090 -#22307 := (or #22087 #4750) -#22308 := [def-axiom]: #22307 -#25461 := [unit-resolution #22308 #25460]: #4750 -#25643 := [mp #25461 #25642]: #4780 -#22315 := (or #22087 #22081) -#22316 := [def-axiom]: #22315 -#25644 := [unit-resolution #22316 #25460]: #22081 -#25645 := (or #22084 #22078) -#24646 := [hypothesis]: #12598 -#24679 := [th-lemma arith farkas 1 1 #13463 #24646]: false -#24680 := [lemma #24679]: #12595 -#22301 := (or #22084 #12598 #22078) -#22302 := [def-axiom]: #22301 -#25646 := [unit-resolution #22302 #24680]: #25645 -#25647 := [unit-resolution #25646 #25644]: #22078 -#22293 := (or #22075 #22069) -#22294 := [def-axiom]: #22293 -#25648 := [unit-resolution #22294 #25647]: #22069 -#25443 := (= f461 #17098) -#25464 := (= #4749 #17098) -#25462 := (= #17098 #4749) -#25452 := (= #17097 #4736) -#25450 := (= #17096 #4735) -#25448 := (= ?v0!13 0::Int) -#21540 := (not #17095) -#25445 := [hypothesis]: #20925 -#21571 := (or #20920 #21540) -#21574 := [def-axiom]: #21571 -#25446 := [unit-resolution #21574 #25445]: #21540 -#21618 := (or #20920 #17091) -#21598 := [def-axiom]: #21618 -#25447 := [unit-resolution #21598 #25445]: #17091 -#25449 := [th-lemma arith eq-propagate 0 0 #25447 #25446]: #25448 -#25451 := [monotonicity #25449]: #25450 -#25453 := [monotonicity #25451]: #25452 -#25463 := [monotonicity #25453]: #25462 -#25465 := [symm #25463]: #25464 -#25466 := [trans #25461 #25465]: #25443 -#21550 := (not #17101) -#21533 := (or #20920 #21550) -#21551 := [def-axiom]: #21533 -#25467 := [unit-resolution #21551 #25445]: #21550 -#25468 := (not #25443) -#25469 := (or #25468 #17101) -#25470 := [th-lemma arith triangle-eq]: #25469 -#25471 := [unit-resolution #25470 #25467 #25466]: false -#25472 := [lemma #25471]: #20920 -#22289 := (or #22072 #20925 #22066) -#22290 := [def-axiom]: #22289 -#25649 := [unit-resolution #22290 #25472 #25648]: #22066 -#22281 := (or #22063 #22057) -#22282 := [def-axiom]: #22281 -#25650 := [unit-resolution #22282 #25649]: #22057 -#25651 := (or #22060 #17117 #22054) -#22277 := (or #22060 #12634 #17117 #22054) -#22278 := [def-axiom]: #22277 -#25652 := [unit-resolution #22278 #13463]: #25651 -#25653 := [unit-resolution #25652 #25650 #25643]: #22054 -#22267 := (or #22051 #22045) -#22268 := [def-axiom]: #22267 -#25917 := [unit-resolution #22268 #25653]: #22045 -#24775 := (+ f462 #17678) -#24776 := (>= #24775 0::Int) -#24763 := (+ f464 #17665) -#24764 := (<= #24763 0::Int) -#25683 := (not #24764) -#22180 := (not #17667) -#25686 := [hypothesis]: #22042 -#22215 := (or #22039 #22033) -#22216 := [def-axiom]: #22215 -#25687 := [unit-resolution #22216 #25686]: #22033 -#22233 := (or #22051 #13766) -#22234 := [def-axiom]: #22233 -#25688 := [unit-resolution #22234 #25653]: #13766 -#22249 := (or #22051 #4806) -#22250 := [def-axiom]: #22249 -#25689 := [unit-resolution #22250 #25653]: #4806 -#22247 := (or #22051 #13096) -#22248 := [def-axiom]: #22247 -#25690 := [unit-resolution #22248 #25653]: #13096 -#22241 := (or #22051 #12642) -#22242 := [def-axiom]: #22241 -#25691 := [unit-resolution #22242 #25653]: #12642 -#22213 := (or #22039 #4820) -#22214 := [def-axiom]: #22213 -#25692 := [unit-resolution #22214 #25686]: #4820 -#24697 := (or #22024 #21205 #21067 #13095 #21209 #11361) -#24653 := (= #4805 f468) -#24602 := (= f462 f468) -#24688 := [hypothesis]: #4820 -#24690 := [symm #24688]: #24602 -#24689 := [hypothesis]: #4806 -#24691 := [trans #24689 #24690]: #24653 -#24692 := [hypothesis]: #22019 -#24693 := [hypothesis]: #13096 -#24694 := [hypothesis]: #12642 -#24695 := [hypothesis]: #13766 -#24654 := (not #24653) -#24659 := (or #22024 #21067 #21205 #13095 #24654) -#24546 := (+ f463 #12568) -#24547 := (>= #24546 0::Int) -#24655 := (or #21067 #21205 #24547 #24654) -#24660 := (or #22024 #24655) -#24667 := (iff #24660 #24659) -#24656 := (or #21067 #21205 #13095 #24654) -#24662 := (or #22024 #24656) -#24665 := (iff #24662 #24659) -#24666 := [rewrite]: #24665 -#24663 := (iff #24660 #24662) -#24657 := (iff #24655 #24656) -#24559 := (iff #24547 #13095) -#24551 := (+ #12568 f463) -#24554 := (>= #24551 0::Int) -#24557 := (iff #24554 #13095) -#24558 := [rewrite]: #24557 -#24555 := (iff #24547 #24554) -#24552 := (= #24546 #24551) -#24553 := [rewrite]: #24552 -#24556 := [monotonicity #24553]: #24555 -#24560 := [trans #24556 #24558]: #24559 -#24658 := [monotonicity #24560]: #24657 -#24664 := [monotonicity #24658]: #24663 -#24668 := [trans #24664 #24666]: #24667 -#24661 := [quant-inst #4786]: #24660 -#24669 := [mp #24661 #24668]: #24659 -#24696 := [unit-resolution #24669 #24695 #24694 #24693 #24692 #24691]: false -#24698 := [lemma #24696]: #24697 -#25693 := [unit-resolution #24698 #25692 #25691 #25690 #25689 #25688]: #22024 -#22191 := (or #22027 #22019) -#22192 := [def-axiom]: #22191 -#25694 := [unit-resolution #22192 #25693]: #22027 -#22199 := (or #22036 #21144 #22030) -#22200 := [def-axiom]: #22199 -#25695 := [unit-resolution #22200 #25694 #25687]: #21144 -#22181 := (or #21139 #22180) -#22182 := [def-axiom]: #22181 -#25696 := [unit-resolution #22182 #25695]: #22180 -#22201 := (or #22039 #12922) -#22202 := [def-axiom]: #22201 -#25697 := [unit-resolution #22202 #25686]: #12922 -#25684 := (or #25683 #12923 #17667) -#25679 := [hypothesis]: #22180 -#25680 := [hypothesis]: #12922 -#25681 := [hypothesis]: #24764 -#25682 := [th-lemma arith farkas -1 -1 1 #25681 #25680 #25679]: false -#25685 := [lemma #25682]: #25684 -#25698 := [unit-resolution #25685 #25697 #25696]: #25683 -#25701 := (or #24764 #24776) -#22178 := (or #21139 #17356) -#22179 := [def-axiom]: #22178 -#25699 := [unit-resolution #22179 #25695]: #17356 -#22176 := (or #21139 #17355) -#22177 := [def-axiom]: #22176 -#25700 := [unit-resolution #22177 #25695]: #17355 -#22245 := (or #22051 #21887) -#22246 := [def-axiom]: #22245 -#25659 := [unit-resolution #22246 #25653]: #21887 -#25593 := (or #21892 #21123 #21124 #24764 #24776) -#24754 := (+ #17363 #13117) -#24755 := (<= #24754 0::Int) -#24746 := (+ ?v0!15 #12663) -#24747 := (>= #24746 0::Int) -#24756 := (or #21123 #21124 #24747 #24755) -#25594 := (or #21892 #24756) -#25609 := (iff #25594 #25593) -#24781 := (or #21123 #21124 #24764 #24776) -#25604 := (or #21892 #24781) -#25607 := (iff #25604 #25593) -#25608 := [rewrite]: #25607 -#25605 := (iff #25594 #25604) -#24782 := (iff #24756 #24781) -#24779 := (iff #24755 #24776) -#24769 := (+ #13117 #17363) -#24772 := (<= #24769 0::Int) -#24777 := (iff #24772 #24776) -#24778 := [rewrite]: #24777 -#24773 := (iff #24755 #24772) -#24770 := (= #24754 #24769) -#24771 := [rewrite]: #24770 -#24774 := [monotonicity #24771]: #24773 -#24780 := [trans #24774 #24778]: #24779 -#24767 := (iff #24747 #24764) -#24757 := (+ #12663 ?v0!15) -#24760 := (>= #24757 0::Int) -#24765 := (iff #24760 #24764) -#24766 := [rewrite]: #24765 -#24761 := (iff #24747 #24760) -#24758 := (= #24746 #24757) -#24759 := [rewrite]: #24758 -#24762 := [monotonicity #24759]: #24761 -#24768 := [trans #24762 #24766]: #24767 -#24783 := [monotonicity #24768 #24780]: #24782 -#25606 := [monotonicity #24783]: #25605 -#25610 := [trans #25606 #25608]: #25609 -#25603 := [quant-inst #17354]: #25594 -#25611 := [mp #25603 #25610]: #25593 -#25702 := [unit-resolution #25611 #25659 #25700 #25699]: #25701 -#25703 := [unit-resolution #25702 #25698]: #24776 -#22183 := (not #17680) -#22184 := (or #21139 #22183) -#22185 := [def-axiom]: #22184 -#25704 := [unit-resolution #22185 #25695]: #22183 -#25559 := (+ f462 #12962) -#25562 := (<= #25559 0::Int) -#25705 := [symm #25692]: #24602 -#25706 := (not #24602) -#25707 := (or #25706 #25562) -#25708 := [th-lemma arith triangle-eq]: #25707 -#25709 := [unit-resolution #25708 #25705]: #25562 -#25710 := [th-lemma arith farkas -1 -1 1 #25709 #25704 #25703]: false -#25711 := [lemma #25710]: #22039 -#22223 := (or #22048 #22008 #22042) -#22224 := [def-axiom]: #22223 -#25918 := [unit-resolution #22224 #25711 #25917]: #22008 -#22170 := (or #22005 #12923) -#22171 := [def-axiom]: #22170 -#25919 := [unit-resolution #22171 #25918]: #12923 -#22235 := (or #22051 #13145) -#22236 := [def-axiom]: #22235 -#25920 := [unit-resolution #22236 #25653]: #13145 -#25721 := (or #24348 #22428 #22809 #24088 #21206 #12922 #25785) -#25780 := (+ f464 #12568) -#25781 := (>= #25780 0::Int) -#25786 := (or #22428 #22809 #24088 #21206 #25781 #25785) -#25726 := (or #24348 #25786) -#25894 := (iff #25726 #25721) -#25797 := (or #22428 #22809 #24088 #21206 #12922 #25785) -#25833 := (or #24348 #25797) -#25843 := (iff #25833 #25721) -#25893 := [rewrite]: #25843 -#25834 := (iff #25726 #25833) -#25798 := (iff #25786 #25797) -#25795 := (iff #25781 #12922) -#25787 := (+ #12568 f464) -#25790 := (>= #25787 0::Int) -#25793 := (iff #25790 #12922) -#25794 := [rewrite]: #25793 -#25791 := (iff #25781 #25790) -#25788 := (= #25780 #25787) -#25789 := [rewrite]: #25788 -#25792 := [monotonicity #25789]: #25791 -#25796 := [trans #25792 #25794]: #25795 -#25799 := [monotonicity #25796]: #25798 -#25842 := [monotonicity #25799]: #25834 -#25895 := [trans #25842 #25893]: #25894 -#25747 := [quant-inst #4649 #4655 #23413 #4646 #4790 #356]: #25726 -#25896 := [mp #25747 #25895]: #25721 -#25921 := [unit-resolution #25896 #20277 #11138 #13474 #25920 #25919 #24429 #25916]: false -#25922 := [lemma #25921]: #25785 -#25615 := (or #25784 #4942) -#25616 := [def-axiom]: #25615 -#25947 := [unit-resolution #25616 #25922]: #4942 -#26236 := (= #25848 #4941) -#26234 := (= #25639 #4937) -#24370 := (f153 f154 #23991) -#25586 := (f140 #24370 f464) -#25595 := (f139 #25586 f35) -#26232 := (= #25595 #4937) -#25809 := (= #4937 #25595) -#25807 := (= #4936 #25586) -#25800 := (= #25586 #4936) -#25804 := (= #24370 #4734) -#25802 := (= #23991 #4656) -#25816 := [symm #25275]: #24457 -#25817 := (= #23991 #24041) -#25801 := [trans #25100 #24456]: #25817 -#25803 := [trans #25801 #25816]: #25802 -#25805 := [monotonicity #25803]: #25804 -#25806 := [monotonicity #25805]: #25800 -#25808 := [symm #25806]: #25807 -#25810 := [monotonicity #25808]: #25809 -#26233 := [symm #25810]: #26232 -#26216 := (= #25639 #25595) -#25612 := (= #25595 #25639) -#25712 := (not #25612) -#25613 := (f125 f243 #25595) -#25619 := (f71 #25613 #23991) -#25620 := (= #25619 f1) -#25621 := (not #25620) -#25715 := (or #25621 #25712) -#25718 := (not #25715) -#25568 := (or #24299 #25718) -#25622 := (* f464 #4624) -#25623 := (+ #24379 #25622) -#25626 := (f87 #4654 #25623) -#25627 := (= #25595 #25626) -#25625 := (not #25627) -#25628 := (or #25621 #25625) -#25624 := (not #25628) -#24275 := (or #24299 #25624) -#25580 := (iff #24275 #25568) -#25583 := (iff #25568 #25568) -#25584 := [rewrite]: #25583 -#25719 := (iff #25624 #25718) -#25716 := (iff #25628 #25715) -#25713 := (iff #25625 #25712) -#25635 := (iff #25627 #25612) -#25640 := (= #25626 #25639) -#25633 := (= #25623 #25632) -#25630 := (= #25622 #25629) -#25631 := [rewrite]: #25630 -#25634 := [monotonicity #25631]: #25633 -#25563 := [monotonicity #25634]: #25640 -#25636 := [monotonicity #25563]: #25635 -#25714 := [monotonicity #25636]: #25713 -#25717 := [monotonicity #25714]: #25716 -#25720 := [monotonicity #25717]: #25719 -#25582 := [monotonicity #25720]: #25580 -#25599 := [trans #25582 #25584]: #25580 -#25581 := [quant-inst #23991 #4790 #356]: #24275 -#25597 := [mp #25581 #25599]: #25568 -#25814 := [unit-resolution #25597 #19813]: #25718 -#25602 := (or #25715 #25612) -#25614 := [def-axiom]: #25602 -#25815 := [unit-resolution #25614 #25814]: #25612 -#26217 := [symm #25815]: #26216 -#26235 := [trans #26217 #26233]: #26234 -#26237 := [monotonicity #26235]: #26236 -#26238 := [trans #26237 #25947]: #25849 -#25850 := (not #25849) -#25886 := (or #25850 #25885) -#25887 := (not #25886) -#25846 := (f71 #4743 #25639) -#25847 := (= #25846 f1) -#25888 := (iff #25847 #25887) -#26057 := (or #24794 #25888) -#26049 := [quant-inst #4649 #25639]: #26057 -#26055 := [unit-resolution #26049 #20682]: #25888 -#26188 := (not #25847) -#26198 := (iff #17180 #26188) -#26212 := (iff #4945 #25847) -#25844 := (iff #25847 #4945) -#26209 := (= #25846 #4944) -#26210 := [monotonicity #26235]: #26209 -#26211 := [monotonicity #26210]: #25844 -#26213 := [symm #26211]: #26212 -#26199 := [monotonicity #26213]: #26198 -#26056 := [hypothesis]: #17180 -#26197 := [mp #26056 #26199]: #26188 -#26037 := (not #25888) -#26038 := (or #26037 #25847 #25886) -#26187 := [def-axiom]: #26038 -#25845 := [unit-resolution #26187 #26197 #26055]: #25886 -#26179 := (or #25887 #25850 #25885) -#25779 := [def-axiom]: #26179 -#26207 := [unit-resolution #25779 #25845 #26238]: #25885 -#26280 := (= #25852 #22792) -#25617 := (= #25851 f35) -#25592 := (f62 f63 #4937) -#25565 := (= #25592 f35) -#25585 := (iff #4940 #25565) -#24274 := (or #23440 #25585) -#24269 := [quant-inst #4937 #356]: #24274 -#25750 := [unit-resolution #24269 #21822]: #25585 -#24273 := (not #25585) -#26208 := (or #24273 #25565) -#25724 := (or #23455 #25617) -#25725 := [quant-inst #356 #25632]: #25724 -#25813 := [unit-resolution #25725 #21835]: #25617 -#25826 := (= #25592 #25851) -#25827 := (= #4937 #25639) -#25828 := [trans #25810 #25815]: #25827 -#25829 := [monotonicity #25828]: #25826 -#25830 := [trans #25829 #25813]: #25565 -#24270 := (not #25565) -#25752 := (or #24273 #24270) -#25751 := [hypothesis]: #17171 -#24212 := (or #24273 #4940 #24270) -#25579 := [def-axiom]: #24212 -#25811 := [unit-resolution #25579 #25751]: #25752 -#25812 := [unit-resolution #25811 #25750]: #24270 -#25831 := [unit-resolution #25812 #25830]: false -#25832 := [lemma #25831]: #4940 -#25905 := (or #24273 #17171 #25565) -#25908 := [def-axiom]: #25905 -#26219 := [unit-resolution #25908 #25832]: #26208 -#26220 := [unit-resolution #26219 #25750]: #25565 -#26218 := (= #25851 #25592) -#26221 := [monotonicity #26235]: #26218 -#26279 := [trans #26221 #26220]: #25617 -#26281 := [monotonicity #26279]: #26280 -#26175 := [trans #26281 #24539]: #25853 -#25596 := (not #25783) -#26276 := (iff #25596 #25858) -#26282 := (iff #25783 #25857) -#26166 := (iff #25857 #25783) -#26164 := (= #25856 #25782) -#26271 := (= #25855 #24580) -#26174 := (= #24580 #25855) -#26284 := [monotonicity #25828]: #26174 -#26272 := [symm #26284]: #26271 -#26165 := [monotonicity #26272]: #26164 -#26274 := [monotonicity #26165]: #26166 -#26283 := [symm #26274]: #26282 -#26277 := [monotonicity #26283]: #26276 -#25598 := (or #25784 #25596) -#25731 := [def-axiom]: #25598 -#26176 := [unit-resolution #25731 #25922]: #25596 -#26275 := [mp #26176 #26277]: #25858 -#26050 := (or #25863 #25857) -#26066 := [def-axiom]: #26050 -#26270 := [unit-resolution #26066 #26275]: #25863 -#26278 := (or #25875 #25854 #25864) -#26553 := (+ #24890 #25629) -#26751 := (= #25632 #26553) -#26752 := (* -1::Int #26553) -#26753 := (+ #25632 #26752) -#26754 := (<= #26753 0::Int) -#24569 := (* -1::Int #23971) -#24572 := (+ #22490 #24569) -#24574 := (>= #24572 0::Int) -#24568 := (= #22490 #23971) -#26764 := (= #4657 #23971) -#26762 := (= #23971 #4657) -#26761 := [trans #24456 #25816]: #24459 -#26763 := [monotonicity #26761]: #26762 -#26765 := [symm #26763]: #26764 -#26766 := [trans #25251 #26765]: #24568 -#26767 := (not #24568) -#26789 := (or #26767 #24574) -#26790 := [th-lemma arith triangle-eq]: #26789 -#26791 := [unit-resolution #26790 #26766]: #24574 -#25530 := (* -1::Int #24379) -#25531 := (+ #23971 #25530) -#25533 := (>= #25531 0::Int) -#25529 := (= #23971 #24379) -#26771 := (= #24379 #23971) -#26772 := [monotonicity #25100]: #26771 -#26773 := [symm #26772]: #25529 -#26774 := (not #25529) -#26792 := (or #26774 #25533) -#26793 := [th-lemma arith triangle-eq]: #26792 -#26794 := [unit-resolution #26793 #26773]: #25533 -#26658 := (* -1::Int #24890) -#26659 := (+ #22490 #26658) -#26660 := (<= #26659 0::Int) -#26653 := (= #22490 #24890) -#26778 := [symm #25253]: #26653 -#26779 := (not #26653) -#26795 := (or #26779 #26660) -#26796 := [th-lemma arith triangle-eq]: #26795 -#26797 := [unit-resolution #26796 #26778]: #26660 -#26800 := (not #24574) -#26799 := (not #26660) -#26798 := (not #25533) -#26801 := (or #26754 #26798 #26799 #26800) -#26802 := [th-lemma arith assign-bounds 1 -1 1]: #26801 -#26803 := [unit-resolution #26802 #26797 #26794 #26791]: #26754 -#26755 := (>= #26753 0::Int) -#24573 := (<= #24572 0::Int) -#26768 := (or #26767 #24573) -#26769 := [th-lemma arith triangle-eq]: #26768 -#26770 := [unit-resolution #26769 #26766]: #24573 -#25532 := (<= #25531 0::Int) -#26775 := (or #26774 #25532) -#26776 := [th-lemma arith triangle-eq]: #26775 -#26777 := [unit-resolution #26776 #26773]: #25532 -#26673 := (>= #26659 0::Int) -#26780 := (or #26779 #26673) -#26781 := [th-lemma arith triangle-eq]: #26780 -#26782 := [unit-resolution #26781 #26778]: #26673 -#26785 := (not #24573) -#26784 := (not #26673) -#26783 := (not #25532) -#26786 := (or #26755 #26783 #26784 #26785) -#26787 := [th-lemma arith assign-bounds 1 -1 1]: #26786 -#26788 := [unit-resolution #26787 #26782 #26777 #26770]: #26755 -#26805 := (not #26755) -#26804 := (not #26754) -#26806 := (or #26751 #26804 #26805) -#26807 := [th-lemma arith triangle-eq]: #26806 -#26388 := [unit-resolution #26807 #26788 #26803]: #26751 -#26908 := (not #26751) -#26909 := (or #26908 #25869) -#26904 := (= #25868 #4662) -#26845 := (= #25859 #4658) -#26843 := (= #25859 #24084) -#26447 := (f140 #25120 f464) -#26448 := (f139 #26447 f35) -#26449 := (f134 #4883 #26448) -#26450 := (f235 f236 #26449) -#26451 := (= #26450 #24084) -#26458 := (f71 #4667 #26448) -#26459 := (= #26458 f1) -#26460 := (not #26459) -#26455 := (f155 f156 #26449) -#26456 := (= #26455 f1) -#26457 := (not #26456) -#26453 := (f155 f237 #26449) -#26454 := (= #26453 f1) -#26452 := (not #26451) -#26461 := (or #26452 #26454 #26457 #26460) -#26462 := (not #26461) -#26380 := (or #25115 #25119 #21206 #12922 #26462) -#26463 := (or #25119 #21206 #25781 #26462) -#26381 := (or #25115 #26463) -#25840 := (iff #26381 #26380) -#26464 := (or #25119 #21206 #12922 #26462) -#26020 := (or #25115 #26464) -#25835 := (iff #26020 #26380) -#25836 := [rewrite]: #25835 -#26177 := (iff #26381 #26020) -#26465 := (iff #26463 #26464) -#26466 := [monotonicity #25796]: #26465 -#26178 := [monotonicity #26466]: #26177 -#26352 := [trans #26178 #25836]: #25840 -#26413 := [quant-inst #4649 #4655 #356 #4646 #4790]: #26381 -#26405 := [mp #26413 #26352]: #26380 -#26757 := [unit-resolution #26405 #19597 #25920 #25919 #25186]: #26462 -#26406 := (or #26461 #26451) -#26417 := [def-axiom]: #26406 -#26758 := [unit-resolution #26417 #26757]: #26451 -#26841 := (= #25859 #26450) -#26839 := (= #25855 #26449) -#26837 := (= #26449 #25855) -#26835 := (= #26448 #25639) -#26833 := (= #26448 #25595) -#26831 := (= #26448 #4937) -#24810 := (f55 f206 #4937) -#25570 := (f87 #4654 #24810) -#26825 := (= #25570 #4937) -#25571 := (= #4937 #25570) -#25900 := (or #23430 #17171 #25571) -#25591 := (or #17171 #25571) -#25901 := (or #23430 #25591) -#25904 := (iff #25901 #25900) -#25906 := [rewrite]: #25904 -#25903 := [quant-inst #4937 #356]: #25901 -#25907 := [mp #25903 #25906]: #25900 -#26759 := [unit-resolution #25907 #16892 #25832]: #25571 -#26826 := [symm #26759]: #26825 -#26829 := (= #26448 #25570) -#26556 := (f87 #4654 #26553) -#26823 := (= #26556 #25570) -#26813 := (= #26553 #24810) -#26811 := (= #25632 #24810) -#26746 := (= #24810 #25632) -#26747 := (* -1::Int #25632) -#26748 := (+ #24810 #26747) -#26749 := (<= #26748 0::Int) -#25818 := (f55 f206 #25639) -#25823 := (* -1::Int #25818) -#25824 := (+ #25629 #25823) -#25825 := (+ #24379 #25824) -#25940 := (>= #25825 0::Int) -#25821 := (= #25825 0::Int) -#25915 := (or #23460 #25821) -#25819 := (= #25818 #25632) -#25923 := (or #23460 #25819) -#25933 := (iff #25923 #25915) -#25935 := (iff #25915 #25915) -#25936 := [rewrite]: #25935 -#25820 := (iff #25819 #25821) -#25822 := [rewrite]: #25820 -#25934 := [monotonicity #25822]: #25933 -#25937 := [trans #25934 #25936]: #25933 -#25932 := [quant-inst #356 #25632]: #25923 -#25938 := [mp #25932 #25937]: #25915 -#26537 := [unit-resolution #25938 #21829]: #25821 -#26517 := (not #25821) -#26520 := (or #26517 #25940) -#26519 := [th-lemma arith triangle-eq]: #26520 -#26521 := [unit-resolution #26519 #26537]: #25940 -#25942 := (+ #24810 #25823) -#25945 := (<= #25942 0::Int) -#25941 := (= #24810 #25818) -#26522 := (= #25818 #24810) -#26538 := [monotonicity #26235]: #26522 -#26580 := [symm #26538]: #25941 -#26581 := (not #25941) -#26571 := (or #26581 #25945) -#26640 := [th-lemma arith triangle-eq]: #26571 -#26492 := [unit-resolution #26640 #26580]: #25945 -#26506 := (not #25940) -#26577 := (not #25945) -#26578 := (or #26749 #26577 #26506) -#26579 := [th-lemma arith assign-bounds -1 1]: #26578 -#26498 := [unit-resolution #26579 #26492 #26521]: #26749 -#26750 := (>= #26748 0::Int) -#25939 := (<= #25825 0::Int) -#26582 := (or #26517 #25939) -#26497 := [th-lemma arith triangle-eq]: #26582 -#26576 := [unit-resolution #26497 #26537]: #25939 -#25946 := (>= #25942 0::Int) -#26584 := (or #26581 #25946) -#26575 := [th-lemma arith triangle-eq]: #26584 -#26585 := [unit-resolution #26575 #26580]: #25946 -#26573 := (not #25939) -#26572 := (not #25946) -#26439 := (or #26750 #26572 #26573) -#26587 := [th-lemma arith assign-bounds -1 1]: #26439 -#26583 := [unit-resolution #26587 #26585 #26576]: #26750 -#26586 := (not #26750) -#26588 := (not #26749) -#26637 := (or #26746 #26588 #26586) -#26594 := [th-lemma arith triangle-eq]: #26637 -#26595 := [unit-resolution #26594 #26583 #26498]: #26746 -#26892 := [symm #26595]: #26811 -#26809 := (= #26553 #25632) -#26890 := [hypothesis]: #26751 -#26891 := [symm #26890]: #26809 -#26893 := [trans #26891 #26892]: #26813 -#26894 := [monotonicity #26893]: #26823 -#26827 := (= #26448 #26556) -#26535 := (f140 #25193 f464) -#26536 := (f139 #26535 f35) -#26559 := (= #26536 #26556) -#26562 := (not #26559) -#26543 := (f125 f243 #26536) -#26544 := (f71 #26543 #23413) -#26545 := (= #26544 f1) -#26546 := (not #26545) -#26565 := (or #26546 #26562) -#26568 := (not #26565) -#26542 := (or #24299 #26568) -#26547 := (+ #24890 #25622) -#26548 := (f87 #4654 #26547) -#26549 := (= #26536 #26548) -#26550 := (not #26549) -#26551 := (or #26546 #26550) -#26552 := (not #26551) -#26574 := (or #24299 #26552) -#26629 := (iff #26574 #26542) -#26665 := (iff #26542 #26542) -#26671 := [rewrite]: #26665 -#26569 := (iff #26552 #26568) -#26566 := (iff #26551 #26565) -#26563 := (iff #26550 #26562) -#26560 := (iff #26549 #26559) -#26557 := (= #26548 #26556) -#26554 := (= #26547 #26553) -#26555 := [monotonicity #25631]: #26554 -#26558 := [monotonicity #26555]: #26557 -#26561 := [monotonicity #26558]: #26560 -#26564 := [monotonicity #26561]: #26563 -#26567 := [monotonicity #26564]: #26566 -#26570 := [monotonicity #26567]: #26569 -#26630 := [monotonicity #26570]: #26629 -#26642 := [trans #26630 #26671]: #26629 -#26628 := [quant-inst #23413 #4790 #356]: #26574 -#26645 := [mp #26628 #26642]: #26542 -#26815 := [unit-resolution #26645 #19813]: #26568 -#26654 := (or #26565 #26559) -#26655 := [def-axiom]: #26654 -#26816 := [unit-resolution #26655 #26815]: #26559 -#26821 := (= #26448 #26536) -#26819 := (= #26447 #26535) -#26817 := (= #26535 #26447) -#26818 := [monotonicity #25265]: #26817 -#26820 := [symm #26818]: #26819 -#26822 := [monotonicity #26820]: #26821 -#26828 := [trans #26822 #26816]: #26827 -#26895 := [trans #26828 #26894]: #26829 -#26896 := [trans #26895 #26826]: #26831 -#26897 := [trans #26896 #25810]: #26833 -#26898 := [trans #26897 #25815]: #26835 -#26899 := [monotonicity #26898]: #26837 -#26900 := [symm #26899]: #26839 -#26901 := [monotonicity #26900]: #26841 -#26902 := [trans #26901 #26758]: #26843 -#26903 := [trans #26902 #24984]: #26845 -#26905 := [monotonicity #26903]: #26904 -#26906 := [trans #26905 #13466]: #25869 -#26000 := (not #25869) -#26889 := [hypothesis]: #26000 -#26907 := [unit-resolution #26889 #26906]: false -#26910 := [lemma #26907]: #26909 -#26273 := [unit-resolution #26910 #26388]: #25869 -#26070 := (or #25872 #26000) -#26074 := [def-axiom]: #26070 -#26291 := [unit-resolution #26074 #26273]: #25872 -#26039 := (not #25867) -#26047 := (f45 f79 #25865) -#26048 := (= #26047 f1) -#26058 := (not #26048) -#26009 := (or #25867 #26058) -#26010 := (not #26009) -#26035 := [hypothesis]: #26009 -#26181 := (or #24538 #26010) -#26182 := [quant-inst #25855]: #26181 -#26036 := [unit-resolution #26182 #20844 #26035]: false -#26194 := [lemma #26036]: #26010 -#25999 := (or #26009 #26039) -#26001 := [def-axiom]: #25999 -#26292 := [unit-resolution #26001 #26194]: #26039 -#26118 := (or #25875 #25854 #25864 #25867 #25873) -#26119 := [def-axiom]: #26118 -#26295 := [unit-resolution #26119 #26292 #26291]: #26278 -#26296 := [unit-resolution #26295 #26270 #26175]: #25875 -#26167 := (or #25884 #25874) -#26168 := [def-axiom]: #26167 -#26300 := [unit-resolution #26168 #26296 #26207]: false -#26293 := [lemma #26300]: #4945 -#26678 := (= f464 ?v0!14) -#26712 := (not #26678) -#26680 := (= #4947 #17241) -#26686 := (not #26680) -#26685 := (+ #4947 #17543) -#26687 := (>= #26685 0::Int) -#26696 := (not #26687) -#26018 := (+ #4947 #12696) -#26019 := (<= #26018 0::Int) -#26867 := [hypothesis]: #12829 -#21362 := (+ f462 #12696) -#21363 := (<= #21362 0::Int) -#21359 := (= f462 f470) -#26738 := (iff #5026 #21359) -#26736 := (iff #21359 #5026) -#26737 := [commutativity]: #26736 -#26739 := [symm #26737]: #26738 -#26868 := (or #17180 #21984) -#22172 := (or #22005 #21999) -#22173 := [def-axiom]: #22172 -#25948 := [unit-resolution #22173 #25918]: #21999 -#22164 := (or #22002 #17171 #17174 #21996) -#22165 := [def-axiom]: #22164 -#25949 := [unit-resolution #22165 #25948]: #21999 -#25950 := [unit-resolution #25949 #25947 #25832]: #21996 -#22154 := (or #21993 #21987) -#22155 := [def-axiom]: #22154 -#25951 := [unit-resolution #22155 #25950]: #21987 -#22148 := (or #21990 #17171 #17180 #21984) -#22149 := [def-axiom]: #22148 -#26875 := [unit-resolution #22149 #25832 #25951]: #26868 -#26876 := [unit-resolution #26875 #26293]: #21984 -#22138 := (or #21981 #21975) -#22139 := [def-axiom]: #22138 -#26885 := [unit-resolution #22139 #26876]: #21975 -#21370 := (or #21963 #12828) -#21372 := [def-axiom]: #21370 -#26886 := [unit-resolution #21372 #26867]: #21963 -#22128 := (or #21978 #21966 #21972) -#22129 := [def-axiom]: #22128 -#26734 := [unit-resolution #22129 #26886 #26885]: #21972 -#21356 := (or #21969 #5026) -#21357 := [def-axiom]: #21356 -#26735 := [unit-resolution #21357 #26734]: #5026 -#26740 := [mp #26735 #26739]: #21359 -#26741 := (not #21359) -#26744 := (or #26741 #21363) -#26877 := [th-lemma arith triangle-eq]: #26744 -#26878 := [unit-resolution #26877 #26740]: #21363 -#26879 := (not #21363) -#26880 := (or #26019 #12828 #26879) -#26881 := [th-lemma arith assign-bounds 1 -1]: #26880 -#26882 := [unit-resolution #26881 #26878 #26867]: #26019 -#21516 := (not #17545) -#26067 := [hypothesis]: #21936 -#21350 := (or #21969 #21933) -#22121 := [def-axiom]: #21350 -#26379 := [unit-resolution #22121 #26067]: #21969 -#26007 := (or #21957 #21972) -#25952 := [hypothesis]: #21960 -#21379 := (or #21957 #21951) -#21380 := [def-axiom]: #21379 -#25953 := [unit-resolution #21380 #25952]: #21951 -#21385 := (or #21954 #17171 #17174 #21948) -#21387 := [def-axiom]: #21385 -#25891 := [unit-resolution #21387 #25953 #25832 #25947]: #21948 -#21411 := (or #21945 #4945) -#21412 := [def-axiom]: #21411 -#25892 := [unit-resolution #21412 #25891]: #4945 -#26002 := [hypothesis]: #21969 -#21373 := (or #21963 #21957) -#21374 := [def-axiom]: #21373 -#26003 := [unit-resolution #21374 #25952]: #21963 -#26004 := [unit-resolution #22129 #26003 #26002]: #21978 -#26005 := [unit-resolution #22139 #26004]: #21981 -#26006 := [unit-resolution #22149 #26005 #25892 #25832 #25951]: false -#26008 := [lemma #26006]: #26007 -#26025 := [unit-resolution #26008 #26379]: #21957 -#21423 := (or #21939 #21933) -#21424 := [def-axiom]: #21423 -#26666 := [unit-resolution #21424 #26067]: #21939 -#26614 := (or #21948 #17180 #21942) -#21398 := (or #21948 #17171 #17180 #21942) -#21399 := [def-axiom]: #21398 -#26613 := [unit-resolution #21399 #25832]: #26614 -#26616 := [unit-resolution #26613 #26666 #26293]: #21948 -#21392 := (or #21951 #21945) -#21404 := [def-axiom]: #21392 -#26617 := [unit-resolution #21404 #26616]: #21951 -#26639 := (or #21960 #21954) -#21383 := (or #21960 #17171 #17174 #21954) -#21378 := [def-axiom]: #21383 -#26591 := [unit-resolution #21378 #25832 #25947]: #26639 -#26589 := [unit-resolution #26591 #26617 #26025]: false -#26625 := [lemma #26589]: #21933 -#26427 := (or #21936 #21930) -#13804 := (<= f443 4294967295::Int) -#13803 := (iff #12567 #13804) -#13810 := (+ 4294967295::Int #12568) -#13809 := (>= #13810 0::Int) -#13805 := (iff #13809 #13804) -#13802 := [rewrite]: #13805 -#13806 := (iff #12567 #13809) -#13811 := (= #12569 #13810) -#13808 := [monotonicity #9369]: #13811 -#13807 := [monotonicity #13808]: #13806 -#13800 := [trans #13807 #13802]: #13803 -#13482 := [not-or-elim #13452]: #12572 -#13484 := [and-elim #13482]: #12567 -#13801 := [mp #13484 #13800]: #13804 -#26422 := (not #13804) -#26423 := (or #13727 #26422 #12922) -#26424 := [th-lemma arith assign-bounds -1 1]: #26423 -#26411 := [unit-resolution #26424 #25919 #13801]: #13727 -#26425 := (or #21206 #12660) -#26416 := [th-lemma arith farkas 1 1]: #26425 -#26426 := [unit-resolution #26416 #25920]: #12660 -#21458 := (or #21936 #17209 #17212 #21930) -#21450 := [def-axiom]: #21458 -#26414 := [unit-resolution #21450 #26426 #26411]: #26427 -#26883 := [unit-resolution #26414 #26625]: #21930 -#21469 := (or #21927 #21921) -#21477 := [def-axiom]: #21469 -#26884 := [unit-resolution #21477 #26883]: #21921 -#21524 := (>= #12740 -1::Int) -#21468 := (or #21927 #12739) -#21470 := [def-axiom]: #21468 -#26887 := [unit-resolution #21470 #26883]: #12739 -#26434 := (or #12743 #21524) -#26435 := [th-lemma arith triangle-eq]: #26434 -#26888 := [unit-resolution #26435 #26887]: #21524 -#26442 := (not #21524) -#26911 := (or #12676 #26442) -#26436 := (or #12676 #26442 #12922) -#26443 := [th-lemma arith assign-bounds -1 -1]: #26436 -#26912 := [unit-resolution #26443 #25919]: #26911 -#26913 := [unit-resolution #26912 #26888]: #12676 -#21487 := (or #21924 #12681 #21918) -#21488 := [def-axiom]: #21487 -#26914 := [unit-resolution #21488 #26913 #26884]: #21918 -#21478 := (or #21915 #21909) -#21480 := [def-axiom]: #21478 -#26915 := [unit-resolution #21480 #26914]: #21909 -#26923 := [symm #26735]: #21359 -#26924 := (= #4990 f462) -#26921 := (= #4990 #4805) -#26919 := (= #4989 #4804) -#26917 := (= #4988 #4803) -#21353 := (or #21969 #5027) -#21358 := [def-axiom]: #21353 -#26916 := [unit-resolution #21358 #26734]: #5027 -#26918 := [monotonicity #26916]: #26917 -#26920 := [monotonicity #26918]: #26919 -#26922 := [monotonicity #26920]: #26921 -#26925 := [trans #26922 #25689]: #26924 -#26926 := [trans #26925 #26923]: #4991 -#21368 := (+ f463 #12718) -#21369 := (>= #21368 0::Int) -#21367 := (= f463 f471) -#26929 := (iff #5027 #21367) -#26927 := (iff #21367 #5027) -#26928 := [commutativity]: #26927 -#26930 := [symm #26928]: #26929 -#26931 := [mp #26916 #26930]: #21367 -#26932 := (not #21367) -#26933 := (or #26932 #21369) -#26934 := [th-lemma arith triangle-eq]: #26933 -#26935 := [unit-resolution #26934 #26931]: #21369 -#26936 := (not #21369) -#26937 := (or #12721 #13095 #26936) -#26938 := [th-lemma arith assign-bounds -1 -1]: #26937 -#26939 := [unit-resolution #26938 #26935 #25690]: #12721 -#21505 := (or #20987 #12720 #20985) -#21497 := [def-axiom]: #21505 -#26940 := [unit-resolution #21497 #26939 #26926]: #20987 -#21502 := (or #21903 #20986) -#21506 := [def-axiom]: #21502 -#26941 := [unit-resolution #21506 #26940]: #21903 -#21494 := (or #21912 #20971 #21906) -#21495 := [def-axiom]: #21494 -#26942 := [unit-resolution #21495 #26941 #26915]: #20971 -#21519 := (or #20966 #21516) -#21517 := [def-axiom]: #21519 -#26943 := [unit-resolution #21517 #26942]: #21516 -#26697 := (not #26019) -#26698 := (or #26696 #17545 #26697) -#26692 := [hypothesis]: #26687 -#26693 := [hypothesis]: #26019 -#26694 := [hypothesis]: #21516 -#26695 := [th-lemma arith farkas -1 -1 1 #26694 #26693 #26692]: false -#26699 := [lemma #26695]: #26698 -#26944 := [unit-resolution #26699 #26943 #26882]: #26696 -#26688 := (or #26686 #26687) -#26689 := [th-lemma arith triangle-eq]: #26688 -#26945 := [unit-resolution #26689 #26944]: #26686 -#26713 := (or #26712 #26680) -#26708 := (= #17241 #4947) -#26706 := (= #17240 #4937) -#26704 := (= #17239 #4936) -#26702 := (= ?v0!14 f464) -#26701 := [hypothesis]: #26678 -#26703 := [symm #26701]: #26702 -#26705 := [monotonicity #26703]: #26704 -#26707 := [monotonicity #26705]: #26706 -#26709 := [monotonicity #26707]: #26708 -#26710 := [symm #26709]: #26680 -#26700 := [hypothesis]: #26686 -#26711 := [unit-resolution #26700 #26710]: false -#26714 := [lemma #26711]: #26713 -#26946 := [unit-resolution #26714 #26945]: #26712 -#26320 := (+ f464 #17530) -#26420 := (>= #26320 0::Int) -#21530 := (not #17532) -#21509 := (or #20966 #21530) -#21512 := [def-axiom]: #21509 -#26947 := [unit-resolution #21512 #26942]: #21530 -#26948 := (or #26420 #26442 #17532) -#26949 := [th-lemma arith assign-bounds -1 -1]: #26948 -#26950 := [unit-resolution #26949 #26947 #26888]: #26420 -#26321 := (<= #26320 0::Int) -#26332 := (+ f462 #17543) -#26333 := (>= #26332 0::Int) -#26493 := (not #26333) -#26951 := (or #26493 #17545 #26879) -#26952 := [th-lemma arith assign-bounds -1 -1]: #26951 -#26953 := [unit-resolution #26952 #26878 #26943]: #26493 -#21525 := (or #20966 #17234) -#21527 := [def-axiom]: #21525 -#26954 := [unit-resolution #21527 #26942]: #17234 -#21528 := (or #20966 #17233) -#21529 := [def-axiom]: #21528 -#26955 := [unit-resolution #21529 #26942]: #17233 -#26341 := (or #21892 #20950 #20951 #26321 #26333) -#26311 := (+ #17241 #13117) -#26312 := (<= #26311 0::Int) -#26303 := (+ ?v0!14 #12663) -#26304 := (>= #26303 0::Int) -#26313 := (or #20950 #20951 #26304 #26312) -#26342 := (or #21892 #26313) -#26349 := (iff #26342 #26341) -#26338 := (or #20950 #20951 #26321 #26333) -#26344 := (or #21892 #26338) -#26347 := (iff #26344 #26341) -#26348 := [rewrite]: #26347 -#26345 := (iff #26342 #26344) -#26339 := (iff #26313 #26338) -#26336 := (iff #26312 #26333) -#26326 := (+ #13117 #17241) -#26329 := (<= #26326 0::Int) -#26334 := (iff #26329 #26333) -#26335 := [rewrite]: #26334 -#26330 := (iff #26312 #26329) -#26327 := (= #26311 #26326) -#26328 := [rewrite]: #26327 -#26331 := [monotonicity #26328]: #26330 -#26337 := [trans #26331 #26335]: #26336 -#26324 := (iff #26304 #26321) -#26314 := (+ #12663 ?v0!14) -#26317 := (>= #26314 0::Int) -#26322 := (iff #26317 #26321) -#26323 := [rewrite]: #26322 -#26318 := (iff #26304 #26317) -#26315 := (= #26303 #26314) -#26316 := [rewrite]: #26315 -#26319 := [monotonicity #26316]: #26318 -#26325 := [trans #26319 #26323]: #26324 -#26340 := [monotonicity #26325 #26337]: #26339 -#26346 := [monotonicity #26340]: #26345 -#26350 := [trans #26346 #26348]: #26349 -#26343 := [quant-inst #17232]: #26342 -#26351 := [mp #26343 #26350]: #26341 -#26956 := [unit-resolution #26351 #25659 #26955 #26954 #26953]: #26321 -#26539 := (not #26420) -#26518 := (not #26321) -#26526 := (or #26678 #26518 #26539) -#26527 := [th-lemma arith triangle-eq]: #26526 -#26957 := [unit-resolution #26527 #26956 #26950 #26946]: false -#26958 := [lemma #26957]: #12828 -#26540 := (or #21939 #12829) -#26421 := [hypothesis]: #21942 -#26419 := [unit-resolution #21424 #26421]: #21933 -#26428 := [unit-resolution #26414 #26419]: #21930 -#26429 := [unit-resolution #21477 #26428]: #21921 -#26432 := [unit-resolution #21470 #26428]: #12739 -#26441 := [unit-resolution #26435 #26432]: #21524 -#26444 := [unit-resolution #26443 #26441 #25919]: #12676 -#26440 := [unit-resolution #21488 #26444 #26429]: #21918 -#26478 := [unit-resolution #21480 #26440]: #21909 -#26485 := (= f469 f470) -#21437 := (or #21939 #4963) -#21447 := [def-axiom]: #21437 -#26479 := [unit-resolution #21447 #26421]: #4963 -#26486 := [symm #26479]: #26485 -#26487 := (= #4990 f469) -#26415 := (= #4947 f469) -#21442 := (or #21939 #4950) -#21443 := [def-axiom]: #21442 -#26445 := [unit-resolution #21443 #26421]: #4950 -#26484 := [symm #26445]: #26415 -#26482 := (= #4990 #4947) -#26480 := (= #4989 #4937) -#26469 := (= #4988 #4936) -#21414 := (or #21939 #4965) -#21416 := [def-axiom]: #21414 -#26468 := [unit-resolution #21416 #26421]: #4965 -#26470 := [monotonicity #26468]: #26469 -#26481 := [monotonicity #26470]: #26480 -#26483 := [monotonicity #26481]: #26482 -#26488 := [trans #26483 #26484]: #26487 -#26505 := [trans #26488 #26486]: #4991 -#26014 := (+ f464 #12718) -#26016 := (>= #26014 0::Int) -#26013 := (= f464 f471) -#26431 := [symm #26468]: #26013 -#26471 := (not #26013) -#26472 := (or #26471 #26016) -#26467 := [th-lemma arith triangle-eq]: #26472 -#26473 := [unit-resolution #26467 #26431]: #26016 -#26418 := (not #26016) -#26474 := (or #12721 #26418 #12922) -#26475 := [th-lemma arith assign-bounds -1 -1]: #26474 -#26476 := [unit-resolution #26475 #26473 #25919]: #12721 -#26477 := [unit-resolution #21497 #26476 #26505]: #20987 -#26433 := [unit-resolution #21506 #26477]: #21903 -#26509 := [unit-resolution #21495 #26433 #26478]: #20971 -#26500 := [unit-resolution #21512 #26509]: #21530 -#26017 := (= #4947 f470) -#26501 := [trans #26484 #26486]: #26017 -#26499 := (not #26017) -#26502 := (or #26499 #26019) -#26503 := [th-lemma arith triangle-eq]: #26502 -#26504 := [unit-resolution #26503 #26501]: #26019 -#26510 := [unit-resolution #21517 #26509]: #21516 -#26511 := [unit-resolution #26699 #26510 #26504]: #26696 -#26507 := [unit-resolution #26689 #26511]: #26686 -#26491 := [unit-resolution #26714 #26507]: #26712 -#26525 := (or #26678 #26539) -#26494 := [hypothesis]: #12828 -#26495 := (or #26493 #17545 #26697 #12829) -#26496 := [th-lemma arith assign-bounds 1 1 1]: #26495 -#26508 := [unit-resolution #26496 #26510 #26504 #26494]: #26493 -#26512 := (or #26321 #26333) -#26523 := [unit-resolution #21527 #26509]: #17234 -#26524 := [unit-resolution #21529 #26509]: #17233 -#26531 := [unit-resolution #26351 #25659 #26524 #26523]: #26512 -#26532 := [unit-resolution #26531 #26508]: #26321 -#26528 := [unit-resolution #26527 #26532]: #26525 -#26529 := [unit-resolution #26528 #26491]: #26539 -#26530 := [th-lemma arith farkas 1 -1 1 #26441 #26529 #26500]: false -#26541 := [lemma #26530]: #26540 -#26716 := [unit-resolution #26541 #26958]: #21939 -#26618 := [unit-resolution #26613 #26716 #26293]: #21948 -#21352 := (or #21969 #12829) -#21355 := [def-axiom]: #21352 -#26661 := [unit-resolution #21355 #26958]: #21969 -#26593 := [unit-resolution #26008 #26661]: #21957 -#26438 := [unit-resolution #26591 #26593]: #21954 -[unit-resolution #21404 #26438 #26618]: false -unsat diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/VCC_Max.certs2 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/SMT_Examples/VCC_Max.certs2 Thu May 01 22:57:38 2014 +0200 @@ -0,0 +1,2831 @@ +d89d419269a26cf0f9e2b838b7d86233eeb72c17 2830 0 +unsat +((set-logic ) +(declare-fun ?v0!14 () Int) +(declare-fun ?v0!15 () Int) +(declare-fun ?v0!13 () Int) +(proof +(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$))) +(let ((?x3680 (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))) +(let ((?x3922 (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$))) +(let ((?x3929 (b_S_read_n_u1$ v_b_S_s$ ?x3922))) +(let (($x24191 (<= (+ ?x3929 ?x12534) 0))) +(let (($x3940 (= v_b_L_H_max_G_3$ v_b_L_H_max_G_2$))) +(let ((?x3974 (b_S_idx$ ?x3680 v_b_SL_H_witness_G_1$ b_T_T_u1$))) +(let ((?x3975 (b_S_read_n_u1$ v_b_S_s$ ?x3974))) +(let (($x3976 (= ?x3975 v_b_L_H_max_G_3$))) +(let (($x12550 (<= (+ v_b_P_H_len$ (* (- 1) v_b_SL_H_witness_G_1$)) 0))) +(let (($x20130 (or $x12550 (not $x3976)))) +(let (($x20131 (not $x20130))) +(let (($x21049 (forall ((?v0 Int) )(!(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12536 (<= (+ ?x3765 ?x12534) 0))) +(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12521 $x12536))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +)) +(let (($x21057 (or (not $x21049) $x20131))) +(let (($x21060 (not $x21057))) +(let ((?x16374 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?v0!14 b_T_T_u1$)))) +(let ((?x16620 (* (- 1) ?x16374))) +(let (($x16622 (>= (+ v_b_L_H_max_G_3$ ?x16620) 0))) +(let (($x16600 (<= (+ v_b_L_H_p_G_1$ (* (- 1) ?v0!14)) 0))) +(let (($x16367 (<= ?v0!14 4294967295))) +(let (($x20084 (not $x16367))) +(let (($x16366 (>= ?v0!14 0))) +(let (($x20083 (not $x16366))) +(let (($x20099 (or $x20083 $x20084 $x16600 $x16622))) +(let (($x20104 (not $x20099))) +(let (($x21063 (or $x20104 $x21060))) +(let (($x21066 (not $x21063))) +(let (($x12514 (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_1$)) 0))) +(let (($x12518 (not $x12514))) +(let (($x21069 (or $x12518 $x21066))) +(let (($x21072 (not $x21069))) +(let (($x21075 (or $x12518 $x21072))) +(let (($x21078 (not $x21075))) +(let (($x12486 (>= v_b_SL_H_witness_G_1$ 0))) +(let (($x20173 (not $x12486))) +(let (($x3960 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_24$ b_H_loc_o_p$ v_b_L_H_p_G_1$ b_T_T_u4$))) +(let (($x12500 (= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_L_H_p_G_1$)) (- 1)))) +(let (($x20170 (not $x12500))) +(let (($x13856 (<= v_b_L_H_p_G_0$ 4294967294))) +(let (($x16354 (not $x13856))) +(let (($x12494 (>= v_b_L_H_p_G_0$ (- 1)))) +(let (($x16351 (not $x12494))) +(let (($x21081 (or $x16351 $x16354 $x20170 (not $x3960) (not (>= v_b_L_H_p_G_1$ 2)) $x20173 $x21078))) +(let (($x21084 (not $x21081))) +(let (($x21087 (or $x16351 $x16354 $x21084))) +(let (($x21090 (not $x21087))) +(let (($x12404 (>= v_b_L_H_p_G_0$ 1))) +(let (($x20190 (not $x12404))) +(let (($x3937 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_24_o_47$ b_H_loc_o_witness$ v_b_L_H_p_G_0$ b_T_T_u4$))) +(let (($x3936 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_23_o_7$ b_H_loc_o_max$ v_b_L_H_max_G_2$ b_T_T_u1$))) +(let (($x3926 (b_S_thread_n_local$ v_b_S_s$ ?x3922))) +(let (($x16339 (not $x3926))) +(let (($x3923 (b_S_is$ ?x3922 b_T_T_u1$))) +(let (($x16330 (not $x3923))) +(let (($x21093 (or $x16330 $x16339 (not (= v_b_L_H_max_G_2$ ?x3929)) (not $x3936) (not $x3937) $x20190 (not $x3940) (not (= v_b_SL_H_witness_G_1$ v_b_L_H_p_G_0$)) $x20173 $x21090))) +(let (($x21096 (not $x21093))) +(let ((?x24124 (b_S_ref$ ?x3922))) +(let ((?x23972 (b_S_ptr$ b_T_T_u1$ ?x24124))) +(let (($x24221 (or (= (b_S_owner$ v_b_S_s$ ?x23972) b_S_me$) (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x23972)))) +(let (($x24198 (= (b_S_kind_n_of$ (b_S_typ$ ?x23972)) b_S_kind_n_primitive$))) +(let ((?x3874 (b_S_typemap$ v_b_S_s$))) +(let ((?x24200 (b_S_select_o_tm$ ?x3874 ?x23972))) +(let ((?x24203 (b_S_ts_n_emb$ ?x24200))) +(let (($x24212 (= (b_S_owner$ v_b_S_s$ ?x24203) b_S_me$))) +(let (($x24214 (or $x24212 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x24203)))) +(let (($x24210 (= (b_S_kind_n_of$ (b_S_typ$ ?x24203)) b_S_kind_n_primitive$))) +(let (($x24201 (b_S_ts_n_is_n_volatile$ ?x24200))) +(let (($x24202 (not $x24201))) +(let (($x24206 (or $x24202 (not (b_S_closed$ v_b_S_s$ ?x24203))))) +(let (($x24207 (not $x24206))) +(let (($x24199 (not $x24198))) +(let (($x24217 (not (or $x24199 $x24207 $x24210 (not $x24214))))) +(let (($x24226 (not (or $x24217 (not (or $x24198 (not $x24221))))))) +(let (($x24194 (b_S_typed$ v_b_S_s$ ?x23972))) +(let (($x24195 (not $x24194))) +(let (($x24227 (or $x24195 $x24226))) +(let (($x24228 (not $x24227))) +(let (($x24193 (b_S_thread_n_local$ v_b_S_s$ ?x23972))) +(let (($x24229 (= $x24193 $x24228))) +(let (($x19790 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x1103 (b_S_owner$ ?v0 ?v1))) +(let (($x1104 (= ?x1103 b_S_me$))) +(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let ((?x1215 (b_S_typemap$ ?v0))) +(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1))) +(let ((?x3169 (b_S_ts_n_emb$ ?x3166))) +(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169)))) +(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169))))) +(let (($x1024 (not $x1001))) +(let (($x19765 (or $x1024 (not $x3172) (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$) (not $x3180)))) +(let (($x19774 (or (not $x19765) (not (or $x1001 (not (or $x1104 $x3184))))))) +(let (($x1106 (b_S_typed$ ?v0 ?v1))) +(let (($x8534 (not $x1106))) +(let (($x19782 (not (or $x8534 (not $x19774))))) +(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x3165 $x19782))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) +)) +(let (($x12140 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x1103 (b_S_owner$ ?v0 ?v1))) +(let (($x1104 (= ?x1103 b_S_me$))) +(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let (($x1024 (not $x1001))) +(let (($x3186 (and $x1024 (or $x1104 $x3184)))) +(let ((?x1215 (b_S_typemap$ ?v0))) +(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1))) +(let ((?x3169 (b_S_ts_n_emb$ ?x3166))) +(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169)))) +(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$)))) +(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169))))) +(let (($x8324 (and $x1001 $x3172 $x3176 $x3180))) +(let (($x8329 (or $x8324 $x3186))) +(let (($x1106 (b_S_typed$ ?v0 ?v1))) +(let (($x8332 (and $x1106 $x8329))) +(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x3165 $x8332)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) +)) +(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?1 ?0))) +(let ((?x1103 (b_S_owner$ ?1 ?0))) +(let (($x1104 (= ?x1103 b_S_me$))) +(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?0)) b_S_kind_n_primitive$))) +(let ((?x1215 (b_S_typemap$ ?1))) +(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?0))) +(let ((?x3169 (b_S_ts_n_emb$ ?x3166))) +(let (($x3180 (or (= (b_S_owner$ ?1 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?1 ?x3169)))) +(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?1 ?x3169))))) +(let (($x1024 (not $x1001))) +(let (($x19765 (or $x1024 (not $x3172) (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$) (not $x3180)))) +(let (($x19774 (or (not $x19765) (not (or $x1001 (not (or $x1104 $x3184))))))) +(let (($x1106 (b_S_typed$ ?1 ?0))) +(let (($x8534 (not $x1106))) +(let (($x19782 (not (or $x8534 (not $x19774))))) +(let (($x3165 (b_S_thread_n_local$ ?1 ?0))) +(let (($x3186 (and $x1024 (or $x1104 $x3184)))) +(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$)))) +(let (($x8324 (and $x1001 $x3172 $x3176 $x3180))) +(let (($x8329 (or $x8324 $x3186))) +(let (($x8332 (and $x1106 $x8329))) +(let (($x12136 (= $x3165 $x8332))) +(let ((@x19776 (monotonicity (rewrite (= $x8324 (not $x19765))) (rewrite (= $x3186 (not (or $x1001 (not (or $x1104 $x3184)))))) (= $x8329 $x19774)))) +(let ((@x19786 (trans (monotonicity @x19776 (= $x8332 (and $x1106 $x19774))) (rewrite (= (and $x1106 $x19774) $x19782)) (= $x8332 $x19782)))) +(let ((@x19792 (quant-intro (monotonicity @x19786 (= $x12136 (= $x3165 $x19782))) (= $x12140 $x19790)))) +(let (($x8338 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x1103 (b_S_owner$ ?v0 ?v1))) +(let (($x1104 (= ?x1103 b_S_me$))) +(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let (($x1024 (not $x1001))) +(let (($x3186 (and $x1024 (or $x1104 $x3184)))) +(let ((?x1215 (b_S_typemap$ ?v0))) +(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1))) +(let ((?x3169 (b_S_ts_n_emb$ ?x3166))) +(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169)))) +(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$)))) +(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169))))) +(let (($x8324 (and $x1001 $x3172 $x3176 $x3180))) +(let (($x8329 (or $x8324 $x3186))) +(let (($x1106 (b_S_typed$ ?v0 ?v1))) +(let (($x8332 (and $x1106 $x8329))) +(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x3165 $x8332)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) +)) +(let (($x3191 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3184 (b_S_in_n_wrapped_n_domain$ ?v0 ?v1))) +(let ((?x1103 (b_S_owner$ ?v0 ?v1))) +(let (($x1104 (= ?x1103 b_S_me$))) +(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let (($x1024 (not $x1001))) +(let (($x3186 (and $x1024 (or $x1104 $x3184)))) +(let ((?x1215 (b_S_typemap$ ?v0))) +(let ((?x3166 (b_S_select_o_tm$ ?x1215 ?v1))) +(let ((?x3169 (b_S_ts_n_emb$ ?x3166))) +(let (($x3180 (or (= (b_S_owner$ ?v0 ?x3169) b_S_me$) (b_S_in_n_wrapped_n_domain$ ?v0 ?x3169)))) +(let (($x3176 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x3169)) b_S_kind_n_primitive$)))) +(let (($x3172 (or (not (b_S_ts_n_is_n_volatile$ ?x3166)) (not (b_S_closed$ ?v0 ?x3169))))) +(let (($x3183 (and $x1001 (and $x3172 (and $x3176 $x3180))))) +(let (($x1106 (b_S_typed$ ?v0 ?v1))) +(let (($x3165 (b_S_thread_n_local$ ?v0 ?v1))) +(= $x3165 (and $x1106 (or $x3183 $x3186)))))))))))))))))) :pattern ( (b_S_thread_n_local$ ?v0 ?v1) ))) +)) +(let (($x8335 (= $x3165 $x8332))) +(let (($x8336 (= (= $x3165 (and $x1106 (or (and $x1001 (and $x3172 (and $x3176 $x3180))) $x3186))) $x8335))) +(let (($x8333 (= (and $x1106 (or (and $x1001 (and $x3172 (and $x3176 $x3180))) $x3186)) $x8332))) +(let (($x3183 (and $x1001 (and $x3172 (and $x3176 $x3180))))) +(let ((@x8323 (monotonicity (rewrite (= (and $x3172 (and $x3176 $x3180)) (and $x3172 $x3176 $x3180))) (= $x3183 (and $x1001 (and $x3172 $x3176 $x3180)))))) +(let ((@x8328 (trans @x8323 (rewrite (= (and $x1001 (and $x3172 $x3176 $x3180)) $x8324)) (= $x3183 $x8324)))) +(let ((@x8337 (monotonicity (monotonicity (monotonicity @x8328 (= (or $x3183 $x3186) $x8329)) $x8333) $x8336))) +(let ((@x12145 (mp (mp (asserted $x3191) (quant-intro @x8337 (= $x3191 $x8338)) $x8338) (quant-intro (rewrite (= $x8335 $x12136)) (= $x8338 $x12140)) $x12140))) +(let ((@x19793 (mp (mp~ @x12145 (nnf-pos (refl (~ $x12136 $x12136)) (~ $x12140 $x12140)) $x12140) @x19792 $x19790))) +(let (($x23973 (= ?x3922 ?x23972))) +(let ((?x23986 (b_S_typ$ ?x3922))) +(let (($x23984 (= ?x23986 b_T_T_u1$))) +(let ((?x3652 (b_S_sizeof$ b_T_T_u1$))) +(let ((?x24037 (* ?x3652 v_b_L_H_p_G_0$))) +(let ((?x3739 (b_S_idx$ ?x3680 0 b_T_T_u1$))) +(let ((?x23186 (b_S_ref$ ?x3739))) +(let ((?x23206 (b_S_ptr$ b_T_T_u1$ ?x23186))) +(let ((?x23612 (b_S_ref$ ?x23206))) +(let ((?x24040 (+ ?x23612 ?x24037))) +(let ((?x24043 (b_S_ptr$ b_T_T_u1$ ?x24040))) +(let (($x20974 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0) :pattern ( (b_S_ptr$ ?v0 ?v1) ))) +)) +(let (($x3462 (forall ((?v0 B_S_ctype$) (?v1 Int) )(= (b_S_typ$ (b_S_ptr$ ?v0 ?v1)) ?v0)) +)) +(let (($x3461 (= (b_S_typ$ (b_S_ptr$ ?1 ?0)) ?1))) +(let ((@x16101 (mp~ (asserted $x3462) (nnf-pos (refl (~ $x3461 $x3461)) (~ $x3462 $x3462)) $x3462))) +(let ((@x20979 (mp @x16101 (quant-intro (refl (= $x3461 $x3461)) (= $x3462 $x20974)) $x20974))) +(let ((@x24995 (unit-resolution ((_ quant-inst b_T_T_u1$ (+ ?x23612 ?x24037)) (or (not $x20974) (= (b_S_typ$ ?x24043) b_T_T_u1$))) @x20979 (= (b_S_typ$ ?x24043) b_T_T_u1$)))) +(let ((?x23996 (b_S_idx$ ?x23206 v_b_L_H_p_G_0$ b_T_T_u1$))) +(let (($x24957 (= ?x23996 ?x24043))) +(let (($x24973 (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) (not $x24957)))) +(let (($x24976 (not $x24973))) +(let (($x18898 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x2466 (* ?v1 (b_S_sizeof$ ?v2)))) +(let ((?x2467 (+ (b_S_ref$ ?v0) ?x2466))) +(let ((?x2468 (b_S_ptr$ ?v2 ?x2467))) +(let ((?x2462 (b_S_idx$ ?v0 ?v1 ?v2))) +(let (($x2469 (= ?x2462 ?x2468))) +(not (or (not (b_S_extent_n_hint$ ?x2462 ?v0)) (not $x2469)))))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) ))) +)) +(let (($x2472 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x2466 (* ?v1 (b_S_sizeof$ ?v2)))) +(let ((?x2467 (+ (b_S_ref$ ?v0) ?x2466))) +(let ((?x2468 (b_S_ptr$ ?v2 ?x2467))) +(let ((?x2462 (b_S_idx$ ?v0 ?v1 ?v2))) +(let (($x2469 (= ?x2462 ?x2468))) +(let (($x2463 (b_S_extent_n_hint$ ?x2462 ?v0))) +(and $x2463 $x2469))))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) ))) +)) +(let ((?x2466 (* ?1 (b_S_sizeof$ ?0)))) +(let ((?x2467 (+ (b_S_ref$ ?2) ?x2466))) +(let ((?x2468 (b_S_ptr$ ?0 ?x2467))) +(let ((?x2462 (b_S_idx$ ?2 ?1 ?0))) +(let (($x2469 (= ?x2462 ?x2468))) +(let (($x2463 (b_S_extent_n_hint$ ?x2462 ?2))) +(let (($x2470 (and $x2463 $x2469))) +(let ((@x18900 (quant-intro (rewrite (= $x2470 (not (or (not $x2463) (not $x2469))))) (= $x2472 $x18898)))) +(let (($x7455 (forall ((?v0 B_S_ptr$) (?v1 Int) (?v2 B_S_ctype$) )(!(let ((?x7440 (* (b_S_sizeof$ ?v2) ?v1))) +(let ((?x7443 (+ (b_S_ref$ ?v0) ?x7440))) +(let ((?x7446 (b_S_ptr$ ?v2 ?x7443))) +(let ((?x2462 (b_S_idx$ ?v0 ?v1 ?v2))) +(let (($x7449 (= ?x2462 ?x7446))) +(let (($x2463 (b_S_extent_n_hint$ ?x2462 ?v0))) +(and $x2463 $x7449))))))) :pattern ( (b_S_idx$ ?v0 ?v1 ?v2) ))) +)) +(let ((?x7440 (* (b_S_sizeof$ ?0) ?1))) +(let ((?x7443 (+ (b_S_ref$ ?2) ?x7440))) +(let ((?x7446 (b_S_ptr$ ?0 ?x7443))) +(let (($x7449 (= ?x2462 ?x7446))) +(let (($x7452 (and $x2463 $x7449))) +(let ((@x11827 (monotonicity (monotonicity (rewrite (= ?x7440 ?x2466)) (= ?x7443 ?x2467)) (= ?x7446 ?x2468)))) +(let ((@x11833 (quant-intro (monotonicity (monotonicity @x11827 (= $x7449 $x2469)) (= $x7452 $x2470)) (= $x7455 $x2472)))) +(let ((@x7448 (monotonicity (monotonicity (rewrite (= ?x2466 ?x7440)) (= ?x2467 ?x7443)) (= ?x2468 ?x7446)))) +(let ((@x7457 (quant-intro (monotonicity (monotonicity @x7448 (= $x2469 $x7449)) (= $x2470 $x7452)) (= $x2472 $x7455)))) +(let ((@x15301 (mp~ (mp (mp (asserted $x2472) @x7457 $x7455) @x11833 $x2472) (nnf-pos (refl (~ $x2470 $x2470)) (~ $x2472 $x2472)) $x2472))) +(let ((@x18901 (mp @x15301 @x18900 $x18898))) +(let (($x23217 (not $x18898))) +(let (($x24981 (or $x23217 $x24976))) +(let (($x24034 (not (= ?x23996 (b_S_ptr$ b_T_T_u1$ (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652))))))) +(let (($x24986 (= (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034))) $x24981))) +(let (($x24958 (= (= ?x23996 (b_S_ptr$ b_T_T_u1$ (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652)))) $x24957))) +(let ((@x24955 (monotonicity (rewrite (= (* v_b_L_H_p_G_0$ ?x3652) ?x24037)) (= (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652)) ?x24040)))) +(let ((@x24956 (monotonicity @x24955 (= (b_S_ptr$ b_T_T_u1$ (+ ?x23612 (* v_b_L_H_p_G_0$ ?x3652))) ?x24043)))) +(let ((@x24975 (monotonicity (monotonicity (monotonicity @x24956 $x24958) (= $x24034 (not $x24957))) (= (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034) $x24973)))) +(let ((@x24983 (monotonicity @x24975 (= (not (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034)) $x24976)))) +(let ((@x24985 ((_ quant-inst (b_S_ptr$ b_T_T_u1$ ?x23186) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x23996 ?x23206)) $x24034)))))) +(let ((@x23295 (mp @x24985 (trans (monotonicity @x24983 $x24986) (rewrite (= $x24981 $x24981)) $x24986) $x24981))) +(let ((@x25587 (unit-resolution (def-axiom (or $x24973 $x24957)) (unit-resolution @x23295 @x18901 $x24976) $x24957))) +(let (($x23207 (= ?x3739 ?x23206))) +(let (($x3740 (b_S_is$ ?x3739 b_T_T_u1$))) +(let ((?x23215 (b_S_typ$ ?x3739))) +(let (($x23216 (= ?x23215 b_T_T_u1$))) +(let ((@x23266 (unit-resolution ((_ quant-inst b_T_T_u1$ v_b_P_H_arr$) (or (not $x20974) (= (b_S_typ$ ?x3680) b_T_T_u1$))) @x20979 (= (b_S_typ$ ?x3680) b_T_T_u1$)))) +(let (($x20968 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1) :pattern ( (b_S_ptr$ ?v0 ?v1) ))) +)) +(let (($x3459 (forall ((?v0 B_S_ctype$) (?v1 Int) )(= (b_S_ref$ (b_S_ptr$ ?v0 ?v1)) ?v1)) +)) +(let (($x3458 (= (b_S_ref$ (b_S_ptr$ ?1 ?0)) ?0))) +(let ((@x16096 (mp~ (asserted $x3459) (nnf-pos (refl (~ $x3458 $x3458)) (~ $x3459 $x3459)) $x3459))) +(let ((@x20973 (mp @x16096 (quant-intro (refl (= $x3458 $x3458)) (= $x3459 $x20968)) $x20968))) +(let ((@x23283 (unit-resolution ((_ quant-inst b_T_T_u1$ v_b_P_H_arr$) (or (not $x20968) (= (b_S_ref$ ?x3680) v_b_P_H_arr$))) @x20973 (= (b_S_ref$ ?x3680) v_b_P_H_arr$)))) +(let ((?x3681 (b_S_ref$ ?x3680))) +(let ((?x23203 (b_S_ptr$ b_T_T_u1$ ?x3681))) +(let (($x23188 (= ?x3739 ?x23203))) +(let (($x23208 (or (not (b_S_extent_n_hint$ ?x3739 ?x3680)) (not $x23188)))) +(let (($x23213 (not $x23208))) +(let (($x23220 (or $x23217 $x23213))) +(let (($x23243 (or (not (b_S_extent_n_hint$ ?x3739 ?x3680)) (not (= ?x3739 (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652)))))))) +(let (($x23209 (= (not (= ?x3739 (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652))))) (not $x23188)))) +(let ((@x23198 (monotonicity (rewrite (= (* 0 ?x3652) 0)) (= (+ ?x3681 (* 0 ?x3652)) (+ ?x3681 0))))) +(let ((@x23202 (trans @x23198 (rewrite (= (+ ?x3681 0) ?x3681)) (= (+ ?x3681 (* 0 ?x3652)) ?x3681)))) +(let ((@x23190 (monotonicity @x23202 (= (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652))) ?x23203)))) +(let ((@x23192 (monotonicity @x23190 (= (= ?x3739 (b_S_ptr$ b_T_T_u1$ (+ ?x3681 (* 0 ?x3652)))) $x23188)))) +(let ((@x23219 (monotonicity (monotonicity (monotonicity @x23192 $x23209) (= $x23243 $x23208)) (= (not $x23243) $x23213)))) +(let ((@x23232 (trans (monotonicity @x23219 (= (or $x23217 (not $x23243)) $x23220)) (rewrite (= $x23220 $x23220)) (= (or $x23217 (not $x23243)) $x23220)))) +(let ((@x23284 (unit-resolution (mp ((_ quant-inst (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) 0 b_T_T_u1$) (or $x23217 (not $x23243))) @x23232 $x23220) @x18901 $x23213))) +(let ((@x23269 (unit-resolution (def-axiom (or $x23208 $x23188)) @x23284 $x23188))) +(let ((@x23248 (monotonicity (trans @x23269 (monotonicity @x23283 (= ?x23203 ?x3680)) (= ?x3739 ?x3680)) (= ?x23215 (b_S_typ$ ?x3680))))) +(let (($x23163 (not $x23216))) +(let (($x23223 (= $x3740 $x23216))) +(let (($x20961 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(let ((?x2296 (b_S_typ$ ?v0))) +(let (($x2741 (= ?x2296 ?v1))) +(let (($x3427 (b_S_is$ ?v0 ?v1))) +(= $x3427 $x2741)))) :pattern ( (b_S_is$ ?v0 ?v1) ))) +)) +(let (($x12230 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(let ((?x2296 (b_S_typ$ ?v0))) +(let (($x2741 (= ?x2296 ?v1))) +(let (($x3427 (b_S_is$ ?v0 ?v1))) +(= $x3427 $x2741))))) +)) +(let ((?x2296 (b_S_typ$ ?1))) +(let (($x2741 (= ?x2296 ?0))) +(let (($x3427 (b_S_is$ ?1 ?0))) +(let (($x12201 (= $x3427 $x2741))) +(let (($x3434 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(let ((?x2296 (b_S_typ$ ?v0))) +(let (($x2741 (= ?x2296 ?v1))) +(let (($x3427 (b_S_is$ ?v0 ?v1))) +(= $x3427 $x2741))))) +)) +(let ((@x12235 (mp (asserted $x3434) (quant-intro (rewrite (= (= $x3427 $x2741) $x12201)) (= $x3434 $x12230)) $x12230))) +(let ((@x20966 (mp (mp~ @x12235 (nnf-pos (refl (~ $x12201 $x12201)) (~ $x12230 $x12230)) $x12230) (quant-intro (refl (= $x12201 $x12201)) (= $x12230 $x20961)) $x20961))) +(let ((@x23281 (unit-resolution (def-axiom (or (not $x23223) $x3740 $x23163)) (hypothesis (not $x3740)) (or (not $x23223) $x23163)))) +(let ((@x23282 (unit-resolution @x23281 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 0 b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23223)) @x20966 $x23223) $x23163))) +(let ((@x23251 (lemma (unit-resolution @x23282 (trans @x23248 @x23266 $x23216) false) $x3740))) +(let (($x8559 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(or (not (b_S_is$ ?v0 ?v1)) (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0)))) :pattern ( (b_S_is$ ?v0 ?v1) ))) +)) +(let (($x8556 (or (not $x3427) (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1)))))) +(let (($x3432 (forall ((?v0 B_S_ptr$) (?v1 B_S_ctype$) )(!(let (($x3427 (b_S_is$ ?v0 ?v1))) +(=> $x3427 (= ?v0 (b_S_ptr$ ?v1 (b_S_ref$ ?v0))))) :pattern ( (b_S_is$ ?v0 ?v1) ))) +)) +(let ((@x8558 (rewrite (= (=> $x3427 (= ?1 (b_S_ptr$ ?0 (b_S_ref$ ?1)))) $x8556)))) +(let ((@x16076 (mp~ (mp (asserted $x3432) (quant-intro @x8558 (= $x3432 $x8559)) $x8559) (nnf-pos (refl (~ $x8556 $x8556)) (~ $x8559 $x8559)) $x8559))) +(let (($x23403 (= (or (not $x8559) (or (not $x3740) $x23207)) (or (not $x8559) (not $x3740) $x23207)))) +(let ((@x23405 (mp ((_ quant-inst (b_S_idx$ ?x3680 0 b_T_T_u1$) b_T_T_u1$) (or (not $x8559) (or (not $x3740) $x23207))) (rewrite $x23403) (or (not $x8559) (not $x3740) $x23207)))) +(let ((@x24358 (monotonicity (symm @x23283 (= v_b_P_H_arr$ ?x3681)) (= ?x3680 ?x23203)))) +(let ((@x24998 (trans (trans @x24358 (symm @x23269 (= ?x23203 ?x3739)) (= ?x3680 ?x3739)) (unit-resolution @x23405 @x16076 @x23251 $x23207) (= ?x3680 ?x23206)))) +(let ((@x25027 (monotonicity (trans (monotonicity @x24998 (= ?x3922 ?x23996)) @x25587 (= ?x3922 ?x24043)) (= ?x23986 (b_S_typ$ ?x24043))))) +(let (($x25000 (not $x23984))) +(let (($x23994 (= $x3923 $x23984))) +(let ((@x24895 (unit-resolution (def-axiom (or (not $x23994) $x3923 $x25000)) (hypothesis $x16330) (or (not $x23994) $x25000)))) +(let ((@x24903 (unit-resolution @x24895 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23994)) @x20966 $x23994) $x25000))) +(let ((@x25032 (lemma (unit-resolution @x24903 (trans @x25027 @x24995 $x23984) false) $x3923))) +(let ((@x24892 (rewrite (= (or (not $x8559) (or $x16330 $x23973)) (or (not $x8559) $x16330 $x23973))))) +(let ((@x24894 (mp ((_ quant-inst (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or (not $x8559) (or $x16330 $x23973))) @x24892 (or (not $x8559) $x16330 $x23973)))) +(let ((@x24935 (unit-resolution @x24894 @x16076 (hypothesis $x3923) (hypothesis (not $x23973)) false))) +(let ((@x25156 (unit-resolution (lemma @x24935 (or $x16330 $x23973)) @x25032 $x23973))) +(let ((@x25212 (symm (monotonicity (symm @x25156 (= ?x23972 ?x3922)) (= $x24193 $x3926)) (= $x3926 $x24193)))) +(let ((@x25225 (mp (hypothesis $x16339) (monotonicity @x25212 (= $x16339 (not $x24193))) (not $x24193)))) +(let ((@x25226 (unit-resolution (def-axiom (or (not $x24229) $x24193 $x24227)) @x25225 (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ b_T_T_u1$ ?x24124)) (or (not $x19790) $x24229)) @x19793 $x24229) $x24227))) +(let ((@x25350 (monotonicity (symm (hypothesis $x23973) (= ?x23972 ?x3922)) (= $x24194 (b_S_typed$ v_b_S_s$ ?x3922))))) +(let (($x3924 (b_S_typed$ v_b_S_s$ ?x3922))) +(let ((?x23936 (b_S_select_o_tm$ ?x3874 ?x3922))) +(let (($x24081 (b_S_ts_n_is_n_volatile$ ?x23936))) +(let (($x16333 (not $x3924))) +(let (($x24082 (or $x16333 $x24081))) +(let (($x24083 (not $x24082))) +(let (($x12397 (>= v_b_L_H_p_G_0$ 0))) +(let (($x21173 (forall ((?v0 Int) )(!(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12631 (not $x3840))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +)) +(let (($x21178 (not $x21173))) +(let (($x21165 (forall ((?v0 Int) )(!(let ((?x12644 (* (- 1) v_b_S_result_G_0$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12646 (<= (+ ?x3765 ?x12644) 0))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12631 $x12646))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +)) +(let (($x21181 (or (not $x21165) $x21178))) +(let (($x21184 (not $x21181))) +(let ((?x16481 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?v0!15 b_T_T_u1$)))) +(let (($x16760 (>= (+ v_b_S_result_G_0$ (* (- 1) ?x16481)) 0))) +(let (($x16738 (<= (+ v_b_P_H_len$ (* (- 1) ?v0!15)) 0))) +(let (($x16474 (<= ?v0!15 4294967295))) +(let (($x20278 (not $x16474))) +(let (($x16473 (>= ?v0!15 0))) +(let (($x20277 (not $x16473))) +(let (($x20293 (or $x20277 $x20278 $x16738 $x16760))) +(let (($x20298 (not $x20293))) +(let (($x21187 (or $x20298 $x21184))) +(let (($x21190 (not $x21187))) +(let (($x3824 (= v_b_S_result_G_0$ v_b_L_H_max_G_1$))) +(let (($x20358 (not $x3824))) +(let (($x12389 (>= v_b_SL_H_witness_G_0$ 0))) +(let (($x20219 (not $x12389))) +(let (($x12453 (<= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0))) +(let (($x12456 (not $x12453))) +(let (($x21193 (or $x12456 $x20190 $x20219 (not (= v_b_L_H_max_G_4$ v_b_L_H_max_G_1$)) (not (= v_b_L_H_p_G_2$ v_b_L_H_p_G_0$)) (not (= v_b_SL_H_witness_G_2$ v_b_SL_H_witness_G_0$)) $x20358 $x21190))) +(let (($x21196 (not $x21193))) +(let (($x3993 (= v_b_L_H_max_G_3$ v_b_L_H_max_G_1$))) +(let (($x20230 (not $x3993))) +(let (($x12471 (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x3929)) 0))) +(let (($x12476 (not $x12471))) +(let (($x21123 (or $x20190 $x20219 $x12476 $x20230 (not (= v_b_SL_H_witness_G_1$ v_b_SL_H_witness_G_0$)) $x20173 $x21090))) +(let (($x21126 (not $x21123))) +(let (($x21099 (or $x16330 $x16339 $x21096))) +(let (($x21102 (not $x21099))) +(let (($x21105 (or $x16330 $x16333 $x21102))) +(let (($x21108 (not $x21105))) +(let (($x21111 (or $x16330 $x16333 $x21108))) +(let (($x21114 (not $x21111))) +(let (($x21117 (or $x20190 $x20219 $x12471 $x21114))) +(let (($x21120 (not $x21117))) +(let (($x21129 (or $x21120 $x21126))) +(let (($x21132 (not $x21129))) +(let (($x21135 (or $x16330 $x16339 $x20190 $x20219 $x21132))) +(let (($x21138 (not $x21135))) +(let (($x21141 (or $x16330 $x16339 $x21138))) +(let (($x21144 (not $x21141))) +(let (($x21147 (or $x16330 $x16333 $x21144))) +(let (($x21150 (not $x21147))) +(let (($x21153 (or $x16330 $x16333 $x21150))) +(let (($x21156 (not $x21153))) +(let (($x21159 (or $x20190 $x20219 $x12453 $x21156))) +(let (($x21162 (not $x21159))) +(let (($x21199 (or $x21162 $x21196))) +(let (($x21202 (not $x21199))) +(let ((?x991 (b_S_ptr_n_to$ b_T_T_u1$))) +(let (($x3898 (b_S_local_n_value_n_is_n_ptr$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_arr$ ?x3680 ?x991))) +(let (($x3897 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_arr$ (b_S_ptr_n_to_n_int$ ?x3680) ?x991))) +(let (($x3896 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_len$ v_b_P_H_len$ b_T_T_u4$))) +(let (($x3895 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_max$ v_b_L_H_max_G_1$ b_T_T_u1$))) +(let (($x3894 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_witness$ v_b_SL_H_witness_G_0$ b_T_T_u4$))) +(let (($x3893 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_3$ b_H_loc_o_p$ v_b_L_H_p_G_0$ b_T_T_u4$))) +(let ((?x3793 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 v_b_SL_H_witness_G_0$ b_T_T_u1$)))) +(let (($x3794 (= ?x3793 v_b_L_H_max_G_1$))) +(let (($x20379 (not $x3794))) +(let (($x12435 (<= (+ v_b_P_H_len$ (* (- 1) v_b_SL_H_witness_G_0$)) 0))) +(let (($x21041 (forall ((?v0 Int) )(!(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12425 (<= (+ ?x3765 ?x12384) 0))) +(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12411 $x12425))))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +)) +(let (($x21046 (not $x21041))) +(let (($x20375 (not $x12397))) +(let (($x12834 (<= v_b_SL_H_witness_G_0$ 4294967295))) +(let (($x20374 (not $x12834))) +(let ((?x3746 (b_S_read_n_u1$ v_b_S_s$ ?x3739))) +(let (($x3769 (= ?x3746 v_b_L_H_max_G_0$))) +(let (($x16288 (not $x3769))) +(let (($x8666 (<= v_b_P_H_len$ 0))) +(let (($x21205 (or $x8666 $x16288 (not (>= v_b_L_H_max_G_1$ 0)) (not (<= v_b_L_H_max_G_1$ 255)) $x20374 $x20375 (not (<= v_b_L_H_p_G_0$ 4294967295)) (not (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0)) $x21046 $x12435 $x20379 $x20190 $x20219 (not (b_S_call_n_transition$ v_b_S_s$ v_b_S_s$)) (not (b_S_good_n_state_n_ext$ b_H_tok_S_1_T_16_o_3$ v_b_S_s$)) (not $x3893) (not $x3894) (not $x3895) (not $x3896) (not $x3897) (not $x3898) $x21202))) +(let (($x21208 (not $x21205))) +(let (($x21211 (or $x8666 $x16288 $x21208))) +(let (($x21214 (not $x21211))) +(let (($x21033 (forall ((?v0 Int) )(!(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0))) +(let (($x12354 (>= ?v0 1))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12354 $x12367)))))))) :pattern ( (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$) ))) +)) +(let (($x21217 (or (not $x21033) $x21214))) +(let (($x21220 (not $x21217))) +(let ((?x16270 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?v0!13 b_T_T_u1$)))) +(let (($x16273 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x16270)) 0))) +(let (($x16265 (>= ?v0!13 1))) +(let (($x20031 (or (not (>= ?v0!13 0)) (not (<= ?v0!13 4294967295)) $x16265 $x16273))) +(let (($x20036 (not $x20031))) +(let (($x21223 (or $x20036 $x21220))) +(let (($x21226 (not $x21223))) +(let (($x12348 (>= v_b_P_H_len$ 1))) +(let (($x12351 (not $x12348))) +(let (($x21229 (or $x12351 $x21226))) +(let (($x21232 (not $x21229))) +(let (($x8667 (not $x8666))) +(let (($x3720 (<= v_b_P_H_len$ b_S_max_o_u4$))) +(let (($x3719 (<= 0 v_b_P_H_len$))) +(let (($x8707 (forall ((?v0 B_S_ptr$) )(!(let (($x3715 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0))) +(not $x3715)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) ))) +)) +(let ((?x3713 (b_S_current_n_timestamp$ v_b_S_s$))) +(let (($x3714 (= v_b_H_wrTime_S_1_T_6_o_1$ ?x3713))) +(let (($x3711 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_len$ v_b_P_H_len$ b_T_T_u4$))) +(let (($x3709 (b_S_local_n_value_n_is_n_ptr$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_arr$ ?x3680 ?x991))) +(let (($x3708 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_6_o_1$ b_H_loc_o_arr$ (b_S_ptr_n_to_n_int$ ?x3680) ?x991))) +(let (($x8701 (forall ((?v0 B_S_pure_n_function$) )(!(not (<= b_S_current_n_frame_n_level$ (b_S_frame_n_level$ ?v0))) :pattern ( (b_S_frame_n_level$ ?v0) ))) +)) +(let (($x3699 (b_S_full_n_stop$ v_b_S_s$))) +(let (($x3698 (b_S_good_n_state_n_ext$ b_H_tok_S_1_T_6_o_1$ v_b_S_s$))) +(let (($x3697 (b_S_function_n_entry$ v_b_S_s$))) +(let ((?x3678 (b_S_array$ b_T_T_u1$ v_b_P_H_len$))) +(let (($x3691 (b_S_is_n_non_n_primitive$ ?x3678))) +(let (($x3690 (not (= (b_S_kind_n_of$ ?x3678) b_S_kind_n_primitive$)))) +(let ((?x3682 (b_S_ptr$ ?x3678 ?x3681))) +(let (($x3687 (b_S_typed$ v_b_S_s$ ?x3682))) +(let (($x3686 (b_S_is$ ?x3682 ?x3678))) +(let ((?x3684 (b_S_owner$ v_b_S_s$ ?x3682))) +(let (($x3685 (= ?x3684 b_S_me$))) +(let (($x3683 (b_S_closed$ v_b_S_s$ ?x3682))) +(let (($x8657 (<= 1099511627776 v_b_P_H_len$))) +(let (($x8658 (not $x8657))) +(let (($x3672 (<= v_b_SL_H_witness$ b_S_max_o_u4$))) +(let (($x3671 (<= 0 v_b_SL_H_witness$))) +(let (($x3668 (<= v_b_L_H_p$ b_S_max_o_u4$))) +(let (($x3667 (<= 0 v_b_L_H_p$))) +(let (($x3663 (<= 0 v_b_L_H_max$))) +(let (($x8820 (and $x3663 (<= v_b_L_H_max$ b_S_max_o_u1$) $x3667 $x3668 $x3671 $x3672 $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x9207 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x9165 (not (<= v_b_P_H_len$ ?v0)))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(and $x1212 $x1344 $x9165 $x3840))))))) +)) +(let (($x9185 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3837 (<= ?x3765 v_b_S_result_G_0$))) +(let (($x9165 (not (<= v_b_P_H_len$ ?v0)))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x9171 (and $x1212 $x1344 $x9165))) +(or (not $x9171) $x3837)))))))) +)) +(let (($x9228 (or (not $x9185) $x9207))) +(let (($x9233 (and $x9185 $x9228))) +(let (($x3822 (= v_b_SL_H_witness_G_2$ v_b_SL_H_witness_G_0$))) +(let (($x3820 (= v_b_L_H_p_G_2$ v_b_L_H_p_G_0$))) +(let (($x3818 (= v_b_L_H_max_G_4$ v_b_L_H_max_G_1$))) +(let (($x3776 (<= 0 v_b_SL_H_witness_G_0$))) +(let (($x3783 (<= 1 v_b_L_H_p_G_0$))) +(let (($x9159 (and b_S_position_n_marker$ $x3783 $x3776 $x3818 $x3820 $x3822 $x3824))) +(let (($x9240 (or (not $x9159) $x9233))) +(let (($x9245 (and b_S_position_n_marker$ $x9240))) +(let (($x9963 (or (not (and $x3783 $x3776 (<= v_b_P_H_len$ v_b_L_H_p_G_0$))) $x9245))) +(let (($x9687 (not (<= v_b_P_H_len$ v_b_SL_H_witness_G_1$)))) +(let (($x9690 (and $x9687 $x3976))) +(let (($x9683 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3970 (<= ?x3765 v_b_L_H_max_G_3$))) +(let (($x9663 (not (<= v_b_L_H_p_G_1$ ?v0)))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x9669 (and $x1212 $x1344 $x9663))) +(or (not $x9669) $x3970)))))))) +)) +(let (($x9718 (or (not $x9683) $x9690))) +(let (($x9723 (and $x9683 $x9718))) +(let (($x9730 (or (not (<= v_b_L_H_p_G_1$ v_b_P_H_len$)) $x9723))) +(let (($x3967 (<= v_b_L_H_p_G_1$ v_b_P_H_len$))) +(let (($x9735 (and $x3967 $x9730))) +(let (($x3943 (<= 0 v_b_SL_H_witness_G_1$))) +(let (($x3961 (<= 2 v_b_L_H_p_G_1$))) +(let ((?x9600 (+ 1 v_b_L_H_p_G_0$))) +(let (($x9623 (= v_b_L_H_p_G_1$ ?x9600))) +(let (($x9615 (<= v_b_L_H_p_G_0$ (+ (- 1) b_S_max_o_u4$)))) +(let (($x9606 (<= (- 1) v_b_L_H_p_G_0$))) +(let (($x9657 (and $x9606 $x9615 $x9623 $x3960 $x3961 $x3943))) +(let (($x9742 (or (not $x9657) $x9735))) +(let (($x9750 (and $x9606 $x9615 $x9742))) +(let (($x3994 (= v_b_SL_H_witness_G_1$ v_b_SL_H_witness_G_0$))) +(let (($x3992 (<= ?x3929 v_b_L_H_max_G_1$))) +(let (($x9858 (and $x3783 $x3776 $x3992 $x3993 $x3994 $x3943))) +(let (($x9874 (or (not $x9858) $x9750))) +(let (($x3942 (= v_b_SL_H_witness_G_1$ v_b_L_H_p_G_0$))) +(let (($x3935 (= v_b_L_H_max_G_2$ ?x3929))) +(let (($x9595 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x3783 $x3940 $x3942 $x3943))) +(let (($x9759 (or (not $x9595) $x9750))) +(let (($x9767 (and $x3923 $x3926 $x9759))) +(let (($x3925 (and $x3923 $x3924))) +(let (($x9775 (not $x3925))) +(let (($x9776 (or $x9775 $x9767))) +(let (($x9784 (and $x3923 $x3924 $x9776))) +(let (($x9793 (or (not (and $x3783 $x3776 (not $x3992))) $x9784))) +(let (($x9879 (and $x9793 $x9874))) +(let (($x9886 (or (not (and $x3923 $x3926 $x3783 $x3776)) $x9879))) +(let (($x9894 (and $x3923 $x3926 $x9886))) +(let (($x9902 (or $x9775 $x9894))) +(let (($x9910 (and $x3923 $x3924 $x9902))) +(let (($x9919 (or (not (and $x3783 $x3776 (not (<= v_b_P_H_len$ v_b_L_H_p_G_0$)))) $x9910))) +(let (($x9968 (and $x9919 $x9963))) +(let (($x3806 (b_S_good_n_state_n_ext$ b_H_tok_S_1_T_16_o_3$ v_b_S_s$))) +(let (($x3886 (b_S_call_n_transition$ v_b_S_s$ v_b_S_s$))) +(let (($x9434 (and $x3783 $x3776 $x3886 $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898))) +(let (($x9974 (not $x9434))) +(let (($x8960 (not (<= v_b_P_H_len$ v_b_SL_H_witness_G_0$)))) +(let (($x8956 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3788 (<= ?x3765 v_b_L_H_max_G_1$))) +(let (($x8936 (not (<= v_b_L_H_p_G_0$ ?v0)))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x8942 (and $x1212 $x1344 $x8936))) +(or (not $x8942) $x3788)))))))) +)) +(let (($x3785 (<= v_b_L_H_p_G_0$ v_b_P_H_len$))) +(let (($x3781 (<= v_b_L_H_p_G_0$ b_S_max_o_u4$))) +(let (($x3780 (<= 0 v_b_L_H_p_G_0$))) +(let (($x3777 (<= v_b_SL_H_witness_G_0$ b_S_max_o_u4$))) +(let (($x3773 (<= v_b_L_H_max_G_1$ b_S_max_o_u1$))) +(let (($x3772 (<= 0 v_b_L_H_max_G_1$))) +(let (($x9032 (and $x8667 $x3769 $x3772 $x3773 $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794))) +(let (($x9991 (or (not $x9032) $x9974 $x9968))) +(let (($x9999 (and $x8667 $x3769 $x9991))) +(let (($x8913 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3766 (<= ?x3765 v_b_L_H_max_G_0$))) +(let (($x8887 (<= 1 ?v0))) +(let (($x8888 (not $x8887))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x8899 (and $x1212 $x1344 $x8888))) +(or (not $x8899) $x3766))))))))) +)) +(let (($x10008 (or (not $x8913) $x9999))) +(let (($x10013 (and $x8913 $x10008))) +(let (($x10020 (or (not (<= 1 v_b_P_H_len$)) $x10013))) +(let (($x3761 (<= 1 v_b_P_H_len$))) +(let (($x10025 (and $x3761 $x10020))) +(let (($x3750 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_16_o_8$ b_H_loc_o_p$ 1 b_T_T_u4$))) +(let (($x3749 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_14_o_3$ b_H_loc_o_witness$ 0 b_T_T_u4$))) +(let (($x3748 (b_S_local_n_value_n_is$ v_b_S_s$ b_H_tok_S_1_T_12_o_3$ b_H_loc_o_max$ v_b_L_H_max_G_0$ b_T_T_u1$))) +(let (($x3747 (= v_b_L_H_max_G_0$ ?x3746))) +(let (($x3743 (b_S_thread_n_local$ v_b_S_s$ ?x3739))) +(let (($x8880 (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750))) +(let (($x10031 (not $x8880))) +(let (($x10032 (or $x10031 $x10025))) +(let (($x10040 (and $x3740 $x3743 $x10032))) +(let (($x3741 (b_S_typed$ v_b_S_s$ ?x3739))) +(let (($x3742 (and $x3740 $x3741))) +(let (($x10048 (not $x3742))) +(let (($x10049 (or $x10048 $x10040))) +(let (($x10057 (and $x3740 $x3741 $x10049))) +(let (($x3738 (b_S_in_n_domain_n_lab$ v_b_S_s$ ?x3682 ?x3682 b_l_H_public$))) +(let (($x10065 (not $x3738))) +(let (($x10066 (or $x10065 $x10057))) +(let (($x10071 (and $x3738 $x10066))) +(let (($x10078 (or (not $x8820) $x10071))) +(let (($x3844 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x3835 (< ?v0 v_b_P_H_len$))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x3842 (and $x1344 (and $x3835 $x3840)))) +(let (($x1212 (<= 0 ?v0))) +(and $x1212 $x3842)))))))) +)) +(let (($x3845 (=> $x3844 true))) +(let (($x3846 (and $x3844 $x3845))) +(let (($x3839 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3837 (<= ?x3765 v_b_S_result_G_0$))) +(let (($x3835 (< ?v0 v_b_P_H_len$))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x1345 (and $x1212 $x1344))) +(let (($x3836 (and $x1345 $x3835))) +(=> $x3836 $x3837))))))))) +)) +(let (($x3847 (=> $x3839 $x3846))) +(let (($x3827 (and $x3820 (and $x3822 (and $x3824 true))))) +(let (($x3828 (and $x3818 $x3827))) +(let (($x3829 (and true $x3828))) +(let (($x3784 (and $x3783 $x3776))) +(let (($x3830 (and $x3784 $x3829))) +(let (($x3831 (and $x3784 $x3830))) +(let (($x3832 (and true $x3831))) +(let (($x3833 (and $x3784 $x3832))) +(let (($x3834 (and b_S_position_n_marker$ $x3833))) +(let (($x3849 (=> $x3834 (and $x3839 $x3847)))) +(let (($x3850 (and b_S_position_n_marker$ $x3849))) +(let (($x3808 (and true $x3784))) +(let (($x3809 (and $x3784 $x3808))) +(let (($x4013 (and $x3784 $x3809))) +(let (($x4014 (and true $x4013))) +(let (($x4015 (and $x3784 $x4014))) +(let (($x4012 (<= v_b_P_H_len$ v_b_L_H_p_G_0$))) +(let (($x4016 (and $x4012 $x4015))) +(let (($x4017 (and $x3784 $x4016))) +(let (($x4018 (and true $x4017))) +(let (($x4019 (=> $x4018 $x3850))) +(let (($x3977 (and (< v_b_SL_H_witness_G_1$ v_b_P_H_len$) $x3976))) +(let (($x3978 (and $x3977 false))) +(let (($x3979 (=> $x3978 true))) +(let (($x3980 (and $x3977 $x3979))) +(let (($x3972 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3970 (<= ?x3765 v_b_L_H_max_G_3$))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x1345 (and $x1212 $x1344))) +(let (($x3969 (and $x1345 (< ?v0 v_b_L_H_p_G_1$)))) +(=> $x3969 $x3970)))))))) +)) +(let (($x3981 (=> $x3972 $x3980))) +(let (($x3983 (=> $x3967 (and $x3972 $x3981)))) +(let (($x3962 (and $x3961 $x3943))) +(let (($x3963 (and $x3962 true))) +(let (($x3964 (and $x3960 $x3963))) +(let (($x3965 (and (= v_b_L_H_p_G_1$ (+ v_b_L_H_p_G_0$ 1)) $x3964))) +(let ((?x3954 (+ v_b_L_H_p_G_0$ 1))) +(let (($x3956 (<= ?x3954 b_S_max_o_u4$))) +(let (($x3955 (<= 0 ?x3954))) +(let (($x3957 (and $x3955 $x3956))) +(let (($x3966 (and $x3957 $x3965))) +(let (($x3985 (=> $x3966 (and $x3967 $x3983)))) +(let (($x3986 (and $x3957 $x3985))) +(let (($x3944 (and $x3783 $x3943))) +(let (($x3945 (and true $x3944))) +(let (($x3995 (and $x3994 $x3945))) +(let (($x3996 (and $x3993 $x3995))) +(let (($x3997 (and true $x3996))) +(let (($x3998 (and $x3784 $x3997))) +(let (($x3999 (and $x3784 $x3998))) +(let (($x4000 (and true $x3999))) +(let (($x4001 (and $x3784 $x4000))) +(let (($x4002 (and $x3992 $x4001))) +(let (($x4003 (and $x3784 $x4002))) +(let (($x4004 (and true $x4003))) +(let (($x4005 (=> $x4004 $x3986))) +(let (($x3946 (and $x3942 $x3945))) +(let (($x3947 (and $x3940 $x3946))) +(let (($x3948 (and true $x3947))) +(let (($x3938 (and $x3783 $x3783))) +(let (($x3949 (and $x3938 $x3948))) +(let (($x3950 (and $x3937 $x3949))) +(let (($x3951 (and $x3936 $x3950))) +(let (($x3952 (and $x3935 $x3951))) +(let (($x3927 (and $x3923 $x3926))) +(let (($x3953 (and $x3927 $x3952))) +(let (($x3987 (=> $x3953 $x3986))) +(let (($x3988 (and $x3927 $x3987))) +(let (($x3989 (=> $x3925 $x3988))) +(let (($x3990 (and $x3925 $x3989))) +(let (($x3931 (and (< v_b_L_H_max_G_1$ ?x3929) $x3809))) +(let (($x3932 (and $x3784 $x3931))) +(let (($x3933 (and true $x3932))) +(let (($x3991 (=> $x3933 $x3990))) +(let (($x3928 (and $x3927 $x3784))) +(let (($x4007 (=> $x3928 (and $x3991 $x4005)))) +(let (($x4008 (and $x3927 $x4007))) +(let (($x4009 (=> $x3925 $x4008))) +(let (($x4010 (and $x3925 $x4009))) +(let (($x3919 (and (< v_b_L_H_p_G_0$ v_b_P_H_len$) $x3809))) +(let (($x3920 (and $x3784 $x3919))) +(let (($x3921 (and true $x3920))) +(let (($x4011 (=> $x3921 $x4010))) +(let (($x3902 (and (= ?x3874 ?x3874) (= (b_S_statusmap$ v_b_S_s$) (b_S_statusmap$ v_b_S_s$))))) +(let (($x3903 (and $x3902 $x3784))) +(let (($x3904 (and (and $x3897 $x3898) $x3903))) +(let (($x3905 (and $x3896 $x3904))) +(let (($x3906 (and $x3895 $x3905))) +(let (($x3907 (and $x3894 $x3906))) +(let (($x3908 (and $x3893 $x3907))) +(let (($x3807 (and $x3806 $x3699))) +(let (($x3909 (and $x3807 $x3908))) +(let (($x3885 (forall ((?v0 B_S_ptr$) )(!(let ((?x3882 (b_S_timestamp$ v_b_S_s$ ?v0))) +(<= ?x3882 ?x3882)) :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) ))) +)) +(let (($x3887 (and $x3885 $x3886))) +(let (($x3888 (and (<= ?x3713 ?x3713) $x3887))) +(let (($x3910 (and $x3888 $x3909))) +(let (($x3880 (forall ((?v0 B_S_ptr$) )(!(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?v0))) +(let ((?x3874 (b_S_typemap$ v_b_S_s$))) +(let ((?x3875 (b_S_select_o_tm$ ?x3874 ?v0))) +(let (($x3877 (and (= ?x3875 ?x3875) $x3862))) +(=> $x3862 $x3877))))) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) ))) +)) +(let (($x3889 (and $x3880 $x3888))) +(let (($x3873 (forall ((?v0 B_S_ptr$) )(!(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?v0))) +(let ((?x3858 (b_S_statusmap$ v_b_S_s$))) +(let ((?x3859 (b_S_select_o_sm$ ?x3858 ?v0))) +(let (($x3871 (and (= ?x3859 ?x3859) $x3862))) +(=> $x3862 $x3871))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ))) +)) +(let (($x3890 (and $x3873 $x3889))) +(let (($x3869 (forall ((?v0 B_S_ptr$) )(!(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?v0))) +(let ((?x3864 (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0))) +(let (($x3866 (and (= ?x3864 ?x3864) $x3862))) +(=> $x3862 $x3866)))) :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) ))) +)) +(let (($x3891 (and $x3869 $x3890))) +(let (($x3861 (forall ((?v0 B_S_ptr$) )(!(let (($x3855 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_owner$ v_b_S_s$ ?v0))) b_S_kind_n_thread$))) +(=> (not $x3855) (not $x3855))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ))) +)) +(let (($x3892 (and $x3861 $x3891))) +(let (($x3911 (and $x3892 $x3910))) +(let (($x3912 (and $x3784 $x3911))) +(let (($x3913 (and true $x3912))) +(let (($x3914 (and $x3784 $x3913))) +(let (($x3915 (and true $x3914))) +(let (($x3916 (and $x3784 $x3915))) +(let (($x3917 (and true $x3916))) +(let (($x4021 (=> $x3917 (and $x4011 $x4019)))) +(let (($x3810 (and $x3807 $x3809))) +(let (($x3811 (and $x3784 $x3810))) +(let (($x3812 (and true $x3811))) +(let (($x3813 (and $x3784 $x3812))) +(let (($x3805 (not true))) +(let (($x3814 (and $x3805 $x3813))) +(let (($x3815 (and $x3784 $x3814))) +(let (($x3816 (and true $x3815))) +(let (($x3851 (=> $x3816 $x3850))) +(let (($x4022 (and $x3851 $x4021))) +(let (($x3796 (and (and (< v_b_SL_H_witness_G_0$ v_b_P_H_len$) $x3794) $x3784))) +(let (($x3790 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3788 (<= ?x3765 v_b_L_H_max_G_1$))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x1345 (and $x1212 $x1344))) +(let (($x3787 (and $x1345 (< ?v0 v_b_L_H_p_G_0$)))) +(=> $x3787 $x3788)))))))) +)) +(let (($x3797 (and $x3790 $x3796))) +(let (($x3798 (and $x3785 $x3797))) +(let (($x3799 (and $x3784 $x3798))) +(let (($x3782 (and $x3780 $x3781))) +(let (($x3800 (and $x3782 $x3799))) +(let (($x3778 (and $x3776 $x3777))) +(let (($x3801 (and $x3778 $x3800))) +(let (($x3774 (and $x3772 $x3773))) +(let (($x3802 (and $x3774 $x3801))) +(let (($x3803 (and true $x3802))) +(let (($x3676 (< 0 v_b_P_H_len$))) +(let (($x3770 (and $x3676 $x3769))) +(let (($x3804 (and $x3770 $x3803))) +(let (($x4023 (=> $x3804 $x4022))) +(let (($x4024 (and $x3770 $x4023))) +(let (($x3768 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3766 (<= ?x3765 v_b_L_H_max_G_0$))) +(let (($x1344 (<= ?v0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?v0))) +(let (($x1345 (and $x1212 $x1344))) +(let (($x3763 (and $x1345 (< ?v0 1)))) +(=> $x3763 $x3766)))))))) +)) +(let (($x4025 (=> $x3768 $x4024))) +(let (($x4027 (=> $x3761 (and $x3768 $x4025)))) +(let (($x3752 (<= 0 0))) +(let (($x3753 (and $x3752 $x3752))) +(let (($x3751 (<= 1 1))) +(let (($x3754 (and $x3751 $x3753))) +(let (($x3755 (and $x3751 $x3754))) +(let (($x3756 (and $x3750 $x3755))) +(let (($x3758 (and $x3748 (and $x3749 $x3756)))) +(let (($x3759 (and $x3747 $x3758))) +(let (($x3744 (and $x3740 $x3743))) +(let (($x3760 (and $x3744 $x3759))) +(let (($x4029 (=> $x3760 (and $x3761 $x4027)))) +(let (($x4030 (and $x3744 $x4029))) +(let (($x4031 (=> $x3742 $x4030))) +(let (($x4032 (and $x3742 $x4031))) +(let (($x4033 (=> $x3738 $x4032))) +(let (($x3721 (and $x3719 $x3720))) +(let (($x3718 (forall ((?v0 B_S_ptr$) )(!(let (($x3715 (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0))) +(= $x3715 false)) :pattern ( (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?v0) ))) +)) +(let (($x3722 (and $x3718 $x3721))) +(let (($x3723 (and $x3714 $x3722))) +(let (($x3724 (and $x3711 $x3723))) +(let (($x3725 (and (and $x3708 $x3709) $x3724))) +(let (($x3706 (forall ((?v0 B_S_pure_n_function$) )(!(let ((?x3702 (b_S_frame_n_level$ ?v0))) +(< ?x3702 b_S_current_n_frame_n_level$)) :pattern ( (b_S_frame_n_level$ ?v0) ))) +)) +(let (($x3726 (and $x3706 $x3725))) +(let (($x3727 (and (and $x3698 $x3699) $x3726))) +(let (($x3728 (and $x3697 $x3727))) +(let (($x3729 (and true $x3728))) +(let (($x3694 (and $x3686 (and $x3687 (and $x3690 $x3691))))) +(let (($x3695 (and $x3685 $x3694))) +(let (($x3696 (and $x3683 $x3695))) +(let (($x3730 (and $x3696 $x3729))) +(let (($x3731 (and $x3676 $x3730))) +(let (($x3732 (and (< v_b_P_H_len$ 1099511627776) $x3731))) +(let (($x3673 (and $x3671 $x3672))) +(let (($x3733 (and $x3673 $x3732))) +(let (($x3669 (and $x3667 $x3668))) +(let (($x3734 (and $x3669 $x3733))) +(let (($x3665 (and $x3663 (<= v_b_L_H_max$ b_S_max_o_u1$)))) +(let (($x3735 (and $x3665 $x3734))) +(let (($x3736 (and true $x3735))) +(let (($x4035 (=> $x3736 (and $x3738 $x4033)))) +(let (($x4036 (not $x4035))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ ?x3680 ?0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x9165 (not (<= v_b_P_H_len$ ?0)))) +(let (($x1344 (<= ?0 b_S_max_o_u4$))) +(let (($x1212 (<= 0 ?0))) +(let (($x9202 (and $x1212 $x1344 $x9165 $x3840))) +(let (($x3842 (and $x1344 (and (< ?0 v_b_P_H_len$) $x3840)))) +(let (($x3843 (and $x1212 $x3842))) +(let ((@x9190 (monotonicity (rewrite (= (< ?0 v_b_P_H_len$) $x9165)) (= (and (< ?0 v_b_P_H_len$) $x3840) (and $x9165 $x3840))))) +(let ((@x9198 (trans (monotonicity @x9190 (= $x3842 (and $x1344 (and $x9165 $x3840)))) (rewrite (= (and $x1344 (and $x9165 $x3840)) (and $x1344 $x9165 $x3840))) (= $x3842 (and $x1344 $x9165 $x3840))))) +(let ((@x5396 (rewrite (= $x1212 $x1212)))) +(let ((@x9206 (trans (monotonicity @x5396 @x9198 (= $x3843 (and $x1212 (and $x1344 $x9165 $x3840)))) (rewrite (= (and $x1212 (and $x1344 $x9165 $x3840)) $x9202)) (= $x3843 $x9202)))) +(let ((@x9212 (monotonicity (quant-intro @x9206 (= $x3844 $x9207)) (= $x3845 (=> $x9207 true))))) +(let ((@x9216 (trans @x9212 (rewrite (= (=> $x9207 true) true)) (= $x3845 true)))) +(let ((@x9219 (monotonicity (quant-intro @x9206 (= $x3844 $x9207)) @x9216 (= $x3846 (and $x9207 true))))) +(let (($x3837 (<= ?x3765 v_b_S_result_G_0$))) +(let (($x9180 (or (not (and $x1212 $x1344 $x9165)) $x3837))) +(let (($x3835 (< ?0 v_b_P_H_len$))) +(let (($x1345 (and $x1212 $x1344))) +(let (($x3836 (and $x1345 $x3835))) +(let (($x3838 (=> $x3836 $x3837))) +(let ((@x5523 (monotonicity @x5396 (= $x1345 $x1345)))) +(let ((@x9170 (monotonicity @x5523 (rewrite (= $x3835 $x9165)) (= $x3836 (and $x1345 $x9165))))) +(let ((@x9175 (trans @x9170 (rewrite (= (and $x1345 $x9165) (and $x1212 $x1344 $x9165))) (= $x3836 (and $x1212 $x1344 $x9165))))) +(let ((@x9184 (trans (monotonicity @x9175 (= $x3838 (=> (and $x1212 $x1344 $x9165) $x3837))) (rewrite (= (=> (and $x1212 $x1344 $x9165) $x3837) $x9180)) (= $x3838 $x9180)))) +(let ((@x9226 (monotonicity (quant-intro @x9184 (= $x3839 $x9185)) (trans @x9219 (rewrite (= (and $x9207 true) $x9207)) (= $x3846 $x9207)) (= $x3847 (=> $x9185 $x9207))))) +(let ((@x9235 (monotonicity (quant-intro @x9184 (= $x3839 $x9185)) (trans @x9226 (rewrite (= (=> $x9185 $x9207) $x9228)) (= $x3847 $x9228)) (= (and $x3839 $x3847) $x9233)))) +(let (($x9160 (= (and b_S_position_n_marker$ (and $x3783 $x3776 $x3818 $x3820 $x3822 $x3824)) $x9159))) +(let (($x9157 (= $x3834 (and b_S_position_n_marker$ (and $x3783 $x3776 $x3818 $x3820 $x3822 $x3824))))) +(let (($x9133 (and $x3783 $x3776 $x3818 $x3820 $x3822 $x3824))) +(let (($x9138 (and $x3784 $x9133))) +(let (($x9118 (and $x3818 $x3820 $x3822 $x3824))) +(let ((@x9106 (monotonicity (rewrite (= (and $x3824 true) $x3824)) (= (and $x3822 (and $x3824 true)) (and $x3822 $x3824))))) +(let ((@x9114 (trans (monotonicity @x9106 (= $x3827 (and $x3820 (and $x3822 $x3824)))) (rewrite (= (and $x3820 (and $x3822 $x3824)) (and $x3820 $x3822 $x3824))) (= $x3827 (and $x3820 $x3822 $x3824))))) +(let ((@x9122 (trans (monotonicity @x9114 (= $x3828 (and $x3818 (and $x3820 $x3822 $x3824)))) (rewrite (= (and $x3818 (and $x3820 $x3822 $x3824)) $x9118)) (= $x3828 $x9118)))) +(let ((@x9129 (trans (monotonicity @x9122 (= $x3829 (and true $x9118))) (rewrite (= (and true $x9118) $x9118)) (= $x3829 $x9118)))) +(let ((@x8932 (rewrite (= $x3783 $x3783)))) +(let ((@x8934 (monotonicity @x8932 (rewrite (= $x3776 $x3776)) (= $x3784 $x3784)))) +(let ((@x9137 (trans (monotonicity @x8934 @x9129 (= $x3830 (and $x3784 $x9118))) (rewrite (= (and $x3784 $x9118) $x9133)) (= $x3830 $x9133)))) +(let ((@x9144 (trans (monotonicity @x8934 @x9137 (= $x3831 $x9138)) (rewrite (= $x9138 $x9133)) (= $x3831 $x9133)))) +(let ((@x9151 (trans (monotonicity @x9144 (= $x3832 (and true $x9133))) (rewrite (= (and true $x9133) $x9133)) (= $x3832 $x9133)))) +(let ((@x9155 (trans (monotonicity @x8934 @x9151 (= $x3833 $x9138)) (rewrite (= $x9138 $x9133)) (= $x3833 $x9133)))) +(let ((@x9238 (monotonicity (trans (monotonicity @x9155 $x9157) (rewrite $x9160) (= $x3834 $x9159)) @x9235 (= $x3849 (=> $x9159 $x9233))))) +(let ((@x9247 (monotonicity (trans @x9238 (rewrite (= (=> $x9159 $x9233) $x9240)) (= $x3849 $x9240)) (= $x3850 $x9245)))) +(let ((@x9956 (rewrite (= (and true (and $x3783 $x3776 $x4012)) (and $x3783 $x3776 $x4012))))) +(let ((@x9048 (rewrite (= (and $x3784 $x3784) $x3784)))) +(let ((@x9042 (rewrite (= $x3808 $x3784)))) +(let ((@x9046 (monotonicity @x8934 (trans (monotonicity @x8934 (= $x3808 $x3808)) @x9042 (= $x3808 $x3784)) (= $x3809 (and $x3784 $x3784))))) +(let ((@x9050 (trans @x9046 @x9048 (= $x3809 $x3784)))) +(let ((@x9927 (trans (monotonicity @x8934 @x9050 (= $x4013 (and $x3784 $x3784))) @x9048 (= $x4013 $x3784)))) +(let ((@x9933 (monotonicity @x8934 (trans (monotonicity @x9927 (= $x4014 $x3808)) @x9042 (= $x4014 $x3784)) (= $x4015 (and $x3784 $x3784))))) +(let ((@x9938 (monotonicity (trans @x9933 @x9048 (= $x4015 $x3784)) (= $x4016 (and $x4012 $x3784))))) +(let ((@x9943 (trans @x9938 (rewrite (= (and $x4012 $x3784) (and $x4012 $x3783 $x3776))) (= $x4016 (and $x4012 $x3783 $x3776))))) +(let ((@x9951 (trans (monotonicity @x8934 @x9943 (= $x4017 (and $x3784 (and $x4012 $x3783 $x3776)))) (rewrite (= (and $x3784 (and $x4012 $x3783 $x3776)) (and $x3783 $x3776 $x4012))) (= $x4017 (and $x3783 $x3776 $x4012))))) +(let ((@x9958 (trans (monotonicity @x9951 (= $x4018 (and true (and $x3783 $x3776 $x4012)))) @x9956 (= $x4018 (and $x3783 $x3776 $x4012))))) +(let ((@x9967 (trans (monotonicity @x9958 @x9247 (= $x4019 (=> (and $x3783 $x3776 $x4012) $x9245))) (rewrite (= (=> (and $x3783 $x3776 $x4012) $x9245) $x9963)) (= $x4019 $x9963)))) +(let ((@x9692 (monotonicity (rewrite (= (< v_b_SL_H_witness_G_1$ v_b_P_H_len$) $x9687)) (= $x3977 $x9690)))) +(let ((@x9699 (trans (monotonicity @x9692 (= $x3978 (and $x9690 false))) (rewrite (= (and $x9690 false) false)) (= $x3978 false)))) +(let ((@x9706 (trans (monotonicity @x9699 (= $x3979 (=> false true))) (rewrite (= (=> false true) true)) (= $x3979 true)))) +(let ((@x9713 (trans (monotonicity @x9692 @x9706 (= $x3980 (and $x9690 true))) (rewrite (= (and $x9690 true) $x9690)) (= $x3980 $x9690)))) +(let (($x3970 (<= ?x3765 v_b_L_H_max_G_3$))) +(let (($x9678 (or (not (and $x1212 $x1344 (not (<= v_b_L_H_p_G_1$ ?0)))) $x3970))) +(let (($x3969 (and $x1345 (< ?0 v_b_L_H_p_G_1$)))) +(let (($x3971 (=> $x3969 $x3970))) +(let ((@x9680 (rewrite (= (=> (and $x1212 $x1344 (not (<= v_b_L_H_p_G_1$ ?0))) $x3970) $x9678)))) +(let (($x9663 (not (<= v_b_L_H_p_G_1$ ?0)))) +(let (($x9669 (and $x1212 $x1344 $x9663))) +(let ((@x9668 (monotonicity @x5523 (rewrite (= (< ?0 v_b_L_H_p_G_1$) $x9663)) (= $x3969 (and $x1345 $x9663))))) +(let ((@x9676 (monotonicity (trans @x9668 (rewrite (= (and $x1345 $x9663) $x9669)) (= $x3969 $x9669)) (= $x3971 (=> $x9669 $x3970))))) +(let ((@x9716 (monotonicity (quant-intro (trans @x9676 @x9680 (= $x3971 $x9678)) (= $x3972 $x9683)) @x9713 (= $x3981 (=> $x9683 $x9690))))) +(let ((@x9725 (monotonicity (quant-intro (trans @x9676 @x9680 (= $x3971 $x9678)) (= $x3972 $x9683)) (trans @x9716 (rewrite (= (=> $x9683 $x9690) $x9718)) (= $x3981 $x9718)) (= (and $x3972 $x3981) $x9723)))) +(let ((@x9734 (trans (monotonicity @x9725 (= $x3983 (=> $x3967 $x9723))) (rewrite (= (=> $x3967 $x9723) $x9730)) (= $x3983 $x9730)))) +(let ((@x9651 (rewrite (= (and $x9623 (and $x3960 $x3961 $x3943)) (and $x9623 $x3960 $x3961 $x3943))))) +(let ((@x9632 (monotonicity (rewrite (= $x3961 $x3961)) (rewrite (= $x3943 $x3943)) (= $x3962 $x3962)))) +(let ((@x9637 (trans (monotonicity @x9632 (= $x3963 $x3963)) (rewrite (= $x3963 $x3962)) (= $x3963 $x3962)))) +(let ((@x9645 (trans (monotonicity @x9637 (= $x3964 (and $x3960 $x3962))) (rewrite (= (and $x3960 $x3962) (and $x3960 $x3961 $x3943))) (= $x3964 (and $x3960 $x3961 $x3943))))) +(let ((@x9602 (rewrite (= ?x3954 ?x9600)))) +(let ((@x9628 (trans (monotonicity @x9602 (= (= v_b_L_H_p_G_1$ ?x3954) $x9623)) (rewrite (= $x9623 $x9623)) (= (= v_b_L_H_p_G_1$ ?x3954) $x9623)))) +(let ((@x9653 (trans (monotonicity @x9628 @x9645 (= $x3965 (and $x9623 (and $x3960 $x3961 $x3943)))) @x9651 (= $x3965 (and $x9623 $x3960 $x3961 $x3943))))) +(let ((@x9619 (trans (monotonicity @x9602 (= $x3956 (<= ?x9600 b_S_max_o_u4$))) (rewrite (= (<= ?x9600 b_S_max_o_u4$) $x9615)) (= $x3956 $x9615)))) +(let ((@x9610 (trans (monotonicity @x9602 (= $x3955 (<= 0 ?x9600))) (rewrite (= (<= 0 ?x9600) $x9606)) (= $x3955 $x9606)))) +(let ((@x9656 (monotonicity (monotonicity @x9610 @x9619 (= $x3957 (and $x9606 $x9615))) @x9653 (= $x3966 (and (and $x9606 $x9615) (and $x9623 $x3960 $x3961 $x3943)))))) +(let ((@x9661 (trans @x9656 (rewrite (= (and (and $x9606 $x9615) (and $x9623 $x3960 $x3961 $x3943)) $x9657)) (= $x3966 $x9657)))) +(let ((@x9740 (monotonicity @x9661 (monotonicity @x9734 (= (and $x3967 $x3983) $x9735)) (= $x3985 (=> $x9657 $x9735))))) +(let ((@x9749 (monotonicity (monotonicity @x9610 @x9619 (= $x3957 (and $x9606 $x9615))) (trans @x9740 (rewrite (= (=> $x9657 $x9735) $x9742)) (= $x3985 $x9742)) (= $x3986 (and (and $x9606 $x9615) $x9742))))) +(let ((@x9754 (trans @x9749 (rewrite (= (and (and $x9606 $x9615) $x9742) $x9750)) (= $x3986 $x9750)))) +(let (($x9850 (and $x3992 $x3783 $x3776 $x3993 $x3994 $x3943))) +(let (($x9824 (and $x3783 $x3776 $x3993 $x3994 $x3943))) +(let (($x9829 (and $x3784 $x9824))) +(let (($x9809 (and $x3993 $x3994 $x3783 $x3943))) +(let ((@x9533 (monotonicity (monotonicity @x8932 (rewrite (= $x3943 $x3943)) (= $x3944 $x3944)) (= $x3945 $x3945)))) +(let ((@x9800 (monotonicity (trans @x9533 (rewrite (= $x3945 $x3944)) (= $x3945 $x3944)) (= $x3995 (and $x3994 $x3944))))) +(let ((@x9805 (trans @x9800 (rewrite (= (and $x3994 $x3944) (and $x3994 $x3783 $x3943))) (= $x3995 (and $x3994 $x3783 $x3943))))) +(let ((@x9813 (trans (monotonicity @x9805 (= $x3996 (and $x3993 (and $x3994 $x3783 $x3943)))) (rewrite (= (and $x3993 (and $x3994 $x3783 $x3943)) $x9809)) (= $x3996 $x9809)))) +(let ((@x9820 (trans (monotonicity @x9813 (= $x3997 (and true $x9809))) (rewrite (= (and true $x9809) $x9809)) (= $x3997 $x9809)))) +(let ((@x9828 (trans (monotonicity @x8934 @x9820 (= $x3998 (and $x3784 $x9809))) (rewrite (= (and $x3784 $x9809) $x9824)) (= $x3998 $x9824)))) +(let ((@x9835 (trans (monotonicity @x8934 @x9828 (= $x3999 $x9829)) (rewrite (= $x9829 $x9824)) (= $x3999 $x9824)))) +(let ((@x9842 (trans (monotonicity @x9835 (= $x4000 (and true $x9824))) (rewrite (= (and true $x9824) $x9824)) (= $x4000 $x9824)))) +(let ((@x9846 (trans (monotonicity @x8934 @x9842 (= $x4001 $x9829)) (rewrite (= $x9829 $x9824)) (= $x4001 $x9824)))) +(let ((@x9854 (trans (monotonicity @x9846 (= $x4002 (and $x3992 $x9824))) (rewrite (= (and $x3992 $x9824) $x9850)) (= $x4002 $x9850)))) +(let ((@x9862 (trans (monotonicity @x8934 @x9854 (= $x4003 (and $x3784 $x9850))) (rewrite (= (and $x3784 $x9850) $x9858)) (= $x4003 $x9858)))) +(let ((@x9869 (trans (monotonicity @x9862 (= $x4004 (and true $x9858))) (rewrite (= (and true $x9858) $x9858)) (= $x4004 $x9858)))) +(let ((@x9878 (trans (monotonicity @x9869 @x9754 (= $x4005 (=> $x9858 $x9750))) (rewrite (= (=> $x9858 $x9750) $x9874)) (= $x4005 $x9874)))) +(let ((@x9597 (rewrite (= (and $x3927 (and $x3935 $x3936 $x3937 $x3783 $x3940 $x3942 $x3943)) $x9595)))) +(let (($x9587 (and $x3935 $x3936 $x3937 $x3783 $x3940 $x3942 $x3943))) +(let (($x9579 (and $x3936 $x3937 $x3783 $x3940 $x3942 $x3943))) +(let (($x9571 (and $x3937 $x3783 $x3940 $x3942 $x3943))) +(let (($x9563 (and $x3783 $x3940 $x3942 $x3943))) +(let (($x9548 (and $x3940 $x3942 $x3783 $x3943))) +(let ((@x9539 (monotonicity (trans @x9533 (rewrite (= $x3945 $x3944)) (= $x3945 $x3944)) (= $x3946 (and $x3942 $x3944))))) +(let ((@x9544 (trans @x9539 (rewrite (= (and $x3942 $x3944) (and $x3942 $x3783 $x3943))) (= $x3946 (and $x3942 $x3783 $x3943))))) +(let ((@x9552 (trans (monotonicity @x9544 (= $x3947 (and $x3940 (and $x3942 $x3783 $x3943)))) (rewrite (= (and $x3940 (and $x3942 $x3783 $x3943)) $x9548)) (= $x3947 $x9548)))) +(let ((@x9559 (trans (monotonicity @x9552 (= $x3948 (and true $x9548))) (rewrite (= (and true $x9548) $x9548)) (= $x3948 $x9548)))) +(let ((@x9527 (trans (monotonicity @x8932 @x8932 (= $x3938 $x3938)) (rewrite (= $x3938 $x3783)) (= $x3938 $x3783)))) +(let ((@x9567 (trans (monotonicity @x9527 @x9559 (= $x3949 (and $x3783 $x9548))) (rewrite (= (and $x3783 $x9548) $x9563)) (= $x3949 $x9563)))) +(let ((@x9575 (trans (monotonicity @x9567 (= $x3950 (and $x3937 $x9563))) (rewrite (= (and $x3937 $x9563) $x9571)) (= $x3950 $x9571)))) +(let ((@x9583 (trans (monotonicity @x9575 (= $x3951 (and $x3936 $x9571))) (rewrite (= (and $x3936 $x9571) $x9579)) (= $x3951 $x9579)))) +(let ((@x9591 (trans (monotonicity @x9583 (= $x3952 (and $x3935 $x9579))) (rewrite (= (and $x3935 $x9579) $x9587)) (= $x3952 $x9587)))) +(let ((@x9599 (trans (monotonicity @x9591 (= $x3953 (and $x3927 $x9587))) @x9597 (= $x3953 $x9595)))) +(let ((@x9763 (trans (monotonicity @x9599 @x9754 (= $x3987 (=> $x9595 $x9750))) (rewrite (= (=> $x9595 $x9750) $x9759)) (= $x3987 $x9759)))) +(let ((@x9771 (trans (monotonicity @x9763 (= $x3988 (and $x3927 $x9759))) (rewrite (= (and $x3927 $x9759) $x9767)) (= $x3988 $x9767)))) +(let ((@x9780 (trans (monotonicity @x9771 (= $x3989 (=> $x3925 $x9767))) (rewrite (= (=> $x3925 $x9767) $x9776)) (= $x3989 $x9776)))) +(let ((@x9788 (trans (monotonicity @x9780 (= $x3990 (and $x3925 $x9776))) (rewrite (= (and $x3925 $x9776) $x9784)) (= $x3990 $x9784)))) +(let (($x9497 (not $x3992))) +(let (($x9511 (and $x3783 $x3776 $x9497))) +(let ((@x9502 (monotonicity (rewrite (= (< v_b_L_H_max_G_1$ ?x3929) $x9497)) @x9050 (= $x3931 (and $x9497 $x3784))))) +(let ((@x9507 (trans @x9502 (rewrite (= (and $x9497 $x3784) (and $x9497 $x3783 $x3776))) (= $x3931 (and $x9497 $x3783 $x3776))))) +(let ((@x9515 (trans (monotonicity @x8934 @x9507 (= $x3932 (and $x3784 (and $x9497 $x3783 $x3776)))) (rewrite (= (and $x3784 (and $x9497 $x3783 $x3776)) $x9511)) (= $x3932 $x9511)))) +(let ((@x9522 (trans (monotonicity @x9515 (= $x3933 (and true $x9511))) (rewrite (= (and true $x9511) $x9511)) (= $x3933 $x9511)))) +(let ((@x9797 (trans (monotonicity @x9522 @x9788 (= $x3991 (=> $x9511 $x9784))) (rewrite (= (=> $x9511 $x9784) $x9793)) (= $x3991 $x9793)))) +(let ((@x9496 (trans (monotonicity @x8934 (= $x3928 $x3928)) (rewrite (= $x3928 (and $x3923 $x3926 $x3783 $x3776))) (= $x3928 (and $x3923 $x3926 $x3783 $x3776))))) +(let ((@x9884 (monotonicity @x9496 (monotonicity @x9797 @x9878 (= (and $x3991 $x4005) $x9879)) (= $x4007 (=> (and $x3923 $x3926 $x3783 $x3776) $x9879))))) +(let ((@x9890 (trans @x9884 (rewrite (= (=> (and $x3923 $x3926 $x3783 $x3776) $x9879) $x9886)) (= $x4007 $x9886)))) +(let ((@x9898 (trans (monotonicity @x9890 (= $x4008 (and $x3927 $x9886))) (rewrite (= (and $x3927 $x9886) $x9894)) (= $x4008 $x9894)))) +(let ((@x9906 (trans (monotonicity @x9898 (= $x4009 (=> $x3925 $x9894))) (rewrite (= (=> $x3925 $x9894) $x9902)) (= $x4009 $x9902)))) +(let ((@x9914 (trans (monotonicity @x9906 (= $x4010 (and $x3925 $x9902))) (rewrite (= (and $x3925 $x9902) $x9910)) (= $x4010 $x9910)))) +(let (($x9465 (not $x4012))) +(let (($x9479 (and $x3783 $x3776 $x9465))) +(let ((@x9470 (monotonicity (rewrite (= (< v_b_L_H_p_G_0$ v_b_P_H_len$) $x9465)) @x9050 (= $x3919 (and $x9465 $x3784))))) +(let ((@x9475 (trans @x9470 (rewrite (= (and $x9465 $x3784) (and $x9465 $x3783 $x3776))) (= $x3919 (and $x9465 $x3783 $x3776))))) +(let ((@x9483 (trans (monotonicity @x8934 @x9475 (= $x3920 (and $x3784 (and $x9465 $x3783 $x3776)))) (rewrite (= (and $x3784 (and $x9465 $x3783 $x3776)) $x9479)) (= $x3920 $x9479)))) +(let ((@x9490 (trans (monotonicity @x9483 (= $x3921 (and true $x9479))) (rewrite (= (and true $x9479) $x9479)) (= $x3921 $x9479)))) +(let ((@x9923 (trans (monotonicity @x9490 @x9914 (= $x4011 (=> $x9479 $x9910))) (rewrite (= (=> $x9479 $x9910) $x9919)) (= $x4011 $x9919)))) +(let ((@x9443 (rewrite (= (and true $x9434) $x9434)))) +(let (($x9419 (and $x3886 $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776))) +(let (($x9420 (= (and $x3886 (and $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)) $x9419))) +(let (($x9417 (= $x3910 (and $x3886 (and $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776))))) +(let (($x9411 (and $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776))) +(let ((@x9413 (rewrite (= (and $x3807 (and $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)) $x9411)))) +(let (($x9403 (and $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776))) +(let ((@x9405 (rewrite (= (and $x3893 (and $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776)) $x9403)))) +(let (($x9395 (and $x3894 $x3895 $x3896 $x3897 $x3898 $x3783 $x3776))) +(let (($x9387 (and $x3895 $x3896 $x3897 $x3898 $x3783 $x3776))) +(let (($x9379 (and $x3896 $x3897 $x3898 $x3783 $x3776))) +(let ((@x8840 (rewrite (= (and true true) true)))) +(let ((@x9359 (rewrite (= (= (b_S_statusmap$ v_b_S_s$) (b_S_statusmap$ v_b_S_s$)) true)))) +(let ((@x9361 (monotonicity (rewrite (= (= ?x3874 ?x3874) true)) @x9359 (= $x3902 (and true true))))) +(let ((@x9365 (monotonicity (trans @x9361 @x8840 (= $x3902 true)) @x8934 (= $x3903 $x3808)))) +(let ((@x9370 (monotonicity (trans @x9365 @x9042 (= $x3903 $x3784)) (= $x3904 (and (and $x3897 $x3898) $x3784))))) +(let ((@x9375 (trans @x9370 (rewrite (= (and (and $x3897 $x3898) $x3784) (and $x3897 $x3898 $x3783 $x3776))) (= $x3904 (and $x3897 $x3898 $x3783 $x3776))))) +(let ((@x9383 (trans (monotonicity @x9375 (= $x3905 (and $x3896 (and $x3897 $x3898 $x3783 $x3776)))) (rewrite (= (and $x3896 (and $x3897 $x3898 $x3783 $x3776)) $x9379)) (= $x3905 $x9379)))) +(let ((@x9391 (trans (monotonicity @x9383 (= $x3906 (and $x3895 $x9379))) (rewrite (= (and $x3895 $x9379) $x9387)) (= $x3906 $x9387)))) +(let ((@x9399 (trans (monotonicity @x9391 (= $x3907 (and $x3894 $x9387))) (rewrite (= (and $x3894 $x9387) $x9395)) (= $x3907 $x9395)))) +(let ((@x9407 (trans (monotonicity @x9399 (= $x3908 (and $x3893 $x9395))) @x9405 (= $x3908 $x9403)))) +(let ((@x9415 (trans (monotonicity @x9407 (= $x3909 (and $x3807 $x9403))) @x9413 (= $x3909 $x9411)))) +(let ((@x9333 (rewrite (= (and true $x3886) $x3886)))) +(let (($x9322 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_timestamp$ v_b_S_s$ ?v0) ))) +)) +(let (($x9320 (= (<= (b_S_timestamp$ v_b_S_s$ ?0) (b_S_timestamp$ v_b_S_s$ ?0)) true))) +(let ((@x9328 (trans (quant-intro (rewrite $x9320) (= $x3885 $x9322)) (elim-unused (= $x9322 true)) (= $x3885 true)))) +(let ((@x9335 (trans (monotonicity @x9328 (= $x3887 (and true $x3886))) @x9333 (= $x3887 $x3886)))) +(let ((@x9337 (monotonicity (rewrite (= (<= ?x3713 ?x3713) true)) @x9335 (= $x3888 (and true $x3886))))) +(let ((@x9423 (trans (monotonicity (trans @x9337 @x9333 (= $x3888 $x3886)) @x9415 $x9417) (rewrite $x9420) (= $x3910 $x9419)))) +(let (($x9311 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_tm$ (b_S_typemap$ v_b_S_s$) ?v0) ))) +)) +(let (($x3862 (b_S_thread_n_local$ v_b_S_s$ ?0))) +(let (($x3877 (and (= (b_S_select_o_tm$ ?x3874 ?0) (b_S_select_o_tm$ ?x3874 ?0)) $x3862))) +(let (($x3878 (=> $x3862 $x3877))) +(let ((@x9277 (rewrite (= (=> $x3862 $x3862) true)))) +(let ((@x9270 (rewrite (= (and true $x3862) $x3862)))) +(let (($x9301 (= (= (b_S_select_o_tm$ ?x3874 ?0) (b_S_select_o_tm$ ?x3874 ?0)) true))) +(let ((@x9306 (trans (monotonicity (rewrite $x9301) (= $x3877 (and true $x3862))) @x9270 (= $x3877 $x3862)))) +(let ((@x9310 (trans (monotonicity @x9306 (= $x3878 (=> $x3862 $x3862))) @x9277 (= $x3878 true)))) +(let ((@x9317 (trans (quant-intro @x9310 (= $x3880 $x9311)) (elim-unused (= $x9311 true)) (= $x3880 true)))) +(let ((@x9341 (monotonicity @x9317 (trans @x9337 @x9333 (= $x3888 $x3886)) (= $x3889 (and true $x3886))))) +(let (($x9257 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ v_b_S_s$) ?v0) ))) +)) +(let ((?x3858 (b_S_statusmap$ v_b_S_s$))) +(let ((?x3859 (b_S_select_o_sm$ ?x3858 ?0))) +(let (($x3871 (and (= ?x3859 ?x3859) $x3862))) +(let (($x3872 (=> $x3862 $x3871))) +(let ((@x9290 (monotonicity (rewrite (= (= ?x3859 ?x3859) true)) (= $x3871 (and true $x3862))))) +(let ((@x9294 (monotonicity (trans @x9290 @x9270 (= $x3871 $x3862)) (= $x3872 (=> $x3862 $x3862))))) +(let ((@x9300 (trans (quant-intro (trans @x9294 @x9277 (= $x3872 true)) (= $x3873 $x9257)) (elim-unused (= $x9257 true)) (= $x3873 true)))) +(let ((@x9345 (monotonicity @x9300 (trans @x9341 @x9333 (= $x3889 $x3886)) (= $x3890 (and true $x3886))))) +(let (($x9280 (forall ((?v0 B_S_ptr$) )(!true :pattern ( (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?v0) ))) +)) +(let ((?x3864 (b_S_select_o_mem$ (b_S_memory$ v_b_S_s$) ?0))) +(let (($x3866 (and (= ?x3864 ?x3864) $x3862))) +(let (($x3867 (=> $x3862 $x3866))) +(let ((@x9268 (monotonicity (rewrite (= (= ?x3864 ?x3864) true)) (= $x3866 (and true $x3862))))) +(let ((@x9275 (monotonicity (trans @x9268 @x9270 (= $x3866 $x3862)) (= $x3867 (=> $x3862 $x3862))))) +(let ((@x9286 (trans (quant-intro (trans @x9275 @x9277 (= $x3867 true)) (= $x3869 $x9280)) (elim-unused (= $x9280 true)) (= $x3869 true)))) +(let ((@x9349 (monotonicity @x9286 (trans @x9345 @x9333 (= $x3890 $x3886)) (= $x3891 (and true $x3886))))) +(let (($x3855 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_owner$ v_b_S_s$ ?0))) b_S_kind_n_thread$))) +(let ((@x9259 (quant-intro (rewrite (= (=> (not $x3855) (not $x3855)) true)) (= $x3861 $x9257)))) +(let ((@x9353 (monotonicity (trans @x9259 (elim-unused (= $x9257 true)) (= $x3861 true)) (trans @x9349 @x9333 (= $x3891 $x3886)) (= $x3892 (and true $x3886))))) +(let ((@x9426 (monotonicity (trans @x9353 @x9333 (= $x3892 $x3886)) @x9423 (= $x3911 (and $x3886 $x9419))))) +(let ((@x9433 (monotonicity @x8934 (trans @x9426 (rewrite (= (and $x3886 $x9419) $x9419)) (= $x3911 $x9419)) (= $x3912 (and $x3784 $x9419))))) +(let ((@x9441 (monotonicity (trans @x9433 (rewrite (= (and $x3784 $x9419) $x9434)) (= $x3912 $x9434)) (= $x3913 (and true $x9434))))) +(let ((@x9448 (monotonicity @x8934 (trans @x9441 @x9443 (= $x3913 $x9434)) (= $x3914 (and $x3784 $x9434))))) +(let ((@x9454 (monotonicity (trans @x9448 (rewrite (= (and $x3784 $x9434) $x9434)) (= $x3914 $x9434)) (= $x3915 (and true $x9434))))) +(let ((@x9458 (monotonicity @x8934 (trans @x9454 @x9443 (= $x3915 $x9434)) (= $x3916 (and $x3784 $x9434))))) +(let ((@x9462 (monotonicity (trans @x9458 (rewrite (= (and $x3784 $x9434) $x9434)) (= $x3916 $x9434)) (= $x3917 (and true $x9434))))) +(let ((@x9973 (monotonicity (trans @x9462 @x9443 (= $x3917 $x9434)) (monotonicity @x9923 @x9967 (= (and $x4011 $x4019) $x9968)) (= $x4021 (=> $x9434 $x9968))))) +(let ((@x9979 (trans @x9973 (rewrite (= (=> $x9434 $x9968) (or $x9974 $x9968))) (= $x4021 (or $x9974 $x9968))))) +(let (($x9062 (and $x3783 $x3776 $x3806 $x3699))) +(let ((@x9058 (trans (monotonicity @x9050 (= $x3810 (and $x3807 $x3784))) (rewrite (= (and $x3807 $x3784) (and $x3806 $x3699 $x3783 $x3776))) (= $x3810 (and $x3806 $x3699 $x3783 $x3776))))) +(let ((@x9061 (monotonicity @x8934 @x9058 (= $x3811 (and $x3784 (and $x3806 $x3699 $x3783 $x3776)))))) +(let ((@x9066 (trans @x9061 (rewrite (= (and $x3784 (and $x3806 $x3699 $x3783 $x3776)) $x9062)) (= $x3811 $x9062)))) +(let ((@x9073 (trans (monotonicity @x9066 (= $x3812 (and true $x9062))) (rewrite (= (and true $x9062) $x9062)) (= $x3812 $x9062)))) +(let ((@x9080 (trans (monotonicity @x8934 @x9073 (= $x3813 (and $x3784 $x9062))) (rewrite (= (and $x3784 $x9062) $x9062)) (= $x3813 $x9062)))) +(let ((@x9083 (monotonicity (rewrite (= $x3805 false)) @x9080 (= $x3814 (and false $x9062))))) +(let ((@x9087 (trans @x9083 (rewrite (= (and false $x9062) false)) (= $x3814 false)))) +(let ((@x9094 (trans (monotonicity @x8934 @x9087 (= $x3815 (and $x3784 false))) (rewrite (= (and $x3784 false) false)) (= $x3815 false)))) +(let ((@x9101 (trans (monotonicity @x9094 (= $x3816 (and true false))) (rewrite (= (and true false) false)) (= $x3816 false)))) +(let ((@x9254 (trans (monotonicity @x9101 @x9247 (= $x3851 (=> false $x9245))) (rewrite (= (=> false $x9245) true)) (= $x3851 true)))) +(let ((@x9986 (trans (monotonicity @x9254 @x9979 (= $x4022 (and true (or $x9974 $x9968)))) (rewrite (= (and true (or $x9974 $x9968)) (or $x9974 $x9968))) (= $x4022 (or $x9974 $x9968))))) +(let (($x9017 (and $x3772 $x3773 $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794))) +(let (($x8916 (and $x8667 $x3769))) +(let (($x9018 (= (and $x3774 (and $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794)) $x9017))) +(let (($x9015 (= $x3802 (and $x3774 (and $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794))))) +(let (($x9009 (and $x3776 $x3777 $x3780 $x3781 $x3783 $x3785 $x8956 $x8960 $x3794))) +(let ((@x9011 (rewrite (= (and $x3778 (and $x3780 $x3781 $x3783 $x3776 $x3785 $x8956 $x8960 $x3794)) $x9009)))) +(let (($x9001 (and $x3780 $x3781 $x3783 $x3776 $x3785 $x8956 $x8960 $x3794))) +(let (($x8993 (and $x3783 $x3776 $x3785 $x8956 $x8960 $x3794))) +(let (($x8985 (and $x3785 $x8956 $x8960 $x3794 $x3783 $x3776))) +(let (($x8977 (and $x8956 $x8960 $x3794 $x3783 $x3776))) +(let (($x8964 (= (and (< v_b_SL_H_witness_G_0$ v_b_P_H_len$) $x3794) (and $x8960 $x3794)))) +(let ((@x8965 (monotonicity (rewrite (= (< v_b_SL_H_witness_G_0$ v_b_P_H_len$) $x8960)) $x8964))) +(let ((@x8973 (trans (monotonicity @x8965 @x8934 (= $x3796 (and (and $x8960 $x3794) $x3784))) (rewrite (= (and (and $x8960 $x3794) $x3784) (and $x8960 $x3794 $x3783 $x3776))) (= $x3796 (and $x8960 $x3794 $x3783 $x3776))))) +(let (($x3788 (<= ?x3765 v_b_L_H_max_G_1$))) +(let (($x8951 (or (not (and $x1212 $x1344 (not (<= v_b_L_H_p_G_0$ ?0)))) $x3788))) +(let (($x3787 (and $x1345 (< ?0 v_b_L_H_p_G_0$)))) +(let (($x3789 (=> $x3787 $x3788))) +(let ((@x8953 (rewrite (= (=> (and $x1212 $x1344 (not (<= v_b_L_H_p_G_0$ ?0))) $x3788) $x8951)))) +(let (($x8936 (not (<= v_b_L_H_p_G_0$ ?0)))) +(let (($x8942 (and $x1212 $x1344 $x8936))) +(let ((@x8941 (monotonicity @x5523 (rewrite (= (< ?0 v_b_L_H_p_G_0$) $x8936)) (= $x3787 (and $x1345 $x8936))))) +(let ((@x8949 (monotonicity (trans @x8941 (rewrite (= (and $x1345 $x8936) $x8942)) (= $x3787 $x8942)) (= $x3789 (=> $x8942 $x3788))))) +(let ((@x8976 (monotonicity (quant-intro (trans @x8949 @x8953 (= $x3789 $x8951)) (= $x3790 $x8956)) @x8973 (= $x3797 (and $x8956 (and $x8960 $x3794 $x3783 $x3776)))))) +(let ((@x8981 (trans @x8976 (rewrite (= (and $x8956 (and $x8960 $x3794 $x3783 $x3776)) $x8977)) (= $x3797 $x8977)))) +(let ((@x8989 (trans (monotonicity @x8981 (= $x3798 (and $x3785 $x8977))) (rewrite (= (and $x3785 $x8977) $x8985)) (= $x3798 $x8985)))) +(let ((@x8997 (trans (monotonicity @x8934 @x8989 (= $x3799 (and $x3784 $x8985))) (rewrite (= (and $x3784 $x8985) $x8993)) (= $x3799 $x8993)))) +(let ((@x9000 (monotonicity (monotonicity (rewrite (= $x3780 $x3780)) (= $x3782 $x3782)) @x8997 (= $x3800 (and $x3782 $x8993))))) +(let ((@x9008 (monotonicity (monotonicity (rewrite (= $x3776 $x3776)) (= $x3778 $x3778)) (trans @x9000 (rewrite (= (and $x3782 $x8993) $x9001)) (= $x3800 $x9001)) (= $x3801 (and $x3778 $x9001))))) +(let ((@x9016 (monotonicity (monotonicity (rewrite (= $x3772 $x3772)) (= $x3774 $x3774)) (trans @x9008 @x9011 (= $x3801 $x9009)) $x9015))) +(let ((@x9024 (monotonicity (trans @x9016 (rewrite $x9018) (= $x3802 $x9017)) (= $x3803 (and true $x9017))))) +(let ((@x9031 (monotonicity (monotonicity (rewrite (= $x3676 $x8667)) (= $x3770 $x8916)) (trans @x9024 (rewrite (= (and true $x9017) $x9017)) (= $x3803 $x9017)) (= $x3804 (and $x8916 $x9017))))) +(let ((@x9989 (monotonicity (trans @x9031 (rewrite (= (and $x8916 $x9017) $x9032)) (= $x3804 $x9032)) @x9986 (= $x4023 (=> $x9032 (or $x9974 $x9968)))))) +(let ((@x9995 (trans @x9989 (rewrite (= (=> $x9032 (or $x9974 $x9968)) $x9991)) (= $x4023 $x9991)))) +(let ((@x9998 (monotonicity (monotonicity (rewrite (= $x3676 $x8667)) (= $x3770 $x8916)) @x9995 (= $x4024 (and $x8916 $x9991))))) +(let (($x3766 (<= ?x3765 v_b_L_H_max_G_0$))) +(let (($x8908 (or (not (and $x1212 $x1344 (not (<= 1 ?0)))) $x3766))) +(let (($x3763 (and $x1345 (< ?0 1)))) +(let (($x3767 (=> $x3763 $x3766))) +(let (($x8887 (<= 1 ?0))) +(let (($x8888 (not $x8887))) +(let (($x8899 (and $x1212 $x1344 $x8888))) +(let ((@x8895 (trans (rewrite (= (< ?0 1) $x8888)) (monotonicity (rewrite (= $x8887 $x8887)) (= $x8888 $x8888)) (= (< ?0 1) $x8888)))) +(let ((@x8903 (trans (monotonicity @x5523 @x8895 (= $x3763 (and $x1345 $x8888))) (rewrite (= (and $x1345 $x8888) $x8899)) (= $x3763 $x8899)))) +(let ((@x8912 (trans (monotonicity @x8903 (= $x3767 (=> $x8899 $x3766))) (rewrite (= (=> $x8899 $x3766) $x8908)) (= $x3767 $x8908)))) +(let ((@x10006 (monotonicity (quant-intro @x8912 (= $x3768 $x8913)) (trans @x9998 (rewrite (= (and $x8916 $x9991) $x9999)) (= $x4024 $x9999)) (= $x4025 (=> $x8913 $x9999))))) +(let ((@x10015 (monotonicity (quant-intro @x8912 (= $x3768 $x8913)) (trans @x10006 (rewrite (= (=> $x8913 $x9999) $x10008)) (= $x4025 $x10008)) (= (and $x3768 $x4025) $x10013)))) +(let ((@x10018 (monotonicity (rewrite (= $x3761 $x3761)) @x10015 (= $x4027 (=> $x3761 $x10013))))) +(let ((@x10027 (monotonicity (rewrite (= $x3761 $x3761)) (trans @x10018 (rewrite (= (=> $x3761 $x10013) $x10020)) (= $x4027 $x10020)) (= (and $x3761 $x4027) $x10025)))) +(let ((@x8874 (rewrite (= (and $x3747 (and $x3748 $x3749 $x3750)) (and $x3747 $x3748 $x3749 $x3750))))) +(let ((@x8838 (monotonicity (rewrite (= $x3752 true)) (rewrite (= $x3752 true)) (= $x3753 (and true true))))) +(let ((@x8844 (monotonicity (rewrite (= $x3751 true)) (trans @x8838 @x8840 (= $x3753 true)) (= $x3754 (and true true))))) +(let ((@x8848 (monotonicity (rewrite (= $x3751 true)) (trans @x8844 @x8840 (= $x3754 true)) (= $x3755 (and true true))))) +(let ((@x8853 (monotonicity (trans @x8848 @x8840 (= $x3755 true)) (= $x3756 (and $x3750 true))))) +(let ((@x8860 (monotonicity (trans @x8853 (rewrite (= (and $x3750 true) $x3750)) (= $x3756 $x3750)) (= (and $x3749 $x3756) (and $x3749 $x3750))))) +(let ((@x8868 (trans (monotonicity @x8860 (= $x3758 (and $x3748 (and $x3749 $x3750)))) (rewrite (= (and $x3748 (and $x3749 $x3750)) (and $x3748 $x3749 $x3750))) (= $x3758 (and $x3748 $x3749 $x3750))))) +(let ((@x8876 (trans (monotonicity @x8868 (= $x3759 (and $x3747 (and $x3748 $x3749 $x3750)))) @x8874 (= $x3759 (and $x3747 $x3748 $x3749 $x3750))))) +(let ((@x8884 (trans (monotonicity @x8876 (= $x3760 (and $x3744 (and $x3747 $x3748 $x3749 $x3750)))) (rewrite (= (and $x3744 (and $x3747 $x3748 $x3749 $x3750)) $x8880)) (= $x3760 $x8880)))) +(let ((@x10036 (trans (monotonicity @x8884 @x10027 (= $x4029 (=> $x8880 $x10025))) (rewrite (= (=> $x8880 $x10025) $x10032)) (= $x4029 $x10032)))) +(let ((@x10044 (trans (monotonicity @x10036 (= $x4030 (and $x3744 $x10032))) (rewrite (= (and $x3744 $x10032) $x10040)) (= $x4030 $x10040)))) +(let ((@x10053 (trans (monotonicity @x10044 (= $x4031 (=> $x3742 $x10040))) (rewrite (= (=> $x3742 $x10040) $x10049)) (= $x4031 $x10049)))) +(let ((@x10061 (trans (monotonicity @x10053 (= $x4032 (and $x3742 $x10049))) (rewrite (= (and $x3742 $x10049) $x10057)) (= $x4032 $x10057)))) +(let ((@x10070 (trans (monotonicity @x10061 (= $x4033 (=> $x3738 $x10057))) (rewrite (= (=> $x3738 $x10057) $x10066)) (= $x4033 $x10066)))) +(let (($x8812 (and $x3667 $x3668 $x3671 $x3672 $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x8804 (and $x3671 $x3672 $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x8796 (and $x8658 $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x8788 (and $x8667 $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x8780 (and $x3683 $x3685 $x3686 $x3687 $x3690 $x3691 $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x8765 (and $x3697 $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x8692 (and $x3683 $x3685 $x3686 $x3687 $x3690 $x3691))) +(let (($x8766 (= (and $x3697 (and $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)) $x8765))) +(let (($x8763 (= $x3728 (and $x3697 (and $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))))) +(let (($x8757 (and $x3698 $x3699 $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let (($x8758 (= (and (and $x3698 $x3699) (and $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)) $x8757))) +(let (($x8755 (= $x3727 (and (and $x3698 $x3699) (and $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))))) +(let (($x8749 (and $x8701 $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let ((@x8751 (rewrite (= (and $x8701 (and $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720)) $x8749)))) +(let (($x8741 (and $x3708 $x3709 $x3711 $x3714 $x8707 $x3719 $x3720))) +(let ((@x8743 (rewrite (= (and (and $x3708 $x3709) (and $x3711 $x3714 $x8707 $x3719 $x3720)) $x8741)))) +(let (($x8733 (and $x3711 $x3714 $x8707 $x3719 $x3720))) +(let ((@x8727 (rewrite (= (and $x3714 (and $x8707 $x3719 $x3720)) (and $x3714 $x8707 $x3719 $x3720))))) +(let (($x8705 (= (= (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?0) false) (not (b_S_in_n_writes_n_at$ v_b_H_wrTime_S_1_T_6_o_1$ ?0))))) +(let ((@x8716 (monotonicity (quant-intro (rewrite $x8705) (= $x3718 $x8707)) (monotonicity (rewrite (= $x3719 $x3719)) (= $x3721 $x3721)) (= $x3722 (and $x8707 $x3721))))) +(let ((@x8721 (trans @x8716 (rewrite (= (and $x8707 $x3721) (and $x8707 $x3719 $x3720))) (= $x3722 (and $x8707 $x3719 $x3720))))) +(let ((@x8729 (trans (monotonicity @x8721 (= $x3723 (and $x3714 (and $x8707 $x3719 $x3720)))) @x8727 (= $x3723 (and $x3714 $x8707 $x3719 $x3720))))) +(let ((@x8737 (trans (monotonicity @x8729 (= $x3724 (and $x3711 (and $x3714 $x8707 $x3719 $x3720)))) (rewrite (= (and $x3711 (and $x3714 $x8707 $x3719 $x3720)) $x8733)) (= $x3724 $x8733)))) +(let ((@x8745 (trans (monotonicity @x8737 (= $x3725 (and (and $x3708 $x3709) $x8733))) @x8743 (= $x3725 $x8741)))) +(let (($x8699 (= (< (b_S_frame_n_level$ ?0) b_S_current_n_frame_n_level$) (not (<= b_S_current_n_frame_n_level$ (b_S_frame_n_level$ ?0)))))) +(let ((@x8748 (monotonicity (quant-intro (rewrite $x8699) (= $x3706 $x8701)) @x8745 (= $x3726 (and $x8701 $x8741))))) +(let ((@x8761 (trans (monotonicity (trans @x8748 @x8751 (= $x3726 $x8749)) $x8755) (rewrite $x8758) (= $x3727 $x8757)))) +(let ((@x8772 (monotonicity (trans (monotonicity @x8761 $x8763) (rewrite $x8766) (= $x3728 $x8765)) (= $x3729 (and true $x8765))))) +(let (($x8684 (and $x3685 $x3686 $x3687 $x3690 $x3691))) +(let ((@x8678 (rewrite (= (and $x3686 (and $x3687 $x3690 $x3691)) (and $x3686 $x3687 $x3690 $x3691))))) +(let ((@x8675 (monotonicity (rewrite (= (and $x3687 (and $x3690 $x3691)) (and $x3687 $x3690 $x3691))) (= $x3694 (and $x3686 (and $x3687 $x3690 $x3691)))))) +(let ((@x8683 (monotonicity (trans @x8675 @x8678 (= $x3694 (and $x3686 $x3687 $x3690 $x3691))) (= $x3695 (and $x3685 (and $x3686 $x3687 $x3690 $x3691)))))) +(let ((@x8688 (trans @x8683 (rewrite (= (and $x3685 (and $x3686 $x3687 $x3690 $x3691)) $x8684)) (= $x3695 $x8684)))) +(let ((@x8696 (trans (monotonicity @x8688 (= $x3696 (and $x3683 $x8684))) (rewrite (= (and $x3683 $x8684) $x8692)) (= $x3696 $x8692)))) +(let ((@x8779 (monotonicity @x8696 (trans @x8772 (rewrite (= (and true $x8765) $x8765)) (= $x3729 $x8765)) (= $x3730 (and $x8692 $x8765))))) +(let ((@x8787 (monotonicity (rewrite (= $x3676 $x8667)) (trans @x8779 (rewrite (= (and $x8692 $x8765) $x8780)) (= $x3730 $x8780)) (= $x3731 (and $x8667 $x8780))))) +(let ((@x8665 (trans (rewrite (= (< v_b_P_H_len$ 1099511627776) $x8658)) (monotonicity (rewrite (= $x8657 $x8657)) (= $x8658 $x8658)) (= (< v_b_P_H_len$ 1099511627776) $x8658)))) +(let ((@x8795 (monotonicity @x8665 (trans @x8787 (rewrite (= (and $x8667 $x8780) $x8788)) (= $x3731 $x8788)) (= $x3732 (and $x8658 $x8788))))) +(let ((@x8803 (monotonicity (monotonicity (rewrite (= $x3671 $x3671)) (= $x3673 $x3673)) (trans @x8795 (rewrite (= (and $x8658 $x8788) $x8796)) (= $x3732 $x8796)) (= $x3733 (and $x3673 $x8796))))) +(let ((@x8811 (monotonicity (monotonicity (rewrite (= $x3667 $x3667)) (= $x3669 $x3669)) (trans @x8803 (rewrite (= (and $x3673 $x8796) $x8804)) (= $x3733 $x8804)) (= $x3734 (and $x3669 $x8804))))) +(let ((@x8819 (monotonicity (monotonicity (rewrite (= $x3663 $x3663)) (= $x3665 $x3665)) (trans @x8811 (rewrite (= (and $x3669 $x8804) $x8812)) (= $x3734 $x8812)) (= $x3735 (and $x3665 $x8812))))) +(let ((@x8827 (monotonicity (trans @x8819 (rewrite (= (and $x3665 $x8812) $x8820)) (= $x3735 $x8820)) (= $x3736 (and true $x8820))))) +(let ((@x10076 (monotonicity (trans @x8827 (rewrite (= (and true $x8820) $x8820)) (= $x3736 $x8820)) (monotonicity @x10070 (= (and $x3738 $x4033) $x10071)) (= $x4035 (=> $x8820 $x10071))))) +(let ((@x10085 (monotonicity (trans @x10076 (rewrite (= (=> $x8820 $x10071) $x10078)) (= $x4035 $x10078)) (= $x4036 (not $x10078))))) +(let ((@x10087 (not-or-elim (mp (asserted $x4036) @x10085 (not $x10078)) $x8820))) +(let ((@x10095 (and-elim @x10087 $x8667))) +(let (($x21235 (or $x12351 $x21232))) +(let (($x21238 (not $x21235))) +(let (($x16251 (not $x3743))) +(let (($x16242 (not $x3740))) +(let (($x21241 (or $x16242 $x16251 (not $x3747) (not $x3748) (not $x3749) (not $x3750) $x21238))) +(let (($x21244 (not $x21241))) +(let (($x23354 (= (b_S_kind_n_of$ (b_S_typ$ ?x23206)) b_S_kind_n_primitive$))) +(let ((?x22173 (b_S_kind_n_of$ b_T_T_u1$))) +(let (($x22174 (= ?x22173 b_S_kind_n_primitive$))) +(let (($x3529 (b_S_is_n_primitive$ b_T_T_u1$))) +(let (($x22181 (= $x3529 $x22174))) +(let (($x12265 (forall ((?v0 B_S_ctype$) )(!(let (($x1179 (b_S_is_n_primitive$ ?v0))) +(= $x1179 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_primitive$))) :pattern ( (b_S_is_n_primitive$ ?v0) ))) +)) +(let (($x1179 (b_S_is_n_primitive$ ?0))) +(let (($x12261 (= $x1179 (= (b_S_kind_n_of$ ?0) b_S_kind_n_primitive$)))) +(let (($x3575 (forall ((?v0 B_S_ctype$) )(!(let (($x1179 (b_S_is_n_primitive$ ?v0))) +(= $x1179 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_primitive$))) :pattern ( (b_S_is_n_primitive$ ?v0) ))) +)) +(let ((@x12264 (rewrite (= (= $x1179 (= (b_S_kind_n_of$ ?0) b_S_kind_n_primitive$)) $x12261)))) +(let ((@x16196 (mp~ (mp (asserted $x3575) (quant-intro @x12264 (= $x3575 $x12265)) $x12265) (nnf-pos (refl (~ $x12261 $x12261)) (~ $x12265 $x12265)) $x12265))) +(let ((@x5093 (asserted $x3529))) +(let ((@x23476 (unit-resolution (def-axiom (or (not $x22181) (not $x3529) $x22174)) @x5093 (or (not $x22181) $x22174)))) +(let ((@x23477 (unit-resolution @x23476 (unit-resolution ((_ quant-inst b_T_T_u1$) (or (not $x12265) $x22181)) @x16196 $x22181) $x22174))) +(let ((@x23492 (unit-resolution (def-axiom (or (not $x23223) $x16242 $x23216)) @x23251 (or (not $x23223) $x23216)))) +(let ((@x23499 (unit-resolution @x23492 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 0 b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23223)) @x20966 $x23223) $x23216))) +(let ((@x23922 (symm (unit-resolution @x23405 @x16076 @x23251 $x23207) (= ?x23206 ?x3739)))) +(let ((@x23778 (trans (monotonicity @x23922 (= (b_S_typ$ ?x23206) ?x23215)) @x23499 (= (b_S_typ$ ?x23206) b_T_T_u1$)))) +(let ((@x23574 (trans (monotonicity @x23778 (= (b_S_kind_n_of$ (b_S_typ$ ?x23206)) ?x22173)) @x23477 $x23354))) +(let (($x23361 (not (b_S_closed$ v_b_S_s$ (b_S_ts_n_emb$ (b_S_select_o_tm$ ?x3874 ?x23206)))))) +(let ((?x23356 (b_S_select_o_tm$ ?x3874 ?x23206))) +(let (($x23357 (b_S_ts_n_is_n_volatile$ ?x23356))) +(let (($x23358 (not $x23357))) +(let (($x23362 (or $x23358 $x23361))) +(let ((@x24072 (monotonicity @x23922 (= ?x23356 (b_S_select_o_tm$ ?x3874 ?x3739))))) +(let ((@x23530 (monotonicity @x24072 (= $x23357 (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x3874 ?x3739)))))) +(let ((@x23502 (symm @x23530 (= (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x3874 ?x3739)) $x23357)))) +(let ((@x23522 (monotonicity @x23502 (= (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x3874 ?x3739))) $x23358)))) +(let ((?x23179 (b_S_select_o_tm$ ?x3874 ?x3739))) +(let (($x23303 (b_S_ts_n_is_n_volatile$ ?x23179))) +(let (($x23260 (not $x23303))) +(let (($x16245 (not $x3741))) +(let (($x23304 (or $x16245 $x23303))) +(let (($x23305 (not $x23304))) +(let ((?x23296 (b_S_ptr$ ?x3678 v_b_P_H_arr$))) +(let (($x23297 (b_S_set_n_in$ ?x23296 (b_S_domain$ v_b_S_s$ (b_S_ptr$ ?x3678 (b_S_ref$ ?x3682)))))) +(let ((?x21715 (b_S_ref$ ?x3682))) +(let ((?x22684 (b_S_ptr$ ?x3678 ?x21715))) +(let (($x23045 (b_S_set_n_in$ ?x22684 (b_S_domain$ v_b_S_s$ ?x22684)))) +(let ((@x23339 (monotonicity (symm @x23283 (= v_b_P_H_arr$ ?x3681)) (= ?x23296 ?x3682)))) +(let (($x22691 (= ?x3682 ?x22684))) +(let (($x22699 (= (or (not $x8559) (or (not $x3686) $x22691)) (or (not $x8559) (not $x3686) $x22691)))) +(let ((@x22701 (mp ((_ quant-inst (b_S_ptr$ ?x3678 ?x3681) (b_S_array$ b_T_T_u1$ v_b_P_H_len$)) (or (not $x8559) (or (not $x3686) $x22691))) (rewrite $x22699) (or (not $x8559) (not $x3686) $x22691)))) +(let ((@x24449 (symm (unit-resolution @x22701 @x16076 (and-elim @x10087 $x3686) $x22691) (= ?x22684 ?x3682)))) +(let ((@x23394 (monotonicity (trans @x24449 (symm @x23339 (= ?x3682 ?x23296)) (= ?x22684 ?x23296)) (= $x23045 $x23297)))) +(let (($x23063 (forall ((?v3 B_S_ptr$) )(!(let ((?x3680 (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))) +(let ((?x3681 (b_S_ref$ ?x3680))) +(let ((?x3678 (b_S_array$ b_T_T_u1$ v_b_P_H_len$))) +(let ((?x3682 (b_S_ptr$ ?x3678 ?x3681))) +(let ((?x21715 (b_S_ref$ ?x3682))) +(let ((?x22684 (b_S_ptr$ ?x3678 ?x21715))) +(let (($x23060 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ v_b_S_s$ ?x22684))))) +(or (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?x22684)) (not (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ ?x22684))) $x23060)))))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ v_b_S_s$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$))))))) ))) +)) +(let (($x22949 (b_S_closed$ v_b_S_s$ ?x22684))) +(let (($x22973 (not $x22949))) +(let (($x23066 (not (or (not $x23045) $x22973 (not $x23063))))) +(let (($x23019 (b_S_in_n_domain$ v_b_S_s$ ?x22684 ?x22684))) +(let (($x23018 (b_S_in_n_domain_n_lab$ v_b_S_s$ ?x22684 ?x22684 b_l_H_public$))) +(let (($x23027 (= $x23018 $x23019))) +(let (($x12066 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(!(let (($x3056 (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3))) +(= $x3056 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) ))) +)) +(let (($x3056 (b_S_in_n_domain_n_lab$ ?3 ?2 ?1 ?0))) +(let (($x12062 (= $x3056 (b_S_in_n_domain$ ?3 ?2 ?1)))) +(let (($x3060 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) (?v3 B_S_label$) )(!(let (($x3056 (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3))) +(= $x3056 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) :pattern ( (b_S_in_n_domain_n_lab$ ?v0 ?v1 ?v2 ?v3) ))) +)) +(let ((@x12068 (quant-intro (rewrite (= (= $x3056 (b_S_in_n_domain$ ?3 ?2 ?1)) $x12062)) (= $x3060 $x12066)))) +(let ((@x15761 (mp~ (mp (asserted $x3060) @x12068 $x12066) (nnf-pos (refl (~ $x12062 $x12062)) (~ $x12066 $x12066)) $x12066))) +(let (($x36 (= b_S_kind_n_primitive$ b_S_kind_n_array$))) +(let (($x37 (not $x36))) +(let (($x23052 (= $x37 (not (= (b_S_kind_n_of$ (b_S_typ$ ?x22684)) b_S_kind_n_primitive$))))) +(let ((?x22935 (b_S_typ$ ?x22684))) +(let ((?x23088 (b_S_kind_n_of$ ?x22935))) +(let (($x23089 (= ?x23088 b_S_kind_n_primitive$))) +(let ((?x3688 (b_S_kind_n_of$ ?x3678))) +(let (($x22849 (= ?x3688 b_S_kind_n_array$))) +(let (($x21816 (b_S_is_n_arraytype$ ?x3678))) +(let (($x22850 (= $x21816 $x22849))) +(let (($x12251 (forall ((?v0 B_S_ctype$) )(!(let (($x2733 (b_S_is_n_arraytype$ ?v0))) +(= $x2733 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_array$))) :pattern ( (b_S_is_n_arraytype$ ?v0) ))) +)) +(let (($x2733 (b_S_is_n_arraytype$ ?0))) +(let (($x12247 (= $x2733 (= (b_S_kind_n_of$ ?0) b_S_kind_n_array$)))) +(let (($x3569 (forall ((?v0 B_S_ctype$) )(!(let (($x2733 (b_S_is_n_arraytype$ ?v0))) +(= $x2733 (= (b_S_kind_n_of$ ?v0) b_S_kind_n_array$))) :pattern ( (b_S_is_n_arraytype$ ?v0) ))) +)) +(let ((@x12250 (rewrite (= (= $x2733 (= (b_S_kind_n_of$ ?0) b_S_kind_n_array$)) $x12247)))) +(let ((@x16186 (mp~ (mp (asserted $x3569) (quant-intro @x12250 (= $x3569 $x12251)) $x12251) (nnf-pos (refl (~ $x12247 $x12247)) (~ $x12251 $x12251)) $x12251))) +(let (($x2482 (forall ((?v0 B_S_ctype$) (?v1 Int) )(!(let ((?x2267 (b_S_array$ ?v0 ?v1))) +(b_S_is_n_arraytype$ ?x2267)) :pattern ( (b_S_array$ ?v0 ?v1) ))) +)) +(let ((?x2267 (b_S_array$ ?1 ?0))) +(let (($x2481 (b_S_is_n_arraytype$ ?x2267))) +(let ((@x15316 (mp~ (asserted $x2482) (nnf-pos (refl (~ $x2481 $x2481)) (~ $x2482 $x2482)) $x2482))) +(let ((@x24927 (unit-resolution (def-axiom (or (not $x22850) (not $x21816) $x22849)) (unit-resolution ((_ quant-inst b_T_T_u1$ v_b_P_H_len$) (or (not $x2482) $x21816)) @x15316 $x21816) (or (not $x22850) $x22849)))) +(let ((@x24928 (unit-resolution @x24927 (unit-resolution ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$)) (or (not $x12251) $x22850)) @x16186 $x22850) $x22849))) +(let ((@x24406 (unit-resolution ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ ?x3680)) (or (not $x20974) (= (b_S_typ$ ?x3682) ?x3678))) @x20979 (= (b_S_typ$ ?x3682) ?x3678)))) +(let ((@x23038 (trans (monotonicity @x24449 (= ?x22935 (b_S_typ$ ?x3682))) @x24406 (= ?x22935 ?x3678)))) +(let ((@x23042 (trans (monotonicity @x23038 (= ?x23088 ?x3688)) @x24928 (= ?x23088 b_S_kind_n_array$)))) +(let ((@x23031 (monotonicity @x23042 (= $x23089 (= b_S_kind_n_array$ b_S_kind_n_primitive$))))) +(let ((@x23049 (trans @x23031 (commutativity (= (= b_S_kind_n_array$ b_S_kind_n_primitive$) $x36)) (= $x23089 $x36)))) +(let (($x45 (and (not (= b_S_kind_n_composite$ b_S_kind_n_array$)) (and (not (= b_S_kind_n_thread$ b_S_kind_n_array$)) true)))) +(let (($x47 (and $x37 (and (not (= b_S_kind_n_composite$ b_S_kind_n_thread$)) $x45)))) +(let (($x49 (and (not (= b_S_kind_n_primitive$ b_S_kind_n_composite$)) (and (not (= b_S_kind_n_primitive$ b_S_kind_n_thread$)) $x47)))) +(let ((@x4039 (and-elim (asserted $x49) (and (not (= b_S_kind_n_primitive$ b_S_kind_n_thread$)) $x47)))) +(let ((@x23078 (mp (and-elim (and-elim @x4039 $x47) $x37) (monotonicity (symm @x23049 (= $x36 $x23089)) $x23052) (not $x23089)))) +(let (($x23034 (not $x23019))) +(let (($x23037 (not $x23018))) +(let ((@x23072 (monotonicity (symm (monotonicity @x24449 @x24449 (= $x23018 $x3738)) (= $x3738 $x23018)) (= $x10065 $x23037)))) +(let ((@x23071 (unit-resolution (def-axiom (or (not $x23027) $x23018 $x23034)) (mp (hypothesis $x10065) @x23072 $x23037) (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715) (b_S_ptr$ ?x3678 ?x21715) b_l_H_public$) (or (not $x12066) $x23027)) @x15761 $x23027) $x23034))) +(let (($x23069 (b_S_is$ ?x22684 ?x22935))) +(let ((@x23095 (mp (and-elim @x10087 $x3686) (symm (monotonicity @x24449 @x23038 (= $x23069 $x3686)) (= $x3686 $x23069)) $x23069))) +(let (($x23086 (b_S_typed$ v_b_S_s$ ?x22684))) +(let ((@x23099 (mp (and-elim @x10087 $x3687) (symm (monotonicity @x24449 (= $x23086 $x3687)) (= $x3687 $x23086)) $x23086))) +(let ((@x10097 (and-elim @x10087 $x3685))) +(let ((@x23104 (trans (monotonicity @x24449 (= (b_S_owner$ v_b_S_s$ ?x22684) ?x3684)) @x10097 (= (b_S_owner$ v_b_S_s$ ?x22684) b_S_me$)))) +(let ((@x23113 (mp (and-elim @x10087 $x3683) (symm (monotonicity @x24449 (= $x22949 $x3683)) (= $x3683 $x22949)) $x22949))) +(let (($x22936 (b_S_is_n_non_n_primitive$ ?x22935))) +(let ((@x23118 (mp (and-elim @x10087 $x3691) (symm (monotonicity @x23038 (= $x22936 $x3691)) (= $x3691 $x22936)) $x22936))) +(let ((@x10104 (and-elim @x10087 $x3699))) +(let (($x19623 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3028 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) +(let (($x1001 (= (b_S_kind_n_of$ (b_S_typ$ ?v1)) b_S_kind_n_primitive$))) +(let (($x1106 (b_S_typed$ ?v0 ?v1))) +(let (($x8534 (not $x1106))) +(let (($x1098 (b_S_closed$ ?v0 ?v1))) +(let (($x3231 (not $x1098))) +(or (not (b_S_full_n_stop$ ?v0)) $x3231 (not (= (b_S_owner$ ?v0 ?v1) b_S_me$)) (not (b_S_is$ ?v1 (b_S_typ$ ?v1))) $x8534 $x1001 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?v1))) $x3028))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ))) +)) +(let (($x8148 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3028 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) +(let ((?x999 (b_S_typ$ ?v1))) +(let (($x1042 (b_S_is_n_non_n_primitive$ ?x999))) +(let (($x1001 (= (b_S_kind_n_of$ ?x999) b_S_kind_n_primitive$))) +(let (($x1024 (not $x1001))) +(let (($x1106 (b_S_typed$ ?v0 ?v1))) +(let (($x1105 (b_S_is$ ?v1 ?x999))) +(let ((?x1103 (b_S_owner$ ?v0 ?v1))) +(let (($x1104 (= ?x1103 b_S_me$))) +(let (($x1098 (b_S_closed$ ?v0 ?v1))) +(let (($x1172 (b_S_full_n_stop$ ?v0))) +(let (($x8134 (and $x1172 $x1098 $x1104 $x1105 $x1106 $x1024 $x1042))) +(let (($x8142 (not $x8134))) +(or $x8142 $x3028)))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ))) +)) +(let (($x3028 (b_S_in_n_domain$ ?1 ?0 ?0))) +(let (($x1098 (b_S_closed$ ?1 ?0))) +(let (($x3231 (not $x1098))) +(let (($x19618 (or (not (b_S_full_n_stop$ ?1)) $x3231 (not $x1104) (not (b_S_is$ ?0 (b_S_typ$ ?0))) $x8534 $x1001 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?0))) $x3028))) +(let ((?x999 (b_S_typ$ ?0))) +(let (($x1042 (b_S_is_n_non_n_primitive$ ?x999))) +(let (($x1105 (b_S_is$ ?0 ?x999))) +(let (($x1172 (b_S_full_n_stop$ ?1))) +(let (($x8134 (and $x1172 $x1098 $x1104 $x1105 $x1106 $x1024 $x1042))) +(let (($x8142 (not $x8134))) +(let (($x8143 (or $x8142 $x3028))) +(let (($x19604 (or (not $x1172) $x3231 (not $x1104) (not $x1105) $x8534 $x1001 (not $x1042)))) +(let ((@x19610 (monotonicity (rewrite (= $x8134 (not $x19604))) (= $x8142 (not (not $x19604)))))) +(let ((@x19617 (monotonicity (trans @x19610 (rewrite (= (not (not $x19604)) $x19604)) (= $x8142 $x19604)) (= $x8143 (or $x19604 $x3028))))) +(let ((@x19625 (quant-intro (trans @x19617 (rewrite (= (or $x19604 $x3028) $x19618)) (= $x8143 $x19618)) (= $x8148 $x19623)))) +(let (($x3031 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) )(!(let (($x3028 (b_S_in_n_domain$ ?v0 ?v1 ?v1))) +(let ((?x999 (b_S_typ$ ?v1))) +(let (($x1042 (b_S_is_n_non_n_primitive$ ?x999))) +(let (($x1001 (= (b_S_kind_n_of$ ?x999) b_S_kind_n_primitive$))) +(let (($x1024 (not $x1001))) +(let (($x1106 (b_S_typed$ ?v0 ?v1))) +(let (($x1105 (b_S_is$ ?v1 ?x999))) +(let (($x3024 (and $x1105 (and $x1106 (and $x1024 $x1042))))) +(let ((?x1103 (b_S_owner$ ?v0 ?v1))) +(let (($x1104 (= ?x1103 b_S_me$))) +(let (($x3025 (and $x1104 $x3024))) +(let (($x1098 (b_S_closed$ ?v0 ?v1))) +(let (($x3026 (and $x1098 $x3025))) +(let (($x1172 (b_S_full_n_stop$ ?v0))) +(let (($x3027 (and $x1172 $x3026))) +(=> $x3027 $x3028)))))))))))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v1) ))) +)) +(let (($x3024 (and $x1105 (and $x1106 (and $x1024 $x1042))))) +(let (($x3025 (and $x1104 $x3024))) +(let (($x3026 (and $x1098 $x3025))) +(let (($x3027 (and $x1172 $x3026))) +(let (($x3029 (=> $x3027 $x3028))) +(let (($x8126 (and $x1098 $x1104 $x1105 $x1106 $x1024 $x1042))) +(let (($x8118 (and $x1104 $x1105 $x1106 $x1024 $x1042))) +(let ((@x8112 (rewrite (= (and $x1105 (and $x1106 $x1024 $x1042)) (and $x1105 $x1106 $x1024 $x1042))))) +(let ((@x8109 (monotonicity (rewrite (= (and $x1106 (and $x1024 $x1042)) (and $x1106 $x1024 $x1042))) (= $x3024 (and $x1105 (and $x1106 $x1024 $x1042)))))) +(let ((@x8117 (monotonicity (trans @x8109 @x8112 (= $x3024 (and $x1105 $x1106 $x1024 $x1042))) (= $x3025 (and $x1104 (and $x1105 $x1106 $x1024 $x1042)))))) +(let ((@x8122 (trans @x8117 (rewrite (= (and $x1104 (and $x1105 $x1106 $x1024 $x1042)) $x8118)) (= $x3025 $x8118)))) +(let ((@x8130 (trans (monotonicity @x8122 (= $x3026 (and $x1098 $x8118))) (rewrite (= (and $x1098 $x8118) $x8126)) (= $x3026 $x8126)))) +(let ((@x8138 (trans (monotonicity @x8130 (= $x3027 (and $x1172 $x8126))) (rewrite (= (and $x1172 $x8126) $x8134)) (= $x3027 $x8134)))) +(let ((@x8147 (trans (monotonicity @x8138 (= $x3029 (=> $x8134 $x3028))) (rewrite (= (=> $x8134 $x3028) $x8143)) (= $x3029 $x8143)))) +(let ((@x15729 (mp~ (mp (asserted $x3031) (quant-intro @x8147 (= $x3031 $x8148)) $x8148) (nnf-pos (refl (~ $x8143 $x8143)) (~ $x8148 $x8148)) $x8148))) +(let (($x23087 (not $x23086))) +(let (($x23085 (not $x23069))) +(let (($x21687 (not $x3699))) +(let (($x24394 (or (not $x19623) $x21687 $x22973 (not (= (b_S_owner$ v_b_S_s$ ?x22684) b_S_me$)) $x23085 $x23087 $x23089 (not $x22936) $x23019))) +(let (($x23090 (or $x21687 $x22973 (not (= (b_S_owner$ v_b_S_s$ ?x22684) b_S_me$)) $x23085 $x23087 $x23089 (not $x22936) $x23019))) +(let ((@x24401 (mp ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715)) (or (not $x19623) $x23090)) (rewrite (= (or (not $x19623) $x23090) $x24394)) $x24394))) +(let ((@x23120 (unit-resolution @x24401 (mp @x15729 @x19625 $x19623) @x10104 @x23118 @x23113 @x23104 (or $x23085 $x23087 $x23089 $x23019)))) +(let ((@x23328 (mp (lemma (unit-resolution @x23120 @x23099 @x23095 @x23071 @x23078 false) $x3738) (symm (monotonicity @x24449 @x24449 (= $x23018 $x3738)) (= $x3738 $x23018)) $x23018))) +(let ((@x23329 (unit-resolution (def-axiom (or (not $x23027) $x23037 $x23019)) @x23328 (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715) (b_S_ptr$ ?x3678 ?x21715) b_l_H_public$) (or (not $x12066) $x23027)) @x15761 $x23027) $x23019))) +(let (($x19663 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x19647 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) +(let ((?x2289 (b_S_typ$ ?v1))) +(let (($x3032 (b_S_has_n_volatile_n_owns_n_set$ ?x2289))) +(or $x3032 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1))) $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ))) +)) +(let (($x19654 (or (not (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2))) (not (b_S_closed$ ?v0 ?v1)) (not $x19647)))) +(let (($x19655 (not $x19654))) +(let (($x2979 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) +(let (($x8173 (not $x2979))) +(or $x8173 $x19655)))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ))) +)) +(let (($x8179 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x8156 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) +(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)))) +(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?v1))) $x3035))) +(let (($x8152 (not $x3036))) +(or $x8152 $x3038))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ))) +)) +(let (($x1136 (b_S_closed$ ?v0 ?v1))) +(let (($x2963 (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2)))) +(let (($x8165 (and $x2963 $x1136 $x8156))) +(let (($x2979 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) +(let (($x8173 (not $x2979))) +(or $x8173 $x8165))))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ))) +)) +(let (($x19647 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) +(let ((?x2289 (b_S_typ$ ?1))) +(let (($x3032 (b_S_has_n_volatile_n_owns_n_set$ ?x2289))) +(or $x3032 (not (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1))) $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ))) +)) +(let (($x19654 (or (not (b_S_set_n_in$ ?1 (b_S_domain$ ?2 ?0))) (not (b_S_closed$ ?2 ?1)) (not $x19647)))) +(let (($x19655 (not $x19654))) +(let (($x2979 (b_S_in_n_domain$ ?2 ?1 ?0))) +(let (($x8173 (not $x2979))) +(let (($x8156 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) +(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)))) +(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?1))) $x3035))) +(let (($x8152 (not $x3036))) +(or $x8152 $x3038))))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ))) +)) +(let (($x1136 (b_S_closed$ ?2 ?1))) +(let (($x2963 (b_S_set_n_in$ ?1 (b_S_domain$ ?2 ?0)))) +(let (($x8165 (and $x2963 $x1136 $x8156))) +(let (($x8174 (or $x8173 $x8165))) +(let (($x3038 (b_S_set_n_in2$ ?0 (b_S_ver_n_domain$ (b_S_read_n_version$ ?3 ?1))))) +(let ((?x2289 (b_S_typ$ ?2))) +(let (($x3032 (b_S_has_n_volatile_n_owns_n_set$ ?x2289))) +(let (($x19642 (or $x3032 (not (b_S_set_n_in$ ?0 (b_S_owns$ ?3 ?2))) $x3038))) +(let (($x3035 (b_S_set_n_in$ ?0 (b_S_owns$ ?3 ?2)))) +(let (($x3036 (and (not $x3032) $x3035))) +(let (($x8152 (not $x3036))) +(let (($x8153 (or $x8152 $x3038))) +(let ((@x19636 (rewrite (= (not (not (or $x3032 (not $x3035)))) (or $x3032 (not $x3035)))))) +(let ((@x19634 (monotonicity (rewrite (= $x3036 (not (or $x3032 (not $x3035))))) (= $x8152 (not (not (or $x3032 (not $x3035)))))))) +(let ((@x19641 (monotonicity (trans @x19634 @x19636 (= $x8152 (or $x3032 (not $x3035)))) (= $x8153 (or (or $x3032 (not $x3035)) $x3038))))) +(let ((@x19646 (trans @x19641 (rewrite (= (or (or $x3032 (not $x3035)) $x3038) $x19642)) (= $x8153 $x19642)))) +(let ((@x19652 (monotonicity (quant-intro @x19646 (= $x8156 $x19647)) (= $x8165 (and $x2963 $x1136 $x19647))))) +(let ((@x19659 (trans @x19652 (rewrite (= (and $x2963 $x1136 $x19647) $x19655)) (= $x8165 $x19655)))) +(let ((@x19665 (quant-intro (monotonicity @x19659 (= $x8174 (or $x8173 $x19655))) (= $x8179 $x19663)))) +(let ((@x15741 (monotonicity (refl (~ $x2963 $x2963)) (refl (~ $x1136 $x1136)) (nnf-pos (refl (~ $x8153 $x8153)) (~ $x8156 $x8156)) (~ $x8165 $x8165)))) +(let ((@x15745 (nnf-pos (monotonicity (refl (~ $x8173 $x8173)) @x15741 (~ $x8174 $x8174)) (~ $x8179 $x8179)))) +(let (($x3046 (forall ((?v0 B_S_state$) (?v1 B_S_ptr$) (?v2 B_S_ptr$) )(!(let (($x3041 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?v0 ?v2))))) +(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)))) +(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?v1))) $x3035))) +(=> $x3036 $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?v0 ?v1)) ))) +)) +(let (($x1136 (b_S_closed$ ?v0 ?v1))) +(let (($x2963 (b_S_set_n_in$ ?v1 (b_S_domain$ ?v0 ?v2)))) +(let (($x3043 (and $x2963 (and $x1136 $x3041)))) +(let (($x2979 (b_S_in_n_domain$ ?v0 ?v1 ?v2))) +(=> $x2979 $x3043)))))) :pattern ( (b_S_in_n_domain$ ?v0 ?v1 ?v2) ))) +)) +(let (($x3041 (forall ((?v3 B_S_ptr$) )(!(let (($x3038 (b_S_set_n_in2$ ?v3 (b_S_ver_n_domain$ (b_S_read_n_version$ ?2 ?0))))) +(let (($x3035 (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)))) +(let (($x3036 (and (not (b_S_has_n_volatile_n_owns_n_set$ (b_S_typ$ ?1))) $x3035))) +(=> $x3036 $x3038)))) :pattern ( (b_S_set_n_in$ ?v3 (b_S_owns$ ?2 ?1)) ))) +)) +(let (($x3043 (and $x2963 (and $x1136 $x3041)))) +(let (($x3044 (=> $x2979 $x3043))) +(let ((@x8161 (monotonicity (quant-intro (rewrite (= (=> $x3036 $x3038) $x8153)) (= $x3041 $x8156)) (= (and $x1136 $x3041) (and $x1136 $x8156))))) +(let ((@x8169 (trans (monotonicity @x8161 (= $x3043 (and $x2963 (and $x1136 $x8156)))) (rewrite (= (and $x2963 (and $x1136 $x8156)) $x8165)) (= $x3043 $x8165)))) +(let ((@x8178 (trans (monotonicity @x8169 (= $x3044 (=> $x2979 $x8165))) (rewrite (= (=> $x2979 $x8165) $x8174)) (= $x3044 $x8174)))) +(let ((@x15746 (mp~ (mp (asserted $x3046) (quant-intro @x8178 (= $x3046 $x8179)) $x8179) @x15745 $x8179))) +(let ((@x24384 (rewrite (= (or (not $x19663) (or $x23034 $x23066)) (or (not $x19663) $x23034 $x23066))))) +(let ((@x24402 (mp ((_ quant-inst v_b_S_s$ (b_S_ptr$ ?x3678 ?x21715) (b_S_ptr$ ?x3678 ?x21715)) (or (not $x19663) (or $x23034 $x23066))) @x24384 (or (not $x19663) $x23034 $x23066)))) +(let ((@x23335 (unit-resolution (unit-resolution @x24402 (mp @x15746 @x19665 $x19663) (or $x23034 $x23066)) @x23329 $x23066))) +(let ((@x23336 (unit-resolution (def-axiom (or (or (not $x23045) $x22973 (not $x23063)) $x23045)) @x23335 $x23045))) +(let (($x19385 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let ((?x2429 (b_S_typemap$ ?v0))) +(let (($x19373 (or (not (b_S_typed$ ?v0 ?x2903)) (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903))))) +(let (($x19374 (not $x19373))) +(let (($x11257 (>= (+ ?v4 (* (- 1) ?v3)) 0))) +(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)))) +(or (not (b_S_full_n_stop$ ?v0)) (not (b_S_is_n_primitive$ ?v5)) (not $x2898) (not (>= ?v4 0)) $x11257 $x19374))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +)) +(let (($x12034 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let ((?x2429 (b_S_typemap$ ?v0))) +(let (($x2915 (and (b_S_typed$ ?v0 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903)))))) +(let (($x10181 (>= ?v4 0))) +(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)))) +(let (($x1179 (b_S_is_n_primitive$ ?v5))) +(let (($x2894 (b_S_full_n_stop$ ?v0))) +(let (($x12018 (and $x2894 $x1179 $x2898 $x10181 (not (>= (+ ?v4 (* (- 1) ?v3)) 0))))) +(let (($x12021 (not $x12018))) +(or $x12021 $x2915)))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +)) +(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?0 ?4) ?1 ?0))) +(let ((?x2429 (b_S_typemap$ ?5))) +(let (($x19373 (or (not (b_S_typed$ ?5 ?x2903)) (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903))))) +(let (($x19374 (not $x19373))) +(let (($x11257 (>= (+ ?1 (* (- 1) ?2)) 0))) +(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?0 ?2) ?4) (b_S_domain$ ?5 ?3)))) +(let (($x19380 (or (not (b_S_full_n_stop$ ?5)) (not $x1179) (not $x2898) (not (>= ?1 0)) $x11257 $x19374))) +(let (($x2915 (and (b_S_typed$ ?5 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903)))))) +(let (($x10181 (>= ?1 0))) +(let (($x2894 (b_S_full_n_stop$ ?5))) +(let (($x12018 (and $x2894 $x1179 $x2898 $x10181 (not $x11257)))) +(let (($x12021 (not $x12018))) +(let (($x12031 (or $x12021 $x2915))) +(let (($x19381 (= (or (or (not $x2894) (not $x1179) (not $x2898) (not $x10181) $x11257) $x19374) $x19380))) +(let (($x19378 (= $x12031 (or (or (not $x2894) (not $x1179) (not $x2898) (not $x10181) $x11257) $x19374)))) +(let (($x19349 (or (not $x2894) (not $x1179) (not $x2898) (not $x10181) $x11257))) +(let ((@x19355 (monotonicity (rewrite (= $x12018 (not $x19349))) (= $x12021 (not (not $x19349)))))) +(let ((@x19379 (monotonicity (trans @x19355 (rewrite (= (not (not $x19349)) $x19349)) (= $x12021 $x19349)) (rewrite (= $x2915 $x19374)) $x19378))) +(let ((@x19387 (quant-intro (trans @x19379 (rewrite $x19381) (= $x12031 $x19380)) (= $x12034 $x19385)))) +(let (($x7948 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let ((?x2429 (b_S_typemap$ ?v0))) +(let (($x2915 (and (b_S_typed$ ?v0 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903)))))) +(let (($x1751 (<= ?v3 ?v4))) +(let (($x7247 (not $x1751))) +(let (($x1330 (<= 0 ?v4))) +(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)))) +(let (($x1179 (b_S_is_n_primitive$ ?v5))) +(let (($x2894 (b_S_full_n_stop$ ?v0))) +(let (($x7922 (and $x2894 $x1179 $x2898 $x1330 $x7247))) +(or (not $x7922) $x2915))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +)) +(let (($x7943 (or (not (and $x2894 $x1179 $x2898 (<= 0 ?1) (not (<= ?2 ?1)))) $x2915))) +(let (($x12022 (= (not (and $x2894 $x1179 $x2898 (<= 0 ?1) (not (<= ?2 ?1)))) $x12021))) +(let (($x1751 (<= ?2 ?1))) +(let (($x7247 (not $x1751))) +(let (($x1330 (<= 0 ?1))) +(let (($x7922 (and $x2894 $x1179 $x2898 $x1330 $x7247))) +(let ((@x12020 (monotonicity (rewrite (= $x1330 $x10181)) (monotonicity (rewrite (= $x1751 $x11257)) (= $x7247 (not $x11257))) (= $x7922 $x12018)))) +(let ((@x12036 (quant-intro (monotonicity (monotonicity @x12020 $x12022) (= $x7943 $x12031)) (= $x7948 $x12034)))) +(let (($x2920 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ptr$) (?v3 Int) (?v4 Int) (?v5 B_S_ctype$) )(!(let ((?x2903 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5))) +(let ((?x2429 (b_S_typemap$ ?v0))) +(let (($x2915 (and (b_S_typed$ ?v0 ?x2903) (not (b_S_ts_n_is_n_volatile$ (b_S_select_o_tm$ ?x2429 ?x2903)))))) +(let (($x1330 (<= 0 ?v4))) +(let (($x2333 (and $x1330 (< ?v4 ?v3)))) +(let (($x2898 (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)))) +(let (($x2899 (and $x2898 $x2333))) +(let (($x1179 (b_S_is_n_primitive$ ?v5))) +(let (($x2900 (and $x1179 $x2899))) +(let (($x2894 (b_S_full_n_stop$ ?v0))) +(let (($x2901 (and $x2894 $x2900))) +(=> $x2901 $x2915)))))))))))) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ) :pattern ( (b_S_set_n_in$ (b_S_ptr$ (b_S_array$ ?v5 ?v3) ?v1) (b_S_domain$ ?v0 ?v2)) (b_S_owner$ ?v0 (b_S_idx$ (b_S_ptr$ ?v5 ?v1) ?v4 ?v5)) (b_S_is_n_primitive$ ?v5) ))) +)) +(let (($x2333 (and $x1330 (< ?1 ?2)))) +(let (($x2899 (and $x2898 $x2333))) +(let (($x2900 (and $x1179 $x2899))) +(let (($x2901 (and $x2894 $x2900))) +(let (($x2916 (=> $x2901 $x2915))) +(let ((@x7916 (rewrite (= (and $x1179 (and $x2898 $x1330 $x7247)) (and $x1179 $x2898 $x1330 $x7247))))) +(let ((@x7252 (monotonicity (rewrite (= $x1330 $x1330)) (rewrite (= (< ?1 ?2) $x7247)) (= $x2333 (and $x1330 $x7247))))) +(let ((@x7910 (trans (monotonicity @x7252 (= $x2899 (and $x2898 (and $x1330 $x7247)))) (rewrite (= (and $x2898 (and $x1330 $x7247)) (and $x2898 $x1330 $x7247))) (= $x2899 (and $x2898 $x1330 $x7247))))) +(let ((@x7918 (trans (monotonicity @x7910 (= $x2900 (and $x1179 (and $x2898 $x1330 $x7247)))) @x7916 (= $x2900 (and $x1179 $x2898 $x1330 $x7247))))) +(let ((@x7926 (trans (monotonicity @x7918 (= $x2901 (and $x2894 (and $x1179 $x2898 $x1330 $x7247)))) (rewrite (= (and $x2894 (and $x1179 $x2898 $x1330 $x7247)) $x7922)) (= $x2901 $x7922)))) +(let ((@x7947 (trans (monotonicity @x7926 (= $x2916 (=> $x7922 $x2915))) (rewrite (= (=> $x7922 $x2915) $x7943)) (= $x2916 $x7943)))) +(let ((@x12037 (mp (mp (asserted $x2920) (quant-intro @x7947 (= $x2920 $x7948)) $x7948) @x12036 $x12034))) +(let ((@x19388 (mp (mp~ @x12037 (nnf-pos (refl (~ $x12031 $x12031)) (~ $x12034 $x12034)) $x12034) @x19387 $x19385))) +(let (($x23298 (not $x23297))) +(let (($x22190 (not $x3529))) +(let (($x23330 (not $x19385))) +(let (($x23309 (or $x23330 $x21687 $x22190 $x23298 $x8666 $x23305))) +(let (($x23302 (>= (+ 0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x23300 (not (>= 0 0)))) +(let (($x23306 (or $x21687 $x22190 $x23298 $x23300 $x23302 $x23305))) +(let (($x23310 (or $x23330 $x23306))) +(let (($x23348 (or $x21687 $x22190 $x23298 $x8666 $x23305))) +(let ((@x23277 (rewrite (= (+ 0 (* (- 1) v_b_P_H_len$)) (* (- 1) v_b_P_H_len$))))) +(let ((@x23344 (trans (monotonicity @x23277 (= $x23302 (>= (* (- 1) v_b_P_H_len$) 0))) (rewrite (= (>= (* (- 1) v_b_P_H_len$) 0) $x8666)) (= $x23302 $x8666)))) +(let ((@x23275 (trans (monotonicity (rewrite (= (>= 0 0) true)) (= $x23300 $x3805)) (rewrite (= $x3805 false)) (= $x23300 false)))) +(let ((@x23347 (monotonicity @x23275 @x23344 (= $x23306 (or $x21687 $x22190 $x23298 false $x8666 $x23305))))) +(let ((@x23308 (trans @x23347 (rewrite (= (or $x21687 $x22190 $x23298 false $x8666 $x23305) $x23348)) (= $x23306 $x23348)))) +(let ((@x23318 (trans (monotonicity @x23308 (= $x23310 (or $x23330 $x23348))) (rewrite (= (or $x23330 $x23348) $x23309)) (= $x23310 $x23309)))) +(let ((@x23396 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x3678 ?x21715) v_b_P_H_len$ 0 b_T_T_u1$) $x23310) @x23318 $x23309) @x19388 @x5093 @x10095 @x10104 (mp @x23336 @x23394 $x23297) (hypothesis $x23304) false))) +(let ((@x23503 (mp (unit-resolution (def-axiom (or $x23304 $x23260)) (lemma @x23396 $x23305) $x23260) @x23522 $x23358))) +(let (($x23368 (= (b_S_owner$ v_b_S_s$ (b_S_ts_n_emb$ ?x23356)) b_S_me$))) +(let (($x23370 (or $x23368 (b_S_in_n_wrapped_n_domain$ v_b_S_s$ (b_S_ts_n_emb$ ?x23356))))) +(let (($x23366 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23356))) b_S_kind_n_primitive$))) +(let (($x23363 (not $x23362))) +(let (($x23355 (not $x23354))) +(let (($x23372 (or $x23355 $x23363 $x23366 (not $x23370)))) +(let (($x23377 (or (= (b_S_owner$ v_b_S_s$ ?x23206) b_S_me$) (b_S_in_n_wrapped_n_domain$ v_b_S_s$ ?x23206)))) +(let (($x23373 (not $x23372))) +(let (($x23382 (not (or $x23373 (not (or $x23354 (not $x23377))))))) +(let (($x23383 (or (not (b_S_typed$ v_b_S_s$ ?x23206)) $x23382))) +(let (($x23349 (b_S_thread_n_local$ v_b_S_s$ ?x23206))) +(let (($x23385 (= $x23349 (not $x23383)))) +(let ((@x23535 (monotonicity (symm (monotonicity @x23922 (= $x23349 $x3743)) (= $x3743 $x23349)) (= $x16251 (not $x23349))))) +(let ((@x23541 (unit-resolution (def-axiom (or (not $x23385) $x23349 $x23383)) (mp (hypothesis $x16251) @x23535 (not $x23349)) (unit-resolution ((_ quant-inst v_b_S_s$ (b_S_ptr$ b_T_T_u1$ ?x23186)) (or (not $x19790) $x23385)) @x19793 $x23385) $x23383))) +(let (($x23350 (b_S_typed$ v_b_S_s$ ?x23206))) +(let ((@x23928 (mp (unit-resolution (def-axiom (or $x23304 $x3741)) (lemma @x23396 $x23305) $x3741) (symm (monotonicity @x23922 (= $x23350 $x3741)) (= $x3741 $x23350)) $x23350))) +(let ((@x23600 (unit-resolution (def-axiom (or (not $x23383) (not $x23350) $x23382)) @x23928 @x23541 $x23382))) +(let ((@x23583 (unit-resolution (def-axiom (or (or $x23373 (not (or $x23354 (not $x23377)))) $x23372)) @x23600 $x23372))) +(let ((?x24269 (b_S_ref$ ?x22684))) +(let ((?x24283 (b_S_ptr$ b_T_T_u1$ ?x24269))) +(let ((?x24260 (b_S_idx$ ?x22684 0 b_T_T_u1$))) +(let (($x24286 (= ?x24260 ?x24283))) +(let (($x24289 (not $x24286))) +(let (($x24292 (or (not (b_S_extent_n_hint$ ?x24260 ?x22684)) $x24289))) +(let (($x24232 (not $x24292))) +(let (($x24310 (or $x23217 $x24232))) +(let (($x24274 (or (not (b_S_extent_n_hint$ ?x24260 ?x22684)) (not (= ?x24260 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652)))))))) +(let (($x24290 (= (not (= ?x24260 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652))))) $x24289))) +(let ((@x24278 (monotonicity (rewrite (= (* 0 ?x3652) 0)) (= (+ ?x24269 (* 0 ?x3652)) (+ ?x24269 0))))) +(let ((@x24282 (trans @x24278 (rewrite (= (+ ?x24269 0) ?x24269)) (= (+ ?x24269 (* 0 ?x3652)) ?x24269)))) +(let ((@x24285 (monotonicity @x24282 (= (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652))) ?x24283)))) +(let ((@x24288 (monotonicity @x24285 (= (= ?x24260 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* 0 ?x3652)))) $x24286)))) +(let ((@x24309 (monotonicity (monotonicity (monotonicity @x24288 $x24290) (= $x24274 $x24292)) (= (not $x24274) $x24232)))) +(let ((@x24303 (trans (monotonicity @x24309 (= (or $x23217 (not $x24274)) $x24310)) (rewrite (= $x24310 $x24310)) (= (or $x23217 (not $x24274)) $x24310)))) +(let ((@x24501 (unit-resolution (mp ((_ quant-inst (b_S_ptr$ ?x3678 ?x21715) 0 b_T_T_u1$) (or $x23217 (not $x24274))) @x24303 $x24310) @x18901 (hypothesis $x24292) false))) +(let (($x24111 (= (b_S_ts_n_emb$ (b_S_select_o_tm$ ?x3874 (b_S_idx$ ?x23296 0 b_T_T_u1$))) ?x23296))) +(let ((?x24137 (b_S_idx$ ?x23296 0 b_T_T_u1$))) +(let ((?x24145 (b_S_select_o_tm$ ?x3874 ?x24137))) +(let (($x24127 (or (not $x24111) (b_S_ts_n_is_n_volatile$ ?x24145) (not (b_S_ts_n_is_n_array_n_elt$ ?x24145)) (not (b_S_typed$ v_b_S_s$ ?x24137))))) +(let (($x24130 (not $x24127))) +(let (($x24131 (b_S_typed$ v_b_S_s$ ?x23296))) +(let ((@x24253 (mp (and-elim @x10087 $x3687) (symm (monotonicity @x23339 (= $x24131 $x3687)) (= $x3687 $x24131)) $x24131))) +(let (($x18682 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x2370 (b_S_typemap$ ?v0))) +(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372))) +(let (($x18670 (or (not (= (b_S_ts_n_emb$ ?x2372) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) (b_S_ts_n_is_n_volatile$ ?x2372) (not $x2377) (not $x2378)))) +(let (($x18671 (not $x18670))) +(let (($x11071 (>= (+ ?v4 (* (- 1) ?v3)) 0))) +(let (($x10138 (>= ?v4 0))) +(let (($x10556 (not $x10138))) +(or (not (b_S_typed$ ?v0 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) $x10556 $x11071 $x18671)))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) +)) +(let (($x11697 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x2370 (b_S_typemap$ ?v0))) +(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372))) +(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372)))) +(let ((?x2367 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) +(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367))) +(let (($x7338 (and $x2374 $x2376 $x2377 $x2378))) +(let (($x10138 (>= ?v4 0))) +(let (($x2368 (b_S_typed$ ?v0 ?x2367))) +(let (($x11688 (and $x2368 $x10138 (not (>= (+ ?v4 (* (- 1) ?v3)) 0))))) +(let (($x11691 (not $x11688))) +(or $x11691 $x7338))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) +)) +(let (($x2378 (b_S_typed$ ?4 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2)))) +(let ((?x2370 (b_S_typemap$ ?4))) +(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?2 ?1) ?3) ?0 ?2)))) +(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372))) +(let (($x18670 (or (not (= (b_S_ts_n_emb$ ?x2372) (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) (b_S_ts_n_is_n_volatile$ ?x2372) (not $x2377) (not $x2378)))) +(let (($x18671 (not $x18670))) +(let (($x11071 (>= (+ ?0 (* (- 1) ?1)) 0))) +(let (($x10138 (>= ?0 0))) +(let (($x10556 (not $x10138))) +(let (($x18677 (or (not (b_S_typed$ ?4 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) $x10556 $x11071 $x18671))) +(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372)))) +(let ((?x2367 (b_S_ptr$ (b_S_array$ ?2 ?1) ?3))) +(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367))) +(let (($x7338 (and $x2374 $x2376 $x2377 $x2378))) +(let (($x2368 (b_S_typed$ ?4 ?x2367))) +(let (($x11688 (and $x2368 $x10138 (not $x11071)))) +(let (($x11691 (not $x11688))) +(let (($x11694 (or $x11691 $x7338))) +(let (($x18656 (or (not $x2368) $x10556 $x11071))) +(let ((@x18662 (monotonicity (rewrite (= $x11688 (not $x18656))) (= $x11691 (not (not $x18656)))))) +(let ((@x18676 (monotonicity (trans @x18662 (rewrite (= (not (not $x18656)) $x18656)) (= $x11691 $x18656)) (rewrite (= $x7338 $x18671)) (= $x11694 (or $x18656 $x18671))))) +(let ((@x18684 (quant-intro (trans @x18676 (rewrite (= (or $x18656 $x18671) $x18677)) (= $x11694 $x18677)) (= $x11697 $x18682)))) +(let (($x7352 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x2370 (b_S_typemap$ ?v0))) +(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372))) +(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372)))) +(let ((?x2367 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) +(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367))) +(let (($x7338 (and $x2374 $x2376 $x2377 $x2378))) +(let (($x1660 (<= ?v3 ?v4))) +(let (($x7169 (not $x1660))) +(let (($x1212 (<= 0 ?v4))) +(let (($x2368 (b_S_typed$ ?v0 ?x2367))) +(let (($x7327 (and $x2368 $x1212 $x7169))) +(or (not $x7327) $x7338)))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) +)) +(let ((@x11568 (monotonicity (rewrite (= (<= ?1 ?0) $x11071)) (= (not (<= ?1 ?0)) (not $x11071))))) +(let ((@x10140 (rewrite (= $x1212 $x10138)))) +(let ((@x11690 (monotonicity @x10140 @x11568 (= (and $x2368 $x1212 (not (<= ?1 ?0))) $x11688)))) +(let ((@x11693 (monotonicity @x11690 (= (not (and $x2368 $x1212 (not (<= ?1 ?0)))) $x11691)))) +(let ((@x11696 (monotonicity @x11693 (= (or (not (and $x2368 $x1212 (not (<= ?1 ?0)))) $x7338) $x11694)))) +(let (($x2390 (forall ((?v0 B_S_state$) (?v1 Int) (?v2 B_S_ctype$) (?v3 Int) (?v4 Int) )(!(let (($x2378 (b_S_typed$ ?v0 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let ((?x2370 (b_S_typemap$ ?v0))) +(let ((?x2372 (b_S_select_o_tm$ ?x2370 (b_S_idx$ (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ?v4 ?v2)))) +(let (($x2377 (b_S_ts_n_is_n_array_n_elt$ ?x2372))) +(let (($x2376 (not (b_S_ts_n_is_n_volatile$ ?x2372)))) +(let ((?x2367 (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1))) +(let (($x2374 (= (b_S_ts_n_emb$ ?x2372) ?x2367))) +(let (($x2381 (and $x2374 (and $x2376 (and $x2377 $x2378))))) +(let (($x1212 (<= 0 ?v4))) +(let (($x2271 (and $x1212 (< ?v4 ?v3)))) +(let (($x2368 (b_S_typed$ ?v0 ?x2367))) +(let (($x2369 (and $x2368 $x2271))) +(=> $x2369 $x2381))))))))))))) :pattern ( (b_S_select_o_sm$ (b_S_statusmap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ) :pattern ( (b_S_select_o_tm$ (b_S_typemap$ ?v0) (b_S_idx$ (b_S_ptr$ ?v2 ?v1) ?v4 ?v2)) (b_S_ptr$ (b_S_array$ ?v2 ?v3) ?v1) ))) +)) +(let (($x7347 (or (not (and $x2368 $x1212 (not (<= ?1 ?0)))) $x7338))) +(let (($x2381 (and $x2374 (and $x2376 (and $x2377 $x2378))))) +(let (($x2271 (and $x1212 (< ?0 ?1)))) +(let (($x2369 (and $x2368 $x2271))) +(let (($x2382 (=> $x2369 $x2381))) +(let ((@x7337 (monotonicity (rewrite (= (and $x2376 (and $x2377 $x2378)) (and $x2376 $x2377 $x2378))) (= $x2381 (and $x2374 (and $x2376 $x2377 $x2378)))))) +(let ((@x7342 (trans @x7337 (rewrite (= (and $x2374 (and $x2376 $x2377 $x2378)) $x7338)) (= $x2381 $x7338)))) +(let (($x1660 (<= ?1 ?0))) +(let (($x7169 (not $x1660))) +(let (($x7327 (and $x2368 $x1212 $x7169))) +(let ((@x7174 (monotonicity @x5396 (rewrite (= (< ?0 ?1) $x7169)) (= $x2271 (and $x1212 $x7169))))) +(let ((@x7331 (trans (monotonicity @x7174 (= $x2369 (and $x2368 (and $x1212 $x7169)))) (rewrite (= (and $x2368 (and $x1212 $x7169)) $x7327)) (= $x2369 $x7327)))) +(let ((@x7351 (trans (monotonicity @x7331 @x7342 (= $x2382 (=> $x7327 $x7338))) (rewrite (= (=> $x7327 $x7338) $x7347)) (= $x2382 $x7347)))) +(let ((@x11700 (mp (mp (asserted $x2390) (quant-intro @x7351 (= $x2390 $x7352)) $x7352) (quant-intro @x11696 (= $x7352 $x11697)) $x11697))) +(let ((@x18685 (mp (mp~ @x11700 (nnf-pos (refl (~ $x11694 $x11694)) (~ $x11697 $x11697)) $x11697) @x18684 $x18682))) +(let (($x24152 (not $x24131))) +(let (($x24161 (not $x18682))) +(let (($x24167 (or $x24161 $x24152 $x8666 $x24130))) +(let (($x24132 (or $x24152 $x23300 $x23302 $x24130))) +(let (($x24168 (or $x24161 $x24132))) +(let ((@x24160 (trans (monotonicity @x23275 @x23344 (= $x24132 (or $x24152 false $x8666 $x24130))) (rewrite (= (or $x24152 false $x8666 $x24130) (or $x24152 $x8666 $x24130))) (= $x24132 (or $x24152 $x8666 $x24130))))) +(let ((@x24169 (trans (monotonicity @x24160 (= $x24168 (or $x24161 (or $x24152 $x8666 $x24130)))) (rewrite (= (or $x24161 (or $x24152 $x8666 $x24130)) $x24167)) (= $x24168 $x24167)))) +(let ((@x24243 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ 0) $x24168) @x24169 $x24167) @x18685 @x10095 (lemma (unit-resolution (hypothesis $x24152) @x24253 false) $x24131) (hypothesis $x24127) false))) +(let ((@x24327 (unit-resolution ((_ quant-inst (b_S_array$ b_T_T_u1$ v_b_P_H_len$) (b_S_ref$ ?x3680)) (or (not $x20968) (= ?x21715 ?x3681))) @x20973 (= ?x21715 ?x3681)))) +(let ((@x24335 (trans (trans (monotonicity @x24449 (= ?x24269 ?x21715)) @x24327 (= ?x24269 ?x3681)) @x23283 (= ?x24269 v_b_P_H_arr$)))) +(let ((@x24339 (trans @x23339 (unit-resolution @x22701 @x16076 (and-elim @x10087 $x3686) $x22691) (= ?x23296 ?x22684)))) +(let ((@x24454 (trans (monotonicity @x24339 (= ?x24137 ?x24260)) (hypothesis $x24286) (= ?x24137 ?x24283)))) +(let ((@x24456 (trans (trans @x24454 (monotonicity @x24335 (= ?x24283 ?x3680)) (= ?x24137 ?x3680)) @x24358 (= ?x24137 ?x23203)))) +(let ((@x24458 (monotonicity (trans @x24456 (symm @x23269 (= ?x23203 ?x3739)) (= ?x24137 ?x3739)) (= ?x24145 ?x23179)))) +(let ((@x24492 (monotonicity (trans @x24072 (symm @x24458 (= ?x23179 ?x24145)) (= ?x23356 ?x24145)) (= (b_S_ts_n_emb$ ?x23356) (b_S_ts_n_emb$ ?x24145))))) +(let ((@x24493 (trans @x24492 (unit-resolution (def-axiom (or $x24127 $x24111)) (lemma @x24243 $x24130) $x24111) (= (b_S_ts_n_emb$ ?x23356) ?x23296)))) +(let ((@x24496 (monotonicity (trans @x24493 @x23339 (= (b_S_ts_n_emb$ ?x23356) ?x3682)) (= (b_S_owner$ v_b_S_s$ (b_S_ts_n_emb$ ?x23356)) ?x3684)))) +(let ((@x24497 (unit-resolution (hypothesis (not $x23368)) (trans @x24496 @x10097 $x23368) false))) +(let ((@x23585 (unit-resolution (lemma @x24497 (or $x24289 $x23368)) (unit-resolution (def-axiom (or $x24292 $x24286)) (lemma @x24501 $x24232) $x24286) $x23368))) +(let (($x23511 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23179))) b_S_kind_n_primitive$))) +(let (($x23504 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23179))) (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?x23356)))))) +(let ((@x23496 (monotonicity (symm @x24072 (= ?x23179 ?x23356)) (= (b_S_ts_n_emb$ ?x23179) (b_S_ts_n_emb$ ?x23356))))) +(let ((@x23773 (monotonicity @x23496 (= (b_S_typ$ (b_S_ts_n_emb$ ?x23179)) (b_S_typ$ (b_S_ts_n_emb$ ?x23356)))))) +(let (($x23514 (or $x23511 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?x23179))))))) +(let (($x19952 (forall ((?v0 B_S_type_n_state$) )(!(let (($x3400 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$))) +(let (($x19948 (or $x3400 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))))))) +(not $x19948))) :pattern ( (b_S_ts_n_emb$ ?v0) ))) +)) +(let (($x3405 (forall ((?v0 B_S_type_n_state$) )(!(let (($x3400 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))) b_S_kind_n_primitive$))) +(and (not $x3400) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?v0))))) :pattern ( (b_S_ts_n_emb$ ?v0) ))) +)) +(let (($x3400 (= (b_S_kind_n_of$ (b_S_typ$ (b_S_ts_n_emb$ ?0))) b_S_kind_n_primitive$))) +(let (($x19948 (or $x3400 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0))))))) +(let (($x3403 (and (not $x3400) (b_S_is_n_non_n_primitive$ (b_S_typ$ (b_S_ts_n_emb$ ?0)))))) +(let ((@x16056 (mp~ (asserted $x3405) (nnf-pos (refl (~ $x3403 $x3403)) (~ $x3405 $x3405)) $x3405))) +(let ((@x19955 (mp @x16056 (quant-intro (rewrite (= $x3403 (not $x19948))) (= $x3405 $x19952)) $x19952))) +(let ((@x23763 (unit-resolution ((_ quant-inst (b_S_select_o_tm$ ?x3874 ?x3739)) (or (not $x19952) (not $x23514))) @x19955 (not $x23514)))) +(let ((@x23521 (unit-resolution (unit-resolution (def-axiom (or $x23514 (not $x23511))) @x23763 (not $x23511)) (trans (monotonicity @x23773 $x23504) (hypothesis $x23366) $x23511) false))) +(let ((@x23523 (unit-resolution (def-axiom (or $x23373 $x23355 $x23363 $x23366 (not $x23370))) (lemma @x23521 (not $x23366)) (unit-resolution (def-axiom (or $x23370 (not $x23368))) @x23585 $x23370) (or $x23373 $x23355 $x23363)))) +(let ((@x23543 (unit-resolution @x23523 @x23583 (unit-resolution (def-axiom (or $x23362 $x23357)) @x23503 $x23362) @x23574 false))) +(let (($x21247 (or $x16242 $x16251 $x21244))) +(let (($x21250 (not $x21247))) +(let (($x21253 (or $x16242 $x16245 $x21250))) +(let (($x21256 (not $x21253))) +(let (($x21259 (or $x16242 $x16245 $x21256))) +(let (($x21262 (not $x21259))) +(let (($x21265 (or $x10065 $x21262))) +(let (($x21268 (not $x21265))) +(let (($x20335 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12631 (not $x3840)))))))))) +)) +(let (($x20320 (forall ((?v0 Int) )(let ((?x12644 (* (- 1) v_b_S_result_G_0$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12646 (<= (+ ?x3765 ?x12644) 0))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12631 $x12646)))))))))) +)) +(let (($x20344 (not (or (not $x20320) (not $x20335))))) +(let (($x20349 (or $x20298 $x20344))) +(let (($x20360 (or $x12456 $x20190 $x20219 (not $x3818) (not $x3820) (not $x3822) $x20358 (not $x20349)))) +(let (($x20361 (not $x20360))) +(let (($x20126 (forall ((?v0 Int) )(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12536 (<= (+ ?x3765 ?x12534) 0))) +(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12521 $x12536)))))))))) +)) +(let (($x20146 (not (or (not $x20126) $x20131)))) +(let (($x20151 (or $x20104 $x20146))) +(let (($x20159 (not (or $x12518 (not $x20151))))) +(let (($x20164 (or $x12518 $x20159))) +(let (($x20175 (or $x16351 $x16354 $x20170 (not $x3960) (not (>= v_b_L_H_p_G_1$ 2)) $x20173 (not $x20164)))) +(let (($x20176 (not $x20175))) +(let (($x20181 (or $x16351 $x16354 $x20176))) +(let (($x20193 (not $x20181))) +(let (($x20233 (not (or $x20190 $x20219 $x12476 $x20230 (not $x3994) $x20173 $x20193)))) +(let (($x20194 (or $x16330 $x16339 (not $x3935) (not $x3936) (not $x3937) $x20190 (not $x3940) (not $x3942) $x20173 $x20193))) +(let (($x20195 (not $x20194))) +(let (($x20200 (or $x16330 $x16339 $x20195))) +(let (($x20208 (not (or $x16330 $x16333 (not $x20200))))) +(let (($x20213 (or $x16330 $x16333 $x20208))) +(let (($x20222 (not (or $x20190 $x20219 $x12471 (not $x20213))))) +(let (($x20238 (or $x20222 $x20233))) +(let (($x20246 (not (or $x16330 $x16339 $x20190 $x20219 (not $x20238))))) +(let (($x20251 (or $x16330 $x16339 $x20246))) +(let (($x20259 (not (or $x16330 $x16333 (not $x20251))))) +(let (($x20264 (or $x16330 $x16333 $x20259))) +(let (($x20272 (not (or $x20190 $x20219 $x12453 (not $x20264))))) +(let (($x20366 (or $x20272 $x20361))) +(let (($x20080 (forall ((?v0 Int) )(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12425 (<= (+ ?x3765 ?x12384) 0))) +(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12411 $x12425)))))))))) +)) +(let (($x20389 (or $x8666 $x16288 (not (>= v_b_L_H_max_G_1$ 0)) (not (<= v_b_L_H_max_G_1$ 255)) $x20374 $x20375 (not (<= v_b_L_H_p_G_0$ 4294967295)) (not (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0)) (not $x20080) $x12435 $x20379 $x20190 $x20219 (not $x3886) (not $x3806) (not $x3893) (not $x3894) (not $x3895) (not $x3896) (not $x3897) (not $x3898) (not $x20366)))) +(let (($x20390 (not $x20389))) +(let (($x20395 (or $x8666 $x16288 $x20390))) +(let (($x20058 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0))) +(let (($x12354 (>= ?v0 1))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x10138 (>= ?v0 0))) +(let (($x10556 (not $x10138))) +(or $x10556 $x17271 $x12354 $x12367))))))))) +)) +(let (($x20404 (not (or (not $x20058) (not $x20395))))) +(let (($x20409 (or $x20036 $x20404))) +(let (($x20417 (not (or $x12351 (not $x20409))))) +(let (($x20422 (or $x12351 $x20417))) +(let (($x20433 (or $x16242 $x16251 (not $x3747) (not $x3748) (not $x3749) (not $x3750) (not $x20422)))) +(let (($x20434 (not $x20433))) +(let (($x20439 (or $x16242 $x16251 $x20434))) +(let (($x20447 (not (or $x16242 $x16245 (not $x20439))))) +(let (($x20452 (or $x16242 $x16245 $x20447))) +(let (($x20460 (not (or $x10065 (not $x20452))))) +(let (($x20465 (or $x10065 $x20460))) +(let (($x12631 (>= (+ ?0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x14211 (<= ?0 4294967295))) +(let (($x17271 (not $x14211))) +(let (($x20324 (or $x10556 $x17271 $x12631 (not $x3840)))) +(let ((@x21180 (monotonicity (quant-intro (refl (= $x20324 $x20324)) (= $x20335 $x21173)) (= (not $x20335) $x21178)))) +(let (($x12646 (<= (+ ?x3765 (* (- 1) v_b_S_result_G_0$)) 0))) +(let (($x20315 (or $x10556 $x17271 $x12631 $x12646))) +(let ((@x21172 (monotonicity (quant-intro (refl (= $x20315 $x20315)) (= $x20320 $x21165)) (= (not $x20320) (not $x21165))))) +(let ((@x21186 (monotonicity (monotonicity @x21172 @x21180 (= (or (not $x20320) (not $x20335)) $x21181)) (= $x20344 $x21184)))) +(let ((@x21192 (monotonicity (monotonicity @x21186 (= $x20349 $x21187)) (= (not $x20349) $x21190)))) +(let (($x12536 (<= (+ ?x3765 ?x12534) 0))) +(let (($x12521 (>= (+ ?0 (* (- 1) v_b_L_H_p_G_1$)) 0))) +(let (($x20121 (or $x10556 $x17271 $x12521 $x12536))) +(let ((@x21056 (monotonicity (quant-intro (refl (= $x20121 $x20121)) (= $x20126 $x21049)) (= (not $x20126) (not $x21049))))) +(let ((@x21062 (monotonicity (monotonicity @x21056 (= (or (not $x20126) $x20131) $x21057)) (= $x20146 $x21060)))) +(let ((@x21068 (monotonicity (monotonicity @x21062 (= $x20151 $x21063)) (= (not $x20151) $x21066)))) +(let ((@x21074 (monotonicity (monotonicity @x21068 (= (or $x12518 (not $x20151)) $x21069)) (= $x20159 $x21072)))) +(let ((@x21080 (monotonicity (monotonicity @x21074 (= $x20164 $x21075)) (= (not $x20164) $x21078)))) +(let ((@x21089 (monotonicity (monotonicity (monotonicity @x21080 (= $x20175 $x21081)) (= $x20176 $x21084)) (= $x20181 $x21087)))) +(let ((@x21125 (monotonicity (monotonicity @x21089 (= $x20193 $x21090)) (= (or $x20190 $x20219 $x12476 $x20230 (not $x3994) $x20173 $x20193) $x21123)))) +(let ((@x21098 (monotonicity (monotonicity (monotonicity @x21089 (= $x20193 $x21090)) (= $x20194 $x21093)) (= $x20195 $x21096)))) +(let ((@x21104 (monotonicity (monotonicity @x21098 (= $x20200 $x21099)) (= (not $x20200) $x21102)))) +(let ((@x21110 (monotonicity (monotonicity @x21104 (= (or $x16330 $x16333 (not $x20200)) $x21105)) (= $x20208 $x21108)))) +(let ((@x21116 (monotonicity (monotonicity @x21110 (= $x20213 $x21111)) (= (not $x20213) $x21114)))) +(let ((@x21122 (monotonicity (monotonicity @x21116 (= (or $x20190 $x20219 $x12471 (not $x20213)) $x21117)) (= $x20222 $x21120)))) +(let ((@x21131 (monotonicity @x21122 (monotonicity @x21125 (= $x20233 $x21126)) (= $x20238 $x21129)))) +(let ((@x21137 (monotonicity (monotonicity @x21131 (= (not $x20238) $x21132)) (= (or $x16330 $x16339 $x20190 $x20219 (not $x20238)) $x21135)))) +(let ((@x21146 (monotonicity (monotonicity (monotonicity @x21137 (= $x20246 $x21138)) (= $x20251 $x21141)) (= (not $x20251) $x21144)))) +(let ((@x21152 (monotonicity (monotonicity @x21146 (= (or $x16330 $x16333 (not $x20251)) $x21147)) (= $x20259 $x21150)))) +(let ((@x21158 (monotonicity (monotonicity @x21152 (= $x20264 $x21153)) (= (not $x20264) $x21156)))) +(let ((@x21164 (monotonicity (monotonicity @x21158 (= (or $x20190 $x20219 $x12453 (not $x20264)) $x21159)) (= $x20272 $x21162)))) +(let ((@x21201 (monotonicity @x21164 (monotonicity (monotonicity @x21192 (= $x20360 $x21193)) (= $x20361 $x21196)) (= $x20366 $x21199)))) +(let (($x12425 (<= (+ ?x3765 (* (- 1) v_b_L_H_max_G_1$)) 0))) +(let (($x12411 (>= (+ ?0 (* (- 1) v_b_L_H_p_G_0$)) 0))) +(let (($x20075 (or $x10556 $x17271 $x12411 $x12425))) +(let ((@x21048 (monotonicity (quant-intro (refl (= $x20075 $x20075)) (= $x20080 $x21041)) (= (not $x20080) $x21046)))) +(let ((@x21207 (monotonicity @x21048 (monotonicity @x21201 (= (not $x20366) $x21202)) (= $x20389 $x21205)))) +(let ((@x21216 (monotonicity (monotonicity (monotonicity @x21207 (= $x20390 $x21208)) (= $x20395 $x21211)) (= (not $x20395) $x21214)))) +(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0))) +(let (($x12354 (>= ?0 1))) +(let (($x20053 (or $x10556 $x17271 $x12354 $x12367))) +(let ((@x21040 (monotonicity (quant-intro (refl (= $x20053 $x20053)) (= $x20058 $x21033)) (= (not $x20058) (not $x21033))))) +(let ((@x21222 (monotonicity (monotonicity @x21040 @x21216 (= (or (not $x20058) (not $x20395)) $x21217)) (= $x20404 $x21220)))) +(let ((@x21228 (monotonicity (monotonicity @x21222 (= $x20409 $x21223)) (= (not $x20409) $x21226)))) +(let ((@x21234 (monotonicity (monotonicity @x21228 (= (or $x12351 (not $x20409)) $x21229)) (= $x20417 $x21232)))) +(let ((@x21240 (monotonicity (monotonicity @x21234 (= $x20422 $x21235)) (= (not $x20422) $x21238)))) +(let ((@x21249 (monotonicity (monotonicity (monotonicity @x21240 (= $x20433 $x21241)) (= $x20434 $x21244)) (= $x20439 $x21247)))) +(let ((@x21255 (monotonicity (monotonicity @x21249 (= (not $x20439) $x21250)) (= (or $x16242 $x16245 (not $x20439)) $x21253)))) +(let ((@x21264 (monotonicity (monotonicity (monotonicity @x21255 (= $x20447 $x21256)) (= $x20452 $x21259)) (= (not $x20452) $x21262)))) +(let ((@x21270 (monotonicity (monotonicity @x21264 (= (or $x10065 (not $x20452)) $x21265)) (= $x20460 $x21268)))) +(let (($x16498 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12635 (not $x12631))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x10138 (>= ?v0 0))) +(let (($x13747 (and $x10138 $x14211 $x12635 $x3840))) +(not $x13747))))))))) +)) +(let (($x13163 (forall ((?v0 Int) )(let ((?x12644 (* (- 1) v_b_S_result_G_0$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12646 (<= (+ ?x3765 ?x12644) 0))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12635 (not $x12631))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x10138 (>= ?v0 0))) +(let (($x13586 (and $x10138 $x14211 $x12635))) +(let (($x13963 (not $x13586))) +(or $x13963 $x12646))))))))))) +)) +(let (($x16502 (and $x13163 $x16498))) +(let (($x16743 (not $x16738))) +(let (($x16746 (and $x16473 $x16474 $x16743))) +(let (($x16749 (not $x16746))) +(let (($x16765 (or $x16749 $x16760))) +(let (($x16768 (not $x16765))) +(let (($x16771 (or $x16768 $x16502))) +(let (($x16777 (and $x12453 $x12404 $x12389 $x3818 $x3820 $x3822 $x3824 $x16771))) +(let (($x12553 (not $x12550))) +(let (($x12556 (and $x12553 $x3976))) +(let (($x16388 (not $x12556))) +(let (($x13130 (forall ((?v0 Int) )(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12536 (<= (+ ?x3765 ?x12534) 0))) +(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) +(let (($x12525 (not $x12521))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x10138 (>= ?v0 0))) +(let (($x14023 (and $x10138 $x14211 $x12525))) +(let (($x12802 (not $x14023))) +(or $x12802 $x12536))))))))))) +)) +(let (($x16391 (and $x13130 $x16388))) +(let (($x16605 (not $x16600))) +(let (($x16608 (and $x16366 $x16367 $x16605))) +(let (($x16611 (not $x16608))) +(let (($x16627 (or $x16611 $x16622))) +(let (($x16630 (not $x16627))) +(let (($x16633 (or $x16630 $x16391))) +(let (($x16636 (and $x12514 $x16633))) +(let (($x16639 (or $x12518 $x16636))) +(let (($x12505 (>= v_b_L_H_p_G_1$ 2))) +(let (($x16645 (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486 $x16639))) +(let (($x16650 (or $x16351 $x16354 $x16645))) +(let (($x16688 (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486 $x16650))) +(let (($x16656 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486 $x16650))) +(let (($x16661 (or $x16330 $x16339 $x16656))) +(let (($x16667 (and $x3923 $x3924 $x16661))) +(let (($x16672 (or $x16330 $x16333 $x16667))) +(let (($x16678 (and $x12404 $x12389 $x12476 $x16672))) +(let (($x16693 (or $x16678 $x16688))) +(let (($x16699 (and $x3923 $x3926 $x12404 $x12389 $x16693))) +(let (($x16704 (or $x16330 $x16339 $x16699))) +(let (($x16710 (and $x3923 $x3924 $x16704))) +(let (($x16715 (or $x16330 $x16333 $x16710))) +(let (($x16721 (and $x12404 $x12389 $x12456 $x16715))) +(let (($x16782 (or $x16721 $x16777))) +(let (($x12438 (not $x12435))) +(let (($x13341 (forall ((?v0 Int) )(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12425 (<= (+ ?x3765 ?x12384) 0))) +(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) +(let (($x12415 (not $x12411))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x10138 (>= ?v0 0))) +(let (($x13128 (and $x10138 $x14211 $x12415))) +(let (($x13111 (not $x13128))) +(or $x13111 $x12425))))))))))) +)) +(let (($x12407 (>= (+ v_b_P_H_len$ (* (- 1) v_b_L_H_p_G_0$)) 0))) +(let (($x13193 (<= v_b_L_H_p_G_0$ 4294967295))) +(let (($x12799 (<= v_b_L_H_max_G_1$ 255))) +(let (($x12381 (>= v_b_L_H_max_G_1$ 0))) +(let (($x16788 (and $x8667 $x3769 $x12381 $x12799 $x12834 $x12397 $x13193 $x12407 $x13341 $x12438 $x3794 $x12404 $x12389 $x3886 $x3806 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x16782))) +(let (($x16793 (or $x8666 $x16288 $x16788))) +(let (($x12941 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0))) +(let (($x12354 (>= ?v0 1))) +(let (($x12357 (not $x12354))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x10138 (>= ?v0 0))) +(let (($x14020 (and $x10138 $x14211 $x12357))) +(let (($x13679 (not $x14020))) +(or $x13679 $x12367)))))))))) +)) +(let (($x16796 (and $x12941 $x16793))) +(let (($x16268 (not (and (>= ?v0!13 0) (<= ?v0!13 4294967295) (not $x16265))))) +(let (($x16274 (or $x16268 $x16273))) +(let (($x16275 (not $x16274))) +(let (($x16799 (or $x16275 $x16796))) +(let (($x16802 (and $x12348 $x16799))) +(let (($x16805 (or $x12351 $x16802))) +(let (($x16811 (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750 $x16805))) +(let (($x16816 (or $x16242 $x16251 $x16811))) +(let (($x16822 (and $x3740 $x3741 $x16816))) +(let (($x16827 (or $x16242 $x16245 $x16822))) +(let (($x16830 (and $x3738 $x16827))) +(let (($x16833 (or $x10065 $x16830))) +(let (($x20369 (and $x8667 $x3769 $x12381 $x12799 $x12834 $x12397 $x13193 $x12407 $x20080 $x12438 $x3794 $x12404 $x12389 $x3886 $x3806 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898 $x20366))) +(let ((@x20330 (monotonicity (rewrite (= (and $x10138 $x14211 (not $x12631) $x3840) (not $x20324))) (= (not (and $x10138 $x14211 (not $x12631) $x3840)) (not (not $x20324)))))) +(let ((@x20334 (trans @x20330 (rewrite (= (not (not $x20324)) $x20324)) (= (not (and $x10138 $x14211 (not $x12631) $x3840)) $x20324)))) +(let (($x12635 (not $x12631))) +(let (($x13586 (and $x10138 $x14211 $x12635))) +(let (($x13963 (not $x13586))) +(let (($x13836 (or $x13963 $x12646))) +(let ((@x20307 (monotonicity (rewrite (= $x13586 (not (or $x10556 $x17271 $x12631)))) (= $x13963 (not (not (or $x10556 $x17271 $x12631))))))) +(let ((@x20311 (trans @x20307 (rewrite (= (not (not (or $x10556 $x17271 $x12631))) (or $x10556 $x17271 $x12631))) (= $x13963 (or $x10556 $x17271 $x12631))))) +(let ((@x20319 (trans (monotonicity @x20311 (= $x13836 (or (or $x10556 $x17271 $x12631) $x12646))) (rewrite (= (or (or $x10556 $x17271 $x12631) $x12646) $x20315)) (= $x13836 $x20315)))) +(let ((@x20340 (monotonicity (quant-intro @x20319 (= $x13163 $x20320)) (quant-intro @x20334 (= $x16498 $x20335)) (= $x16502 (and $x20320 $x20335))))) +(let ((@x20285 (monotonicity (rewrite (= $x16746 (not (or $x20277 $x20278 $x16738)))) (= $x16749 (not (not (or $x20277 $x20278 $x16738))))))) +(let ((@x20289 (trans @x20285 (rewrite (= (not (not (or $x20277 $x20278 $x16738))) (or $x20277 $x20278 $x16738))) (= $x16749 (or $x20277 $x20278 $x16738))))) +(let ((@x20297 (trans (monotonicity @x20289 (= $x16765 (or (or $x20277 $x20278 $x16738) $x16760))) (rewrite (= (or (or $x20277 $x20278 $x16738) $x16760) $x20293)) (= $x16765 $x20293)))) +(let ((@x20351 (monotonicity (monotonicity @x20297 (= $x16768 $x20298)) (trans @x20340 (rewrite (= (and $x20320 $x20335) $x20344)) (= $x16502 $x20344)) (= $x16771 $x20349)))) +(let ((@x20354 (monotonicity @x20351 (= $x16777 (and $x12453 $x12404 $x12389 $x3818 $x3820 $x3822 $x3824 $x20349))))) +(let ((@x20365 (trans @x20354 (rewrite (= (and $x12453 $x12404 $x12389 $x3818 $x3820 $x3822 $x3824 $x20349) $x20361)) (= $x16777 $x20361)))) +(let ((@x20140 (trans (monotonicity (rewrite (= $x12556 $x20131)) (= $x16388 (not $x20131))) (rewrite (= (not $x20131) $x20130)) (= $x16388 $x20130)))) +(let (($x12525 (not $x12521))) +(let (($x14023 (and $x10138 $x14211 $x12525))) +(let (($x12802 (not $x14023))) +(let (($x13633 (or $x12802 $x12536))) +(let ((@x20113 (monotonicity (rewrite (= $x14023 (not (or $x10556 $x17271 $x12521)))) (= $x12802 (not (not (or $x10556 $x17271 $x12521))))))) +(let ((@x20117 (trans @x20113 (rewrite (= (not (not (or $x10556 $x17271 $x12521))) (or $x10556 $x17271 $x12521))) (= $x12802 (or $x10556 $x17271 $x12521))))) +(let ((@x20125 (trans (monotonicity @x20117 (= $x13633 (or (or $x10556 $x17271 $x12521) $x12536))) (rewrite (= (or (or $x10556 $x17271 $x12521) $x12536) $x20121)) (= $x13633 $x20121)))) +(let ((@x20143 (monotonicity (quant-intro @x20125 (= $x13130 $x20126)) @x20140 (= $x16391 (and $x20126 $x20130))))) +(let ((@x20091 (monotonicity (rewrite (= $x16608 (not (or $x20083 $x20084 $x16600)))) (= $x16611 (not (not (or $x20083 $x20084 $x16600))))))) +(let ((@x20095 (trans @x20091 (rewrite (= (not (not (or $x20083 $x20084 $x16600))) (or $x20083 $x20084 $x16600))) (= $x16611 (or $x20083 $x20084 $x16600))))) +(let ((@x20103 (trans (monotonicity @x20095 (= $x16627 (or (or $x20083 $x20084 $x16600) $x16622))) (rewrite (= (or (or $x20083 $x20084 $x16600) $x16622) $x20099)) (= $x16627 $x20099)))) +(let ((@x20153 (monotonicity (monotonicity @x20103 (= $x16630 $x20104)) (trans @x20143 (rewrite (= (and $x20126 $x20130) $x20146)) (= $x16391 $x20146)) (= $x16633 $x20151)))) +(let ((@x20163 (trans (monotonicity @x20153 (= $x16636 (and $x12514 $x20151))) (rewrite (= (and $x12514 $x20151) $x20159)) (= $x16636 $x20159)))) +(let ((@x20169 (monotonicity (monotonicity @x20163 (= $x16639 $x20164)) (= $x16645 (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486 $x20164))))) +(let ((@x20180 (trans @x20169 (rewrite (= (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486 $x20164) $x20176)) (= $x16645 $x20176)))) +(let ((@x20229 (monotonicity (monotonicity @x20180 (= $x16650 $x20181)) (= $x16688 (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486 $x20181))))) +(let ((@x20237 (trans @x20229 (rewrite (= (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486 $x20181) $x20233)) (= $x16688 $x20233)))) +(let ((@x20197 (rewrite (= (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486 $x20181) $x20195)))) +(let ((@x20186 (monotonicity (monotonicity @x20180 (= $x16650 $x20181)) (= $x16656 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486 $x20181))))) +(let ((@x20205 (monotonicity (monotonicity (trans @x20186 @x20197 (= $x16656 $x20195)) (= $x16661 $x20200)) (= $x16667 (and $x3923 $x3924 $x20200))))) +(let ((@x20212 (trans @x20205 (rewrite (= (and $x3923 $x3924 $x20200) $x20208)) (= $x16667 $x20208)))) +(let ((@x20218 (monotonicity (monotonicity @x20212 (= $x16672 $x20213)) (= $x16678 (and $x12404 $x12389 $x12476 $x20213))))) +(let ((@x20226 (trans @x20218 (rewrite (= (and $x12404 $x12389 $x12476 $x20213) $x20222)) (= $x16678 $x20222)))) +(let ((@x20243 (monotonicity (monotonicity @x20226 @x20237 (= $x16693 $x20238)) (= $x16699 (and $x3923 $x3926 $x12404 $x12389 $x20238))))) +(let ((@x20250 (trans @x20243 (rewrite (= (and $x3923 $x3926 $x12404 $x12389 $x20238) $x20246)) (= $x16699 $x20246)))) +(let ((@x20256 (monotonicity (monotonicity @x20250 (= $x16704 $x20251)) (= $x16710 (and $x3923 $x3924 $x20251))))) +(let ((@x20263 (trans @x20256 (rewrite (= (and $x3923 $x3924 $x20251) $x20259)) (= $x16710 $x20259)))) +(let ((@x20269 (monotonicity (monotonicity @x20263 (= $x16715 $x20264)) (= $x16721 (and $x12404 $x12389 $x12456 $x20264))))) +(let ((@x20276 (trans @x20269 (rewrite (= (and $x12404 $x12389 $x12456 $x20264) $x20272)) (= $x16721 $x20272)))) +(let (($x12415 (not $x12411))) +(let (($x13128 (and $x10138 $x14211 $x12415))) +(let (($x13111 (not $x13128))) +(let (($x12774 (or $x13111 $x12425))) +(let ((@x20067 (monotonicity (rewrite (= $x13128 (not (or $x10556 $x17271 $x12411)))) (= $x13111 (not (not (or $x10556 $x17271 $x12411))))))) +(let ((@x20071 (trans @x20067 (rewrite (= (not (not (or $x10556 $x17271 $x12411))) (or $x10556 $x17271 $x12411))) (= $x13111 (or $x10556 $x17271 $x12411))))) +(let ((@x20079 (trans (monotonicity @x20071 (= $x12774 (or (or $x10556 $x17271 $x12411) $x12425))) (rewrite (= (or (or $x10556 $x17271 $x12411) $x12425) $x20075)) (= $x12774 $x20075)))) +(let ((@x20371 (monotonicity (quant-intro @x20079 (= $x13341 $x20080)) (monotonicity @x20276 @x20365 (= $x16782 $x20366)) (= $x16788 $x20369)))) +(let ((@x20397 (monotonicity (trans @x20371 (rewrite (= $x20369 $x20390)) (= $x16788 $x20390)) (= $x16793 $x20395)))) +(let (($x12357 (not $x12354))) +(let (($x14020 (and $x10138 $x14211 $x12357))) +(let (($x13679 (not $x14020))) +(let (($x12918 (or $x13679 $x12367))) +(let ((@x20045 (monotonicity (rewrite (= $x14020 (not (or $x10556 $x17271 $x12354)))) (= $x13679 (not (not (or $x10556 $x17271 $x12354))))))) +(let ((@x20049 (trans @x20045 (rewrite (= (not (not (or $x10556 $x17271 $x12354))) (or $x10556 $x17271 $x12354))) (= $x13679 (or $x10556 $x17271 $x12354))))) +(let ((@x20057 (trans (monotonicity @x20049 (= $x12918 (or (or $x10556 $x17271 $x12354) $x12367))) (rewrite (= (or (or $x10556 $x17271 $x12354) $x12367) $x20053)) (= $x12918 $x20053)))) +(let ((@x20400 (monotonicity (quant-intro @x20057 (= $x12941 $x20058)) @x20397 (= $x16796 (and $x20058 $x20395))))) +(let (($x20017 (or (not (>= ?v0!13 0)) (not (<= ?v0!13 4294967295)) $x16265))) +(let (($x20019 (= (and (>= ?v0!13 0) (<= ?v0!13 4294967295) (not $x16265)) (not $x20017)))) +(let ((@x20027 (trans (monotonicity (rewrite $x20019) (= $x16268 (not (not $x20017)))) (rewrite (= (not (not $x20017)) $x20017)) (= $x16268 $x20017)))) +(let ((@x20035 (trans (monotonicity @x20027 (= $x16274 (or $x20017 $x16273))) (rewrite (= (or $x20017 $x16273) $x20031)) (= $x16274 $x20031)))) +(let ((@x20411 (monotonicity (monotonicity @x20035 (= $x16275 $x20036)) (trans @x20400 (rewrite (= (and $x20058 $x20395) $x20404)) (= $x16796 $x20404)) (= $x16799 $x20409)))) +(let ((@x20421 (trans (monotonicity @x20411 (= $x16802 (and $x12348 $x20409))) (rewrite (= (and $x12348 $x20409) $x20417)) (= $x16802 $x20417)))) +(let ((@x20427 (monotonicity (monotonicity @x20421 (= $x16805 $x20422)) (= $x16811 (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750 $x20422))))) +(let ((@x20438 (trans @x20427 (rewrite (= (and $x3740 $x3743 $x3747 $x3748 $x3749 $x3750 $x20422) $x20434)) (= $x16811 $x20434)))) +(let ((@x20444 (monotonicity (monotonicity @x20438 (= $x16816 $x20439)) (= $x16822 (and $x3740 $x3741 $x20439))))) +(let ((@x20451 (trans @x20444 (rewrite (= (and $x3740 $x3741 $x20439) $x20447)) (= $x16822 $x20447)))) +(let ((@x20457 (monotonicity (monotonicity @x20451 (= $x16827 $x20452)) (= $x16830 (and $x3738 $x20452))))) +(let ((@x20467 (monotonicity (trans @x20457 (rewrite (= (and $x3738 $x20452) $x20460)) (= $x16830 $x20460)) (= $x16833 $x20465)))) +(let (($x16483 (<= (+ ?x16481 (* (- 1) v_b_S_result_G_0$)) 0))) +(let (($x16478 (and $x16473 $x16474 (not (>= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) 0))))) +(let (($x16485 (not (or (not $x16478) $x16483)))) +(let (($x16506 (or $x16485 $x16502))) +(let (($x14268 (and $x12404 $x12389 $x3818 $x3820 $x3822 $x3824))) +(let (($x14273 (not $x14268))) +(let (($x16469 (not $x14273))) +(let (($x12619 (and $x12404 $x12389 $x12453))) +(let (($x12622 (not $x12619))) +(let (($x16466 (not $x12622))) +(let (($x16510 (and $x16466 $x16469 $x16506))) +(let (($x16376 (<= (+ ?x16374 ?x12534) 0))) +(let (($x16371 (and $x16366 $x16367 (not (>= (+ ?v0!14 (* (- 1) v_b_L_H_p_G_1$)) 0))))) +(let (($x16378 (not (or (not $x16371) $x16376)))) +(let (($x16395 (or $x16378 $x16391))) +(let (($x16362 (not $x12518))) +(let (($x16399 (and $x16362 $x16395))) +(let (($x16403 (or $x12518 $x16399))) +(let (($x13815 (and $x12494 $x13856 $x12500 $x3960 $x12505 $x12486))) +(let (($x13880 (not $x13815))) +(let (($x16357 (not $x13880))) +(let (($x16407 (and $x16357 $x16403))) +(let (($x16411 (or $x16351 $x16354 $x16407))) +(let (($x12592 (and $x12404 $x12389 $x12471 $x3993 $x3994 $x12486))) +(let (($x12595 (not $x12592))) +(let (($x16435 (not $x12595))) +(let (($x16438 (and $x16435 $x16411))) +(let (($x12488 (and $x3923 $x3926 $x3935 $x3936 $x3937 $x12404 $x3940 $x3942 $x12486))) +(let (($x12491 (not $x12488))) +(let (($x16348 (not $x12491))) +(let (($x16415 (and $x16348 $x16411))) +(let (($x16419 (or $x16330 $x16339 $x16415))) +(let (($x16336 (not $x9775))) +(let (($x16423 (and $x16336 $x16419))) +(let (($x16427 (or $x16330 $x16333 $x16423))) +(let (($x12479 (and $x12404 $x12389 $x12476))) +(let (($x12482 (not $x12479))) +(let (($x16345 (not $x12482))) +(let (($x16431 (and $x16345 $x16427))) +(let (($x16442 (or $x16431 $x16438))) +(let (($x12465 (and $x3923 $x3926 $x12404 $x12389))) +(let (($x12468 (not $x12465))) +(let (($x16342 (not $x12468))) +(let (($x16446 (and $x16342 $x16442))) +(let (($x16450 (or $x16330 $x16339 $x16446))) +(let (($x16454 (and $x16336 $x16450))) +(let (($x16458 (or $x16330 $x16333 $x16454))) +(let (($x12459 (and $x12404 $x12389 $x12456))) +(let (($x12462 (not $x12459))) +(let (($x16327 (not $x12462))) +(let (($x16462 (and $x16327 $x16458))) +(let (($x16514 (or $x16462 $x16510))) +(let (($x14257 (and $x12404 $x12389 $x3886 $x3806 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898))) +(let (($x14262 (not $x14257))) +(let (($x16324 (not $x14262))) +(let (($x13242 (and $x8667 $x3769 $x12381 $x12799 $x12389 $x12834 $x12397 $x13193 $x12404 $x12407 $x13341 $x12438 $x3794))) +(let (($x16518 (and $x13242 $x16324 $x16514))) +(let (($x16285 (not $x8667))) +(let (($x16522 (or $x16285 $x16288 $x16518))) +(let (($x16526 (and $x12941 $x16522))) +(let (($x16530 (or $x16275 $x16526))) +(let (($x16259 (not $x12351))) +(let (($x16534 (and $x16259 $x16530))) +(let (($x16538 (or $x12351 $x16534))) +(let (($x16254 (not $x10031))) +(let (($x16542 (and $x16254 $x16538))) +(let (($x16546 (or $x16242 $x16251 $x16542))) +(let (($x16248 (not $x10048))) +(let (($x16550 (and $x16248 $x16546))) +(let (($x16554 (or $x16242 $x16245 $x16550))) +(let (($x16239 (not $x10065))) +(let (($x16558 (and $x16239 $x16554))) +(let (($x16562 (or $x10065 $x16558))) +(let (($x16753 (= (+ ?x16481 (* (- 1) v_b_S_result_G_0$)) (+ (* (- 1) v_b_S_result_G_0$) ?x16481)))) +(let ((@x16757 (monotonicity (rewrite $x16753) (= $x16483 (<= (+ (* (- 1) v_b_S_result_G_0$) ?x16481) 0))))) +(let ((@x16764 (trans @x16757 (rewrite (= (<= (+ (* (- 1) v_b_S_result_G_0$) ?x16481) 0) $x16760)) (= $x16483 $x16760)))) +(let (($x16476 (>= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x16731 (= (+ ?v0!15 (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) ?v0!15)))) +(let ((@x16735 (monotonicity (rewrite $x16731) (= $x16476 (>= (+ (* (- 1) v_b_P_H_len$) ?v0!15) 0))))) +(let ((@x16742 (trans @x16735 (rewrite (= (>= (+ (* (- 1) v_b_P_H_len$) ?v0!15) 0) $x16738)) (= $x16476 $x16738)))) +(let ((@x16748 (monotonicity (monotonicity @x16742 (= (not $x16476) $x16743)) (= $x16478 $x16746)))) +(let ((@x16767 (monotonicity (monotonicity @x16748 (= (not $x16478) $x16749)) @x16764 (= (or (not $x16478) $x16483) $x16765)))) +(let ((@x16776 (monotonicity (rewrite (= $x16466 $x12619)) (rewrite (= $x16469 $x14268)) (monotonicity (monotonicity @x16767 (= $x16485 $x16768)) (= $x16506 $x16771)) (= $x16510 (and $x12619 $x14268 $x16771))))) +(let ((@x16781 (trans @x16776 (rewrite (= (and $x12619 $x14268 $x16771) $x16777)) (= $x16510 $x16777)))) +(let ((@x16619 (monotonicity (rewrite (= (+ ?x16374 ?x12534) (+ ?x12534 ?x16374))) (= $x16376 (<= (+ ?x12534 ?x16374) 0))))) +(let ((@x16626 (trans @x16619 (rewrite (= (<= (+ ?x12534 ?x16374) 0) $x16622)) (= $x16376 $x16622)))) +(let ((@x16602 (rewrite (= (>= (+ (* (- 1) v_b_L_H_p_G_1$) ?v0!14) 0) $x16600)))) +(let (($x16369 (>= (+ ?v0!14 (* (- 1) v_b_L_H_p_G_1$)) 0))) +(let (($x16593 (= (+ ?v0!14 (* (- 1) v_b_L_H_p_G_1$)) (+ (* (- 1) v_b_L_H_p_G_1$) ?v0!14)))) +(let ((@x16597 (monotonicity (rewrite $x16593) (= $x16369 (>= (+ (* (- 1) v_b_L_H_p_G_1$) ?v0!14) 0))))) +(let ((@x16607 (monotonicity (trans @x16597 @x16602 (= $x16369 $x16600)) (= (not $x16369) $x16605)))) +(let ((@x16613 (monotonicity (monotonicity @x16607 (= $x16371 $x16608)) (= (not $x16371) $x16611)))) +(let ((@x16632 (monotonicity (monotonicity @x16613 @x16626 (= (or (not $x16371) $x16376) $x16627)) (= $x16378 $x16630)))) +(let ((@x16638 (monotonicity (rewrite (= $x16362 $x12514)) (monotonicity @x16632 (= $x16395 $x16633)) (= $x16399 $x16636)))) +(let ((@x16644 (monotonicity (rewrite (= $x16357 $x13815)) (monotonicity @x16638 (= $x16403 $x16639)) (= $x16407 (and $x13815 $x16639))))) +(let ((@x16652 (monotonicity (trans @x16644 (rewrite (= (and $x13815 $x16639) $x16645)) (= $x16407 $x16645)) (= $x16411 $x16650)))) +(let ((@x16687 (monotonicity (rewrite (= $x16435 $x12592)) @x16652 (= $x16438 (and $x12592 $x16650))))) +(let ((@x16655 (monotonicity (rewrite (= $x16348 $x12488)) @x16652 (= $x16415 (and $x12488 $x16650))))) +(let ((@x16663 (monotonicity (trans @x16655 (rewrite (= (and $x12488 $x16650) $x16656)) (= $x16415 $x16656)) (= $x16419 $x16661)))) +(let ((@x16666 (monotonicity (rewrite (= $x16336 $x3925)) @x16663 (= $x16423 (and $x3925 $x16661))))) +(let ((@x16674 (monotonicity (trans @x16666 (rewrite (= (and $x3925 $x16661) $x16667)) (= $x16423 $x16667)) (= $x16427 $x16672)))) +(let ((@x16677 (monotonicity (rewrite (= $x16345 $x12479)) @x16674 (= $x16431 (and $x12479 $x16672))))) +(let ((@x16695 (monotonicity (trans @x16677 (rewrite (= (and $x12479 $x16672) $x16678)) (= $x16431 $x16678)) (trans @x16687 (rewrite (= (and $x12592 $x16650) $x16688)) (= $x16438 $x16688)) (= $x16442 $x16693)))) +(let ((@x16698 (monotonicity (rewrite (= $x16342 $x12465)) @x16695 (= $x16446 (and $x12465 $x16693))))) +(let ((@x16706 (monotonicity (trans @x16698 (rewrite (= (and $x12465 $x16693) $x16699)) (= $x16446 $x16699)) (= $x16450 $x16704)))) +(let ((@x16709 (monotonicity (rewrite (= $x16336 $x3925)) @x16706 (= $x16454 (and $x3925 $x16704))))) +(let ((@x16717 (monotonicity (trans @x16709 (rewrite (= (and $x3925 $x16704) $x16710)) (= $x16454 $x16710)) (= $x16458 $x16715)))) +(let ((@x16720 (monotonicity (rewrite (= $x16327 $x12459)) @x16717 (= $x16462 (and $x12459 $x16715))))) +(let ((@x16784 (monotonicity (trans @x16720 (rewrite (= (and $x12459 $x16715) $x16721)) (= $x16462 $x16721)) @x16781 (= $x16514 $x16782)))) +(let ((@x16787 (monotonicity (rewrite (= $x16324 $x14257)) @x16784 (= $x16518 (and $x13242 $x14257 $x16782))))) +(let ((@x16792 (trans @x16787 (rewrite (= (and $x13242 $x14257 $x16782) $x16788)) (= $x16518 $x16788)))) +(let ((@x16798 (monotonicity (monotonicity (rewrite (= $x16285 $x8666)) @x16792 (= $x16522 $x16793)) (= $x16526 $x16796)))) +(let ((@x16804 (monotonicity (rewrite (= $x16259 $x12348)) (monotonicity @x16798 (= $x16530 $x16799)) (= $x16534 $x16802)))) +(let ((@x16810 (monotonicity (rewrite (= $x16254 $x8880)) (monotonicity @x16804 (= $x16538 $x16805)) (= $x16542 (and $x8880 $x16805))))) +(let ((@x16818 (monotonicity (trans @x16810 (rewrite (= (and $x8880 $x16805) $x16811)) (= $x16542 $x16811)) (= $x16546 $x16816)))) +(let ((@x16821 (monotonicity (rewrite (= $x16248 $x3742)) @x16818 (= $x16550 (and $x3742 $x16816))))) +(let ((@x16829 (monotonicity (trans @x16821 (rewrite (= (and $x3742 $x16816) $x16822)) (= $x16550 $x16822)) (= $x16554 $x16827)))) +(let ((@x16835 (monotonicity (monotonicity (rewrite (= $x16239 $x3738)) @x16829 (= $x16558 $x16830)) (= $x16562 $x16833)))) +(let (($x12742 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12635 (not $x12631))) +(let (($x14211 (<= ?v0 4294967295))) +(let (($x10138 (>= ?v0 0))) +(and $x10138 $x14211 $x12635 $x3840)))))))) +)) +(let (($x13974 (not $x13163))) +(let (($x14165 (or $x13974 $x12742))) +(let (($x13256 (and $x13163 $x14165))) +(let (($x13521 (or $x12622 $x14273 $x13256))) +(let (($x13025 (not $x13130))) +(let (($x12874 (or $x13025 $x12556))) +(let (($x13199 (and $x13130 $x12874))) +(let (($x13574 (or $x12518 $x13199))) +(let (($x13045 (and $x12514 $x13574))) +(let (($x14132 (or $x13880 $x13045))) +(let (($x13699 (and $x12494 $x13856 $x14132))) +(let (($x13117 (or $x12595 $x13699))) +(let (($x13338 (or $x12491 $x13699))) +(let (($x13207 (and $x3923 $x3926 $x13338))) +(let (($x14076 (or $x9775 $x13207))) +(let (($x14119 (and $x3923 $x3924 $x14076))) +(let (($x13844 (or $x12482 $x14119))) +(let (($x13324 (and $x13844 $x13117))) +(let (($x12957 (or $x12468 $x13324))) +(let (($x13000 (and $x3923 $x3926 $x12957))) +(let (($x13827 (or $x9775 $x13000))) +(let (($x14170 (and $x3923 $x3924 $x13827))) +(let (($x14053 (or $x12462 $x14170))) +(let (($x13922 (and $x14053 $x13521))) +(let (($x13591 (not $x13242))) +(let (($x13357 (or $x13591 $x14262 $x13922))) +(let (($x12756 (and $x8667 $x3769 $x13357))) +(let (($x13900 (not $x12941))) +(let (($x12819 (or $x13900 $x12756))) +(let (($x13702 (and $x12941 $x12819))) +(let (($x13223 (or $x12351 $x13702))) +(let (($x12832 (and $x12348 $x13223))) +(let (($x13861 (or $x10031 $x12832))) +(let (($x12808 (and $x3740 $x3743 $x13861))) +(let (($x13195 (or $x10048 $x12808))) +(let (($x13550 (and $x3740 $x3741 $x13195))) +(let (($x13361 (or $x10065 $x13550))) +(let (($x13725 (not (and $x3738 $x13361)))) +(let ((@x16497 (refl (~ (not (and $x10138 $x14211 $x12635 $x3840)) (not (and $x10138 $x14211 $x12635 $x3840)))))) +(let ((@x16494 (nnf-neg (nnf-pos (refl (~ $x13836 $x13836)) (~ $x13163 $x13163)) (~ (not $x13974) $x13163)))) +(let ((@x16505 (nnf-neg @x16494 (nnf-neg @x16497 (~ (not $x12742) $x16498)) (~ (not $x14165) $x16502)))) +(let ((@x16513 (nnf-neg (refl (~ $x16466 $x16466)) (refl (~ $x16469 $x16469)) (nnf-neg (sk (~ $x13974 $x16485)) @x16505 (~ (not $x13256) $x16506)) (~ (not $x13521) $x16510)))) +(let ((@x16387 (nnf-neg (nnf-pos (refl (~ $x13633 $x13633)) (~ $x13130 $x13130)) (~ (not $x13025) $x13130)))) +(let ((@x16398 (nnf-neg (sk (~ $x13025 $x16378)) (nnf-neg @x16387 (refl (~ $x16388 $x16388)) (~ (not $x12874) $x16391)) (~ (not $x13199) $x16395)))) +(let ((@x16406 (nnf-neg (refl (~ $x12518 $x12518)) (nnf-neg (refl (~ $x16362 $x16362)) @x16398 (~ (not $x13574) $x16399)) (~ (not $x13045) $x16403)))) +(let ((@x16414 (nnf-neg (refl (~ $x16351 $x16351)) (refl (~ $x16354 $x16354)) (nnf-neg (refl (~ $x16357 $x16357)) @x16406 (~ (not $x14132) $x16407)) (~ (not $x13699) $x16411)))) +(let ((@x16332 (refl (~ $x16330 $x16330)))) +(let ((@x16422 (nnf-neg @x16332 (refl (~ $x16339 $x16339)) (nnf-neg (refl (~ $x16348 $x16348)) @x16414 (~ (not $x13338) $x16415)) (~ (not $x13207) $x16419)))) +(let ((@x16430 (nnf-neg @x16332 (refl (~ $x16333 $x16333)) (nnf-neg (refl (~ $x16336 $x16336)) @x16422 (~ (not $x14076) $x16423)) (~ (not $x14119) $x16427)))) +(let ((@x16445 (nnf-neg (nnf-neg (refl (~ $x16345 $x16345)) @x16430 (~ (not $x13844) $x16431)) (nnf-neg (refl (~ $x16435 $x16435)) @x16414 (~ (not $x13117) $x16438)) (~ (not $x13324) $x16442)))) +(let ((@x16453 (nnf-neg @x16332 (refl (~ $x16339 $x16339)) (nnf-neg (refl (~ $x16342 $x16342)) @x16445 (~ (not $x12957) $x16446)) (~ (not $x13000) $x16450)))) +(let ((@x16461 (nnf-neg @x16332 (refl (~ $x16333 $x16333)) (nnf-neg (refl (~ $x16336 $x16336)) @x16453 (~ (not $x13827) $x16454)) (~ (not $x14170) $x16458)))) +(let ((@x16517 (nnf-neg (nnf-neg (refl (~ $x16327 $x16327)) @x16461 (~ (not $x14053) $x16462)) @x16513 (~ (not $x13922) $x16514)))) +(let ((@x16320 (monotonicity (refl (~ $x8667 $x8667)) (refl (~ $x3769 $x3769)) (refl (~ $x12381 $x12381)) (refl (~ $x12799 $x12799)) (refl (~ $x12389 $x12389)) (refl (~ $x12834 $x12834)) (refl (~ $x12397 $x12397)) (refl (~ $x13193 $x13193)) (refl (~ $x12404 $x12404)) (refl (~ $x12407 $x12407)) (nnf-pos (refl (~ $x12774 $x12774)) (~ $x13341 $x13341)) (refl (~ $x12438 $x12438)) (refl (~ $x3794 $x3794)) (~ $x13242 $x13242)))) +(let ((@x16521 (nnf-neg (nnf-neg @x16320 (~ (not $x13591) $x13242)) (refl (~ $x16324 $x16324)) @x16517 (~ (not $x13357) $x16518)))) +(let ((@x16525 (nnf-neg (refl (~ $x16285 $x16285)) (refl (~ $x16288 $x16288)) @x16521 (~ (not $x12756) $x16522)))) +(let ((@x16284 (nnf-neg (nnf-pos (refl (~ $x12918 $x12918)) (~ $x12941 $x12941)) (~ (not $x13900) $x12941)))) +(let ((@x16533 (nnf-neg (sk (~ $x13900 $x16275)) (nnf-neg @x16284 @x16525 (~ (not $x12819) $x16526)) (~ (not $x13702) $x16530)))) +(let ((@x16541 (nnf-neg (refl (~ $x12351 $x12351)) (nnf-neg (refl (~ $x16259 $x16259)) @x16533 (~ (not $x13223) $x16534)) (~ (not $x12832) $x16538)))) +(let ((@x16549 (nnf-neg (refl (~ $x16242 $x16242)) (refl (~ $x16251 $x16251)) (nnf-neg (refl (~ $x16254 $x16254)) @x16541 (~ (not $x13861) $x16542)) (~ (not $x12808) $x16546)))) +(let ((@x16557 (nnf-neg (refl (~ $x16242 $x16242)) (refl (~ $x16245 $x16245)) (nnf-neg (refl (~ $x16248 $x16248)) @x16549 (~ (not $x13195) $x16550)) (~ (not $x13550) $x16554)))) +(let ((@x16564 (nnf-neg (refl (~ $x10065 $x10065)) (nnf-neg (refl (~ $x16239 $x16239)) @x16557 (~ (not $x13361) $x16558)) (~ $x13725 $x16562)))) +(let (($x12661 (exists ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x3840 (= ?x3765 v_b_S_result_G_0$))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12635 (not $x12631))) +(let ((?x10215 (* (- 1) b_S_max_o_u4$))) +(let ((?x10220 (+ ?v0 ?x10215))) +(let (($x10221 (<= ?x10220 0))) +(let (($x10138 (>= ?v0 0))) +(and $x10138 $x10221 $x12635 $x3840)))))))))) +)) +(let (($x12652 (forall ((?v0 Int) )(let ((?x12644 (* (- 1) v_b_S_result_G_0$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12646 (<= (+ ?x3765 ?x12644) 0))) +(let (($x12631 (>= (+ ?v0 (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12635 (not $x12631))) +(let ((?x10215 (* (- 1) b_S_max_o_u4$))) +(let ((?x10220 (+ ?v0 ?x10215))) +(let (($x10221 (<= ?x10220 0))) +(let (($x10138 (>= ?v0 0))) +(let (($x12638 (and $x10138 $x10221 $x12635))) +(let (($x12641 (not $x12638))) +(or $x12641 $x12646))))))))))))) +)) +(let (($x12655 (not $x12652))) +(let (($x12664 (or $x12655 $x12661))) +(let (($x12667 (and $x12652 $x12664))) +(let (($x14289 (or $x12622 $x14273 $x12667))) +(let (($x12542 (forall ((?v0 Int) )(let ((?x12534 (* (- 1) v_b_L_H_max_G_3$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12536 (<= (+ ?x3765 ?x12534) 0))) +(let (($x12521 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_1$)) 0))) +(let (($x12525 (not $x12521))) +(let ((?x10215 (* (- 1) b_S_max_o_u4$))) +(let ((?x10220 (+ ?v0 ?x10215))) +(let (($x10221 (<= ?x10220 0))) +(let (($x10138 (>= ?v0 0))) +(let (($x12528 (and $x10138 $x10221 $x12525))) +(let (($x12531 (not $x12528))) +(or $x12531 $x12536))))))))))))) +)) +(let (($x12545 (not $x12542))) +(let (($x12559 (or $x12545 $x12556))) +(let (($x12562 (and $x12542 $x12559))) +(let (($x12565 (or $x12518 $x12562))) +(let (($x12568 (and $x12514 $x12565))) +(let ((?x12400 (* (- 1) v_b_L_H_p_G_0$))) +(let ((?x12401 (+ b_S_max_o_u4$ ?x12400))) +(let (($x12497 (>= ?x12401 1))) +(let (($x12508 (and $x12494 $x12497 $x12500 $x3960 $x12505 $x12486))) +(let (($x12511 (not $x12508))) +(let (($x12571 (or $x12511 $x12568))) +(let (($x12574 (and $x12494 $x12497 $x12571))) +(let (($x12598 (or $x12595 $x12574))) +(let (($x12577 (or $x12491 $x12574))) +(let (($x12580 (and $x3923 $x3926 $x12577))) +(let (($x12583 (or $x9775 $x12580))) +(let (($x12586 (and $x3923 $x3924 $x12583))) +(let (($x12589 (or $x12482 $x12586))) +(let (($x12601 (and $x12589 $x12598))) +(let (($x12604 (or $x12468 $x12601))) +(let (($x12607 (and $x3923 $x3926 $x12604))) +(let (($x12610 (or $x9775 $x12607))) +(let (($x12613 (and $x3923 $x3924 $x12610))) +(let (($x12616 (or $x12462 $x12613))) +(let (($x14294 (and $x12616 $x14289))) +(let (($x12431 (forall ((?v0 Int) )(let ((?x12384 (* (- 1) v_b_L_H_max_G_1$))) +(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12425 (<= (+ ?x3765 ?x12384) 0))) +(let (($x12411 (>= (+ ?v0 (* (- 1) v_b_L_H_p_G_0$)) 0))) +(let (($x12415 (not $x12411))) +(let ((?x10215 (* (- 1) b_S_max_o_u4$))) +(let ((?x10220 (+ ?v0 ?x10215))) +(let (($x10221 (<= ?x10220 0))) +(let (($x10138 (>= ?v0 0))) +(let (($x12418 (and $x10138 $x10221 $x12415))) +(let (($x12421 (not $x12418))) +(or $x12421 $x12425))))))))))))) +)) +(let (($x12399 (>= ?x12401 0))) +(let (($x12391 (>= (+ b_S_max_o_u4$ (* (- 1) v_b_SL_H_witness_G_0$)) 0))) +(let (($x12383 (>= (+ b_S_max_o_u1$ (* (- 1) v_b_L_H_max_G_1$)) 0))) +(let (($x12441 (and $x8667 $x3769 $x12381 $x12383 $x12389 $x12391 $x12397 $x12399 $x12404 $x12407 $x12431 $x12438 $x3794))) +(let (($x12444 (not $x12441))) +(let (($x14297 (or $x12444 $x14262 $x14294))) +(let (($x14300 (and $x8667 $x3769 $x14297))) +(let (($x12374 (forall ((?v0 Int) )(let ((?x3765 (b_S_read_n_u1$ v_b_S_s$ (b_S_idx$ (b_S_ptr$ b_T_T_u1$ v_b_P_H_arr$) ?v0 b_T_T_u1$)))) +(let (($x12367 (>= (+ v_b_L_H_max_G_0$ (* (- 1) ?x3765)) 0))) +(let (($x12354 (>= ?v0 1))) +(let (($x12357 (not $x12354))) +(let ((?x10215 (* (- 1) b_S_max_o_u4$))) +(let ((?x10220 (+ ?v0 ?x10215))) +(let (($x10221 (<= ?x10220 0))) +(let (($x10138 (>= ?v0 0))) +(let (($x12360 (and $x10138 $x10221 $x12357))) +(let (($x12363 (not $x12360))) +(or $x12363 $x12367)))))))))))) +)) +(let (($x12377 (not $x12374))) +(let (($x14303 (or $x12377 $x14300))) +(let (($x14306 (and $x12374 $x14303))) +(let (($x14309 (or $x12351 $x14306))) +(let (($x14312 (and $x12348 $x14309))) +(let (($x14315 (or $x10031 $x14312))) +(let (($x14318 (and $x3740 $x3743 $x14315))) +(let (($x14321 (or $x10048 $x14318))) +(let (($x14324 (and $x3740 $x3741 $x14321))) +(let (($x14327 (or $x10065 $x14324))) +(let (($x14330 (and $x3738 $x14327))) +(let (($x14333 (not $x14330))) +(let (($x13747 (and $x10138 $x14211 $x12635 $x3840))) +(let ((?x10215 (* (- 1) b_S_max_o_u4$))) +(let ((?x10220 (+ ?0 ?x10215))) +(let (($x10221 (<= ?x10220 0))) +(let (($x12658 (and $x10138 $x10221 $x12635 $x3840))) +(let ((?x2232 (* 65536 65536))) +(let ((?x2237 (- ?x2232 1))) +(let (($x2238 (= b_S_max_o_u4$ ?x2237))) +(let ((@x7014 (monotonicity (rewrite (= (* (- 1) 1) (- 1))) (= (+ 4294967296 (* (- 1) 1)) (+ 4294967296 (- 1)))))) +(let ((@x7019 (trans @x7014 (rewrite (= (+ 4294967296 (- 1)) 4294967295)) (= (+ 4294967296 (* (- 1) 1)) 4294967295)))) +(let ((@x7011 (trans (monotonicity (rewrite (= ?x2232 4294967296)) (= ?x2237 (- 4294967296 1))) (rewrite (= (- 4294967296 1) (+ 4294967296 (* (- 1) 1)))) (= ?x2237 (+ 4294967296 (* (- 1) 1)))))) +(let ((@x7024 (monotonicity (trans @x7011 @x7019 (= ?x2237 4294967295)) (= $x2238 (= b_S_max_o_u4$ 4294967295))))) +(let ((@x7025 (mp (asserted $x2238) @x7024 (= b_S_max_o_u4$ 4294967295)))) +(let ((@x13415 (trans (monotonicity @x7025 (= ?x10215 (* (- 1) 4294967295))) (rewrite (= (* (- 1) 4294967295) (- 4294967295))) (= ?x10215 (- 4294967295))))) +(let ((@x12861 (trans (monotonicity @x13415 (= ?x10220 (+ ?0 (- 4294967295)))) (rewrite (= (+ ?0 (- 4294967295)) (+ (- 4294967295) ?0))) (= ?x10220 (+ (- 4294967295) ?0))))) +(let ((@x13817 (trans (monotonicity @x12861 (= $x10221 (<= (+ (- 4294967295) ?0) 0))) (rewrite (= (<= (+ (- 4294967295) ?0) 0) $x14211)) (= $x10221 $x14211)))) +(let ((@x12741 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12635) $x13586)) (= (not (and $x10138 $x10221 $x12635)) $x13963)))) +(let ((@x12841 (quant-intro (monotonicity @x12741 (= (or (not (and $x10138 $x10221 $x12635)) $x12646) $x13836)) (= $x12652 $x13163)))) +(let ((@x12999 (monotonicity (monotonicity @x12841 (= $x12655 $x13974)) (quant-intro (monotonicity @x13817 (= $x12658 $x13747)) (= $x12661 $x12742)) (= $x12664 $x14165)))) +(let ((@x13331 (monotonicity (monotonicity @x12841 @x12999 (= $x12667 $x13256)) (= $x14289 $x13521)))) +(let ((@x13632 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12525) $x14023)) (= (not (and $x10138 $x10221 $x12525)) $x12802)))) +(let ((@x13024 (quant-intro (monotonicity @x13632 (= (or (not (and $x10138 $x10221 $x12525)) $x12536) $x13633)) (= $x12542 $x13130)))) +(let ((@x14205 (monotonicity @x13024 (monotonicity (monotonicity @x13024 (= $x12545 $x13025)) (= $x12559 $x12874)) (= $x12562 $x13199)))) +(let ((@x14110 (monotonicity (monotonicity @x7025 (= ?x12401 (+ 4294967295 ?x12400))) (= $x12497 (>= (+ 4294967295 ?x12400) 1))))) +(let ((@x13814 (trans @x14110 (rewrite (= (>= (+ 4294967295 ?x12400) 1) $x13856)) (= $x12497 $x13856)))) +(let ((@x13698 (monotonicity (monotonicity (monotonicity @x13814 (= $x12508 $x13815)) (= $x12511 $x13880)) (monotonicity (monotonicity @x14205 (= $x12565 $x13574)) (= $x12568 $x13045)) (= $x12571 $x14132)))) +(let ((@x13379 (monotonicity (monotonicity @x13814 @x13698 (= $x12574 $x13699)) (= $x12598 $x13117)))) +(let ((@x13206 (monotonicity (monotonicity @x13814 @x13698 (= $x12574 $x13699)) (= $x12577 $x13338)))) +(let ((@x13797 (monotonicity (monotonicity (monotonicity @x13206 (= $x12580 $x13207)) (= $x12583 $x14076)) (= $x12586 $x14119)))) +(let ((@x12956 (monotonicity (monotonicity @x13797 (= $x12589 $x13844)) @x13379 (= $x12601 $x13324)))) +(let ((@x14003 (monotonicity (monotonicity (monotonicity @x12956 (= $x12604 $x12957)) (= $x12607 $x13000)) (= $x12610 $x13827)))) +(let ((@x13356 (monotonicity (monotonicity (monotonicity @x14003 (= $x12613 $x14170)) (= $x12616 $x14053)) @x13331 (= $x14294 $x13922)))) +(let ((@x13685 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12415) $x13128)) (= (not (and $x10138 $x10221 $x12415)) $x13111)))) +(let ((@x13593 (quant-intro (monotonicity @x13685 (= (or (not (and $x10138 $x10221 $x12415)) $x12425) $x12774)) (= $x12431 $x13341)))) +(let ((@x13192 (monotonicity (monotonicity @x7025 (= ?x12401 (+ 4294967295 ?x12400))) (= $x12399 (>= (+ 4294967295 ?x12400) 0))))) +(let ((@x13397 (trans @x13192 (rewrite (= (>= (+ 4294967295 ?x12400) 0) $x13193)) (= $x12399 $x13193)))) +(let ((@x13988 (rewrite (= (>= (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$)) 0) $x12834)))) +(let (($x13515 (= (+ b_S_max_o_u4$ (* (- 1) v_b_SL_H_witness_G_0$)) (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$))))) +(let ((@x12807 (monotonicity (monotonicity @x7025 $x13515) (= $x12391 (>= (+ 4294967295 (* (- 1) v_b_SL_H_witness_G_0$)) 0))))) +(let (($x13742 (= (+ b_S_max_o_u1$ (* (- 1) v_b_L_H_max_G_1$)) (+ 255 (* (- 1) v_b_L_H_max_G_1$))))) +(let ((@x12798 (monotonicity (monotonicity (asserted (= b_S_max_o_u1$ 255)) $x13742) (= $x12383 (>= (+ 255 (* (- 1) v_b_L_H_max_G_1$)) 0))))) +(let ((@x13309 (trans @x12798 (rewrite (= (>= (+ 255 (* (- 1) v_b_L_H_max_G_1$)) 0) $x12799)) (= $x12383 $x12799)))) +(let ((@x13590 (monotonicity @x13309 (trans @x12807 @x13988 (= $x12391 $x12834)) @x13397 @x13593 (= $x12441 $x13242)))) +(let ((@x13983 (monotonicity (monotonicity @x13590 (= $x12444 $x13591)) @x13356 (= $x14297 $x13357)))) +(let ((@x13411 (monotonicity (monotonicity @x13817 (= (and $x10138 $x10221 $x12357) $x14020)) (= (not (and $x10138 $x10221 $x12357)) $x13679)))) +(let ((@x14159 (quant-intro (monotonicity @x13411 (= (or (not (and $x10138 $x10221 $x12357)) $x12367) $x12918)) (= $x12374 $x12941)))) +(let ((@x13693 (monotonicity (monotonicity @x14159 (= $x12377 $x13900)) (monotonicity @x13983 (= $x14300 $x12756)) (= $x14303 $x12819)))) +(let ((@x13179 (monotonicity (monotonicity @x14159 @x13693 (= $x14306 $x13702)) (= $x14309 $x13223)))) +(let ((@x13194 (monotonicity (monotonicity (monotonicity @x13179 (= $x14312 $x12832)) (= $x14315 $x13861)) (= $x14318 $x12808)))) +(let ((@x13761 (monotonicity (monotonicity (monotonicity @x13194 (= $x14321 $x13195)) (= $x14324 $x13550)) (= $x14327 $x13361)))) +(let ((@x13603 (monotonicity (monotonicity @x13761 (= $x14330 (and $x3738 $x13361))) (= $x14333 $x13725)))) +(let (($x12625 (and b_S_position_n_marker$ $x12404 $x12389 $x3818 $x3820 $x3822 $x3824))) +(let (($x12628 (not $x12625))) +(let (($x12670 (or $x12628 $x12667))) +(let (($x12673 (and b_S_position_n_marker$ $x12670))) +(let (($x12676 (or $x12622 $x12673))) +(let (($x12679 (and $x12616 $x12676))) +(let (($x12447 (and $x12404 $x12389 $x3886 $x3806 $x3699 $x3893 $x3894 $x3895 $x3896 $x3897 $x3898))) +(let (($x12450 (not $x12447))) +(let (($x12682 (or $x12444 $x12450 $x12679))) +(let (($x12685 (and $x8667 $x3769 $x12682))) +(let (($x12688 (or $x12377 $x12685))) +(let (($x12691 (and $x12374 $x12688))) +(let (($x12694 (or $x12351 $x12691))) +(let (($x12697 (and $x12348 $x12694))) +(let (($x12700 (or $x10031 $x12697))) +(let (($x12703 (and $x3740 $x3743 $x12700))) +(let (($x12706 (or $x10048 $x12703))) +(let (($x12709 (and $x3740 $x3741 $x12706))) +(let (($x12712 (or $x10065 $x12709))) +(let (($x12715 (and $x3738 $x12712))) +(let (($x12718 (not $x12715))) +(let ((@x13981 (iff-true (asserted b_S_position_n_marker$) (= b_S_position_n_marker$ true)))) +(let ((@x14267 (monotonicity @x13981 (= $x12625 (and true $x12404 $x12389 $x3818 $x3820 $x3822 $x3824))))) +(let ((@x14272 (trans @x14267 (rewrite (= (and true $x12404 $x12389 $x3818 $x3820 $x3822 $x3824) $x14268)) (= $x12625 $x14268)))) +(let ((@x14278 (monotonicity (monotonicity @x14272 (= $x12628 $x14273)) (= $x12670 (or $x14273 $x12667))))) +(let ((@x14285 (trans (monotonicity @x13981 @x14278 (= $x12673 (and true (or $x14273 $x12667)))) (rewrite (= (and true (or $x14273 $x12667)) (or $x14273 $x12667))) (= $x12673 (or $x14273 $x12667))))) +(let ((@x14293 (trans (monotonicity @x14285 (= $x12676 (or $x12622 (or $x14273 $x12667)))) (rewrite (= (or $x12622 (or $x14273 $x12667)) $x14289)) (= $x12676 $x14289)))) +(let (($x14258 (= (and $x12404 $x12389 $x3886 $x3806 true $x3893 $x3894 $x3895 $x3896 $x3897 $x3898) $x14257))) +(let (($x14255 (= $x12447 (and $x12404 $x12389 $x3886 $x3806 true $x3893 $x3894 $x3895 $x3896 $x3897 $x3898)))) +(let ((@x14261 (trans (monotonicity (iff-true @x10104 (= $x3699 true)) $x14255) (rewrite $x14258) (= $x12447 $x14257)))) +(let ((@x14299 (monotonicity (monotonicity @x14261 (= $x12450 $x14262)) (monotonicity @x14293 (= $x12679 $x14294)) (= $x12682 $x14297)))) +(let ((@x14308 (monotonicity (monotonicity (monotonicity @x14299 (= $x12685 $x14300)) (= $x12688 $x14303)) (= $x12691 $x14306)))) +(let ((@x14317 (monotonicity (monotonicity (monotonicity @x14308 (= $x12694 $x14309)) (= $x12697 $x14312)) (= $x12700 $x14315)))) +(let ((@x14326 (monotonicity (monotonicity (monotonicity @x14317 (= $x12703 $x14318)) (= $x12706 $x14321)) (= $x12709 $x14324)))) +(let ((@x14335 (monotonicity (monotonicity (monotonicity @x14326 (= $x12712 $x14327)) (= $x12715 $x14330)) (= $x12718 $x14333)))) +(let ((@x12637 (monotonicity (rewrite (= (<= v_b_P_H_len$ ?0) $x12631)) (= $x9165 $x12635)))) +(let ((@x10223 (rewrite (= $x1344 $x10221)))) +(let ((@x12663 (quant-intro (monotonicity @x10140 @x10223 @x12637 (= $x9202 $x12658)) (= $x9207 $x12661)))) +(let ((@x12640 (monotonicity @x10140 @x10223 @x12637 (= (and $x1212 $x1344 $x9165) (and $x10138 $x10221 $x12635))))) +(let ((@x12643 (monotonicity @x12640 (= (not (and $x1212 $x1344 $x9165)) (not (and $x10138 $x10221 $x12635)))))) +(let ((@x12651 (monotonicity @x12643 (rewrite (= $x3837 $x12646)) (= $x9180 (or (not (and $x10138 $x10221 $x12635)) $x12646))))) +(let ((@x12657 (monotonicity (quant-intro @x12651 (= $x9185 $x12652)) (= (not $x9185) $x12655)))) +(let ((@x12669 (monotonicity (quant-intro @x12651 (= $x9185 $x12652)) (monotonicity @x12657 @x12663 (= $x9228 $x12664)) (= $x9233 $x12667)))) +(let ((@x12390 (rewrite (= $x3776 $x12389)))) +(let ((@x12406 (rewrite (= $x3783 $x12404)))) +(let ((@x12630 (monotonicity (monotonicity @x12406 @x12390 (= $x9159 $x12625)) (= (not $x9159) $x12628)))) +(let ((@x12675 (monotonicity (monotonicity @x12630 @x12669 (= $x9240 $x12670)) (= $x9245 $x12673)))) +(let ((@x12621 (monotonicity @x12406 @x12390 (rewrite (= $x4012 $x12453)) (= (and $x3783 $x3776 $x4012) $x12619)))) +(let ((@x12678 (monotonicity (monotonicity @x12621 (= (not (and $x3783 $x3776 $x4012)) $x12622)) @x12675 (= $x9963 $x12676)))) +(let ((@x12555 (monotonicity (rewrite (= (<= v_b_P_H_len$ v_b_SL_H_witness_G_1$) $x12550)) (= $x9687 $x12553)))) +(let ((@x12527 (monotonicity (rewrite (= (<= v_b_L_H_p_G_1$ ?0) $x12521)) (= $x9663 $x12525)))) +(let ((@x12533 (monotonicity (monotonicity @x10140 @x10223 @x12527 (= $x9669 (and $x10138 $x10221 $x12525))) (= (not $x9669) (not (and $x10138 $x10221 $x12525)))))) +(let ((@x12541 (monotonicity @x12533 (rewrite (= $x3970 $x12536)) (= $x9678 (or (not (and $x10138 $x10221 $x12525)) $x12536))))) +(let ((@x12547 (monotonicity (quant-intro @x12541 (= $x9683 $x12542)) (= (not $x9683) $x12545)))) +(let ((@x12561 (monotonicity @x12547 (monotonicity @x12555 (= $x9690 $x12556)) (= $x9718 $x12559)))) +(let ((@x12567 (monotonicity (monotonicity (rewrite (= $x3967 $x12514)) (= (not $x3967) $x12518)) (monotonicity (quant-intro @x12541 (= $x9683 $x12542)) @x12561 (= $x9723 $x12562)) (= $x9730 $x12565)))) +(let ((@x12487 (rewrite (= $x3943 $x12486)))) +(let ((@x12510 (monotonicity (rewrite (= $x9606 $x12494)) (rewrite (= $x9615 $x12497)) (rewrite (= $x9623 $x12500)) (rewrite (= $x3961 $x12505)) @x12487 (= $x9657 $x12508)))) +(let ((@x12573 (monotonicity (monotonicity @x12510 (= (not $x9657) $x12511)) (monotonicity (rewrite (= $x3967 $x12514)) @x12567 (= $x9735 $x12568)) (= $x9742 $x12571)))) +(let ((@x12576 (monotonicity (rewrite (= $x9606 $x12494)) (rewrite (= $x9615 $x12497)) @x12573 (= $x9750 $x12574)))) +(let ((@x12594 (monotonicity @x12406 @x12390 (rewrite (= $x3992 $x12471)) @x12487 (= $x9858 $x12592)))) +(let ((@x12600 (monotonicity (monotonicity @x12594 (= (not $x9858) $x12595)) @x12576 (= $x9874 $x12598)))) +(let ((@x12493 (monotonicity (monotonicity @x12406 @x12487 (= $x9595 $x12488)) (= (not $x9595) $x12491)))) +(let ((@x12582 (monotonicity (monotonicity @x12493 @x12576 (= $x9759 $x12577)) (= $x9767 $x12580)))) +(let ((@x12481 (monotonicity @x12406 @x12390 (monotonicity (rewrite (= $x3992 $x12471)) (= $x9497 $x12476)) (= $x9511 $x12479)))) +(let ((@x12591 (monotonicity (monotonicity @x12481 (= (not $x9511) $x12482)) (monotonicity (monotonicity @x12582 (= $x9776 $x12583)) (= $x9784 $x12586)) (= $x9793 $x12589)))) +(let ((@x12470 (monotonicity (monotonicity @x12406 @x12390 (= (and $x3923 $x3926 $x3783 $x3776) $x12465)) (= (not (and $x3923 $x3926 $x3783 $x3776)) $x12468)))) +(let ((@x12606 (monotonicity @x12470 (monotonicity @x12591 @x12600 (= $x9879 $x12601)) (= $x9886 $x12604)))) +(let ((@x12615 (monotonicity (monotonicity (monotonicity @x12606 (= $x9894 $x12607)) (= $x9902 $x12610)) (= $x9910 $x12613)))) +(let ((@x12461 (monotonicity @x12406 @x12390 (monotonicity (rewrite (= $x4012 $x12453)) (= $x9465 $x12456)) (= $x9479 $x12459)))) +(let ((@x12618 (monotonicity (monotonicity @x12461 (= (not $x9479) $x12462)) @x12615 (= $x9919 $x12616)))) +(let ((@x12452 (monotonicity (monotonicity @x12406 @x12390 (= $x9434 $x12447)) (= $x9974 $x12450)))) +(let ((@x12440 (monotonicity (rewrite (= (<= v_b_P_H_len$ v_b_SL_H_witness_G_0$) $x12435)) (= $x8960 $x12438)))) +(let ((@x12417 (monotonicity (rewrite (= (<= v_b_L_H_p_G_0$ ?0) $x12411)) (= $x8936 $x12415)))) +(let ((@x12423 (monotonicity (monotonicity @x10140 @x10223 @x12417 (= $x8942 (and $x10138 $x10221 $x12415))) (= (not $x8942) (not (and $x10138 $x10221 $x12415)))))) +(let ((@x12430 (monotonicity @x12423 (rewrite (= $x3788 $x12425)) (= $x8951 (or (not (and $x10138 $x10221 $x12415)) $x12425))))) +(let ((@x12443 (monotonicity (rewrite (= $x3772 $x12381)) (rewrite (= $x3773 $x12383)) @x12390 (rewrite (= $x3777 $x12391)) (rewrite (= $x3780 $x12397)) (rewrite (= $x3781 $x12399)) @x12406 (rewrite (= $x3785 $x12407)) (quant-intro @x12430 (= $x8956 $x12431)) @x12440 (= $x9032 $x12441)))) +(let ((@x12684 (monotonicity (monotonicity @x12443 (= (not $x9032) $x12444)) @x12452 (monotonicity @x12618 @x12678 (= $x9968 $x12679)) (= $x9991 $x12682)))) +(let ((@x12362 (monotonicity @x10140 @x10223 (monotonicity (rewrite (= $x8887 $x12354)) (= $x8888 $x12357)) (= $x8899 (and $x10138 $x10221 $x12357))))) +(let ((@x12373 (monotonicity (monotonicity @x12362 (= (not $x8899) (not (and $x10138 $x10221 $x12357)))) (rewrite (= $x3766 $x12367)) (= $x8908 (or (not (and $x10138 $x10221 $x12357)) $x12367))))) +(let ((@x12379 (monotonicity (quant-intro @x12373 (= $x8913 $x12374)) (= (not $x8913) $x12377)))) +(let ((@x12690 (monotonicity @x12379 (monotonicity @x12684 (= $x9999 $x12685)) (= $x10008 $x12688)))) +(let ((@x12696 (monotonicity (monotonicity (rewrite (= $x3761 $x12348)) (= (not $x3761) $x12351)) (monotonicity (quant-intro @x12373 (= $x8913 $x12374)) @x12690 (= $x10013 $x12691)) (= $x10020 $x12694)))) +(let ((@x12702 (monotonicity (monotonicity (rewrite (= $x3761 $x12348)) @x12696 (= $x10025 $x12697)) (= $x10032 $x12700)))) +(let ((@x12711 (monotonicity (monotonicity (monotonicity @x12702 (= $x10040 $x12703)) (= $x10049 $x12706)) (= $x10057 $x12709)))) +(let ((@x12720 (monotonicity (monotonicity (monotonicity @x12711 (= $x10066 $x12712)) (= $x10071 $x12715)) (= (not $x10071) $x12718)))) +(let ((@x12721 (mp (not-or-elim (mp (asserted $x4036) @x10085 (not $x10078)) (not $x10071)) @x12720 $x12718))) +(let ((@x20468 (mp (mp (mp~ (mp (mp @x12721 @x14335 $x14333) @x13603 $x13725) @x16564 $x16562) @x16835 $x16833) @x20467 $x20465))) +(let ((@x21274 (mp @x20468 (monotonicity @x21270 (= $x20465 (or $x10065 $x21268))) (or $x10065 $x21268)))) +(let ((@x24559 (unit-resolution @x21274 (lemma (unit-resolution @x23120 @x23099 @x23095 @x23071 @x23078 false) $x3738) $x21268))) +(let ((@x24561 (unit-resolution (def-axiom (or $x21262 $x16242 $x16245 $x21256)) (unit-resolution (def-axiom (or $x21265 $x21259)) @x24559 $x21259) $x21259))) +(let ((@x24567 (unit-resolution @x24561 (unit-resolution (def-axiom (or $x23304 $x3741)) (lemma @x23396 $x23305) $x3741) @x23251 $x21256))) +(let ((@x24570 (unit-resolution (def-axiom (or $x21250 $x16242 $x16251 $x21244)) @x23251 (unit-resolution (def-axiom (or $x21253 $x21247)) @x24567 $x21247) (or $x16251 $x21244)))) +(let ((@x25304 (unit-resolution (def-axiom (or $x21241 $x21235)) (unit-resolution @x24570 (lemma @x23543 $x3743) $x21244) $x21235))) +(let ((@x25314 (unit-resolution (unit-resolution (def-axiom (or $x21238 $x12351 $x21232)) @x25304 $x21235) (lemma ((_ th-lemma arith farkas 1 1) @x10095 (hypothesis $x12351) false) $x12348) $x21232))) +(let (($x16266 (not $x16265))) +(let ((@x24547 (hypothesis $x20036))) +(let (($x16263 (>= ?v0!13 0))) +(let ((@x24551 ((_ th-lemma arith eq-propagate 0 0) (unit-resolution (def-axiom (or $x20031 $x16263)) @x24547 $x16263) (unit-resolution (def-axiom (or $x20031 $x16266)) @x24547 $x16266) (= ?v0!13 0)))) +(let ((@x24574 (monotonicity (monotonicity @x24551 (= (b_S_idx$ ?x3680 ?v0!13 b_T_T_u1$) ?x3739)) (= ?x16270 ?x3746)))) +(let ((@x24572 (unit-resolution (def-axiom (or $x21241 $x3747)) (unit-resolution @x24570 (lemma @x23543 $x3743) $x21244) $x3747))) +(let ((@x24591 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_L_H_max_G_0$ ?x16270)) $x16273)) (unit-resolution (def-axiom (or $x20031 (not $x16273))) @x24547 (not $x16273)) (trans @x24572 (symm @x24574 (= ?x3746 ?x16270)) (= v_b_L_H_max_G_0$ ?x16270)) false))) +(let ((@x25316 (unit-resolution (def-axiom (or $x21226 $x20036 $x21220)) (lemma @x24591 $x20031) (unit-resolution (def-axiom (or $x21229 $x21223)) @x25314 $x21223) $x21220))) +(let ((@x25324 (unit-resolution (def-axiom (or $x21214 $x8666 $x16288 $x21208)) @x10095 (or $x21214 $x16288 $x21208)))) +(let ((@x25326 (unit-resolution @x25324 (mp @x24572 (symm (commutativity (= $x3769 $x3747)) (= $x3747 $x3769)) $x3769) (or $x21214 $x21208)))) +(let ((@x25327 (unit-resolution @x25326 (unit-resolution (def-axiom (or $x21217 $x21211)) @x25316 $x21211) $x21208))) +(let ((@x25328 (unit-resolution (def-axiom (or $x21205 $x12397)) @x25327 $x12397))) +(let ((@x25333 (unit-resolution (def-axiom (or $x21205 $x21041)) @x25327 $x21041))) +(let (($x23869 (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!15)) 0))) +(let (($x23793 (<= (+ v_b_L_H_max_G_1$ (* (- 1) v_b_S_result_G_0$)) 0))) +(let (($x23789 (= v_b_L_H_max_G_1$ v_b_S_result_G_0$))) +(let ((@x24013 (symm (unit-resolution (def-axiom (or $x21193 $x3824)) (hypothesis $x21196) $x3824) $x23789))) +(let (($x21519 (not $x16760))) +(let ((@x23878 (trans (hypothesis $x3794) (symm (hypothesis $x3824) $x23789) (= ?x3793 v_b_S_result_G_0$)))) +(let (($x23841 (not (= ?x3793 v_b_S_result_G_0$)))) +(let (($x23846 (or $x21178 $x20219 $x20374 $x12435 $x23841))) +(let (($x23737 (>= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_P_H_len$)) 0))) +(let (($x23847 (or $x21178 (or $x20219 $x20374 $x23737 $x23841)))) +(let (($x23747 (= (>= (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$) 0) $x12435))) +(let (($x23745 (= $x23737 (>= (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$) 0)))) +(let (($x23742 (= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) v_b_SL_H_witness_G_0$)))) +(let ((@x23750 (trans (monotonicity (rewrite $x23742) $x23745) (rewrite $x23747) (= $x23737 $x12435)))) +(let ((@x23845 (monotonicity @x23750 (= (or $x20219 $x20374 $x23737 $x23841) (or $x20219 $x20374 $x12435 $x23841))))) +(let ((@x23855 (trans (monotonicity @x23845 (= $x23847 (or $x21178 (or $x20219 $x20374 $x12435 $x23841)))) (rewrite (= (or $x21178 (or $x20219 $x20374 $x12435 $x23841)) $x23846)) (= $x23847 $x23846)))) +(let ((@x23883 (unit-resolution (mp ((_ quant-inst v_b_SL_H_witness_G_0$) $x23847) @x23855 $x23846) (hypothesis $x12834) (hypothesis $x12438) (hypothesis $x12389) (hypothesis $x21173) @x23878 false))) +(let ((@x24019 (unit-resolution (lemma @x23883 (or $x21178 $x20374 $x12435 $x20219 $x20379 $x20358)) (unit-resolution (def-axiom (or $x21193 $x3824)) (hypothesis $x21196) $x3824) (hypothesis $x12438) (hypothesis $x12389) (hypothesis $x3794) (hypothesis $x12834) $x21178))) +(let ((@x24021 (unit-resolution (def-axiom (or $x21190 $x20298 $x21184)) (unit-resolution (def-axiom (or $x21181 $x21173)) @x24019 $x21181) (unit-resolution (def-axiom (or $x21193 $x21187)) (hypothesis $x21196) $x21187) $x20298))) +(let (($x24008 (or (not (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0)) $x16760 (not $x23793)))) +(let ((@x24005 ((_ th-lemma arith farkas -1 1 1) (hypothesis (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0)) (hypothesis $x21519) (hypothesis $x23793) false))) +(let ((@x24023 (unit-resolution (lemma @x24005 $x24008) (unit-resolution (def-axiom (or $x20293 $x21519)) @x24021 $x21519) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x23789) $x23793)) @x24013 $x23793) (not (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0))))) +(let (($x23889 (>= (+ v_b_L_H_max_G_1$ (* (- 1) ?x16481)) 0))) +(let (($x23897 (or $x21046 $x20277 $x20278 $x23869 $x23889))) +(let (($x23835 (<= (+ ?x16481 (* (- 1) v_b_L_H_max_G_1$)) 0))) +(let (($x23815 (>= (+ ?v0!15 ?x12400) 0))) +(let (($x23898 (or $x21046 (or $x20277 $x20278 $x23815 $x23835)))) +(let (($x23874 (= (+ ?x16481 (* (- 1) v_b_L_H_max_G_1$)) (+ (* (- 1) v_b_L_H_max_G_1$) ?x16481)))) +(let ((@x23887 (monotonicity (rewrite $x23874) (= $x23835 (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16481) 0))))) +(let ((@x23893 (trans @x23887 (rewrite (= (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16481) 0) $x23889)) (= $x23835 $x23889)))) +(let ((@x23867 (monotonicity (rewrite (= (+ ?v0!15 ?x12400) (+ ?x12400 ?v0!15))) (= $x23815 (>= (+ ?x12400 ?v0!15) 0))))) +(let ((@x23872 (trans @x23867 (rewrite (= (>= (+ ?x12400 ?v0!15) 0) $x23869)) (= $x23815 $x23869)))) +(let ((@x23896 (monotonicity @x23872 @x23893 (= (or $x20277 $x20278 $x23815 $x23835) (or $x20277 $x20278 $x23869 $x23889))))) +(let ((@x23906 (trans (monotonicity @x23896 (= $x23898 (or $x21046 (or $x20277 $x20278 $x23869 $x23889)))) (rewrite (= (or $x21046 (or $x20277 $x20278 $x23869 $x23889)) $x23897)) (= $x23898 $x23897)))) +(let ((@x24028 (unit-resolution (mp ((_ quant-inst ?v0!15) $x23898) @x23906 $x23897) (hypothesis $x21041) (unit-resolution (def-axiom (or $x20293 $x16473)) @x24021 $x16473) (unit-resolution (def-axiom (or $x20293 $x16474)) @x24021 $x16474) (or $x23869 $x23889)))) +(let ((@x24031 ((_ th-lemma arith farkas -1 1 1) (unit-resolution (def-axiom (or $x20293 $x16743)) @x24021 $x16743) (unit-resolution @x24028 @x24023 $x23869) (unit-resolution (def-axiom (or $x21193 $x12453)) (hypothesis $x21196) $x12453) false))) +(let ((@x25334 (unit-resolution (lemma @x24031 (or $x21193 $x21046 $x12435 $x20219 $x20379 $x20374)) @x25333 (unit-resolution (def-axiom (or $x21205 $x12438)) @x25327 $x12438) (unit-resolution (def-axiom (or $x21205 $x12389)) @x25327 $x12389) (unit-resolution (def-axiom (or $x21205 $x3794)) @x25327 $x3794) (unit-resolution (def-axiom (or $x21205 $x12834)) @x25327 $x12834) $x21193))) +(let ((@x25336 (unit-resolution (def-axiom (or $x21202 $x21162 $x21196)) (unit-resolution (def-axiom (or $x21205 $x21199)) @x25327 $x21199) @x25334 $x21162))) +(let ((@x25337 (unit-resolution (def-axiom (or $x21159 $x12456)) @x25336 $x12456))) +(let ((@x25341 (mp @x23336 (symm (monotonicity @x24339 (= $x23297 $x23045)) (= $x23045 $x23297)) $x23297))) +(let (($x24098 (or $x23330 $x21687 $x22190 $x23298 $x20375 $x12453 $x24083))) +(let (($x24080 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_P_H_len$)) 0))) +(let (($x24099 (or $x23330 (or $x21687 $x22190 $x23298 $x20375 $x24080 $x24083)))) +(let (($x24096 (= (or $x21687 $x22190 $x23298 $x20375 $x24080 $x24083) (or $x21687 $x22190 $x23298 $x20375 $x12453 $x24083)))) +(let ((@x24092 (rewrite (= (>= (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$) 0) $x12453)))) +(let (($x24086 (= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_P_H_len$)) (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$)))) +(let ((@x24090 (monotonicity (rewrite $x24086) (= $x24080 (>= (+ (* (- 1) v_b_P_H_len$) v_b_L_H_p_G_0$) 0))))) +(let ((@x24103 (monotonicity (monotonicity (trans @x24090 @x24092 (= $x24080 $x12453)) $x24096) (= $x24099 (or $x23330 (or $x21687 $x22190 $x23298 $x20375 $x12453 $x24083)))))) +(let ((@x24107 (trans @x24103 (rewrite (= (or $x23330 (or $x21687 $x22190 $x23298 $x20375 $x12453 $x24083)) $x24098)) (= $x24099 $x24098)))) +(let ((@x24142 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ (b_S_ptr$ ?x3678 ?x21715) v_b_P_H_len$ v_b_L_H_p_G_0$ b_T_T_u1$) $x24099) @x24107 $x24098) @x19388 @x5093 @x10104 (hypothesis $x12397) (hypothesis $x12456) (hypothesis $x23297) (hypothesis $x24082) false))) +(let ((@x25343 (unit-resolution (lemma @x24142 (or $x24083 $x20375 $x12453 $x23298)) @x25341 (or $x24083 $x20375 $x12453)))) +(let ((@x25345 (unit-resolution (def-axiom (or $x24082 $x3924)) (unit-resolution @x25343 @x25337 @x25328 $x24083) $x3924))) +(let ((@x25354 (unit-resolution (hypothesis $x24195) (mp @x25345 (symm @x25350 (= $x3924 $x24194)) $x24194) false))) +(let ((@x25215 (unit-resolution (def-axiom (or $x24228 $x24195 $x24226)) (unit-resolution (lemma @x25354 (or $x24194 (not $x23973))) @x25156 $x24194) (or $x24228 $x24226)))) +(let ((@x25214 (unit-resolution (def-axiom (or (not $x23994) $x16330 $x23984)) @x25032 (or (not $x23994) $x23984)))) +(let ((@x25219 (unit-resolution @x25214 (unit-resolution ((_ quant-inst (b_S_idx$ ?x3680 v_b_L_H_p_G_0$ b_T_T_u1$) b_T_T_u1$) (or (not $x20961) $x23994)) @x20966 $x23994) $x23984))) +(let ((@x25248 (trans (monotonicity (symm @x25156 (= ?x23972 ?x3922)) (= (b_S_typ$ ?x23972) ?x23986)) @x25219 (= (b_S_typ$ ?x23972) b_T_T_u1$)))) +(let ((@x25302 (trans (monotonicity @x25248 (= (b_S_kind_n_of$ (b_S_typ$ ?x23972)) ?x22173)) @x23477 $x24198))) +(let ((@x25229 (monotonicity (symm (monotonicity @x25156 (= ?x23936 ?x24200)) (= ?x24200 ?x23936)) (= $x24201 $x24081)))) +(let (($x24854 (not $x24081))) +(let ((@x25388 (unit-resolution (def-axiom (or $x24082 $x24854)) (unit-resolution @x25343 @x25337 @x25328 $x24083) $x24854))) +(let ((@x25238 (mp @x25388 (monotonicity (symm @x25229 (= $x24081 $x24201)) (= $x24854 $x24202)) $x24202))) +(let ((?x25453 (+ ?x24037 ?x24269))) +(let ((?x25458 (b_S_ptr$ b_T_T_u1$ ?x25453))) +(let ((?x25435 (b_S_idx$ ?x22684 v_b_L_H_p_G_0$ b_T_T_u1$))) +(let (($x25461 (= ?x25435 ?x25458))) +(let (($x25464 (not $x25461))) +(let (($x25467 (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25464))) +(let (($x25470 (not $x25467))) +(let (($x25473 (or $x23217 $x25470))) +(let (($x25447 (not (= ?x25435 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652))))))) +(let (($x25476 (= (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447))) $x25473))) +(let (($x25462 (= (= ?x25435 (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652)))) $x25461))) +(let ((@x25452 (monotonicity (rewrite (= (* v_b_L_H_p_G_0$ ?x3652) ?x24037)) (= (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652)) (+ ?x24269 ?x24037))))) +(let ((@x25457 (trans @x25452 (rewrite (= (+ ?x24269 ?x24037) ?x25453)) (= (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652)) ?x25453)))) +(let ((@x25460 (monotonicity @x25457 (= (b_S_ptr$ b_T_T_u1$ (+ ?x24269 (* v_b_L_H_p_G_0$ ?x3652))) ?x25458)))) +(let ((@x25469 (monotonicity (monotonicity (monotonicity @x25460 $x25462) (= $x25447 $x25464)) (= (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447) $x25467)))) +(let ((@x25472 (monotonicity @x25469 (= (not (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447)) $x25470)))) +(let ((@x25475 ((_ quant-inst (b_S_ptr$ ?x3678 ?x21715) v_b_L_H_p_G_0$ b_T_T_u1$) (or $x23217 (not (or (not (b_S_extent_n_hint$ ?x25435 ?x22684)) $x25447)))))) +(let ((@x25481 (mp @x25475 (trans (monotonicity @x25472 $x25476) (rewrite (= $x25473 $x25473)) $x25476) $x25473))) +(let ((@x25407 (unit-resolution (def-axiom (or $x25467 $x25461)) (lemma (unit-resolution @x25481 @x18901 (hypothesis $x25467) false) $x25470) $x25461))) +(let ((?x25308 (b_S_idx$ ?x23296 v_b_L_H_p_G_0$ b_T_T_u1$))) +(let ((?x25309 (b_S_select_o_tm$ ?x3874 ?x25308))) +(let (($x25310 (= (b_S_ts_n_emb$ ?x25309) ?x23296))) +(let (($x25362 (or (not $x25310) (b_S_ts_n_is_n_volatile$ ?x25309) (not (b_S_ts_n_is_n_array_n_elt$ ?x25309)) (not (b_S_typed$ v_b_S_s$ ?x25308))))) +(let (($x25363 (not $x25362))) +(let (($x25293 (or $x24161 $x24152 $x20375 $x12453 $x25363))) +(let (($x25294 (or $x24161 (or $x24152 $x20375 $x24080 $x25363)))) +(let ((@x25292 (monotonicity (trans @x24090 @x24092 (= $x24080 $x12453)) (= (or $x24152 $x20375 $x24080 $x25363) (or $x24152 $x20375 $x12453 $x25363))))) +(let ((@x25384 (trans (monotonicity @x25292 (= $x25294 (or $x24161 (or $x24152 $x20375 $x12453 $x25363)))) (rewrite (= (or $x24161 (or $x24152 $x20375 $x12453 $x25363)) $x25293)) (= $x25294 $x25293)))) +(let ((@x25376 (unit-resolution (mp ((_ quant-inst v_b_S_s$ v_b_P_H_arr$ b_T_T_u1$ v_b_P_H_len$ v_b_L_H_p_G_0$) $x25294) @x25384 $x25293) @x18685 @x25328 @x25337 (lemma (unit-resolution (hypothesis $x24152) @x24253 false) $x24131) (hypothesis $x25362) false))) +(let ((@x25585 (trans (trans @x23922 @x23269 (= ?x23206 ?x23203)) (symm @x24358 (= ?x23203 ?x3680)) (= ?x23206 ?x3680)))) +(let ((@x25593 (trans (symm @x25587 (= ?x24043 ?x23996)) (monotonicity @x25585 (= ?x23996 ?x3922)) (= ?x24043 ?x3922)))) +(let (($x25908 (>= (+ ?x24040 (* (- 1) (b_S_ref$ ?x24043))) 0))) +(let ((?x25052 (+ ?x23612 ?x24037 (* (- 1) (b_S_ref$ ?x24043))))) +(let (($x25064 (>= ?x25052 0))) +(let (($x25050 (= ?x25052 0))) +(let (($x21853 (not $x20968))) +(let (($x25054 (or $x21853 $x25050))) +(let ((@x25058 (monotonicity (rewrite (= (= (b_S_ref$ ?x24043) ?x24040) $x25050)) (= (or $x21853 (= (b_S_ref$ ?x24043) ?x24040)) $x25054)))) +(let ((@x25061 (trans @x25058 (rewrite (= $x25054 $x25054)) (= (or $x21853 (= (b_S_ref$ ?x24043) ?x24040)) $x25054)))) +(let ((@x25599 (unit-resolution (mp ((_ quant-inst b_T_T_u1$ (+ ?x23612 ?x24037)) (or $x21853 (= (b_S_ref$ ?x24043) ?x24040))) @x25061 $x25054) @x20973 $x25050))) +(let ((@x25911 (unit-resolution ((_ th-lemma arith assign-bounds -1) (or $x25908 (not $x25064))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x25050) $x25064)) @x25599 $x25064) $x25908))) +(let (($x25907 (<= (+ ?x24040 (* (- 1) (b_S_ref$ ?x24043))) 0))) +(let (($x25063 (<= ?x25052 0))) +(let ((@x25914 (unit-resolution ((_ th-lemma arith assign-bounds -1) (or $x25907 (not $x25063))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x25050) $x25063)) @x25599 $x25063) $x25907))) +(let ((@x25925 (unit-resolution ((_ th-lemma arith triangle-eq) (or (= ?x24040 (b_S_ref$ ?x24043)) (not $x25907) (not $x25908))) @x25914 @x25911 (= ?x24040 (b_S_ref$ ?x24043))))) +(let (($x25910 (>= (+ ?x24040 (* (- 1) ?x25453)) 0))) +(let (($x23420 (<= (+ ?x21715 (* (- 1) ?x23186)) 0))) +(let ((@x25567 (monotonicity (trans @x23269 (symm @x24358 (= ?x23203 ?x3680)) (= ?x3739 ?x3680)) (= ?x23186 ?x3681)))) +(let ((@x25574 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x23186)) $x23420)) (trans @x24327 (symm @x25567 (= ?x3681 ?x23186)) (= ?x21715 ?x23186)) $x23420))) +(let (($x25491 (>= (+ ?x21715 (* (- 1) ?x24269)) 0))) +(let ((@x25608 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x24269)) $x25491)) (symm (monotonicity @x24449 (= ?x24269 ?x21715)) (= ?x21715 ?x24269)) $x25491))) +(let (($x24750 (<= (+ ?x23186 (* (- 1) ?x23612)) 0))) +(let ((@x25581 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x23186 ?x23612)) $x24750)) (symm (monotonicity @x23922 (= ?x23612 ?x23186)) (= ?x23186 ?x23612)) $x24750))) +(let ((@x25922 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1) (or $x25910 (not $x24750) (not $x25491) (not $x23420))) @x25581 @x25608 @x25574 $x25910))) +(let (($x25909 (<= (+ ?x24040 (* (- 1) ?x25453)) 0))) +(let (($x23421 (>= (+ ?x21715 (* (- 1) ?x23186)) 0))) +(let ((@x25619 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x23186)) $x23421)) (trans @x24327 (symm @x25567 (= ?x3681 ?x23186)) (= ?x21715 ?x23186)) $x23421))) +(let (($x25490 (<= (+ ?x21715 (* (- 1) ?x24269)) 0))) +(let ((@x25631 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x21715 ?x24269)) $x25490)) (symm (monotonicity @x24449 (= ?x24269 ?x21715)) (= ?x21715 ?x24269)) $x25490))) +(let (($x24751 (>= (+ ?x23186 (* (- 1) ?x23612)) 0))) +(let ((@x25622 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x23186 ?x23612)) $x24751)) (symm (monotonicity @x23922 (= ?x23612 ?x23186)) (= ?x23186 ?x23612)) $x24751))) +(let ((@x25916 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1) (or $x25909 (not $x24751) (not $x25490) (not $x23421))) @x25622 @x25631 @x25619 $x25909))) +(let ((@x25951 (unit-resolution ((_ th-lemma arith triangle-eq) (or (= ?x24040 ?x25453) (not $x25909) (not $x25910))) @x25916 @x25922 (= ?x24040 ?x25453)))) +(let ((@x25927 (trans (trans (symm @x25951 (= ?x25453 ?x24040)) @x25925 (= ?x25453 (b_S_ref$ ?x24043))) (monotonicity @x25593 (= (b_S_ref$ ?x24043) ?x24124)) (= ?x25453 ?x24124)))) +(let ((@x25944 (trans (monotonicity @x24339 (= ?x25308 ?x25435)) (hypothesis $x25461) (= ?x25308 ?x25458)))) +(let ((@x25837 (monotonicity (trans @x25944 (monotonicity @x25927 (= ?x25458 ?x23972)) (= ?x25308 ?x23972)) (= ?x25309 ?x24200)))) +(let ((@x25955 (trans (monotonicity (symm @x25837 (= ?x24200 ?x25309)) (= ?x24203 (b_S_ts_n_emb$ ?x25309))) (unit-resolution (def-axiom (or $x25362 $x25310)) (lemma @x25376 $x25363) $x25310) (= ?x24203 ?x23296)))) +(let ((@x25957 (monotonicity (trans @x25955 @x23339 (= ?x24203 ?x3682)) (= (b_S_owner$ v_b_S_s$ ?x24203) ?x3684)))) +(let ((@x25971 (unit-resolution (hypothesis (not $x24212)) (trans @x25957 @x10097 $x24212) false))) +(let ((@x25374 (unit-resolution (def-axiom (or $x24214 (not $x24212))) (unit-resolution (lemma @x25971 (or $x25464 $x24212)) @x25407 $x24212) $x24214))) +(let (($x25207 (or (not $x19952) (not (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203)))))))) +(let ((@x25126 (unit-resolution ((_ quant-inst (b_S_select_o_tm$ ?x3874 ?x23972)) $x25207) @x19955 (hypothesis (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203))))) false))) +(let ((@x25204 (lemma @x25126 (not (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203)))))))) +(let (($x25192 (or $x24210 (not (b_S_is_n_non_n_primitive$ (b_S_typ$ ?x24203)))))) +(let ((@x25299 (unit-resolution (def-axiom (or $x24217 $x24199 $x24207 $x24210 (not $x24214))) (unit-resolution (def-axiom (or $x25192 (not $x24210))) @x25204 (not $x24210)) @x25374 (or $x24217 $x24199 $x24207)))) +(let ((@x25300 (unit-resolution @x25299 (unit-resolution (def-axiom (or $x24206 $x24201)) @x25238 $x24206) @x25302 $x24217))) +(let (($x25367 (or (or $x24217 (not (or $x24198 (not $x24221)))) (or $x24199 $x24207 $x24210 (not $x24214))))) +(let ((@x25298 (unit-resolution (def-axiom $x25367) @x25300 (unit-resolution @x25215 @x25226 $x24226) false))) +(let (($x25758 (>= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!14)) 0))) +(let (($x25493 (not $x25758))) +(let (($x26041 (= ?x3929 ?x16374))) +(let (($x26045 (not $x26041))) +(let (($x21439 (<= (+ v_b_L_H_max_G_1$ ?x12534) 0))) +(let (($x21437 (= v_b_L_H_max_G_1$ v_b_L_H_max_G_3$))) +(let ((@x23828 (mp (hypothesis $x3993) (symm (commutativity (= $x21437 $x3993)) (= $x3993 $x21437)) $x21437))) +(let ((@x23799 (lemma (unit-resolution (hypothesis (not $x21437)) @x23828 false) (or $x20230 $x21437)))) +(let ((@x25753 (unit-resolution @x23799 (unit-resolution (def-axiom (or $x21123 $x3993)) (hypothesis $x21126) $x3993) $x21437))) +(let (($x21321 (not $x16622))) +(let (($x13842 (<= v_b_P_H_len$ 4294967295))) +(let (($x12342 (>= (+ b_S_max_o_u4$ (* (- 1) v_b_P_H_len$)) 0))) +(let (($x12813 (= (+ b_S_max_o_u4$ (* (- 1) v_b_P_H_len$)) (+ 4294967295 (* (- 1) v_b_P_H_len$))))) +(let ((@x12767 (monotonicity (monotonicity @x7025 $x12813) (= $x12342 (>= (+ 4294967295 (* (- 1) v_b_P_H_len$)) 0))))) +(let ((@x13004 (trans @x12767 (rewrite (= (>= (+ 4294967295 (* (- 1) v_b_P_H_len$)) 0) $x13842)) (= $x12342 $x13842)))) +(let ((@x13005 (mp (mp (and-elim @x10087 $x3720) (rewrite (= $x3720 $x12342)) $x12342) @x13004 $x13842))) +(let ((@x25757 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x13856 (not $x13842) $x12453)) @x13005 (or $x13856 $x12453)))) +(let ((@x26039 (unit-resolution (def-axiom (or $x21090 $x16351 $x16354 $x21084)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x20375 $x12494)) @x25328 $x12494) (unit-resolution @x25757 @x25337 $x13856) (or $x21090 $x21084)))) +(let ((@x25754 (unit-resolution @x26039 (unit-resolution (def-axiom (or $x21123 $x21087)) (hypothesis $x21126) $x21087) $x21084))) +(let (($x21314 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_L_H_p_G_1$)) (- 1)))) +(let ((@x25773 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x20170 $x21314)) (unit-resolution (def-axiom (or $x21081 $x12500)) @x25754 $x12500) $x21314))) +(let ((@x24365 (lemma ((_ th-lemma arith farkas -1 1 1) (hypothesis $x12518) (hypothesis $x12456) (hypothesis $x21314) false) (or $x12514 $x12453 (not $x21314))))) +(let ((@x25776 (unit-resolution (unit-resolution @x24365 @x25337 (or $x12514 (not $x21314))) @x25773 $x12514))) +(let ((@x25780 (unit-resolution (def-axiom (or $x21078 $x12518 $x21072)) @x25776 (unit-resolution (def-axiom (or $x21081 $x21075)) @x25754 $x21075) $x21072))) +(let ((@x25788 (symm (unit-resolution (def-axiom (or $x21123 $x3993)) (hypothesis $x21126) $x3993) $x21437))) +(let ((@x26009 (monotonicity (unit-resolution (def-axiom (or $x21123 $x3994)) (hypothesis $x21126) $x3994) (= ?x3974 (b_S_idx$ ?x3680 v_b_SL_H_witness_G_0$ b_T_T_u1$))))) +(let ((@x25796 (trans (monotonicity @x26009 (= ?x3975 ?x3793)) (unit-resolution (def-axiom (or $x21205 $x3794)) @x25327 $x3794) (= ?x3975 v_b_L_H_max_G_1$)))) +(let (($x21444 (>= (+ v_b_SL_H_witness_G_0$ (* (- 1) v_b_SL_H_witness_G_1$)) 0))) +(let (($x21441 (= v_b_SL_H_witness_G_0$ v_b_SL_H_witness_G_1$))) +(let ((@x25805 (mp (unit-resolution (def-axiom (or $x21123 $x3994)) (hypothesis $x21126) $x3994) (symm (commutativity (= $x21441 $x3994)) (= $x3994 $x21441)) $x21441))) +(let ((@x25039 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x12553 $x12435 (not $x21444))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x21441) $x21444)) @x25805 $x21444) (unit-resolution (def-axiom (or $x21205 $x12438)) @x25327 $x12438) $x12553))) +(let ((@x24865 (unit-resolution (def-axiom (or $x20131 $x12550 (not $x3976))) @x25039 (trans @x25796 @x25788 $x3976) $x20131))) +(let ((@x24882 (unit-resolution (def-axiom (or $x21066 $x20104 $x21060)) (unit-resolution (def-axiom (or $x21057 $x20130)) @x24865 $x21057) (unit-resolution (def-axiom (or $x21069 $x21063)) @x25780 $x21063) $x20104))) +(let ((@x25939 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x12471) (hypothesis $x21321) (hypothesis $x21439) (hypothesis (>= (+ ?x3929 ?x16620) 0)) false))) +(let ((@x25943 (lemma @x25939 (or (not (>= (+ ?x3929 ?x16620) 0)) $x12476 $x16622 (not $x21439))))) +(let ((@x23480 (unit-resolution @x25943 (unit-resolution (def-axiom (or $x21123 $x12471)) (hypothesis $x21126) $x12471) (unit-resolution (def-axiom (or $x20099 $x21321)) @x24882 $x21321) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x21437) $x21439)) @x25753 $x21439) (not (>= (+ ?x3929 ?x16620) 0))))) +(let ((@x25040 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x26045 (>= (+ ?x3929 ?x16620) 0))) @x23480 $x26045))) +(let ((@x26053 (symm (hypothesis (= v_b_L_H_p_G_0$ ?v0!14)) (= ?v0!14 v_b_L_H_p_G_0$)))) +(let ((@x26057 (monotonicity (monotonicity @x26053 (= (b_S_idx$ ?x3680 ?v0!14 b_T_T_u1$) ?x3922)) (= ?x16374 ?x3929)))) +(let ((@x26062 (lemma (unit-resolution (hypothesis $x26045) (symm @x26057 $x26041) false) (or (not (= v_b_L_H_p_G_0$ ?v0!14)) $x26041)))) +(let (($x24388 (<= (+ v_b_L_H_p_G_0$ (* (- 1) ?v0!14)) 0))) +(let (($x24400 (>= (+ v_b_L_H_max_G_1$ ?x16620) 0))) +(let (($x25800 (not $x24400))) +(let ((@x25043 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x25800 $x16622 (not $x21439))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x21437) $x21439)) @x25753 $x21439) (unit-resolution (def-axiom (or $x20099 $x21321)) @x24882 $x21321) $x25800))) +(let (($x25270 (or $x21046 $x20083 $x20084 $x24388 $x24400))) +(let (($x24379 (<= (+ ?x16374 (* (- 1) v_b_L_H_max_G_1$)) 0))) +(let (($x24371 (>= (+ ?v0!14 ?x12400) 0))) +(let (($x25240 (or $x21046 (or $x20083 $x20084 $x24371 $x24379)))) +(let (($x25224 (= (+ ?x16374 (* (- 1) v_b_L_H_max_G_1$)) (+ (* (- 1) v_b_L_H_max_G_1$) ?x16374)))) +(let ((@x25242 (monotonicity (rewrite $x25224) (= $x24379 (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16374) 0))))) +(let ((@x25266 (trans @x25242 (rewrite (= (<= (+ (* (- 1) v_b_L_H_max_G_1$) ?x16374) 0) $x24400)) (= $x24379 $x24400)))) +(let ((@x25195 (monotonicity (rewrite (= (+ ?v0!14 ?x12400) (+ ?x12400 ?v0!14))) (= $x24371 (>= (+ ?x12400 ?v0!14) 0))))) +(let ((@x25223 (trans @x25195 (rewrite (= (>= (+ ?x12400 ?v0!14) 0) $x24388)) (= $x24371 $x24388)))) +(let ((@x25269 (monotonicity @x25223 @x25266 (= (or $x20083 $x20084 $x24371 $x24379) (or $x20083 $x20084 $x24388 $x24400))))) +(let ((@x25287 (trans (monotonicity @x25269 (= $x25240 (or $x21046 (or $x20083 $x20084 $x24388 $x24400)))) (rewrite (= (or $x21046 (or $x20083 $x20084 $x24388 $x24400)) $x25270)) (= $x25240 $x25270)))) +(let ((@x25045 (unit-resolution (mp ((_ quant-inst ?v0!14) $x25240) @x25287 $x25270) @x25333 (unit-resolution (def-axiom (or $x20099 $x16366)) @x24882 $x16366) (unit-resolution (def-axiom (or $x20099 $x16367)) @x24882 $x16367) @x25043 $x24388))) +(let ((@x25794 (unit-resolution ((_ th-lemma arith triangle-eq) (or (= v_b_L_H_p_G_0$ ?v0!14) (not $x24388) $x25493)) @x25045 (or (= v_b_L_H_p_G_0$ ?v0!14) $x25493)))) +(let ((@x25807 (unit-resolution @x25794 (unit-resolution @x26062 @x25040 (not (= v_b_L_H_p_G_0$ ?v0!14))) $x25493))) +(let ((@x25542 ((_ th-lemma arith farkas -1 -1 1) (unit-resolution (def-axiom (or $x20099 $x16605)) @x24882 $x16605) @x25773 @x25807 false))) +(let ((@x23800 (hypothesis $x21114))) +(let ((@x23806 (unit-resolution (def-axiom (or $x21111 $x3923)) @x23800 $x3923))) +(let ((@x23831 (unit-resolution (def-axiom (or $x21108 $x16330 $x16333 $x21102)) (unit-resolution (def-axiom (or $x21111 $x21105)) @x23800 $x21105) @x23806 (unit-resolution (def-axiom (or $x21111 $x3924)) @x23800 $x3924) $x21102))) +(let ((@x23833 (unit-resolution (def-axiom (or $x21156 $x16330 $x16333 $x21150)) (unit-resolution (def-axiom (or $x21111 $x3924)) @x23800 $x3924) (hypothesis $x21153) @x23806 $x21150))) +(let ((@x23933 (unit-resolution (def-axiom (or $x21132 $x21120 $x21126)) (unit-resolution (def-axiom (or $x21117 $x21111)) @x23800 $x21117) (hypothesis $x21123) $x21132))) +(let ((@x23949 (unit-resolution (def-axiom (or $x21144 $x16330 $x16339 $x21138)) (unit-resolution (def-axiom (or $x21135 $x21129)) @x23933 $x21135) (unit-resolution (def-axiom (or $x21147 $x21141)) @x23833 $x21141) @x23806 (unit-resolution (def-axiom (or $x21099 $x3926)) @x23831 $x3926) false))) +(let ((@x25705 (unit-resolution (lemma @x23949 (or $x21111 $x21126 $x21156)) (unit-resolution (def-axiom (or $x21159 $x21153)) @x25336 $x21153) (or $x21111 $x21126)))) +(let ((@x24823 (unit-resolution (def-axiom (or $x21114 $x16330 $x16333 $x21108)) @x25345 (or $x21114 $x16330 $x21108)))) +(let ((@x24804 (unit-resolution @x24823 (unit-resolution (def-axiom (or $x21105 $x21099)) (hypothesis $x21102) $x21105) (unit-resolution (def-axiom (or $x21099 $x3923)) (hypothesis $x21102) $x3923) (hypothesis $x21111) false))) +(let ((@x25544 (unit-resolution (lemma @x24804 (or $x21099 $x21114)) (unit-resolution @x25705 (lemma @x25542 $x21123) $x21111) $x21099))) +(let ((@x25545 (unit-resolution (def-axiom (or $x21102 $x16330 $x16339 $x21096)) @x25032 @x25544 (or $x16339 $x21096)))) +(let ((@x25499 (unit-resolution @x25545 (lemma @x25298 $x3926) $x21096))) +(let ((@x24990 (symm (unit-resolution (def-axiom (or $x21093 $x3940)) @x25499 $x3940) (= v_b_L_H_max_G_2$ v_b_L_H_max_G_3$)))) +(let ((@x25684 (symm (unit-resolution (def-axiom (or $x21093 $x3935)) @x25499 $x3935) (= ?x3929 v_b_L_H_max_G_2$)))) +(let ((@x25702 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3929 v_b_L_H_max_G_3$)) $x24191)) (trans @x25684 @x24990 (= ?x3929 v_b_L_H_max_G_3$)) $x24191))) +(let ((@x25703 (unit-resolution @x26039 (unit-resolution (def-axiom (or $x21093 $x21087)) @x25499 $x21087) $x21084))) +(let ((@x25694 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x20170 $x21314)) (unit-resolution (def-axiom (or $x21081 $x12500)) @x25703 $x12500) $x21314))) +(let ((@x25722 (unit-resolution (unit-resolution @x24365 @x25337 (or $x12514 (not $x21314))) @x25694 $x12514))) +(let ((@x25710 (unit-resolution (def-axiom (or $x21078 $x12518 $x21072)) @x25722 (unit-resolution (def-axiom (or $x21081 $x21075)) @x25703 $x21075) $x21072))) +(let ((@x25723 (monotonicity (unit-resolution (def-axiom (or $x21093 $x3942)) @x25499 $x3942) (= ?x3974 ?x3922)))) +(let ((@x25707 (trans (monotonicity @x25723 (= ?x3975 ?x3929)) @x25684 (= ?x3975 v_b_L_H_max_G_2$)))) +(let (($x24188 (>= (+ v_b_L_H_p_G_0$ (* (- 1) v_b_SL_H_witness_G_1$)) 0))) +(let ((@x25713 (symm (unit-resolution (def-axiom (or $x21093 $x3942)) @x25499 $x3942) (= v_b_L_H_p_G_0$ v_b_SL_H_witness_G_1$)))) +(let ((@x25747 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_L_H_p_G_0$ v_b_SL_H_witness_G_1$)) $x24188)) @x25713 $x24188))) +(let ((@x25736 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x12553 $x12453 (not $x24188))) @x25337 (or $x12553 (not $x24188))))) +(let ((@x25735 (unit-resolution (def-axiom (or $x20131 $x12550 (not $x3976))) (unit-resolution @x25736 @x25747 $x12553) (trans @x25707 @x24990 $x3976) $x20131))) +(let ((@x25885 (unit-resolution (def-axiom (or $x21066 $x20104 $x21060)) (unit-resolution (def-axiom (or $x21057 $x20130)) @x25735 $x21057) (unit-resolution (def-axiom (or $x21069 $x21063)) @x25710 $x21063) $x20104))) +(let (($x25930 (>= (+ ?x3929 ?x16620) 0))) +(let (($x26036 (= v_b_L_H_p_G_0$ ?v0!14))) +(let ((@x25738 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x25758 $x16600 (not $x21314))) (unit-resolution (def-axiom (or $x20099 $x16605)) @x25885 $x16605) @x25694 $x25758))) +(let ((@x25737 (unit-resolution (def-axiom (or $x21156 $x16330 $x16333 $x21150)) (unit-resolution (def-axiom (or $x21159 $x21153)) @x25336 $x21153) @x25345 (or $x16330 $x21150)))) +(let ((@x25813 (unit-resolution (def-axiom (or $x21147 $x21141)) (unit-resolution @x25737 @x25032 $x21150) $x21141))) +(let ((@x25840 (unit-resolution (def-axiom (or $x21144 $x16330 $x16339 $x21138)) @x25032 @x25813 (or $x16339 $x21138)))) +(let ((@x25839 (unit-resolution (def-axiom (or $x21135 $x21129)) (unit-resolution @x25840 (lemma @x25298 $x3926) $x21138) $x21129))) +(let ((@x25838 (unit-resolution (def-axiom (or $x21132 $x21120 $x21126)) (lemma @x25542 $x21123) (or $x21132 $x21120)))) +(let ((@x25853 (unit-resolution (def-axiom (or $x21117 $x12476)) (unit-resolution @x25838 @x25839 $x21120) $x12476))) +(let ((@x25814 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x25800 $x16622 (not $x24191) $x12471)) (unit-resolution (def-axiom (or $x20099 $x21321)) @x25885 $x21321) @x25853 @x25702 $x25800))) +(let ((@x25830 (unit-resolution (mp ((_ quant-inst ?v0!14) $x25240) @x25287 $x25270) @x25333 (unit-resolution (def-axiom (or $x20099 $x16366)) @x25885 $x16366) (unit-resolution (def-axiom (or $x20099 $x16367)) @x25885 $x16367) @x25814 $x24388))) +(let ((@x25831 (unit-resolution @x26062 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x26036 (not $x24388) $x25493)) @x25830 @x25738 $x26036) $x26041))) +((_ th-lemma arith farkas -1 1 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x26045 $x25930)) @x25831 $x25930) (unit-resolution (def-axiom (or $x20099 $x21321)) @x25885 $x21321) @x25702 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + diff -r 0a08878f8b37 -r 689a3eeb6f9e src/HOL/SMT_Examples/boogie.ML --- a/src/HOL/SMT_Examples/boogie.ML Thu May 01 22:57:36 2014 +0200 +++ b/src/HOL/SMT_Examples/boogie.ML Thu May 01 22:57:38 2014 +0200 @@ -110,10 +110,10 @@ fun mk_list T = HOLogic.mk_list T -val patternT = @{typ "SMT.pattern"} +val patternT = @{typ "SMT2.pattern"} fun mk_pat t = - Const (@{const_name "SMT.pat"}, Term.fastype_of t --> patternT) $ t + Const (@{const_name "SMT2.pat"}, Term.fastype_of t --> patternT) $ t fun mk_pattern [] = raise TERM ("mk_pattern", []) | mk_pattern ts = mk_list patternT (map mk_pat ts) @@ -121,8 +121,8 @@ fun mk_trigger [] t = t | mk_trigger pss t = - @{term "SMT.trigger"} $ - mk_list @{typ "SMT.pattern list"} (map mk_pattern pss) $ t + @{term "SMT2.trigger"} $ + mk_list @{typ "SMT2.pattern list"} (map mk_pattern pss) $ t (* parser *) @@ -294,7 +294,7 @@ fun boogie_tac ctxt axioms = - ALLGOALS (SMT_Solver.smt_tac ctxt (boogie_rules @ axioms)) + ALLGOALS (SMT2_Solver.smt2_tac ctxt (boogie_rules @ axioms)) fun boogie_prove thy lines =