# HG changeset patch # User blanchet # Date 1348404773 -7200 # Node ID 69ee9f96c423fcea886785a365da3bd6293d7ed8 # Parent 8bb6e2d7346be5b7e684959fbf3462c7bf2a9a25 adapted examples to new names diff -r 8bb6e2d7346b -r 69ee9f96c423 src/HOL/BNF/Examples/Infinite_Derivation_Trees/Tree.thy --- a/src/HOL/BNF/Examples/Infinite_Derivation_Trees/Tree.thy Sun Sep 23 14:52:53 2012 +0200 +++ b/src/HOL/BNF/Examples/Infinite_Derivation_Trees/Tree.thy Sun Sep 23 14:52:53 2012 +0200 @@ -130,7 +130,7 @@ \\ (NNode n1 as1) (NNode n2 as2)\ \ n1 = n2 \ llift2 \ as1 as2" shows "tr1 = tr2" -apply(rule mp[OF Tree.rel_coinduct[of \ tr1 tr2] phi]) proof clarify +apply(rule mp[OF Tree.dtor_rel_coinduct[of \ tr1 tr2] phi]) proof clarify fix tr1 tr2 assume \: "\ tr1 tr2" show "pre_Tree_rel \ (Tree_dtor tr1) (Tree_dtor tr2)" apply(cases rule: Tree.ctor_exhaust[of tr1], cases rule: Tree.ctor_exhaust[of tr2]) diff -r 8bb6e2d7346b -r 69ee9f96c423 src/HOL/BNF/Examples/Process.thy --- a/src/HOL/BNF/Examples/Process.thy Sun Sep 23 14:52:53 2012 +0200 +++ b/src/HOL/BNF/Examples/Process.thy Sun Sep 23 14:52:53 2012 +0200 @@ -45,7 +45,7 @@ Act: "\ a a' p p'. \ (Action a p) (Action a' p') \ a = a' \ \ p p'" and Ch: "\ p q p' q'. \ (Choice p q) (Choice p' q') \ \ p p' \ \ q q'" shows "p = p'" -proof(intro mp[OF process.rel_coinduct, of \, OF _ phi], clarify) +proof(intro mp[OF process.dtor_rel_coinduct, of \, OF _ phi], clarify) fix p p' assume \: "\ p p'" show "pre_process_rel (op =) \ (process_dtor p) (process_dtor p')" proof(cases rule: process.exhaust[of p]) @@ -75,7 +75,7 @@ Act: "\ a a' p p'. \ (Action a p) (Action a' p') \ a = a' \ (\ p p' \ p = p')" and Ch: "\ p q p' q'. \ (Choice p q) (Choice p' q') \ (\ p p' \ p = p') \ (\ q q' \ q = q')" shows "p = p'" -proof(intro mp[OF process.rel_strong_coinduct, of \, OF _ phi], clarify) +proof(intro mp[OF process.dtor_rel_strong_coinduct, of \, OF _ phi], clarify) fix p p' assume \: "\ p p'" show "pre_process_rel (op =) (\a b. \ a b \ a = b) (process_dtor p) (process_dtor p')" proof(cases rule: process.exhaust[of p]) diff -r 8bb6e2d7346b -r 69ee9f96c423 src/HOL/BNF/Examples/Stream.thy --- a/src/HOL/BNF/Examples/Stream.thy Sun Sep 23 14:52:53 2012 +0200 +++ b/src/HOL/BNF/Examples/Stream.thy Sun Sep 23 14:52:53 2012 +0200 @@ -122,7 +122,7 @@ unfolding prod_rel_def by auto lemmas stream_coind = - mp[OF stream.rel_coinduct, unfolded prod_rel[abs_def], folded hdd_def tll_def] + mp[OF stream.dtor_rel_coinduct, unfolded prod_rel[abs_def], folded hdd_def tll_def] definition plus :: "nat stream \ nat stream \ nat stream" (infixr "\" 66) where [simp]: "plus xs ys = diff -r 8bb6e2d7346b -r 69ee9f96c423 src/HOL/BNF/Examples/TreeFsetI.thy --- a/src/HOL/BNF/Examples/TreeFsetI.thy Sun Sep 23 14:52:53 2012 +0200 +++ b/src/HOL/BNF/Examples/TreeFsetI.thy Sun Sep 23 14:52:53 2012 +0200 @@ -50,7 +50,7 @@ apply (simp add: pre_treeFsetI_rel_def prod_rel_def fset_rel_def) done -lemmas treeFsetI_coind = mp[OF treeFsetI.rel_coinduct] +lemmas treeFsetI_coind = mp[OF treeFsetI.dtor_rel_coinduct] lemma "tmap (f o g) x = tmap f (tmap g x)" by (intro treeFsetI_coind[where P="%x1 x2. \x. x1 = tmap (f o g) x \ x2 = tmap f (tmap g x)"])