# HG changeset patch # User haftmann # Date 1510828223 -3600 # Node ID 6a85b8a9c28c89a1e43ecba003e8e40f060ec411 # Parent 8fa951baba0dd3cad3543dc33da2f95664f4997d removed overambitious simp rules from e7e54a0b9197 diff -r 8fa951baba0d -r 6a85b8a9c28c src/HOL/Computational_Algebra/Normalized_Fraction.thy --- a/src/HOL/Computational_Algebra/Normalized_Fraction.thy Tue Nov 14 23:07:47 2017 +0100 +++ b/src/HOL/Computational_Algebra/Normalized_Fraction.thy Thu Nov 16 11:30:23 2017 +0100 @@ -20,7 +20,7 @@ "normalize_quot (a, 0) = (0, 1)" by (simp add: normalize_quot_def) -lemma normalize_quot_proj [simp]: +lemma normalize_quot_proj: "fst (normalize_quot (a, b)) = a div (gcd a b * unit_factor b)" "snd (normalize_quot (a, b)) = normalize b div gcd a b" if "b \ 0" using that by (simp_all add: normalize_quot_def Let_def mult.commute [of _ "unit_factor b"] dvd_div_mult2_eq mult_unit_dvd_iff') @@ -275,8 +275,7 @@ have "coprime a' b'" by (simp add: a'_def b'_def coprime_normalize_quot) thus "(b' div unit_factor a', a' div unit_factor a') \ normalized_fracts" using assms(1,2) d - by (auto simp: normalized_fracts_def ac_simps) - (metis gcd.normalize_left_idem gcd_div_unit2 is_unit_gcd unit_factor_is_unit) + by (auto simp add: normalized_fracts_def ac_simps dvd_div_unit_iff elim: coprime_imp_coprime) qed fact+ lemma quot_of_fract_inverse: