# HG changeset patch # User wenzelm # Date 1451493918 -3600 # Node ID 6b780867d4260848197afd451f4f699ec46e884c # Parent d68b705719ce657f25f5d1188139e34b59867fbe clarified syntax; diff -r d68b705719ce -r 6b780867d426 src/ZF/AC.thy --- a/src/ZF/AC.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/AC.thy Wed Dec 30 17:45:18 2015 +0100 @@ -25,7 +25,7 @@ apply (erule bspec, assumption) done -lemma AC_Pi_Pow: "\f. f \ (\ X \ Pow(C)-{0}. X)" +lemma AC_Pi_Pow: "\f. f \ (\X \ Pow(C)-{0}. X)" apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE]) apply (erule_tac [2] exI, blast) done @@ -51,7 +51,7 @@ apply (erule_tac [2] fun_weaken_type, blast+) done -lemma AC_Pi0: "0 \ A ==> \f. f \ (\ x \ A. x)" +lemma AC_Pi0: "0 \ A ==> \f. f \ (\x \ A. x)" apply (rule AC_Pi) apply (simp_all add: non_empty_family) done diff -r d68b705719ce -r 6b780867d426 src/ZF/AC/AC15_WO6.thy --- a/src/ZF/AC/AC15_WO6.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/AC/AC15_WO6.thy Wed Dec 30 17:45:18 2015 +0100 @@ -263,7 +263,7 @@ lemma AC13_AC1_lemma: "\B \ A. f(B)\0 & f(B)<=B & f(B) \ 1 - ==> (\x \ A. THE y. f(x)={y}) \ (\ X \ A. X)" + ==> (\x \ A. THE y. f(x)={y}) \ (\X \ A. X)" apply (rule lam_type) apply (drule bspec, assumption) apply (elim conjE) diff -r d68b705719ce -r 6b780867d426 src/ZF/AC/AC17_AC1.thy --- a/src/ZF/AC/AC17_AC1.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/AC/AC17_AC1.thy Wed Dec 30 17:45:18 2015 +0100 @@ -15,7 +15,7 @@ (** AC0 is equivalent to AC1. AC0 comes from Suppes, AC1 from Rubin & Rubin **) -lemma AC0_AC1_lemma: "[| f:(\ X \ A. X); D \ A |] ==> \g. g:(\ X \ D. X)" +lemma AC0_AC1_lemma: "[| f:(\X \ A. X); D \ A |] ==> \g. g:(\X \ D. X)" by (fast intro!: lam_type apply_type) lemma AC0_AC1: "AC0 ==> AC1" @@ -29,7 +29,7 @@ (**** The proof of AC1 ==> AC17 ****) -lemma AC1_AC17_lemma: "f \ (\ X \ Pow(A) - {0}. X) ==> f \ (Pow(A) - {0} -> A)" +lemma AC1_AC17_lemma: "f \ (\X \ Pow(A) - {0}. X) ==> f \ (Pow(A) - {0} -> A)" apply (rule Pi_type, assumption) apply (drule apply_type, assumption, fast) done @@ -144,7 +144,7 @@ (* ********************************************************************** *) lemma AC1_AC2_aux1: - "[| f:(\ X \ A. X); B \ A; 0\A |] ==> {f`B} \ B \ {f`C. C \ A}" + "[| f:(\X \ A. X); B \ A; 0\A |] ==> {f`B} \ B \ {f`C. C \ A}" by (fast elim!: apply_type) lemma AC1_AC2_aux2: @@ -178,7 +178,7 @@ lemma AC2_AC1_aux3: "\D \ {E*{E}. E \ A}. \y. D \ C = {y} - ==> (\x \ A. fst(THE z. (x*{x} \ C = {z}))) \ (\ X \ A. X)" + ==> (\x \ A. fst(THE z. (x*{x} \ C = {z}))) \ (\X \ A. X)" apply (rule lam_type) apply (drule bspec, blast) apply (blast intro: AC2_AC1_aux2 fst_type) @@ -234,7 +234,7 @@ (* ********************************************************************** *) lemma AC3_AC1_lemma: - "b\A ==> (\ x \ {a \ A. id(A)`a\b}. id(A)`x) = (\ x \ A. x)" + "b\A ==> (\x \ {a \ A. id(A)`a\b}. id(A)`x) = (\x \ A. x)" apply (simp add: id_def cong add: Pi_cong) apply (rule_tac b = A in subst_context, fast) done @@ -277,7 +277,7 @@ done lemma AC5_AC4_aux4: "[| R \ A*B; g \ C->R; \x \ C. (\z \ R. fst(z))` (g`x) = x |] - ==> (\x \ C. snd(g`x)): (\ x \ C. R``{x})" + ==> (\x \ C. snd(g`x)): (\x \ C. R``{x})" apply (rule lam_type) apply (force dest: apply_type) done diff -r d68b705719ce -r 6b780867d426 src/ZF/AC/AC18_AC19.thy --- a/src/ZF/AC/AC18_AC19.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/AC/AC18_AC19.thy Wed Dec 30 17:45:18 2015 +0100 @@ -18,14 +18,14 @@ (* ********************************************************************** *) lemma PROD_subsets: - "[| f \ (\ b \ {P(a). a \ A}. b); \a \ A. P(a)<=Q(a) |] - ==> (\a \ A. f`P(a)) \ (\ a \ A. Q(a))" + "[| f \ (\b \ {P(a). a \ A}. b); \a \ A. P(a)<=Q(a) |] + ==> (\a \ A. f`P(a)) \ (\a \ A. Q(a))" by (rule lam_type, drule apply_type, auto) lemma lemma_AC18: - "[| \A. 0 \ A \ (\f. f \ (\ X \ A. X)); A \ 0 |] + "[| \A. 0 \ A \ (\f. f \ (\X \ A. X)); A \ 0 |] ==> (\a \ A. \b \ B(a). X(a, b)) \ - (\f \ \ a \ A. B(a). \a \ A. X(a, f`a))" + (\f \ \a \ A. B(a). \a \ A. X(a, f`a))" apply (rule subsetI) apply (erule_tac x = "{{b \ B (a) . x \ X (a,b) }. a \ A}" in allE) apply (erule impE, fast) @@ -68,12 +68,12 @@ done lemma lemma1_2: - "[| f`(uu(a)) \ a; f \ (\ B \ {uu(a). a \ A}. B); a \ A |] + "[| f`(uu(a)) \ a; f \ (\B \ {uu(a). a \ A}. B); a \ A |] ==> f`(uu(a))-{0} \ a" apply (unfold uu_def, fast elim!: lemma1_1 dest!: apply_type) done -lemma lemma1: "\f. f \ (\ B \ {uu(a). a \ A}. B) ==> \f. f \ (\ B \ A. B)" +lemma lemma1: "\f. f \ (\B \ {uu(a). a \ A}. B) ==> \f. f \ (\B \ A. B)" apply (erule exE) apply (rule_tac x = "\a\A. if (f` (uu(a)) \ a, f` (uu(a)), f` (uu(a))-{0})" in exI) diff -r d68b705719ce -r 6b780867d426 src/ZF/AC/AC7_AC9.thy --- a/src/ZF/AC/AC7_AC9.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/AC/AC7_AC9.thy Wed Dec 30 17:45:18 2015 +0100 @@ -53,16 +53,16 @@ (* the proof. *) (* ********************************************************************** *) -lemma lemma1_1: "y \ (\ B \ A. Y*B) ==> (\B \ A. snd(y`B)) \ (\ B \ A. B)" +lemma lemma1_1: "y \ (\B \ A. Y*B) ==> (\B \ A. snd(y`B)) \ (\B \ A. B)" by (fast intro!: lam_type snd_type apply_type) lemma lemma1_2: - "y \ (\ B \ {Y*C. C \ A}. B) ==> (\B \ A. y`(Y*B)) \ (\ B \ A. Y*B)" + "y \ (\B \ {Y*C. C \ A}. B) ==> (\B \ A. y`(Y*B)) \ (\B \ A. Y*B)" apply (fast intro!: lam_type apply_type) done lemma AC7_AC6_lemma1: - "(\ B \ {(nat->\(A))*C. C \ A}. B) \ 0 ==> (\ B \ A. B) \ 0" + "(\B \ {(nat->\(A))*C. C \ A}. B) \ 0 ==> (\B \ A. B) \ 0" by (fast intro!: equals0I lemma1_1 lemma1_2) lemma AC7_AC6_lemma2: "0 \ A ==> 0 \ {(nat -> \(A)) * C. C \ A}" @@ -92,7 +92,7 @@ done lemma AC1_AC8_lemma2: - "[| f \ (\ X \ RepFun(A,p). X); D \ A |] ==> (\x \ A. f`p(x))`D \ p(D)" + "[| f \ (\X \ RepFun(A,p). X); D \ A |] ==> (\x \ A. f`p(x))`D \ p(D)" apply (simp, fast elim!: apply_type) done @@ -152,7 +152,7 @@ "\B1 \ {(F*B)*N. B \ A} \ {cons(0,(F*B)*N). B \ A}. \B2 \ {(F*B)*N. B \ A} \ {cons(0,(F*B)*N). B \ A}. f` \ bij(B1, B2) - ==> (\B \ A. snd(fst((f`)`0))) \ (\ X \ A. X)" + ==> (\B \ A. snd(fst((f`)`0))) \ (\X \ A. X)" apply (intro lam_type snd_type fst_type) apply (rule apply_type [OF _ consI1]) apply (fast intro!: fun_weaken_type bij_is_fun) diff -r d68b705719ce -r 6b780867d426 src/ZF/AC/AC_Equiv.thy --- a/src/ZF/AC/AC_Equiv.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/AC/AC_Equiv.thy Wed Dec 30 17:45:18 2015 +0100 @@ -41,7 +41,7 @@ "WO7 == \A. Finite(A) \ (\R. well_ord(A,R) \ well_ord(A,converse(R)))" definition - "WO8 == \A. (\f. f \ (\ X \ A. X)) \ (\R. well_ord(A,R))" + "WO8 == \A. (\f. f \ (\X \ A. X)) \ (\R. well_ord(A,R))" definition @@ -56,28 +56,28 @@ (* Axioms of Choice *) definition - "AC0 == \A. \f. f \ (\ X \ Pow(A)-{0}. X)" + "AC0 == \A. \f. f \ (\X \ Pow(A)-{0}. X)" definition - "AC1 == \A. 0\A \ (\f. f \ (\ X \ A. X))" + "AC1 == \A. 0\A \ (\f. f \ (\X \ A. X))" definition "AC2 == \A. 0\A & pairwise_disjoint(A) \ (\C. \B \ A. \y. B \ C = {y})" definition - "AC3 == \A B. \f \ A->B. \g. g \ (\ x \ {a \ A. f`a\0}. f`x)" + "AC3 == \A B. \f \ A->B. \g. g \ (\x \ {a \ A. f`a\0}. f`x)" definition - "AC4 == \R A B. (R \ A*B \ (\f. f \ (\ x \ domain(R). R``{x})))" + "AC4 == \R A B. (R \ A*B \ (\f. f \ (\x \ domain(R). R``{x})))" definition "AC5 == \A B. \f \ A->B. \g \ range(f)->A. \x \ domain(g). f`(g`x) = x" definition - "AC6 == \A. 0\A \ (\ B \ A. B)\0" + "AC6 == \A. 0\A \ (\B \ A. B)\0" definition - "AC7 == \A. 0\A & (\B1 \ A. \B2 \ A. B1\B2) \ (\ B \ A. B) \ 0" + "AC7 == \A. 0\A & (\B1 \ A. \B2 \ A. B1\B2) \ (\B \ A. B) \ 0" definition "AC8 == \A. (\B \ A. \B1 B2. B= & B1\B2) @@ -123,12 +123,12 @@ locale AC18 = assumes AC18: "A\0 & (\a \ A. B(a) \ 0) \ ((\a \ A. \b \ B(a). X(a,b)) = - (\f \ \ a \ A. B(a). \a \ A. X(a, f`a)))" + (\f \ \a \ A. B(a). \a \ A. X(a, f`a)))" \"AC18 cannot be expressed within the object-logic" definition "AC19 == \A. A\0 & 0\A \ ((\a \ A. \b \ a. b) = - (\f \ (\ B \ A. B). \a \ A. f`a))" + (\f \ (\B \ A. B). \a \ A. f`a))" @@ -178,10 +178,10 @@ by (blast dest!: well_ord_imp_ex1_first [THEN theI, THEN first_def [THEN def_imp_iff, THEN iffD1]]) -lemma ex_choice_fun: "[| well_ord(\(A), R); 0 \ A |] ==> \f. f \ (\ X \ A. X)" +lemma ex_choice_fun: "[| well_ord(\(A), R); 0 \ A |] ==> \f. f \ (\X \ A. X)" by (fast elim!: first_in_B intro!: lam_type) -lemma ex_choice_fun_Pow: "well_ord(A, R) ==> \f. f \ (\ X \ Pow(A)-{0}. X)" +lemma ex_choice_fun_Pow: "well_ord(A, R) ==> \f. f \ (\X \ Pow(A)-{0}. X)" by (fast elim!: well_ord_subset [THEN ex_choice_fun]) diff -r d68b705719ce -r 6b780867d426 src/ZF/AC/HH.thy --- a/src/ZF/AC/HH.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/AC/HH.thy Wed Dec 30 17:45:18 2015 +0100 @@ -201,8 +201,8 @@ done lemma lam_singI: - "f \ (\ X \ Pow(x)-{0}. F(X)) - ==> (\X \ Pow(x)-{0}. {f`X}) \ (\ X \ Pow(x)-{0}. {{z}. z \ F(X)})" + "f \ (\X \ Pow(x)-{0}. F(X)) + ==> (\X \ Pow(x)-{0}. {f`X}) \ (\X \ Pow(x)-{0}. {{z}. z \ F(X)})" by (fast del: DiffI DiffE intro!: lam_type singleton_eq_iff [THEN iffD2] dest: apply_type) @@ -224,7 +224,7 @@ Perhaps it could be simplified. *) lemma bijection: - "f \ (\ X \ Pow(x) - {0}. X) + "f \ (\X \ Pow(x) - {0}. X) ==> \g. g \ bij(x, \ i. HH(\X \ Pow(x)-{0}. {f`X}, x, i) = {x})" apply (rule exI) apply (rule bij_Least_HH_x [THEN bij_converse_bij]) diff -r d68b705719ce -r 6b780867d426 src/ZF/Cardinal_AC.thy --- a/src/ZF/Cardinal_AC.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/Cardinal_AC.thy Wed Dec 30 17:45:18 2015 +0100 @@ -119,7 +119,7 @@ assumes f: "f \ surj(X,Y)" shows "\g. g \ inj(Y,X)" proof - from f AC_Pi [of Y "%y. f-``{y}"] - obtain z where z: "z \ (\ y\Y. f -`` {y})" + obtain z where z: "z \ (\y\Y. f -`` {y})" by (auto simp add: surj_def) (fast dest: apply_Pair) show ?thesis proof @@ -146,7 +146,7 @@ have [intro]: "Ord(K)" by (blast intro: InfCard_is_Card Card_is_Ord K) assume "!!i. i\K ==> X(i) \ K" hence "!!i. i\K ==> \f. f \ inj(X(i), K)" by (simp add: lepoll_def) - with AC_Pi obtain f where f: "f \ (\ i\K. inj(X(i), K))" + with AC_Pi obtain f where f: "f \ (\i\K. inj(X(i), K))" by force { fix z assume z: "z \ (\i\K. X(i))" diff -r d68b705719ce -r 6b780867d426 src/ZF/Coind/Map.thy --- a/src/ZF/Coind/Map.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/Coind/Map.thy Wed Dec 30 17:45:18 2015 +0100 @@ -23,7 +23,7 @@ definition map_owr :: "[i,i,i]=>i" where - "map_owr(m,a,b) == \ x \ {a} \ domain(m). if x=a then b else m``{x}" + "map_owr(m,a,b) == \x \ {a} \ domain(m). if x=a then b else m``{x}" definition map_app :: "[i,i]=>i" where diff -r d68b705719ce -r 6b780867d426 src/ZF/Constructible/Reflection.thy --- a/src/ZF/Constructible/Reflection.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/Constructible/Reflection.thy Wed Dec 30 17:45:18 2015 +0100 @@ -353,8 +353,8 @@ to be relativized.\ schematic_goal (in reflection) "Reflects(?Cl, - \A. 0\A \ (\f. M(f) & f \ (\ X \ A. X)), - \a A. 0\A \ (\f\Mset(a). f \ (\ X \ A. X)))" + \A. 0\A \ (\f. M(f) & f \ (\X \ A. X)), + \a A. 0\A \ (\f\Mset(a). f \ (\X \ A. X)))" by fast end diff -r d68b705719ce -r 6b780867d426 src/ZF/Induct/Brouwer.thy --- a/src/ZF/Induct/Brouwer.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/Induct/Brouwer.thy Wed Dec 30 17:45:18 2015 +0100 @@ -50,7 +50,7 @@ monos Pi_mono type_intros le_trans [OF UN_upper_cardinal le_nat_Un_cardinal] inf_datatype_intros -lemma Well_unfold: "Well(A, B) = (\ x \ A. B(x) -> Well(A, B))" +lemma Well_unfold: "Well(A, B) = (\x \ A. B(x) -> Well(A, B))" by (fast intro!: Well.intros [unfolded Well.con_defs] elim: Well.cases [unfolded Well.con_defs]) diff -r d68b705719ce -r 6b780867d426 src/ZF/OrderArith.thy --- a/src/ZF/OrderArith.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/OrderArith.thy Wed Dec 30 17:45:18 2015 +0100 @@ -557,7 +557,7 @@ text\As a special case, we have @{term "bij(Pow(A*B), A -> Pow(B))"}\ lemma Pow_Sigma_bij: "(\r \ Pow(Sigma(A,B)). \x \ A. r``{x}) - \ bij(Pow(Sigma(A,B)), \ x \ A. Pow(B(x)))" + \ bij(Pow(Sigma(A,B)), \x \ A. Pow(B(x)))" apply (rule_tac d = "%f. \x \ A. \y \ f`x. {}" in lam_bijective) apply (blast intro: lam_type) apply (blast dest: apply_type, simp_all) diff -r d68b705719ce -r 6b780867d426 src/ZF/UNITY/State.thy --- a/src/ZF/UNITY/State.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/UNITY/State.thy Wed Dec 30 17:45:18 2015 +0100 @@ -21,7 +21,7 @@ default_val :: "i=>i" definition - "state == \ x \ var. cons(default_val(x), type_of(x))" + "state == \x \ var. cons(default_val(x), type_of(x))" definition "st0 == \x \ var. default_val(x)" diff -r d68b705719ce -r 6b780867d426 src/ZF/ZF.thy --- a/src/ZF/ZF.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/ZF.thy Wed Dec 30 17:45:18 2015 +0100 @@ -113,8 +113,8 @@ "_RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ \ _})" [51,0,51]) "_UNION" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) "_INTER" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) - "_PROD" :: "[pttrn, i, i] => i" ("(3\ _\_./ _)" 10) - "_SUM" :: "[pttrn, i, i] => i" ("(3\ _\_./ _)" 10) + "_PROD" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) + "_SUM" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) "_lam" :: "[pttrn, i, i] => i" ("(3\_\_./ _)" 10) "_Ball" :: "[pttrn, i, o] => o" ("(3\_\_./ _)" 10) "_Bex" :: "[pttrn, i, o] => o" ("(3\_\_./ _)" 10) @@ -133,8 +133,8 @@ "{b. x\A}" == "CONST RepFun(A, \x. b)" "\x\A. B" == "CONST Inter({B. x\A})" "\x\A. B" == "CONST Union({B. x\A})" - "\ x\A. B" == "CONST Pi(A, \x. B)" - "\ x\A. B" == "CONST Sigma(A, \x. B)" + "\x\A. B" == "CONST Pi(A, \x. B)" + "\x\A. B" == "CONST Sigma(A, \x. B)" "\x\A. f" == "CONST Lambda(A, \x. f)" "\x\A. P" == "CONST Ball(A, \x. P)" "\x\A. P" == "CONST Bex(A, \x. P)" diff -r d68b705719ce -r 6b780867d426 src/ZF/Zorn.thy --- a/src/ZF/Zorn.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/Zorn.thy Wed Dec 30 17:45:18 2015 +0100 @@ -197,14 +197,14 @@ done lemma choice_super: - "[| ch \ (\ X \ Pow(chain(S)) - {0}. X); X \ chain(S); X \ maxchain(S) |] + "[| ch \ (\X \ Pow(chain(S)) - {0}. X); X \ chain(S); X \ maxchain(S) |] ==> ch ` super(S,X) \ super(S,X)" apply (erule apply_type) apply (unfold super_def maxchain_def, blast) done lemma choice_not_equals: - "[| ch \ (\ X \ Pow(chain(S)) - {0}. X); X \ chain(S); X \ maxchain(S) |] + "[| ch \ (\X \ Pow(chain(S)) - {0}. X); X \ chain(S); X \ maxchain(S) |] ==> ch ` super(S,X) \ X" apply (rule notI) apply (drule choice_super, assumption, assumption) @@ -213,7 +213,7 @@ text\This justifies Definition 4.4\ lemma Hausdorff_next_exists: - "ch \ (\ X \ Pow(chain(S))-{0}. X) ==> + "ch \ (\X \ Pow(chain(S))-{0}. X) ==> \next \ increasing(S). \X \ Pow(S). next`X = if(X \ chain(S)-maxchain(S), ch`super(S,X), X)" apply (rule_tac x="\X\Pow(S). @@ -237,7 +237,7 @@ text\Lemma 4\ lemma TFin_chain_lemma4: "[| c \ TFin(S,next); - ch \ (\ X \ Pow(chain(S))-{0}. X); + ch \ (\X \ Pow(chain(S))-{0}. X); next \ increasing(S); \X \ Pow(S). next`X = if(X \ chain(S)-maxchain(S), ch`super(S,X), X) |] @@ -364,14 +364,14 @@ text\* Defining the "next" operation for Zermelo's Theorem *\ lemma choice_Diff: - "[| ch \ (\ X \ Pow(S) - {0}. X); X \ S; X\S |] ==> ch ` (S-X) \ S-X" + "[| ch \ (\X \ Pow(S) - {0}. X); X \ S; X\S |] ==> ch ` (S-X) \ S-X" apply (erule apply_type) apply (blast elim!: equalityE) done text\This justifies Definition 6.1\ lemma Zermelo_next_exists: - "ch \ (\ X \ Pow(S)-{0}. X) ==> + "ch \ (\X \ Pow(S)-{0}. X) ==> \next \ increasing(S). \X \ Pow(S). next`X = (if X=S then S else cons(ch`(S-X), X))" apply (rule_tac x="\X\Pow(S). if X=S then S else cons(ch`(S-X), X)" @@ -391,7 +391,7 @@ text\The construction of the injection\ lemma choice_imp_injection: - "[| ch \ (\ X \ Pow(S)-{0}. X); + "[| ch \ (\X \ Pow(S)-{0}. X); next \ increasing(S); \X \ Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X)) |] ==> (\ x \ S. \({y \ TFin(S,next). x \ y})) diff -r d68b705719ce -r 6b780867d426 src/ZF/equalities.thy --- a/src/ZF/equalities.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/equalities.thy Wed Dec 30 17:45:18 2015 +0100 @@ -535,19 +535,19 @@ by blast lemma SUM_UN_distrib1: - "(\ x \ (\y\A. C(y)). B(x)) = (\y\A. \ x\C(y). B(x))" + "(\x \ (\y\A. C(y)). B(x)) = (\y\A. \x\C(y). B(x))" by blast lemma SUM_UN_distrib2: - "(\ i\I. \j\J. C(i,j)) = (\j\J. \ i\I. C(i,j))" + "(\i\I. \j\J. C(i,j)) = (\j\J. \i\I. C(i,j))" by blast lemma SUM_Un_distrib1: - "(\ i\I \ J. C(i)) = (\ i\I. C(i)) \ (\ j\J. C(j))" + "(\i\I \ J. C(i)) = (\i\I. C(i)) \ (\j\J. C(j))" by blast lemma SUM_Un_distrib2: - "(\ i\I. A(i) \ B(i)) = (\ i\I. A(i)) \ (\ i\I. B(i))" + "(\i\I. A(i) \ B(i)) = (\i\I. A(i)) \ (\i\I. B(i))" by blast (*First-order version of the above, for rewriting*) @@ -555,11 +555,11 @@ by (rule SUM_Un_distrib2) lemma SUM_Int_distrib1: - "(\ i\I \ J. C(i)) = (\ i\I. C(i)) \ (\ j\J. C(j))" + "(\i\I \ J. C(i)) = (\i\I. C(i)) \ (\j\J. C(j))" by blast lemma SUM_Int_distrib2: - "(\ i\I. A(i) \ B(i)) = (\ i\I. A(i)) \ (\ i\I. B(i))" + "(\i\I. A(i) \ B(i)) = (\i\I. A(i)) \ (\i\I. B(i))" by blast (*First-order version of the above, for rewriting*) @@ -567,7 +567,7 @@ by (rule SUM_Int_distrib2) (*Cf Aczel, Non-Well-Founded Sets, page 115*) -lemma SUM_eq_UN: "(\ i\I. A(i)) = (\i\I. {i} * A(i))" +lemma SUM_eq_UN: "(\i\I. A(i)) = (\i\I. {i} * A(i))" by blast lemma times_subset_iff: @@ -575,7 +575,7 @@ by blast lemma Int_Sigma_eq: - "(\ x \ A'. B'(x)) \ (\ x \ A. B(x)) = (\ x \ A' \ A. B'(x) \ B(x))" + "(\x \ A'. B'(x)) \ (\x \ A. B(x)) = (\x \ A' \ A. B'(x) \ B(x))" by blast (** Domain **) diff -r d68b705719ce -r 6b780867d426 src/ZF/ex/Limit.thy --- a/src/ZF/ex/Limit.thy Wed Dec 30 17:38:57 2015 +0100 +++ b/src/ZF/ex/Limit.thy Wed Dec 30 17:45:18 2015 +0100 @@ -120,8 +120,8 @@ (* Twice, constructions on cpos are more difficult. *) iprod :: "i=>i" where "iprod(DD) == - <(\ n \ nat. set(DD`n)), - {x:(\ n \ nat. set(DD`n))*(\ n \ nat. set(DD`n)). + <(\n \ nat. set(DD`n)), + {x:(\n \ nat. set(DD`n))*(\n \ nat. set(DD`n)). \n \ nat. rel(DD`n,fst(x)`n,snd(x)`n)}>" definition @@ -1071,18 +1071,18 @@ (*----------------------------------------------------------------------*) lemma iprodI: - "x:(\ n \ nat. set(DD`n)) ==> x \ set(iprod(DD))" + "x:(\n \ nat. set(DD`n)) ==> x \ set(iprod(DD))" by (simp add: set_def iprod_def) lemma iprodE: - "x \ set(iprod(DD)) ==> x:(\ n \ nat. set(DD`n))" + "x \ set(iprod(DD)) ==> x:(\n \ nat. set(DD`n))" by (simp add: set_def iprod_def) (* Contains typing conditions in contrast to HOL-ST *) lemma rel_iprodI: - "[|!!n. n \ nat ==> rel(DD`n,f`n,g`n); f:(\ n \ nat. set(DD`n)); - g:(\ n \ nat. set(DD`n))|] ==> rel(iprod(DD),f,g)" + "[|!!n. n \ nat ==> rel(DD`n,f`n,g`n); f:(\n \ nat. set(DD`n)); + g:(\n \ nat. set(DD`n))|] ==> rel(iprod(DD),f,g)" by (simp add: iprod_def rel_I) lemma rel_iprodE: @@ -1252,14 +1252,14 @@ (*----------------------------------------------------------------------*) lemma DinfI: - "[|x:(\ n \ nat. set(DD`n)); + "[|x:(\n \ nat. set(DD`n)); !!n. n \ nat ==> Rp(DD`n,DD`succ(n),ee`n)`(x`succ(n)) = x`n|] ==> x \ set(Dinf(DD,ee))" apply (simp add: Dinf_def) apply (blast intro: mkcpoI iprodI) done -lemma Dinf_prod: "x \ set(Dinf(DD,ee)) ==> x:(\ n \ nat. set(DD`n))" +lemma Dinf_prod: "x \ set(Dinf(DD,ee)) ==> x:(\n \ nat. set(DD`n))" apply (simp add: Dinf_def) apply (erule mkcpoD1 [THEN iprodE]) done @@ -1273,7 +1273,7 @@ lemma rel_DinfI: "[|!!n. n \ nat ==> rel(DD`n,x`n,y`n); - x:(\ n \ nat. set(DD`n)); y:(\ n \ nat. set(DD`n))|] + x:(\n \ nat. set(DD`n)); y:(\n \ nat. set(DD`n))|] ==> rel(Dinf(DD,ee),x,y)" apply (simp add: Dinf_def) apply (blast intro: rel_mkcpo [THEN iffD2] rel_iprodI iprodI)