# HG changeset patch # User blanchet # Date 1367237223 -7200 # Node ID 6b82042690b5de671f851782519ed97fcd3599f0 # Parent 5f1dec4297dab649946f1dd213c9de2bd06b60a5# Parent d694233adeaeb0c1bab29de8cbc0ca549d6e676c merge diff -r 5f1dec4297da -r 6b82042690b5 src/HOL/Cardinals/Cardinal_Arithmetic.thy --- a/src/HOL/Cardinals/Cardinal_Arithmetic.thy Mon Apr 29 14:06:37 2013 +0200 +++ b/src/HOL/Cardinals/Cardinal_Arithmetic.thy Mon Apr 29 14:07:03 2013 +0200 @@ -366,10 +366,10 @@ subsection {* Exponentiation *} -definition cexp (infixr "^c" 80) where +definition cexp (infixr "^c" 90) where "r1 ^c r2 \ |Func (Field r2) (Field r1)|" -definition ccexp (infixr "^^c" 80) where +definition ccexp (infixr "^^c" 90) where "r1 ^^c r2 \ |Pfunc (Field r2) (Field r1)|" lemma cexp_ordLeq_ccexp: "r1 ^c r2 \o r1 ^^c r2" diff -r 5f1dec4297da -r 6b82042690b5 src/HOL/IMP/Abs_Int0.thy --- a/src/HOL/IMP/Abs_Int0.thy Mon Apr 29 14:06:37 2013 +0200 +++ b/src/HOL/IMP/Abs_Int0.thy Mon Apr 29 14:07:03 2013 +0200 @@ -167,9 +167,9 @@ "aval' (V x) S = S x" | "aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)" -definition "fa x e S = (case S of None \ None | Some S \ Some(S(x := aval' e S)))" +definition "asem x e S = (case S of None \ None | Some S \ Some(S(x := aval' e S)))" -definition "step' = Step fa (\b S. S)" +definition "step' = Step asem (\b S. S)" lemma strip_step'[simp]: "strip(step' S C) = strip C" by(simp add: step'_def) @@ -220,7 +220,7 @@ lemma step_step': "step (\\<^isub>o S) (\\<^isub>c C) \ \\<^isub>c (step' S C)" unfolding step_def step'_def by(rule gamma_Step_subcomm) - (auto simp: aval'_sound in_gamma_update fa_def split: option.splits) + (auto simp: aval'_sound in_gamma_update asem_def split: option.splits) lemma AI_sound: "AI c = Some C \ CS c \ \\<^isub>c C" proof(simp add: CS_def AI_def) @@ -258,7 +258,7 @@ lemma mono_step': "S1 \ S2 \ C1 \ C2 \ step' S1 C1 \ step' S2 C2" unfolding step'_def by(rule mono2_Step) - (auto simp: mono_update mono_aval' fa_def split: option.split) + (auto simp: mono_update mono_aval' asem_def split: option.split) lemma mono_step'_top: "C \ C' \ step' \ C \ step' \ C'" by (metis mono_step' order_refl) @@ -471,7 +471,7 @@ lemma top_on_step': "top_on_acom C (-vars C) \ top_on_acom (step' \ C) (-vars C)" unfolding step'_def by(rule top_on_Step) - (auto simp add: top_option_def fa_def split: option.splits) + (auto simp add: top_option_def asem_def split: option.splits) lemma AI_Some_measure: "\C. AI c = Some C" unfolding AI_def