# HG changeset patch # User wenzelm # Date 1467750197 -7200 # Node ID 6bf5a8c78175f4f23d34d525a31b0779482d9864 # Parent a528d24826c54e2b0f247b77fdb443ff21e66049 tuned; diff -r a528d24826c5 -r 6bf5a8c78175 src/HOL/Set.thy --- a/src/HOL/Set.thy Tue Jul 05 21:23:21 2016 +0200 +++ b/src/HOL/Set.thy Tue Jul 05 22:23:17 2016 +0200 @@ -466,7 +466,7 @@ \ \Classical elimination rule.\ by (auto simp add: less_eq_set_def le_fun_def) -lemma subset_eq: "A \ B = (\x\A. x \ B)" +lemma subset_eq: "A \ B = (\x\A. x \ B)" by blast lemma contra_subsetD: "A \ B \ c \ B \ c \ A" @@ -942,7 +942,7 @@ lemma image_diff_subset: "f ` A - f ` B \ f ` (A - B)" by blast -lemma Setcompr_eq_image: "{f x | x. x \ A} = f ` A" +lemma Setcompr_eq_image: "{f x |x. x \ A} = f ` A" by blast lemma setcompr_eq_image: "{f x |x. P x} = f ` {x. P x}" @@ -978,10 +978,8 @@ lemma range_composition: "range (\x. f (g x)) = f ` range g" by auto -lemma range_eq_singletonD: - assumes "range f = {a}" - shows "f x = a" - using assms by auto +lemma range_eq_singletonD: "range f = {a} \ f x = a" + by auto subsubsection \Some rules with \if\\