# HG changeset patch # User wenzelm # Date 1331470448 -3600 # Node ID 6c250adbe101c83080ecf1bf5a311c7bdf98c014 # Parent 0883804b67bb9842e4125c1c6d5c1b8f15ddd374 eliminated old-fashioned 'constrains' element; diff -r 0883804b67bb -r 6c250adbe101 src/HOL/HOLCF/Deflation.thy --- a/src/HOL/HOLCF/Deflation.thy Sun Mar 11 13:39:16 2012 +0100 +++ b/src/HOL/HOLCF/Deflation.thy Sun Mar 11 13:54:08 2012 +0100 @@ -379,9 +379,9 @@ by simp qed -locale pcpo_ep_pair = ep_pair + - constrains e :: "'a::pcpo \ 'b::pcpo" - constrains p :: "'b::pcpo \ 'a::pcpo" +locale pcpo_ep_pair = ep_pair e p + for e :: "'a::pcpo \ 'b::pcpo" + and p :: "'b::pcpo \ 'a::pcpo" begin lemma e_strict [simp]: "e\\ = \" diff -r 0883804b67bb -r 6c250adbe101 src/HOL/HOLCF/Universal.thy --- a/src/HOL/HOLCF/Universal.thy Sun Mar 11 13:39:16 2012 +0100 +++ b/src/HOL/HOLCF/Universal.thy Sun Mar 11 13:54:08 2012 +0100 @@ -291,8 +291,8 @@ text {* We use a locale to parameterize the construction over a chain of approx functions on the type to be embedded. *} -locale bifinite_approx_chain = approx_chain + - constrains approx :: "nat \ 'a::bifinite \ 'a" +locale bifinite_approx_chain = + approx_chain approx for approx :: "nat \ 'a::bifinite \ 'a" begin subsubsection {* Choosing a maximal element from a finite set *} diff -r 0883804b67bb -r 6c250adbe101 src/HOL/Library/Numeral_Type.thy --- a/src/HOL/Library/Numeral_Type.thy Sun Mar 11 13:39:16 2012 +0100 +++ b/src/HOL/Library/Numeral_Type.thy Sun Mar 11 13:54:08 2012 +0100 @@ -135,8 +135,8 @@ end -locale mod_ring = mod_type + - constrains n :: int +locale mod_ring = mod_type n Rep Abs + for n :: int and Rep :: "'a::{number_ring} \ int" and Abs :: "int \ 'a::{number_ring}" begin diff -r 0883804b67bb -r 6c250adbe101 src/HOL/RealVector.thy --- a/src/HOL/RealVector.thy Sun Mar 11 13:39:16 2012 +0100 +++ b/src/HOL/RealVector.thy Sun Mar 11 13:54:08 2012 +0100 @@ -954,8 +954,7 @@ subsection {* Bounded Linear and Bilinear Operators *} -locale bounded_linear = additive + - constrains f :: "'a::real_normed_vector \ 'b::real_normed_vector" +locale bounded_linear = additive f for f :: "'a::real_normed_vector \ 'b::real_normed_vector" + assumes scaleR: "f (scaleR r x) = scaleR r (f x)" assumes bounded: "\K. \x. norm (f x) \ norm x * K" begin