# HG changeset patch # User nipkow # Date 1540102746 -7200 # Node ID 6c9453ec2191ffe13f33721960740316987a6ed5 # Parent 88842948515b515c103b9f2b7fff46eea5a4d656 added lemma diff -r 88842948515b -r 6c9453ec2191 src/HOL/Set.thy --- a/src/HOL/Set.thy Sat Oct 20 15:36:32 2018 +0200 +++ b/src/HOL/Set.thy Sun Oct 21 08:19:06 2018 +0200 @@ -936,8 +936,11 @@ "(\x. if P x then f x else g x) ` S = f ` (S \ {x. P x}) \ g ` (S \ {x. \ P x})" by auto -lemma image_cong: "M = N \ (\x. x \ N \ f x = g x) \ f ` M = g ` N" - by (simp add: image_def) +lemma image_cong: "\ M = N; \x. x \ N \ f x = g x \ \ f ` M = g ` N" +by (simp add: image_def) + +lemma image_cong_strong: "\ M = N; \x. x \ N =simp=> f x = g x\ \ f ` M = g ` N" +by (simp add: image_def simp_implies_def) lemma image_Int_subset: "f ` (A \ B) \ f ` A \ f ` B" by blast