# HG changeset patch # User wenzelm # Date 966269594 -7200 # Node ID 6d6bf351b2ccb6198b7b8e8cd04573a3061b79c9 # Parent ec388b0a4eaaebd8121006bfec0c368d093eb673 intros; diff -r ec388b0a4eaa -r 6d6bf351b2cc src/HOL/Induct/Acc.thy --- a/src/HOL/Induct/Acc.thy Mon Aug 14 18:08:26 2000 +0200 +++ b/src/HOL/Induct/Acc.thy Mon Aug 14 18:13:14 2000 +0200 @@ -17,7 +17,7 @@ acc :: "('a * 'a)set => 'a set" -- {* accessible part *} inductive "acc r" - intrs + intros accI [rulify_prems]: "ALL y. (y, x) : r --> y : acc r ==> x : acc r" diff -r ec388b0a4eaa -r 6d6bf351b2cc src/HOL/Isar_examples/MutilatedCheckerboard.thy --- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Mon Aug 14 18:08:26 2000 +0200 +++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Mon Aug 14 18:13:14 2000 +0200 @@ -21,7 +21,7 @@ tiling :: "'a set set => 'a set set"; inductive "tiling A" - intrs + intros empty: "{} : tiling A" Un: "a : A ==> t : tiling A ==> a <= - t ==> a Un t : tiling A"; @@ -115,7 +115,7 @@ domino :: "(nat * nat) set set"; inductive domino - intrs + intros horiz: "{(i, j), (i, j + 1)} : domino" vertl: "{(i, j), (i + 1, j)} : domino"; @@ -179,8 +179,8 @@ lemma domino_finite: "d: domino ==> finite d"; proof (induct set: domino); fix i j :: nat; - show "finite {(i, j), (i, j + 1)}"; by (intro Finites.intrs); - show "finite {(i, j), (i + 1, j)}"; by (intro Finites.intrs); + show "finite {(i, j), (i, j + 1)}"; by (intro Finites.intros); + show "finite {(i, j), (i + 1, j)}"; by (intro Finites.intros); qed; diff -r ec388b0a4eaa -r 6d6bf351b2cc src/HOL/Isar_examples/W_correct.thy --- a/src/HOL/Isar_examples/W_correct.thy Mon Aug 14 18:08:26 2000 +0200 +++ b/src/HOL/Isar_examples/W_correct.thy Mon Aug 14 18:13:14 2000 +0200 @@ -33,7 +33,7 @@ "a |- e :: t" == "(a,e,t) : has_type"; inductive has_type - intrs [simp] + intros [simp] Var: "n < length a ==> a |- Var n :: a ! n" Abs: "t1#a |- e :: t2 ==> a |- Abs e :: t1 -> t2" App: "[| a |- e1 :: t2 -> t1; a |- e2 :: t2 |] diff -r ec388b0a4eaa -r 6d6bf351b2cc src/HOL/Lambda/T.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Lambda/T.thy Mon Aug 14 18:13:14 2000 +0200 @@ -0,0 +1,472 @@ +(* Title: HOL/Lambda/Type.thy + ID: $Id$ + Author: Stefan Berghofer + Copyright 2000 TU Muenchen + +Simply-typed lambda terms. Subject reduction and strong normalization +of simply-typed lambda terms. Partly based on a paper proof by Ralph +Matthes. +*) + +theory Type = InductTermi: + +datatype type = + Atom nat + | Fun type type (infixr "=>" 200) + +consts + typing :: "((nat => type) * dB * type) set" + +syntax + "_typing" :: "[nat => type, dB, type] => bool" ("_ |- _ : _" [50,50,50] 50) + "_funs" :: "[type list, type] => type" (infixl "=>>" 150) + +translations + "env |- t : T" == "(env, t, T) : typing" + "Ts =>> T" == "foldr Fun Ts T" + +declare IT.intros [intro!] (* FIXME *) + +inductive typing +intros [intro!] + Var: "env x = T ==> env |- Var x : T" + Abs: "(nat_case T env) |- t : U ==> env |- (Abs t) : (T => U)" + App: "env |- s : T => U ==> env |- t : T ==> env |- (s $ t) : U" + +consts + "types" :: "[nat => type, dB list, type list] => bool" +primrec + "types e [] Ts = (Ts = [])" + "types e (t # ts) Ts = + (case Ts of + [] => False + | T # Ts => e |- t : T & types e ts Ts)" + +inductive_cases [elim!] = + "e |- Var i : T" + "e |- t $ u : T" + "e |- Abs t : T" + +inductive_cases [elim!] = + "x # xs : lists S" + + +text {* Some tests. *} + +lemma "\T U. e |- Abs (Abs (Abs (Var 1 $ (Var 2 $ Var 1 $ Var 0)))) : T \ U = T" + apply (intro exI conjI) + apply force + apply (rule refl) + done + +lemma "\T U. e |- Abs (Abs (Abs (Var 2 $ Var 0 $ (Var 1 $ Var 0)))) : T \ U = T"; + apply (intro exI conjI) + apply force + apply (rule refl) + done + + +text {* n-ary function types *} + +lemma list_app_typeD [rulify]: + "\t T. e |- t $$ ts : T --> (\Ts. e |- t : Ts =>> T \ types e ts Ts)" + apply (induct_tac ts) + apply simp + apply (intro strip) + apply simp + apply (erule_tac x = "t $ a" in allE) + apply (erule_tac x = T in allE) + apply (erule impE) + apply assumption + apply (elim exE conjE) + apply (mk_cases_tac "e |- t $ u : T") + apply (rule_tac x = "Ta # Ts" in exI) + apply simp + done + +lemma list_app_typeI [rulify]: + "\t T Ts. e |- t : Ts =>> T --> types e ts Ts --> e |- t $$ ts : T" + apply (induct_tac ts) + apply (intro strip) + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (erule_tac x = "t $ a" in allE) + apply (erule_tac x = T in allE) + apply (erule_tac x = lista in allE) + apply (erule impE) + apply (erule conjE) + apply (erule typing.App) + apply assumption + apply blast + done + +lemma lists_types [rulify]: + "\Ts. types e ts Ts --> ts : lists {t. \T. e |- t : T}" + apply (induct_tac ts) + apply (intro strip) + apply (case_tac Ts) + apply simp + apply (rule lists.Nil) + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (rule lists.Cons) + apply blast + apply blast + done + + +text {* lifting preserves termination and well-typedness *} + +lemma lift_map [rulify, simp]: + "\t. lift (t $$ ts) i = lift t i $$ map (\t. lift t i) ts" + apply (induct_tac ts) + apply simp_all + done + +lemma subst_map [rulify, simp]: + "\t. subst (t $$ ts) u i = subst t u i $$ map (\t. subst t u i) ts" + apply (induct_tac ts) + apply simp_all + done + +lemma lift_IT [rulify, intro!]: + "t : IT ==> \i. lift t i : IT" + apply (erule IT.induct) + apply (rule allI) + apply (simp (no_asm)) + apply (rule conjI) + apply + (rule impI, + rule IT.VarI, + erule lists.induct, + simp (no_asm), + rule lists.Nil, + simp (no_asm), + erule IntE, + rule lists.Cons, + blast, + assumption)+ + apply auto + done + +lemma lifts_IT [rulify]: + "ts : lists IT --> map (\t. lift t 0) ts : lists IT" + apply (induct_tac ts) + apply auto + done + + +lemma shift_env [simp]: + "nat_case T + (\j. if j < i then e j else if j = i then Ua else e (j - 1)) = + (\j. if j < Suc i then nat_case T e j else if j = Suc i then Ua + else nat_case T e (j - 1))" + apply (rule ext) + apply (case_tac j) + apply simp + apply (case_tac nat) + apply simp_all + done + +lemma lift_type' [rulify]: + "e |- t : T ==> \i U. + (\j. if j < i then e j + else if j = i then U + else e (j - 1)) |- lift t i : T" + apply (erule typing.induct) + apply auto + done + + +lemma lift_type [intro!]: + "e |- t : T ==> nat_case U e |- lift t 0 : T" + apply (subgoal_tac + "nat_case U e = + (\j. if j < 0 then e j + else if j = 0 then U else e (j - 1))") + apply (erule ssubst) + apply (erule lift_type') + apply (rule ext) + apply (case_tac j) + apply simp_all + done + +lemma lift_types: + "\Ts. types e ts Ts --> + types (\j. if j < i then e j + else if j = i then U + else e (j - 1)) (map (\t. lift t i) ts) Ts" + apply (induct_tac ts) + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp_all + apply (rule lift_type') + apply (erule conjunct1) + done + + +text {* substitution lemma *} + +lemma subst_lemma [rulify]: + "e |- t : T ==> \e' i U u. + e = (\j. if j < i then e' j + else if j = i then U + else e' (j-1)) --> + e' |- u : U --> e' |- t[u/i] : T" + apply (erule typing.induct) + apply (intro strip) + apply (case_tac "x = i") + apply simp + apply (frule linorder_neq_iff [RS iffD1]) + apply (erule disjE) + apply simp + apply (rule typing.Var) + apply assumption + apply (frule order_less_not_sym) + apply (simp only: subst_gt split: split_if add: if_False) + apply (rule typing.Var) + apply assumption + apply fastsimp + apply fastsimp + done + +lemma substs_lemma [rulify]: + "e |- u : T ==> + \Ts. types (\j. if j < i then e j + else if j = i then T else e (j - 1)) ts Ts --> + types e (map (%t. t[u/i]) ts) Ts" + apply (induct_tac ts) + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (intro strip) + apply (case_tac Ts) + apply simp + apply simp + apply (erule conjE) + apply (erule subst_lemma) + apply (rule refl) + apply assumption + done + + +text {* subject reduction *} + +lemma subject_reduction [rulify]: + "e |- t : T ==> \t'. t -> t' --> e |- t' : T" + apply (erule typing.induct) + apply blast + apply blast + apply (intro strip) + apply (mk_cases_tac "s $ t -> t'") + apply hyp_subst + apply (mk_cases_tac "env |- Abs t : T => U") + apply (rule subst_lemma) + apply assumption + prefer 2 + apply assumption + apply (rule ext) + apply (case_tac j) + apply auto + done + +text {* additional lemmas *} + +lemma app_last: "(t $$ ts) $ u = t $$ (ts @ [u])" + apply simp + done + + +lemma subst_Var_IT [rulify]: "r : IT ==> \i j. r[Var i/j] : IT" + apply (erule IT.induct) + txt {* Var *} + apply (intro strip) + apply (simp (no_asm) add: subst_Var) + apply + ((rule conjI impI)+, + rule IT.VarI, + erule lists.induct, + simp (no_asm), + rule lists.Nil, + simp (no_asm), + erule IntE, + erule CollectE, + rule lists.Cons, + fast, + assumption)+ + txt {* Lambda *} + apply (intro strip) + apply simp + apply (rule IT.LambdaI) + apply fast + txt {* Beta *} + apply (intro strip) + apply (simp (no_asm_use) add: subst_subst [RS sym]) + apply (rule IT.BetaI) + apply auto + done + +lemma Var_IT: "Var n \ IT" +proof - + have "Var n $$ [] \ IT" + apply (rule IT.VarI) + apply (rule lists.Nil) + done + then show ?thesis by simp +qed + + +lemma app_Var_IT: "t : IT ==> t $ Var i : IT" + apply (erule IT.induct) + apply (subst app_last) + apply (rule IT.VarI) + apply simp + apply (rule lists.Cons) + apply (rule Var_IT) + apply (rule lists.Nil) + apply (rule IT.BetaI [where ?ss = "[]", unfold foldl_Nil [RS eq_reflection]]) + apply (erule subst_Var_IT) + apply (rule Var_IT) + apply (subst app_last) + apply (rule IT.BetaI) + apply (subst app_last [RS sym]) + apply assumption + apply assumption + done + + +text {* Well-typed substitution preserves termination. *} + +lemma subst_type_IT [rulify]: + "\t. t : IT --> (\e T u i. + (\j. if j < i then e j + else if j = i then U + else e (j - 1)) |- t : T --> + u : IT --> e |- u : U --> t[u/i] : IT)" + apply (rule_tac f = size and a = U in measure_induct) + apply (rule allI) + apply (rule impI) + apply (erule IT.induct) + txt {* Var *} + apply (intro strip) + apply (case_tac "n = i") + txt {* n=i *} + apply (case_tac rs) + apply simp + apply simp + apply (drule list_app_typeD) + apply (elim exE conjE) + apply (mk_cases_tac "e |- t $ u : T") + apply (mk_cases_tac "e |- Var i : T") + apply (drule_tac s = "(?T::type) => ?U" in sym) + apply simp + apply (subgoal_tac "lift u 0 $ Var 0 : IT") + prefer 2 + apply (rule app_Var_IT) + apply (erule lift_IT) + apply (subgoal_tac "(lift u 0 $ Var 0)[a[u/i]/0] : IT") + apply (simp (no_asm_use)) + apply (subgoal_tac "(Var 0 $$ map (%t. lift t 0) + (map (%t. t[u/i]) list))[(u $ a[u/i])/0] : IT") + apply (simp (no_asm_use) del: map_compose add: map_compose [RS sym] o_def) + apply (erule_tac x = "Ts =>> T" in allE) + apply (erule impE) + apply simp + apply (erule_tac x = "Var 0 $$ + map (%t. lift t 0) (map (%t. t[u/i]) list)" in allE) + apply (erule impE) + apply (rule IT.VarI) + apply (rule lifts_IT) + apply (drule lists_types) + apply + (mk_cases_tac "x # xs : lists (Collect P)", + erule lists_IntI [RS lists.induct], + assumption) + apply fastsimp + apply fastsimp + apply (erule_tac x = e in allE) + apply (erule_tac x = T in allE) + apply (erule_tac x = "u $ a[u/i]" in allE) + apply (erule_tac x = 0 in allE) + apply (force intro!: lift_types list_app_typeI substs_lemma subst_lemma) + +by (eres_inst_tac [("x", "Ta")] allE 1); +by (etac impE 1); +by (Simp_tac 1); +by (eres_inst_tac [("x", "lift u 0 $ Var 0")] allE 1); +by (etac impE 1); +by (assume_tac 1); +by (eres_inst_tac [("x", "e")] allE 1); +by (eres_inst_tac [("x", "Ts =>> T")] allE 1); +by (eres_inst_tac [("x", "a[u/i]")] allE 1); +by (eres_inst_tac [("x", "0")] allE 1); +by (etac impE 1); +by (rtac typing.APP 1); +by (etac lift_type' 1); +by (rtac typing.VAR 1); +by (Simp_tac 1); +by (fast_tac (claset() addSIs [subst_lemma]) 1); +(** n~=i **) +by (dtac list_app_typeD 1); +by (etac exE 1); +by (etac conjE 1); +by (dtac lists_types 1); +by (subgoal_tac "map (%x. x[u/i]) rs : lists IT" 1); +by (asm_simp_tac (simpset() addsimps [subst_Var]) 1); +by (Fast_tac 1); +by (etac (lists_IntI RS lists.induct) 1); +by (assume_tac 1); +by (fast_tac (claset() addss simpset()) 1); +by (fast_tac (claset() addss simpset()) 1); +(** Lambda **) +by (fast_tac (claset() addss simpset()) 1); +(** Beta **) +by (strip_tac 1); +by (Simp_tac 1); +by (rtac IT.BetaI 1); +by (simp_tac (simpset() delsimps [subst_map] + addsimps [subst_subst, subst_map RS sym]) 1); +by (dtac subject_reduction 1); +by (rtac apps_preserves_beta 1); +by (rtac beta.beta 1); +by (Fast_tac 1); +by (dtac list_app_typeD 1); +by (Fast_tac 1); +qed_spec_mp "subst_type_IT"; + +done + + + + + +(**** main theorem: well-typed terms are strongly normalizing ****) + +Goal "e |- t : T ==> t : IT"; +by (etac typing.induct 1); +by (rtac Var_IT 1); +by (etac IT.LambdaI 1); +by (subgoal_tac "(Var 0 $ lift t 0)[s/0] : IT" 1); +by (Asm_full_simp_tac 1); +by (rtac subst_type_IT 1); +by (rtac (rewrite_rule (map mk_meta_eq [foldl_Nil, foldl_Cons]) + (lists.Nil RSN (2, lists.Cons RS IT.VarI))) 1); +by (etac lift_IT 1); +by (rtac typing.APP 1); +by (rtac typing.VAR 1); +by (Simp_tac 1); +by (etac lift_type' 1); +by (assume_tac 1); +by (assume_tac 1); +qed "type_implies_IT"; + +bind_thm ("type_implies_termi", type_implies_IT RS IT_implies_termi); +