# HG changeset patch # User skalberg # Date 1066056860 -7200 # Node ID 6d8b6eb8623b72871b8b3b97511bd8e30b99b02c # Parent def0606302a188820781293a91fe96b8e0795edd Fixed spelling error. diff -r def0606302a1 -r 6d8b6eb8623b doc-src/Ref/defining.tex --- a/doc-src/Ref/defining.tex Fri Oct 10 19:34:28 2003 +0200 +++ b/doc-src/Ref/defining.tex Mon Oct 13 16:54:20 2003 +0200 @@ -32,7 +32,7 @@ The syntax of an Isabelle logic is specified by a {\bf priority grammar}.\index{priorities} Each nonterminal is decorated by an integer priority, as in~$A^{(p)}$. A nonterminal $A^{(p)}$ in a derivation may be -rewritten using a production $A^{(q)} = \gamma$ only if~$p \le q$. Any +rewritten using a production $A^{(q)} = \gamma$ only if~$p \leq q$. Any priority grammar can be translated into a normal context free grammar by introducing new nonterminals and productions. @@ -40,7 +40,7 @@ relation $\longrightarrow@G$. Let $\alpha$ and $\beta$ denote strings of terminal or nonterminal symbols. Then \[ \alpha\, A^{(p)}\, \beta ~\longrightarrow@G~ \alpha\,\gamma\,\beta \] -if and only if $G$ contains some production $A^{(q)}=\gamma$ for~$p \le q$. +if and only if $G$ contains some production $A^{(q)}=\gamma$ for~$p \leq q$. The following simple grammar for arithmetic expressions demonstrates how binding power and associativity of operators can be enforced by priorities. @@ -172,7 +172,7 @@ \item[\ndxbold{pttrn}, \ndxbold{pttrns}] denote patterns for abstraction, cases etc. Initially the same as $idt$ and $idts$, - these are indetended to be augmented by user extensions. + these are intended to be augmented by user extensions. \item[\ndxbold{type}] denotes types of the meta-logic.