# HG changeset patch # User paulson # Date 900578131 -7200 # Node ID 6e2e9b92c301c3de71abd2c71f5bd48201c0a218 # Parent 10f0be29c0d1026b66c706a3ae8140a7bbd03595 Addition of "Theorem B" of Peter Andrews diff -r 10f0be29c0d1 -r 6e2e9b92c301 src/FOL/ex/cla.ML --- a/src/FOL/ex/cla.ML Wed Jul 15 18:26:15 1998 +0200 +++ b/src/FOL/ex/cla.ML Thu Jul 16 10:35:31 1998 +0200 @@ -8,19 +8,21 @@ writeln"File FOL/ex/cla.ML"; +context FOL.thy; + open Cla; (*in case structure IntPr is open!*) -goal FOL.thy "(P --> Q | R) --> (P-->Q) | (P-->R)"; +Goal "(P --> Q | R) --> (P-->Q) | (P-->R)"; by (Blast_tac 1); result(); (*If and only if*) -goal FOL.thy "(P<->Q) <-> (Q<->P)"; +Goal "(P<->Q) <-> (Q<->P)"; by (Blast_tac 1); result(); -goal FOL.thy "~ (P <-> ~P)"; +Goal "~ (P <-> ~P)"; by (Blast_tac 1); result(); @@ -37,183 +39,191 @@ writeln"Pelletier's examples"; (*1*) -goal FOL.thy "(P-->Q) <-> (~Q --> ~P)"; +Goal "(P-->Q) <-> (~Q --> ~P)"; by (Blast_tac 1); result(); (*2*) -goal FOL.thy "~ ~ P <-> P"; +Goal "~ ~ P <-> P"; by (Blast_tac 1); result(); (*3*) -goal FOL.thy "~(P-->Q) --> (Q-->P)"; +Goal "~(P-->Q) --> (Q-->P)"; by (Blast_tac 1); result(); (*4*) -goal FOL.thy "(~P-->Q) <-> (~Q --> P)"; +Goal "(~P-->Q) <-> (~Q --> P)"; by (Blast_tac 1); result(); (*5*) -goal FOL.thy "((P|Q)-->(P|R)) --> (P|(Q-->R))"; +Goal "((P|Q)-->(P|R)) --> (P|(Q-->R))"; by (Blast_tac 1); result(); (*6*) -goal FOL.thy "P | ~ P"; +Goal "P | ~ P"; by (Blast_tac 1); result(); (*7*) -goal FOL.thy "P | ~ ~ ~ P"; +Goal "P | ~ ~ ~ P"; by (Blast_tac 1); result(); (*8. Peirce's law*) -goal FOL.thy "((P-->Q) --> P) --> P"; +Goal "((P-->Q) --> P) --> P"; by (Blast_tac 1); result(); (*9*) -goal FOL.thy "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"; +Goal "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"; by (Blast_tac 1); result(); (*10*) -goal FOL.thy "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"; +Goal "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"; by (Blast_tac 1); result(); (*11. Proved in each direction (incorrectly, says Pelletier!!) *) -goal FOL.thy "P<->P"; +Goal "P<->P"; by (Blast_tac 1); result(); (*12. "Dijkstra's law"*) -goal FOL.thy "((P <-> Q) <-> R) <-> (P <-> (Q <-> R))"; +Goal "((P <-> Q) <-> R) <-> (P <-> (Q <-> R))"; by (Blast_tac 1); result(); (*13. Distributive law*) -goal FOL.thy "P | (Q & R) <-> (P | Q) & (P | R)"; +Goal "P | (Q & R) <-> (P | Q) & (P | R)"; by (Blast_tac 1); result(); (*14*) -goal FOL.thy "(P <-> Q) <-> ((Q | ~P) & (~Q|P))"; +Goal "(P <-> Q) <-> ((Q | ~P) & (~Q|P))"; by (Blast_tac 1); result(); (*15*) -goal FOL.thy "(P --> Q) <-> (~P | Q)"; +Goal "(P --> Q) <-> (~P | Q)"; by (Blast_tac 1); result(); (*16*) -goal FOL.thy "(P-->Q) | (Q-->P)"; +Goal "(P-->Q) | (Q-->P)"; by (Blast_tac 1); result(); (*17*) -goal FOL.thy "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"; +Goal "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"; by (Blast_tac 1); result(); writeln"Classical Logic: examples with quantifiers"; -goal FOL.thy "(ALL x. P(x) & Q(x)) <-> (ALL x. P(x)) & (ALL x. Q(x))"; +Goal "(ALL x. P(x) & Q(x)) <-> (ALL x. P(x)) & (ALL x. Q(x))"; by (Blast_tac 1); result(); -goal FOL.thy "(EX x. P-->Q(x)) <-> (P --> (EX x. Q(x)))"; +Goal "(EX x. P-->Q(x)) <-> (P --> (EX x. Q(x)))"; by (Blast_tac 1); result(); -goal FOL.thy "(EX x. P(x)-->Q) <-> (ALL x. P(x)) --> Q"; +Goal "(EX x. P(x)-->Q) <-> (ALL x. P(x)) --> Q"; by (Blast_tac 1); result(); -goal FOL.thy "(ALL x. P(x)) | Q <-> (ALL x. P(x) | Q)"; +Goal "(ALL x. P(x)) | Q <-> (ALL x. P(x) | Q)"; by (Blast_tac 1); result(); (*Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux, JAR 10 (265-281), 1993. Proof is trivial!*) -goal FOL.thy +Goal "~ ((EX x.~P(x)) & ((EX x. P(x)) | (EX x. P(x) & Q(x))) & ~ (EX x. P(x)))"; by (Blast_tac 1); result(); writeln"Problems requiring quantifier duplication"; +(*Theorem B of Peter Andrews, Theorem Proving via General Matings, + JACM 28 (1981).*) +Goal "(EX x. ALL y. P(x) <-> P(y)) --> ((EX x. P(x)) <-> (ALL y. P(y)))"; +by (Blast_tac 1); +result(); + (*Needs multiple instantiation of ALL.*) -goal FOL.thy "(ALL x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"; +Goal "(ALL x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"; by (Blast_tac 1); result(); (*Needs double instantiation of the quantifier*) -goal FOL.thy "EX x. P(x) --> P(a) & P(b)"; +Goal "EX x. P(x) --> P(a) & P(b)"; by (Blast_tac 1); result(); -goal FOL.thy "EX z. P(z) --> (ALL x. P(x))"; +Goal "EX z. P(z) --> (ALL x. P(x))"; by (Blast_tac 1); result(); -goal FOL.thy "EX x. (EX y. P(y)) --> P(x)"; +Goal "EX x. (EX y. P(y)) --> P(x)"; by (Blast_tac 1); result(); (*V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1--23. NOT PROVED*) -goal FOL.thy "EX x x'. ALL y. EX z z'. \ +Goal "EX x x'. ALL y. EX z z'. \ \ (~P(y,y) | P(x,x) | ~S(z,x)) & \ \ (S(x,y) | ~S(y,z) | Q(z',z')) & \ \ (Q(x',y) | ~Q(y,z') | S(x',x'))"; + + writeln"Hard examples with quantifiers"; writeln"Problem 18"; -goal FOL.thy "EX y. ALL x. P(y)-->P(x)"; +Goal "EX y. ALL x. P(y)-->P(x)"; by (Blast_tac 1); result(); writeln"Problem 19"; -goal FOL.thy "EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"; +Goal "EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"; by (Blast_tac 1); result(); writeln"Problem 20"; -goal FOL.thy "(ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w))) \ +Goal "(ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w))) \ \ --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))"; by (Blast_tac 1); result(); writeln"Problem 21"; -goal FOL.thy "(EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))"; +Goal "(EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))"; by (Blast_tac 1); result(); writeln"Problem 22"; -goal FOL.thy "(ALL x. P <-> Q(x)) --> (P <-> (ALL x. Q(x)))"; +Goal "(ALL x. P <-> Q(x)) --> (P <-> (ALL x. Q(x)))"; by (Blast_tac 1); result(); writeln"Problem 23"; -goal FOL.thy "(ALL x. P | Q(x)) <-> (P | (ALL x. Q(x)))"; +Goal "(ALL x. P | Q(x)) <-> (P | (ALL x. Q(x)))"; by (Blast_tac 1); result(); writeln"Problem 24"; -goal FOL.thy "~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) & \ +Goal "~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) & \ \ (~(EX x. P(x)) --> (EX x. Q(x))) & (ALL x. Q(x)|R(x) --> S(x)) \ \ --> (EX x. P(x)&R(x))"; by (Blast_tac 1); result(); writeln"Problem 25"; -goal FOL.thy "(EX x. P(x)) & \ +Goal "(EX x. P(x)) & \ \ (ALL x. L(x) --> ~ (M(x) & R(x))) & \ \ (ALL x. P(x) --> (M(x) & L(x))) & \ \ ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x))) \ @@ -222,14 +232,14 @@ result(); writeln"Problem 26"; -goal FOL.thy "((EX x. p(x)) <-> (EX x. q(x))) & \ +Goal "((EX x. p(x)) <-> (EX x. q(x))) & \ \ (ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y))) \ \ --> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))"; by (Blast_tac 1); result(); writeln"Problem 27"; -goal FOL.thy "(EX x. P(x) & ~Q(x)) & \ +Goal "(EX x. P(x) & ~Q(x)) & \ \ (ALL x. P(x) --> R(x)) & \ \ (ALL x. M(x) & L(x) --> P(x)) & \ \ ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))) \ @@ -238,7 +248,7 @@ result(); writeln"Problem 28. AMENDED"; -goal FOL.thy "(ALL x. P(x) --> (ALL x. Q(x))) & \ +Goal "(ALL x. P(x) --> (ALL x. Q(x))) & \ \ ((ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) & \ \ ((EX x. S(x)) --> (ALL x. L(x) --> M(x))) \ \ --> (ALL x. P(x) & L(x) --> M(x))"; @@ -246,21 +256,21 @@ result(); writeln"Problem 29. Essentially the same as Principia Mathematica *11.71"; -goal FOL.thy "(EX x. P(x)) & (EX y. Q(y)) \ +Goal "(EX x. P(x)) & (EX y. Q(y)) \ \ --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y)) <-> \ \ (ALL x y. P(x) & Q(y) --> R(x) & S(y)))"; by (Blast_tac 1); result(); writeln"Problem 30"; -goal FOL.thy "(ALL x. P(x) | Q(x) --> ~ R(x)) & \ +Goal "(ALL x. P(x) | Q(x) --> ~ R(x)) & \ \ (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) \ \ --> (ALL x. S(x))"; by (Blast_tac 1); result(); writeln"Problem 31"; -goal FOL.thy "~(EX x. P(x) & (Q(x) | R(x))) & \ +Goal "~(EX x. P(x) & (Q(x) | R(x))) & \ \ (EX x. L(x) & P(x)) & \ \ (ALL x. ~ R(x) --> M(x)) \ \ --> (EX x. L(x) & M(x))"; @@ -268,7 +278,7 @@ result(); writeln"Problem 32"; -goal FOL.thy "(ALL x. P(x) & (Q(x)|R(x))-->S(x)) & \ +Goal "(ALL x. P(x) & (Q(x)|R(x))-->S(x)) & \ \ (ALL x. S(x) & R(x) --> L(x)) & \ \ (ALL x. M(x) --> R(x)) \ \ --> (ALL x. P(x) & M(x) --> L(x))"; @@ -276,14 +286,14 @@ result(); writeln"Problem 33"; -goal FOL.thy "(ALL x. P(a) & (P(x)-->P(b))-->P(c)) <-> \ +Goal "(ALL x. P(a) & (P(x)-->P(b))-->P(c)) <-> \ \ (ALL x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"; by (Blast_tac 1); result(); writeln"Problem 34 AMENDED (TWICE!!)"; (*Andrews's challenge*) -goal FOL.thy "((EX x. ALL y. p(x) <-> p(y)) <-> \ +Goal "((EX x. ALL y. p(x) <-> p(y)) <-> \ \ ((EX x. q(x)) <-> (ALL y. p(y)))) <-> \ \ ((EX x. ALL y. q(x) <-> q(y)) <-> \ \ ((EX x. p(x)) <-> (ALL y. q(y))))"; @@ -291,12 +301,12 @@ result(); writeln"Problem 35"; -goal FOL.thy "EX x y. P(x,y) --> (ALL u v. P(u,v))"; +Goal "EX x y. P(x,y) --> (ALL u v. P(u,v))"; by (Blast_tac 1); result(); writeln"Problem 36"; -goal FOL.thy +Goal "(ALL x. EX y. J(x,y)) & \ \ (ALL x. EX y. G(x,y)) & \ \ (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z))) \ @@ -305,7 +315,7 @@ result(); writeln"Problem 37"; -goal FOL.thy "(ALL z. EX w. ALL x. EX y. \ +Goal "(ALL z. EX w. ALL x. EX y. \ \ (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u. Q(u,w)))) & \ \ (ALL x z. ~P(x,z) --> (EX y. Q(y,z))) & \ \ ((EX x y. Q(x,y)) --> (ALL x. R(x,x))) \ @@ -314,7 +324,7 @@ result(); writeln"Problem 38"; -goal FOL.thy +Goal "(ALL x. p(a) & (p(x) --> (EX y. p(y) & r(x,y))) --> \ \ (EX z. EX w. p(z) & r(x,w) & r(w,z))) <-> \ \ (ALL x. (~p(a) | p(x) | (EX z. EX w. p(z) & r(x,w) & r(w,z))) & \ @@ -324,29 +334,29 @@ result(); writeln"Problem 39"; -goal FOL.thy "~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"; +Goal "~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"; by (Blast_tac 1); result(); writeln"Problem 40. AMENDED"; -goal FOL.thy "(EX y. ALL x. F(x,y) <-> F(x,x)) --> \ +Goal "(EX y. ALL x. F(x,y) <-> F(x,x)) --> \ \ ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))"; by (Blast_tac 1); result(); writeln"Problem 41"; -goal FOL.thy "(ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x)) \ +Goal "(ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x)) \ \ --> ~ (EX z. ALL x. f(x,z))"; by (Blast_tac 1); result(); writeln"Problem 42"; -goal FOL.thy "~ (EX y. ALL x. p(x,y) <-> ~ (EX z. p(x,z) & p(z,x)))"; +Goal "~ (EX y. ALL x. p(x,y) <-> ~ (EX z. p(x,z) & p(z,x)))"; by (Blast_tac 1); result(); writeln"Problem 43"; -goal FOL.thy "(ALL x. ALL y. q(x,y) <-> (ALL z. p(z,x) <-> p(z,y))) \ +Goal "(ALL x. ALL y. q(x,y) <-> (ALL z. p(z,x) <-> p(z,y))) \ \ --> (ALL x. ALL y. q(x,y) <-> q(y,x))"; by (Blast_tac 1); (*Other proofs: Can use Auto_tac(), which cheats by using rewriting! @@ -356,7 +366,7 @@ result(); writeln"Problem 44"; -goal FOL.thy "(ALL x. f(x) --> \ +Goal "(ALL x. f(x) --> \ \ (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y)))) & \ \ (EX x. j(x) & (ALL y. g(y) --> h(x,y))) \ \ --> (EX x. j(x) & ~f(x))"; @@ -364,7 +374,7 @@ result(); writeln"Problem 45"; -goal FOL.thy "(ALL x. f(x) & (ALL y. g(y) & h(x,y) --> j(x,y)) \ +Goal "(ALL x. f(x) & (ALL y. g(y) & h(x,y) --> j(x,y)) \ \ --> (ALL y. g(y) & h(x,y) --> k(y))) & \ \ ~ (EX y. l(y) & k(y)) & \ \ (EX x. f(x) & (ALL y. h(x,y) --> l(y)) \ @@ -375,7 +385,7 @@ writeln"Problem 46"; -goal FOL.thy +Goal "(ALL x. f(x) & (ALL y. f(y) & h(y,x) --> g(y)) --> g(x)) & \ \ ((EX x. f(x) & ~g(x)) --> \ \ (EX x. f(x) & ~g(x) & (ALL y. f(y) & ~g(y) --> j(x,y)))) & \ @@ -388,14 +398,14 @@ writeln"Problems (mainly) involving equality or functions"; writeln"Problem 48"; -goal FOL.thy "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"; +Goal "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"; by (Blast_tac 1); result(); writeln"Problem 49 NOT PROVED AUTOMATICALLY"; (*Hard because it involves substitution for Vars; the type constraint ensures that x,y,z have the same type as a,b,u. *) -goal FOL.thy "(EX x y::'a. ALL z. z=x | z=y) & P(a) & P(b) & a~=b \ +Goal "(EX x y::'a. ALL z. z=x | z=y) & P(a) & P(b) & a~=b \ \ --> (ALL u::'a. P(u))"; by Safe_tac; by (res_inst_tac [("x","a")] allE 1); @@ -407,12 +417,12 @@ writeln"Problem 50"; (*What has this to do with equality?*) -goal FOL.thy "(ALL x. P(a,x) | (ALL y. P(x,y))) --> (EX x. ALL y. P(x,y))"; +Goal "(ALL x. P(a,x) | (ALL y. P(x,y))) --> (EX x. ALL y. P(x,y))"; by (Blast_tac 1); result(); writeln"Problem 51"; -goal FOL.thy +Goal "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ \ (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)"; by (Blast_tac 1); @@ -420,7 +430,7 @@ writeln"Problem 52"; (*Almost the same as 51. *) -goal FOL.thy +Goal "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ \ (EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)"; by (Blast_tac 1); @@ -429,7 +439,7 @@ writeln"Problem 55"; (*Original, equational version by Len Schubert, via Pelletier *** NOT PROVED -goal FOL.thy +Goal "(EX x. lives(x) & killed(x,agatha)) & \ \ lives(agatha) & lives(butler) & lives(charles) & \ \ (ALL x. lives(x) --> x=agatha | x=butler | x=charles) & \ @@ -453,7 +463,7 @@ (*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988). fast_tac DISCOVERS who killed Agatha. *) -goal FOL.thy "lives(agatha) & lives(butler) & lives(charles) & \ +Goal "lives(agatha) & lives(butler) & lives(charles) & \ \ (killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) & \ \ (ALL x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) & \ \ (ALL x. hates(agatha,x) --> ~hates(charles,x)) & \ @@ -467,36 +477,36 @@ writeln"Problem 56"; -goal FOL.thy +Goal "(ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))"; by (Blast_tac 1); result(); writeln"Problem 57"; -goal FOL.thy +Goal "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & \ \ (ALL x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))"; by (Blast_tac 1); result(); writeln"Problem 58 NOT PROVED AUTOMATICALLY"; -goal FOL.thy "(ALL x y. f(x)=g(y)) --> (ALL x y. f(f(x))=f(g(y)))"; +Goal "(ALL x y. f(x)=g(y)) --> (ALL x y. f(f(x))=f(g(y)))"; by (slow_tac (claset() addEs [subst_context]) 1); result(); writeln"Problem 59"; -goal FOL.thy "(ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))"; +Goal "(ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))"; by (Blast_tac 1); result(); writeln"Problem 60"; -goal FOL.thy +Goal "ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"; by (Blast_tac 1); result(); writeln"Problem 62 as corrected in JAR 18 (1997), page 135"; -goal FOL.thy +Goal "(ALL x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x)))) <-> \ \ (ALL x. (~p(a) | p(x) | p(f(f(x)))) & \ \ (~p(a) | ~p(f(x)) | p(f(f(x)))))"; @@ -505,7 +515,7 @@ (*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531 Fast_tac indeed copes!*) -goal FOL.thy "(ALL x. F(x) & ~G(x) --> (EX y. H(x,y) & J(y))) & \ +Goal "(ALL x. F(x) & ~G(x) --> (EX y. H(x,y) & J(y))) & \ \ (EX x. K(x) & F(x) & (ALL y. H(x,y) --> K(y))) & \ \ (ALL x. K(x) --> ~G(x)) --> (EX x. K(x) & J(x))"; by (Fast_tac 1); @@ -513,7 +523,7 @@ (*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393. It does seem obvious!*) -goal FOL.thy +Goal "(ALL x. F(x) & ~G(x) --> (EX y. H(x,y) & J(y))) & \ \ (EX x. K(x) & F(x) & (ALL y. H(x,y) --> K(y))) & \ \ (ALL x. K(x) --> ~G(x)) --> (EX x. K(x) --> ~G(x))"; @@ -522,7 +532,7 @@ (*Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.) author U. Egly*) -goal FOL.thy +Goal "((EX x. A(x) & (ALL y. C(y) --> (ALL z. D(x,y,z)))) --> \ \ (EX w. C(w) & (ALL y. C(y) --> (ALL z. D(w,y,z))))) \ \ & \ @@ -545,7 +555,7 @@ (*Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p.105*) -goal FOL.thy +Goal "((EX x. A(x) & (ALL y. C(y) --> (ALL z. D(x,y,z)))) --> \ \ (EX w. C(w) & (ALL y. C(y) --> (ALL z. D(w,y,z))))) \ \ & \ @@ -571,8 +581,7 @@ result(); (* Challenge found on info-hol *) -goal FOL.thy - "ALL x. EX v w. ALL y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))"; +Goal "ALL x. EX v w. ALL y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))"; by (Blast_tac 1); result(); diff -r 10f0be29c0d1 -r 6e2e9b92c301 src/HOL/ex/cla.ML --- a/src/HOL/ex/cla.ML Wed Jul 15 18:26:15 1998 +0200 +++ b/src/HOL/ex/cla.ML Thu Jul 16 10:35:31 1998 +0200 @@ -10,19 +10,19 @@ writeln"File HOL/ex/cla."; -context HOL.thy; (*Boosts efficiency by omitting redundant rules*) +context HOL.thy; -goal HOL.thy "(P --> Q | R) --> (P-->Q) | (P-->R)"; +Goal "(P --> Q | R) --> (P-->Q) | (P-->R)"; by (Blast_tac 1); result(); (*If and only if*) -goal HOL.thy "(P=Q) = (Q = (P::bool))"; +Goal "(P=Q) = (Q = (P::bool))"; by (Blast_tac 1); result(); -goal HOL.thy "~ (P = (~P))"; +Goal "~ (P = (~P))"; by (Blast_tac 1); result(); @@ -39,110 +39,110 @@ writeln"Pelletier's examples"; (*1*) -goal HOL.thy "(P-->Q) = (~Q --> ~P)"; +Goal "(P-->Q) = (~Q --> ~P)"; by (Blast_tac 1); result(); (*2*) -goal HOL.thy "(~ ~ P) = P"; +Goal "(~ ~ P) = P"; by (Blast_tac 1); result(); (*3*) -goal HOL.thy "~(P-->Q) --> (Q-->P)"; +Goal "~(P-->Q) --> (Q-->P)"; by (Blast_tac 1); result(); (*4*) -goal HOL.thy "(~P-->Q) = (~Q --> P)"; +Goal "(~P-->Q) = (~Q --> P)"; by (Blast_tac 1); result(); (*5*) -goal HOL.thy "((P|Q)-->(P|R)) --> (P|(Q-->R))"; +Goal "((P|Q)-->(P|R)) --> (P|(Q-->R))"; by (Blast_tac 1); result(); (*6*) -goal HOL.thy "P | ~ P"; +Goal "P | ~ P"; by (Blast_tac 1); result(); (*7*) -goal HOL.thy "P | ~ ~ ~ P"; +Goal "P | ~ ~ ~ P"; by (Blast_tac 1); result(); (*8. Peirce's law*) -goal HOL.thy "((P-->Q) --> P) --> P"; +Goal "((P-->Q) --> P) --> P"; by (Blast_tac 1); result(); (*9*) -goal HOL.thy "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"; +Goal "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"; by (Blast_tac 1); result(); (*10*) -goal HOL.thy "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P=Q)"; +Goal "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P=Q)"; by (Blast_tac 1); result(); (*11. Proved in each direction (incorrectly, says Pelletier!!) *) -goal HOL.thy "P=(P::bool)"; +Goal "P=(P::bool)"; by (Blast_tac 1); result(); (*12. "Dijkstra's law"*) -goal HOL.thy "((P = Q) = R) = (P = (Q = R))"; +Goal "((P = Q) = R) = (P = (Q = R))"; by (Blast_tac 1); result(); (*13. Distributive law*) -goal HOL.thy "(P | (Q & R)) = ((P | Q) & (P | R))"; +Goal "(P | (Q & R)) = ((P | Q) & (P | R))"; by (Blast_tac 1); result(); (*14*) -goal HOL.thy "(P = Q) = ((Q | ~P) & (~Q|P))"; +Goal "(P = Q) = ((Q | ~P) & (~Q|P))"; by (Blast_tac 1); result(); (*15*) -goal HOL.thy "(P --> Q) = (~P | Q)"; +Goal "(P --> Q) = (~P | Q)"; by (Blast_tac 1); result(); (*16*) -goal HOL.thy "(P-->Q) | (Q-->P)"; +Goal "(P-->Q) | (Q-->P)"; by (Blast_tac 1); result(); (*17*) -goal HOL.thy "((P & (Q-->R))-->S) = ((~P | Q | S) & (~P | ~R | S))"; +Goal "((P & (Q-->R))-->S) = ((~P | Q | S) & (~P | ~R | S))"; by (Blast_tac 1); result(); writeln"Classical Logic: examples with quantifiers"; -goal HOL.thy "(! x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))"; +Goal "(! x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))"; by (Blast_tac 1); result(); -goal HOL.thy "(? x. P-->Q(x)) = (P --> (? x. Q(x)))"; +Goal "(? x. P-->Q(x)) = (P --> (? x. Q(x)))"; by (Blast_tac 1); result(); -goal HOL.thy "(? x. P(x)-->Q) = ((! x. P(x)) --> Q)"; +Goal "(? x. P(x)-->Q) = ((! x. P(x)) --> Q)"; by (Blast_tac 1); result(); -goal HOL.thy "((! x. P(x)) | Q) = (! x. P(x) | Q)"; +Goal "((! x. P(x)) | Q) = (! x. P(x) | Q)"; by (Blast_tac 1); result(); (*From Wishnu Prasetya*) -goal HOL.thy +Goal "(!s. q(s) --> r(s)) & ~r(s) & (!s. ~r(s) & ~q(s) --> p(t) | q(t)) \ \ --> p(t) | r(t)"; by (Blast_tac 1); @@ -151,66 +151,72 @@ writeln"Problems requiring quantifier duplication"; +(*Theorem B of Peter Andrews, Theorem Proving via General Matings, + JACM 28 (1981).*) +Goal "(EX x. ALL y. P(x) = P(y)) --> ((EX x. P(x)) = (ALL y. P(y)))"; +by (Blast_tac 1); +result(); + (*Needs multiple instantiation of the quantifier.*) -goal HOL.thy "(! x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"; +Goal "(! x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"; by (Blast_tac 1); result(); (*Needs double instantiation of the quantifier*) -goal HOL.thy "? x. P(x) --> P(a) & P(b)"; +Goal "? x. P(x) --> P(a) & P(b)"; by (Blast_tac 1); result(); -goal HOL.thy "? z. P(z) --> (! x. P(x))"; +Goal "? z. P(z) --> (! x. P(x))"; by (Blast_tac 1); result(); -goal HOL.thy "? x. (? y. P(y)) --> P(x)"; +Goal "? x. (? y. P(y)) --> P(x)"; by (Blast_tac 1); result(); writeln"Hard examples with quantifiers"; writeln"Problem 18"; -goal HOL.thy "? y. ! x. P(y)-->P(x)"; +Goal "? y. ! x. P(y)-->P(x)"; by (Blast_tac 1); result(); writeln"Problem 19"; -goal HOL.thy "? x. ! y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"; +Goal "? x. ! y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"; by (Blast_tac 1); result(); writeln"Problem 20"; -goal HOL.thy "(! x y. ? z. ! w. (P(x)&Q(y)-->R(z)&S(w))) \ +Goal "(! x y. ? z. ! w. (P(x)&Q(y)-->R(z)&S(w))) \ \ --> (? x y. P(x) & Q(y)) --> (? z. R(z))"; by (Blast_tac 1); result(); writeln"Problem 21"; -goal HOL.thy "(? x. P-->Q(x)) & (? x. Q(x)-->P) --> (? x. P=Q(x))"; +Goal "(? x. P-->Q(x)) & (? x. Q(x)-->P) --> (? x. P=Q(x))"; by (Blast_tac 1); result(); writeln"Problem 22"; -goal HOL.thy "(! x. P = Q(x)) --> (P = (! x. Q(x)))"; +Goal "(! x. P = Q(x)) --> (P = (! x. Q(x)))"; by (Blast_tac 1); result(); writeln"Problem 23"; -goal HOL.thy "(! x. P | Q(x)) = (P | (! x. Q(x)))"; +Goal "(! x. P | Q(x)) = (P | (! x. Q(x)))"; by (Blast_tac 1); result(); writeln"Problem 24"; -goal HOL.thy "~(? x. S(x)&Q(x)) & (! x. P(x) --> Q(x)|R(x)) & \ +Goal "~(? x. S(x)&Q(x)) & (! x. P(x) --> Q(x)|R(x)) & \ \ (~(? x. P(x)) --> (? x. Q(x))) & (! x. Q(x)|R(x) --> S(x)) \ \ --> (? x. P(x)&R(x))"; by (Blast_tac 1); result(); writeln"Problem 25"; -goal HOL.thy "(? x. P(x)) & \ +Goal "(? x. P(x)) & \ \ (! x. L(x) --> ~ (M(x) & R(x))) & \ \ (! x. P(x) --> (M(x) & L(x))) & \ \ ((! x. P(x)-->Q(x)) | (? x. P(x)&R(x))) \ @@ -219,14 +225,14 @@ result(); writeln"Problem 26"; -goal HOL.thy "((? x. p(x)) = (? x. q(x))) & \ +Goal "((? x. p(x)) = (? x. q(x))) & \ \ (! x. ! y. p(x) & q(y) --> (r(x) = s(y))) \ \ --> ((! x. p(x)-->r(x)) = (! x. q(x)-->s(x)))"; by (Blast_tac 1); result(); writeln"Problem 27"; -goal HOL.thy "(? x. P(x) & ~Q(x)) & \ +Goal "(? x. P(x) & ~Q(x)) & \ \ (! x. P(x) --> R(x)) & \ \ (! x. M(x) & L(x) --> P(x)) & \ \ ((? x. R(x) & ~ Q(x)) --> (! x. L(x) --> ~ R(x))) \ @@ -235,7 +241,7 @@ result(); writeln"Problem 28. AMENDED"; -goal HOL.thy "(! x. P(x) --> (! x. Q(x))) & \ +Goal "(! x. P(x) --> (! x. Q(x))) & \ \ ((! x. Q(x)|R(x)) --> (? x. Q(x)&S(x))) & \ \ ((? x. S(x)) --> (! x. L(x) --> M(x))) \ \ --> (! x. P(x) & L(x) --> M(x))"; @@ -243,21 +249,21 @@ result(); writeln"Problem 29. Essentially the same as Principia Mathematica *11.71"; -goal HOL.thy "(? x. F(x)) & (? y. G(y)) \ +Goal "(? x. F(x)) & (? y. G(y)) \ \ --> ( ((! x. F(x)-->H(x)) & (! y. G(y)-->J(y))) = \ \ (! x y. F(x) & G(y) --> H(x) & J(y)))"; by (Blast_tac 1); result(); writeln"Problem 30"; -goal HOL.thy "(! x. P(x) | Q(x) --> ~ R(x)) & \ +Goal "(! x. P(x) | Q(x) --> ~ R(x)) & \ \ (! x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) \ \ --> (! x. S(x))"; by (Blast_tac 1); result(); writeln"Problem 31"; -goal HOL.thy "~(? x. P(x) & (Q(x) | R(x))) & \ +Goal "~(? x. P(x) & (Q(x) | R(x))) & \ \ (? x. L(x) & P(x)) & \ \ (! x. ~ R(x) --> M(x)) \ \ --> (? x. L(x) & M(x))"; @@ -265,7 +271,7 @@ result(); writeln"Problem 32"; -goal HOL.thy "(! x. P(x) & (Q(x)|R(x))-->S(x)) & \ +Goal "(! x. P(x) & (Q(x)|R(x))-->S(x)) & \ \ (! x. S(x) & R(x) --> L(x)) & \ \ (! x. M(x) --> R(x)) \ \ --> (! x. P(x) & M(x) --> L(x))"; @@ -273,14 +279,14 @@ result(); writeln"Problem 33"; -goal HOL.thy "(! x. P(a) & (P(x)-->P(b))-->P(c)) = \ +Goal "(! x. P(a) & (P(x)-->P(b))-->P(c)) = \ \ (! x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"; by (Blast_tac 1); result(); writeln"Problem 34 AMENDED (TWICE!!)"; (*Andrews's challenge*) -goal HOL.thy "((? x. ! y. p(x) = p(y)) = \ +Goal "((? x. ! y. p(x) = p(y)) = \ \ ((? x. q(x)) = (! y. p(y)))) = \ \ ((? x. ! y. q(x) = q(y)) = \ \ ((? x. p(x)) = (! y. q(y))))"; @@ -288,12 +294,12 @@ result(); writeln"Problem 35"; -goal HOL.thy "? x y. P x y --> (! u v. P u v)"; +Goal "? x y. P x y --> (! u v. P u v)"; by (Blast_tac 1); result(); writeln"Problem 36"; -goal HOL.thy "(! x. ? y. J x y) & \ +Goal "(! x. ? y. J x y) & \ \ (! x. ? y. G x y) & \ \ (! x y. J x y | G x y --> \ \ (! z. J y z | G y z --> H x z)) \ @@ -302,7 +308,7 @@ result(); writeln"Problem 37"; -goal HOL.thy "(! z. ? w. ! x. ? y. \ +Goal "(! z. ? w. ! x. ? y. \ \ (P x z -->P y w) & P y z & (P y w --> (? u. Q u w))) & \ \ (! x z. ~(P x z) --> (? y. Q y z)) & \ \ ((? x y. Q x y) --> (! x. R x x)) \ @@ -311,7 +317,7 @@ result(); writeln"Problem 38"; -goal HOL.thy +Goal "(! x. p(a) & (p(x) --> (? y. p(y) & r x y)) --> \ \ (? z. ? w. p(z) & r x w & r w z)) = \ \ (! x. (~p(a) | p(x) | (? z. ? w. p(z) & r x w & r w z)) & \ @@ -321,36 +327,36 @@ result(); writeln"Problem 39"; -goal HOL.thy "~ (? x. ! y. F y x = (~ F y y))"; +Goal "~ (? x. ! y. F y x = (~ F y y))"; by (Blast_tac 1); result(); writeln"Problem 40. AMENDED"; -goal HOL.thy "(? y. ! x. F x y = F x x) \ +Goal "(? y. ! x. F x y = F x x) \ \ --> ~ (! x. ? y. ! z. F z y = (~ F z x))"; by (Blast_tac 1); result(); writeln"Problem 41"; -goal HOL.thy "(! z. ? y. ! x. f x y = (f x z & ~ f x x)) \ +Goal "(! z. ? y. ! x. f x y = (f x z & ~ f x x)) \ \ --> ~ (? z. ! x. f x z)"; by (Blast_tac 1); result(); writeln"Problem 42"; -goal HOL.thy "~ (? y. ! x. p x y = (~ (? z. p x z & p z x)))"; +Goal "~ (? y. ! x. p x y = (~ (? z. p x z & p z x)))"; by (Blast_tac 1); result(); writeln"Problem 43!!"; -goal HOL.thy +Goal "(! x::'a. ! y::'a. q x y = (! z. p z x = (p z y::bool))) \ \ --> (! x. (! y. q x y = (q y x::bool)))"; by (Blast_tac 1); result(); writeln"Problem 44"; -goal HOL.thy "(! x. f(x) --> \ +Goal "(! x. f(x) --> \ \ (? y. g(y) & h x y & (? y. g(y) & ~ h x y))) & \ \ (? x. j(x) & (! y. g(y) --> h x y)) \ \ --> (? x. j(x) & ~f(x))"; @@ -358,7 +364,7 @@ result(); writeln"Problem 45"; -goal HOL.thy +Goal "(! x. f(x) & (! y. g(y) & h x y --> j x y) \ \ --> (! y. g(y) & h x y --> k(y))) & \ \ ~ (? y. l(y) & k(y)) & \ @@ -372,14 +378,14 @@ writeln"Problems (mainly) involving equality or functions"; writeln"Problem 48"; -goal HOL.thy "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"; +Goal "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"; by (Blast_tac 1); result(); writeln"Problem 49 NOT PROVED AUTOMATICALLY"; (*Hard because it involves substitution for Vars; the type constraint ensures that x,y,z have the same type as a,b,u. *) -goal HOL.thy "(? x y::'a. ! z. z=x | z=y) & P(a) & P(b) & (~a=b) \ +Goal "(? x y::'a. ! z. z=x | z=y) & P(a) & P(b) & (~a=b) \ \ --> (! u::'a. P(u))"; by (Classical.Safe_tac); by (res_inst_tac [("x","a")] allE 1); @@ -391,12 +397,12 @@ writeln"Problem 50"; (*What has this to do with equality?*) -goal HOL.thy "(! x. P a x | (! y. P x y)) --> (? x. ! y. P x y)"; +Goal "(! x. P a x | (! y. P x y)) --> (? x. ! y. P x y)"; by (Blast_tac 1); result(); writeln"Problem 51"; -goal HOL.thy +Goal "(? z w. ! x y. P x y = (x=z & y=w)) --> \ \ (? z. ! x. ? w. (! y. P x y = (y=w)) = (x=z))"; by (Blast_tac 1); @@ -404,7 +410,7 @@ writeln"Problem 52"; (*Almost the same as 51. *) -goal HOL.thy +Goal "(? z w. ! x y. P x y = (x=z & y=w)) --> \ \ (? w. ! y. ? z. (! x. P x y = (x=z)) = (y=w))"; by (Blast_tac 1); @@ -414,7 +420,7 @@ (*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988). fast_tac DISCOVERS who killed Agatha. *) -goal HOL.thy "lives(agatha) & lives(butler) & lives(charles) & \ +Goal "lives(agatha) & lives(butler) & lives(charles) & \ \ (killed agatha agatha | killed butler agatha | killed charles agatha) & \ \ (!x y. killed x y --> hates x y & ~richer x y) & \ \ (!x. hates agatha x --> ~hates charles x) & \ @@ -427,40 +433,39 @@ result(); writeln"Problem 56"; -goal HOL.thy +Goal "(! x. (? y. P(y) & x=f(y)) --> P(x)) = (! x. P(x) --> P(f(x)))"; by (Blast_tac 1); result(); writeln"Problem 57"; -goal HOL.thy +Goal "P (f a b) (f b c) & P (f b c) (f a c) & \ \ (! x y z. P x y & P y z --> P x z) --> P (f a b) (f a c)"; by (Blast_tac 1); result(); writeln"Problem 58 NOT PROVED AUTOMATICALLY"; -goal HOL.thy "(! x y. f(x)=g(y)) --> (! x y. f(f(x))=f(g(y)))"; +Goal "(! x y. f(x)=g(y)) --> (! x y. f(f(x))=f(g(y)))"; val f_cong = read_instantiate [("f","f")] arg_cong; by (fast_tac (claset() addIs [f_cong]) 1); result(); writeln"Problem 59"; -goal HOL.thy "(! x. P(x) = (~P(f(x)))) --> (? x. P(x) & ~P(f(x)))"; +Goal "(! x. P(x) = (~P(f(x)))) --> (? x. P(x) & ~P(f(x)))"; by (Blast_tac 1); result(); writeln"Problem 60"; -goal HOL.thy +Goal "! x. P x (f x) = (? y. (! z. P z y --> P z (f x)) & P x y)"; by (Blast_tac 1); result(); writeln"Problem 62 as corrected in JAR 18 (1997), page 135"; -goal HOL.thy - "(ALL x. p a & (p x --> p(f x)) --> p(f(f x))) = \ -\ (ALL x. (~ p a | p x | p(f(f x))) & \ -\ (~ p a | ~ p(f x) | p(f(f x))))"; +Goal "(ALL x. p a & (p x --> p(f x)) --> p(f(f x))) = \ +\ (ALL x. (~ p a | p x | p(f(f x))) & \ +\ (~ p a | ~ p(f x) | p(f(f x))))"; by (Blast_tac 1); result();