# HG changeset patch # User huffman # Date 1272321894 25200 # Node ID 6e5bfa8daa88dc6e627f3e37c9d0a61fbf8373d0 # Parent 1ad1cfeaec2dd360958b3465e167508ec7a360ba move more lemmas into Vec1.thy diff -r 1ad1cfeaec2d -r 6e5bfa8daa88 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Mon Apr 26 15:22:03 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Mon Apr 26 15:44:54 2010 -0700 @@ -13,9 +13,6 @@ (* Because I do not want to type this all the time *) lemmas linear_linear = linear_conv_bounded_linear[THEN sym] -(** move this **) -declare norm_vec1[simp] - subsection {* Derivatives *} text {* The definition is slightly tricky since we make it work over @@ -94,16 +91,6 @@ subsection {* Derivatives on real = Derivatives on @{typ "real^1"} *} -lemma dist_vec1_0[simp]: "dist(vec1 (x::real)) 0 = norm x" unfolding vector_dist_norm by auto - -lemma bounded_linear_vec1_dest_vec1: fixes f::"real \ real" - shows "linear (vec1 \ f \ dest_vec1) = bounded_linear f" (is "?l = ?r") proof- - { assume ?l guess K using linear_bounded[OF `?l`] .. - hence "\K. \x. \f x\ \ \x\ * K" apply(rule_tac x=K in exI) - unfolding vec1_dest_vec1_simps by (auto simp add:field_simps) } - thus ?thesis unfolding linear_def bounded_linear_def additive_def bounded_linear_axioms_def o_def - unfolding vec1_dest_vec1_simps by auto qed - lemma has_derivative_within_vec1_dest_vec1: fixes f::"real\real" shows "((vec1 \ f \ dest_vec1) has_derivative (vec1 \ f' \ dest_vec1)) (at (vec1 x) within vec1 ` s) = (f has_derivative f') (at x within s)" diff -r 1ad1cfeaec2d -r 6e5bfa8daa88 src/HOL/Multivariate_Analysis/Vec1.thy --- a/src/HOL/Multivariate_Analysis/Vec1.thy Mon Apr 26 15:22:03 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Vec1.thy Mon Apr 26 15:44:54 2010 -0700 @@ -188,7 +188,7 @@ apply auto done -lemma norm_vec1: "norm(vec1 x) = abs(x)" +lemma norm_vec1 [simp]: "norm(vec1 x) = abs(x)" by (simp add: vec_def norm_real) lemma dist_vec1: "dist(vec1 x) (vec1 y) = abs(x - y)" @@ -386,4 +386,14 @@ apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto +lemma dist_vec1_0[simp]: "dist(vec1 (x::real)) 0 = norm x" unfolding vector_dist_norm by auto + +lemma bounded_linear_vec1_dest_vec1: fixes f::"real \ real" + shows "linear (vec1 \ f \ dest_vec1) = bounded_linear f" (is "?l = ?r") proof- + { assume ?l guess K using linear_bounded[OF `?l`] .. + hence "\K. \x. \f x\ \ \x\ * K" apply(rule_tac x=K in exI) + unfolding vec1_dest_vec1_simps by (auto simp add:field_simps) } + thus ?thesis unfolding linear_def bounded_linear_def additive_def bounded_linear_axioms_def o_def + unfolding vec1_dest_vec1_simps by auto qed + end