# HG changeset patch # User hoelzl # Date 1277280313 -7200 # Node ID 6e9f48cf6adf09bd552afa2544c99a1a49976ced # Parent 2377d246a631114aeeae0f1d64c1c3068f373025 Make latex happy diff -r 2377d246a631 -r 6e9f48cf6adf src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Wed Jun 23 08:44:44 2010 +0200 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Wed Jun 23 10:05:13 2010 +0200 @@ -975,12 +975,12 @@ apply (subst matrix_vector_mul[OF lf]) unfolding adjoint_matrix matrix_of_matrix_vector_mul .. -section {* lambda_skolem on cartesian products *} +section {* lambda skolemization on cartesian products *} (* FIXME: rename do choice_cart *) lemma lambda_skolem: "(\i. \x. P i x) \ - (\x::'a ^ 'n. \i. P i (x$i))" (is "?lhs \ ?rhs") + (\x::'a ^ 'n. \i. P i (x $ i))" (is "?lhs \ ?rhs") proof- let ?S = "(UNIV :: 'n set)" {assume H: "?rhs" @@ -991,7 +991,7 @@ let ?x = "(\ i. (f i)) :: 'a ^ 'n" {fix i from f have "P i (f i)" by metis - then have "P i (?x$i)" by auto + then have "P i (?x $ i)" by auto } hence "\i. P i (?x$i)" by metis hence ?rhs by metis } @@ -1830,7 +1830,7 @@ unfolding abs_mult diff_minus_eq_add scaleR.minus_left unfolding algebra_simps by (auto intro: mult_pos_pos) qed -subsection {* Lemmas for working on real^1 *} +subsection {* Lemmas for working on @{typ "real^1"} *} lemma forall_1[simp]: "(\i::1. P i) \ P 1" by (metis num1_eq_iff)