# HG changeset patch # User nipkow # Date 1550047816 -3600 # Node ID 6ec272e153f0fab0331adb75dabe85c91394fb05 # Parent a99a0f5474c5fa95b40e9e6867b148493e09b838 removed subsumed lemma diff -r a99a0f5474c5 -r 6ec272e153f0 src/HOL/Analysis/Convex.thy --- a/src/HOL/Analysis/Convex.thy Wed Feb 13 07:48:42 2019 +0100 +++ b/src/HOL/Analysis/Convex.thy Wed Feb 13 09:50:16 2019 +0100 @@ -1203,7 +1203,7 @@ have c: "card (S - {x}) = card S - 1" by (simp add: Suc.prems(3) \x \ S\) have "sum u (S - {x}) = 1 - u x" - by (simp add: Suc.prems sum_diff1_ring \x \ S\) + by (simp add: Suc.prems sum_diff1 \x \ S\) with x have eq1: "inverse (1 - u x) * sum u (S - {x}) = 1" by auto have inV: "(\y\S - {x}. (inverse (1 - u x) * u y) *\<^sub>R y) \ V" diff -r a99a0f5474c5 -r 6ec272e153f0 src/HOL/Groups_Big.thy --- a/src/HOL/Groups_Big.thy Wed Feb 13 07:48:42 2019 +0100 +++ b/src/HOL/Groups_Big.thy Wed Feb 13 09:50:16 2019 +0100 @@ -848,12 +848,6 @@ finally show ?case . qed -lemma sum_diff1_ring: - fixes f :: "'b \ 'a::ring" - assumes "finite A" "a \ A" - shows "sum f (A - {a}) = sum f A - (f a)" - unfolding sum.remove [OF assms] by auto - lemma sum_product: fixes f :: "'a \ 'b::semiring_0" shows "sum f A * sum g B = (\i\A. \j\B. f i * g j)"