# HG changeset patch # User huffman # Date 1235005320 28800 # Node ID 6ec97eba1ee357998da74d4b4a70e784da448ec0 # Parent 7d0ed261b7127fc91ca0a3bd879ea77a5bc52fb9 finish converting Deriv.thy to new polynomial library diff -r 7d0ed261b712 -r 6ec97eba1ee3 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Wed Feb 18 15:01:53 2009 -0800 +++ b/src/HOL/Deriv.thy Wed Feb 18 17:02:00 2009 -0800 @@ -1570,128 +1570,197 @@ text{*Lemmas for Derivatives*} -(* FIXME +lemma order_unique_lemma: + fixes p :: "'a::idom poly" + assumes "[:-a, 1:] ^ n dvd p \ \ [:-a, 1:] ^ Suc n dvd p" + shows "n = order a p" +unfolding Polynomial.order_def +apply (rule Least_equality [symmetric]) +apply (rule assms [THEN conjunct2]) +apply (erule contrapos_np) +apply (rule power_le_dvd) +apply (rule assms [THEN conjunct1]) +apply simp +done + +lemma lemma_order_pderiv1: + "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q + + smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)" +apply (simp only: pderiv_mult pderiv_power_Suc) +apply (simp del: power_poly_Suc of_nat_Suc add: pderiv_pCons) +done + +lemma dvd_add_cancel1: + fixes a b c :: "'a::comm_ring_1" + shows "a dvd b + c \ a dvd b \ a dvd c" + by (drule (1) Ring_and_Field.dvd_diff, simp) + lemma lemma_order_pderiv [rule_format]: "\p q a. 0 < n & - poly (pderiv p) \ poly [] & - poly p = poly ([- a, 1] %^ n *** q) & ~ [- a, 1] divides q + pderiv p \ 0 & + p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q --> n = Suc (order a (pderiv p))" -apply (induct "n", safe) -apply (rule order_unique_lemma, rule conjI, assumption) -apply (subgoal_tac "\r. r divides (pderiv p) = r divides (pderiv ([-a, 1] %^ Suc n *** q))") -apply (drule_tac [2] poly_pderiv_welldef) - prefer 2 apply (simp add: divides_def del: pmult_Cons pexp_Suc) -apply (simp del: pmult_Cons pexp_Suc) -apply (rule conjI) -apply (simp add: divides_def fun_eq del: pmult_Cons pexp_Suc) -apply (rule_tac x = "[-a, 1] *** (pderiv q) +++ real (Suc n) %* q" in exI) -apply (simp add: poly_pderiv_mult poly_pderiv_exp_prime poly_add poly_mult poly_cmult right_distrib mult_ac del: pmult_Cons pexp_Suc) -apply (simp add: poly_mult right_distrib left_distrib mult_ac del: pmult_Cons) -apply (erule_tac V = "\r. r divides pderiv p = r divides pderiv ([- a, 1] %^ Suc n *** q)" in thin_rl) -apply (unfold divides_def) -apply (simp (no_asm) add: poly_pderiv_mult poly_pderiv_exp_prime fun_eq poly_add poly_mult del: pmult_Cons pexp_Suc) -apply (rule contrapos_np, assumption) -apply (rotate_tac 3, erule contrapos_np) -apply (simp del: pmult_Cons pexp_Suc, safe) -apply (rule_tac x = "inverse (real (Suc n)) %* (qa +++ -- (pderiv q))" in exI) -apply (subgoal_tac "poly ([-a, 1] %^ n *** q) = poly ([-a, 1] %^ n *** ([-a, 1] *** (inverse (real (Suc n)) %* (qa +++ -- (pderiv q))))) ") -apply (drule poly_mult_left_cancel [THEN iffD1], simp) -apply (simp add: fun_eq poly_mult poly_add poly_cmult poly_minus del: pmult_Cons mult_cancel_left, safe) -apply (rule_tac c1 = "real (Suc n)" in real_mult_left_cancel [THEN iffD1]) -apply (simp (no_asm)) -apply (subgoal_tac "real (Suc n) * (poly ([- a, 1] %^ n) xa * poly q xa) = - (poly qa xa + - poly (pderiv q) xa) * - (poly ([- a, 1] %^ n) xa * - ((- a + xa) * (inverse (real (Suc n)) * real (Suc n))))") -apply (simp only: mult_ac) -apply (rotate_tac 2) -apply (drule_tac x = xa in spec) -apply (simp add: left_distrib mult_ac del: pmult_Cons) + apply (cases "n", safe, rename_tac n p q a) + apply (rule order_unique_lemma) + apply (rule conjI) + apply (subst lemma_order_pderiv1) + apply (rule dvd_add) + apply (rule dvd_mult2) + apply (rule le_imp_power_dvd, simp) + apply (rule dvd_smult) + apply (rule dvd_mult) + apply (rule dvd_refl) + apply (subst lemma_order_pderiv1) + apply (erule contrapos_nn) back + apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n") + apply (simp del: mult_pCons_left) + apply (drule dvd_add_cancel1) + apply (simp del: mult_pCons_left) + apply (drule dvd_smult_cancel, simp del: of_nat_Suc) + apply assumption done -lemma order_pderiv: "[| poly (pderiv p) \ poly []; order a p \ 0 |] +lemma order_decomp: + "p \ 0 + ==> \q. p = [:-a, 1:] ^ (order a p) * q & + ~([:-a, 1:] dvd q)" +apply (drule order [where a=a]) +apply (erule conjE) +apply (erule dvdE) +apply (rule exI) +apply (rule conjI, assumption) +apply (erule contrapos_nn) +apply (erule ssubst) back +apply (subst power_Suc2) +apply (erule mult_dvd_mono [OF dvd_refl]) +done + +lemma order_pderiv: "[| pderiv p \ 0; order a p \ 0 |] ==> (order a p = Suc (order a (pderiv p)))" -apply (case_tac "poly p = poly []") -apply (auto dest: pderiv_zero) +apply (case_tac "p = 0", simp) apply (drule_tac a = a and p = p in order_decomp) using neq0_conv apply (blast intro: lemma_order_pderiv) done +lemma order_mult: "p * q \ 0 \ order a (p * q) = order a p + order a q" +proof - + def i \ "order a p" + def j \ "order a q" + def t \ "[:-a, 1:]" + have t_dvd_iff: "\u. t dvd u \ poly u a = 0" + unfolding t_def by (simp add: dvd_iff_poly_eq_0) + assume "p * q \ 0" + then show "order a (p * q) = i + j" + apply clarsimp + apply (drule order [where a=a and p=p, folded i_def t_def]) + apply (drule order [where a=a and p=q, folded j_def t_def]) + apply clarify + apply (rule order_unique_lemma [symmetric], fold t_def) + apply (erule dvdE)+ + apply (simp add: power_add t_dvd_iff) + done +qed + text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *} -lemma poly_squarefree_decomp_order: "[| poly (pderiv p) \ poly []; - poly p = poly (q *** d); - poly (pderiv p) = poly (e *** d); - poly d = poly (r *** p +++ s *** pderiv p) - |] ==> order a q = (if order a p = 0 then 0 else 1)" -apply (subgoal_tac "order a p = order a q + order a d") -apply (rule_tac [2] s = "order a (q *** d)" in trans) -prefer 2 apply (blast intro: order_poly) -apply (rule_tac [2] order_mult) - prefer 2 apply force -apply (case_tac "order a p = 0", simp) -apply (subgoal_tac "order a (pderiv p) = order a e + order a d") -apply (rule_tac [2] s = "order a (e *** d)" in trans) -prefer 2 apply (blast intro: order_poly) -apply (rule_tac [2] order_mult) - prefer 2 apply force -apply (case_tac "poly p = poly []") -apply (drule_tac p = p in pderiv_zero, simp) -apply (drule order_pderiv, assumption) -apply (subgoal_tac "order a (pderiv p) \ order a d") -apply (subgoal_tac [2] " ([-a, 1] %^ (order a (pderiv p))) divides d") - prefer 2 apply (simp add: poly_entire order_divides) -apply (subgoal_tac [2] " ([-a, 1] %^ (order a (pderiv p))) divides p & ([-a, 1] %^ (order a (pderiv p))) divides (pderiv p) ") - prefer 3 apply (simp add: order_divides) - prefer 2 apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) -apply (rule_tac x = "r *** qa +++ s *** qaa" in exI) -apply (simp add: fun_eq poly_add poly_mult left_distrib right_distrib mult_ac del: pexp_Suc pmult_Cons, auto) +lemma order_divides: "[:-a, 1:] ^ n dvd p \ p = 0 \ n \ order a p" +apply (cases "p = 0", auto) +apply (drule order_2 [where a=a and p=p]) +apply (erule contrapos_np) +apply (erule power_le_dvd) +apply simp +apply (erule power_le_dvd [OF order_1]) done +lemma poly_squarefree_decomp_order: + assumes "pderiv p \ 0" + and p: "p = q * d" + and p': "pderiv p = e * d" + and d: "d = r * p + s * pderiv p" + shows "order a q = (if order a p = 0 then 0 else 1)" +proof (rule classical) + assume 1: "order a q \ (if order a p = 0 then 0 else 1)" + from `pderiv p \ 0` have "p \ 0" by auto + with p have "order a p = order a q + order a d" + by (simp add: order_mult) + with 1 have "order a p \ 0" by (auto split: if_splits) + have "order a (pderiv p) = order a e + order a d" + using `pderiv p \ 0` `pderiv p = e * d` by (simp add: order_mult) + have "order a p = Suc (order a (pderiv p))" + using `pderiv p \ 0` `order a p \ 0` by (rule order_pderiv) + have "d \ 0" using `p \ 0` `p = q * d` by simp + have "([:-a, 1:] ^ (order a (pderiv p))) dvd d" + apply (simp add: d) + apply (rule dvd_add) + apply (rule dvd_mult) + apply (simp add: order_divides `p \ 0` + `order a p = Suc (order a (pderiv p))`) + apply (rule dvd_mult) + apply (simp add: order_divides) + done + then have "order a (pderiv p) \ order a d" + using `d \ 0` by (simp add: order_divides) + show ?thesis + using `order a p = order a q + order a d` + using `order a (pderiv p) = order a e + order a d` + using `order a p = Suc (order a (pderiv p))` + using `order a (pderiv p) \ order a d` + by auto +qed -lemma poly_squarefree_decomp_order2: "[| poly (pderiv p) \ poly []; - poly p = poly (q *** d); - poly (pderiv p) = poly (e *** d); - poly d = poly (r *** p +++ s *** pderiv p) +lemma poly_squarefree_decomp_order2: "[| pderiv p \ 0; + p = q * d; + pderiv p = e * d; + d = r * p + s * pderiv p |] ==> \a. order a q = (if order a p = 0 then 0 else 1)" apply (blast intro: poly_squarefree_decomp_order) done -lemma order_pderiv2: "[| poly (pderiv p) \ poly []; order a p \ 0 |] +lemma order_pderiv2: "[| pderiv p \ 0; order a p \ 0 |] ==> (order a (pderiv p) = n) = (order a p = Suc n)" apply (auto dest: order_pderiv) done +definition + rsquarefree :: "'a::idom poly => bool" where + "rsquarefree p = (p \ 0 & (\a. (order a p = 0) | (order a p = 1)))" + +lemma pderiv_iszero: "pderiv p = 0 \ \h. p = [:h:]" +apply (simp add: pderiv_eq_0_iff) +apply (case_tac p, auto split: if_splits) +done + lemma rsquarefree_roots: "rsquarefree p = (\a. ~(poly p a = 0 & poly (pderiv p) a = 0))" apply (simp add: rsquarefree_def) -apply (case_tac "poly p = poly []", simp, simp) -apply (case_tac "poly (pderiv p) = poly []") +apply (case_tac "p = 0", simp, simp) +apply (case_tac "pderiv p = 0") apply simp apply (drule pderiv_iszero, clarify) -apply (subgoal_tac "\a. order a p = order a [h]") -apply (simp add: fun_eq) +apply simp apply (rule allI) -apply (cut_tac p = "[h]" and a = a in order_root) -apply (simp add: fun_eq) -apply (blast intro: order_poly) +apply (cut_tac p = "[:h:]" and a = a in order_root) +apply simp apply (auto simp add: order_root order_pderiv2) apply (erule_tac x="a" in allE, simp) done -lemma poly_squarefree_decomp: "[| poly (pderiv p) \ poly []; - poly p = poly (q *** d); - poly (pderiv p) = poly (e *** d); - poly d = poly (r *** p +++ s *** pderiv p) - |] ==> rsquarefree q & (\a. (poly q a = 0) = (poly p a = 0))" -apply (frule poly_squarefree_decomp_order2, assumption+) -apply (case_tac "poly p = poly []") -apply (blast dest: pderiv_zero) -apply (simp (no_asm) add: rsquarefree_def order_root del: pmult_Cons) -apply (simp add: poly_entire del: pmult_Cons) -done -*) +lemma poly_squarefree_decomp: + assumes "pderiv p \ 0" + and "p = q * d" + and "pderiv p = e * d" + and "d = r * p + s * pderiv p" + shows "rsquarefree q & (\a. (poly q a = 0) = (poly p a = 0))" +proof - + from `pderiv p \ 0` have "p \ 0" by auto + with `p = q * d` have "q \ 0" by simp + have "\a. order a q = (if order a p = 0 then 0 else 1)" + using assms by (rule poly_squarefree_decomp_order2) + with `p \ 0` `q \ 0` show ?thesis + by (simp add: rsquarefree_def order_root) +qed + subsection {* Theorems about Limits *}