# HG changeset patch # User wenzelm # Date 1314220805 -7200 # Node ID 6f2943e34d60caedd9165b4c1167c27d2cdf5ddd # Parent 3c2b2c4a7c1cb15daa1484a71e887bac286e526e tuned proofs; diff -r 3c2b2c4a7c1c -r 6f2943e34d60 src/HOL/Algebra/Group.thy --- a/src/HOL/Algebra/Group.thy Wed Aug 24 23:19:40 2011 +0200 +++ b/src/HOL/Algebra/Group.thy Wed Aug 24 23:20:05 2011 +0200 @@ -154,7 +154,7 @@ and G: "x \ Units G" "y \ carrier G" "z \ carrier G" then have "(inv x \ x) \ y = (inv x \ x) \ z" by (simp add: m_assoc Units_closed del: Units_l_inv) - with G show "y = z" by (simp add: Units_l_inv) + with G show "y = z" by simp next assume eq: "y = z" and G: "x \ Units G" "y \ carrier G" "z \ carrier G" @@ -332,7 +332,7 @@ proof - assume x: "x \ carrier G" then have "inv x \ (x \ inv x) = inv x \ \" - by (simp add: m_assoc [symmetric] l_inv) + by (simp add: m_assoc [symmetric]) with x show ?thesis by (simp del: r_one) qed @@ -372,7 +372,7 @@ proof - assume G: "x \ carrier G" "y \ carrier G" then have "inv (x \ y) \ (x \ y) = (inv y \ inv x) \ (x \ y)" - by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric]) + by (simp add: m_assoc) (simp add: m_assoc [symmetric]) with G show ?thesis by (simp del: l_inv Units_l_inv) qed @@ -446,7 +446,7 @@ lemma (in group) one_in_subset: "[| H \ carrier G; H \ {}; \a \ H. inv a \ H; \a\H. \b\H. a \ b \ H |] ==> \ \ H" -by (force simp add: l_inv) +by force text {* A characterization of subgroups: closed, non-empty subset. *} diff -r 3c2b2c4a7c1c -r 6f2943e34d60 src/HOL/Algebra/Lattice.thy --- a/src/HOL/Algebra/Lattice.thy Wed Aug 24 23:19:40 2011 +0200 +++ b/src/HOL/Algebra/Lattice.thy Wed Aug 24 23:20:05 2011 +0200 @@ -34,7 +34,8 @@ subsubsection {* The order relation *} -context weak_partial_order begin +context weak_partial_order +begin lemma le_cong_l [intro, trans]: "\ x .= y; y \ z; x \ carrier L; y \ carrier L; z \ carrier L \ \ x \ z" @@ -85,7 +86,7 @@ and yy': "y .= y'" and carr: "x \ carrier L" "y \ carrier L" "y' \ carrier L" shows "x \ y'" - using assms unfolding lless_def by (auto intro: trans sym) + using assms unfolding lless_def by (auto intro: trans sym) (*slow*) lemma (in weak_partial_order) lless_antisym: @@ -574,8 +575,7 @@ proof (cases "A = {}") case True with insert show ?thesis - by simp (simp add: least_cong [OF weak_sup_of_singleton] - sup_of_singleton_closed sup_of_singletonI) + by simp (simp add: least_cong [OF weak_sup_of_singleton] sup_of_singletonI) (* The above step is hairy; least_cong can make simp loop. Would want special version of simp to apply least_cong. *) next @@ -1282,7 +1282,7 @@ (is "complete_lattice ?L") proof (rule partial_order.complete_latticeI) show "partial_order ?L" - proof qed auto + by default auto next fix B assume B: "B \ carrier ?L"