# HG changeset patch # User wenzelm # Date 1464169780 -7200 # Node ID 703edebd1d925381219bcf190342ed066c733a24 # Parent ef72b104fa323eb8980b039e776040c372917885 isabelle update_cartouches -c -t; diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Divides.thy --- a/src/HOL/Divides.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Divides.thy Wed May 25 11:49:40 2016 +0200 @@ -1637,7 +1637,7 @@ shows "Suc 0 mod numeral k = snd (divmod Num.One k)" by (simp_all add: snd_divmod) -lemma cut_eq_simps: -- \rewriting equivalence on @{text "n mod 2 ^ q"}\ +lemma cut_eq_simps: \ \rewriting equivalence on \n mod 2 ^ q\\ fixes m n q :: num shows "numeral n mod numeral Num.One = (0::nat) diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/GCD.thy --- a/src/HOL/GCD.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/GCD.thy Wed May 25 11:49:40 2016 +0200 @@ -1590,7 +1590,7 @@ (* to do: add the three variations of these, and for ints? *) -lemma finite_divisors_nat [simp]: -- \FIXME move\ +lemma finite_divisors_nat [simp]: \ \FIXME move\ fixes m :: nat assumes "m > 0" shows "finite {d. d dvd m}" @@ -1962,7 +1962,7 @@ apply auto done -lemma dvd_pos_nat: -- \FIXME move\ +lemma dvd_pos_nat: \ \FIXME move\ fixes n m :: nat assumes "n > 0" and "m dvd n" shows "m > 0" diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Groups.thy --- a/src/HOL/Groups.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Groups.thy Wed May 25 11:49:40 2016 +0200 @@ -1378,7 +1378,7 @@ using add_eq_0_iff_both_eq_0[of m] by (auto simp: le_iff_add less_le) lemmas zero_order = zero_le le_zero_eq not_less_zero zero_less_iff_neq_zero not_gr_zero - -- \This should be attributed with \[iff]\, but then \blast\ fails in \Set\.\ + \ \This should be attributed with \[iff]\, but then \blast\ fails in \Set\.\ end diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Library/Disjoint_Sets.thy --- a/src/HOL/Library/Disjoint_Sets.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Library/Disjoint_Sets.thy Wed May 25 11:49:40 2016 +0200 @@ -168,7 +168,7 @@ proof (rule inj_onI, rule ccontr) fix x y assume A: "x \ A" "y \ A" "g x = g y" "x \ y" with g[of x] g[of y] have "g x \ f x" "g x \ f y" by auto - with A `x \ y` assms show False + with A \x \ y\ assms show False by (auto simp: disjoint_family_on_def inj_on_def) qed from g have "g ` A \ UNION A f" by blast diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Library/Extended_Nonnegative_Real.thy --- a/src/HOL/Library/Extended_Nonnegative_Real.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Library/Extended_Nonnegative_Real.thy Wed May 25 11:49:40 2016 +0200 @@ -324,7 +324,7 @@ end -lemma ennreal_zero_less_one: "0 < (1::ennreal)" -- \TODO: remove \ +lemma ennreal_zero_less_one: "0 < (1::ennreal)" \ \TODO: remove \ by transfer auto instance ennreal :: dioid @@ -1748,7 +1748,7 @@ proof (rule order_tendstoI) fix e::ennreal assume "e > 0" obtain e'::real where "e' > 0" "ennreal e' < e" - using `0 < e` dense[of 0 "if e = top then 1 else (enn2real e)"] + using \0 < e\ dense[of 0 "if e = top then 1 else (enn2real e)"] by (cases e) (auto simp: ennreal_less_iff) from ev[OF \e' > 0\] show "\\<^sub>F x in F. f x < e" by eventually_elim (insert \ennreal e' < e\, auto) diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Library/Extended_Real.thy Wed May 25 11:49:40 2016 +0200 @@ -3552,7 +3552,7 @@ using Liminf_le_Limsup[OF assms, of f] by auto -lemma convergent_ereal: -- \RENAME\ +lemma convergent_ereal: \ \RENAME\ fixes X :: "nat \ 'a :: {complete_linorder,linorder_topology}" shows "convergent X \ limsup X = liminf X" using tendsto_iff_Liminf_eq_Limsup[of sequentially] diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Library/Polynomial.thy --- a/src/HOL/Library/Polynomial.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Library/Polynomial.thy Wed May 25 11:49:40 2016 +0200 @@ -443,7 +443,7 @@ by (simp add: is_zero_def null_def) subsubsection \Reconstructing the polynomial from the list\ - -- \contributed by Sebastiaan J.C. Joosten and René Thiemann\ + \ \contributed by Sebastiaan J.C. Joosten and René Thiemann\ definition poly_of_list :: "'a::comm_monoid_add list \ 'a poly" where diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Library/Stirling.thy --- a/src/HOL/Library/Stirling.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Library/Stirling.thy Wed May 25 11:49:40 2016 +0200 @@ -1,13 +1,13 @@ (* Authors: Amine Chaieb & Florian Haftmann, TU Muenchen with contributions by Lukas Bulwahn and Manuel Eberl*) -section {* Stirling numbers of first and second kind *} +section \Stirling numbers of first and second kind\ theory Stirling imports Binomial begin -subsection {* Stirling numbers of the second kind *} +subsection \Stirling numbers of the second kind\ fun Stirling :: "nat \ nat \ nat" where @@ -54,7 +54,7 @@ "Stirling (Suc n) (Suc (Suc 0)) = 2 ^ n - 1" using Stirling_2_2 by (cases n) simp_all -subsection {* Stirling numbers of the first kind *} +subsection \Stirling numbers of the first kind\ fun stirling :: "nat \ nat \ nat" where diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/List.thy --- a/src/HOL/List.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/List.thy Wed May 25 11:49:40 2016 +0200 @@ -3006,7 +3006,7 @@ lemma upt_conv_Cons: "i < j ==> [i..no precondition\ +lemma upt_conv_Cons_Cons: \ \no precondition\ "m # n # ns = [m.. n # ns = [Suc m.. x` \e > 0\ + using \y \ x\ \e > 0\ apply (simp add: cball_def dist_norm algebra_simps) apply (simp add: Real_Vector_Spaces.scaleR_diff_right [symmetric] norm_minus_commute min_mult_distrib_right) apply (rule mem_affine [OF affine_affine_hull _ x]) @@ -208,7 +208,7 @@ done then have "d \ T \ c \ T" apply (rule face_ofD [OF \T face_of S\]) - using `d \ u` `c \ u` \u \ S\ \b \ T\ apply auto + using \d \ u\ \c \ u\ \u \ S\ \b \ T\ apply auto done then show ?thesis .. qed @@ -338,7 +338,7 @@ then have [simp]: "setsum c (S - T) = 1" by (simp add: S setsum_diff sumc1) have ci0: "\i. i \ T \ c i = 0" - by (meson `finite T` `setsum c T = 0` \T \ S\ cge0 setsum_nonneg_eq_0_iff subsetCE) + by (meson \finite T\ \setsum c T = 0\ \T \ S\ cge0 setsum_nonneg_eq_0_iff subsetCE) then have [simp]: "(\i\S-T. c i *\<^sub>R i) = w" by (simp add: weq_sumsum) have "w \ convex hull (S - T)" @@ -359,7 +359,7 @@ apply (metis sumcf cge0 inverse_nonnegative_iff_nonnegative mult_nonneg_nonneg S(2) setsum_nonneg subsetCE) apply (metis False mult.commute right_inverse right_minus_eq setsum_right_distrib sumcf) by (metis (mono_tags, lifting) scaleR_right.setsum scaleR_scaleR setsum.cong) - with `0 < k` have "inverse(k) *\<^sub>R (w - setsum (\i. c i *\<^sub>R i) T) \ affine hull T" + with \0 < k\ have "inverse(k) *\<^sub>R (w - setsum (\i. c i *\<^sub>R i) T) \ affine hull T" by (simp add: affine_diff_divide [OF affine_affine_hull] False waff convex_hull_subset_affine_hull [THEN subsetD]) moreover have "inverse(k) *\<^sub>R (w - setsum (\x. c x *\<^sub>R x) T) \ convex hull (S - T)" apply (simp add: weq_sumsum convex_hull_finite fin) @@ -413,7 +413,7 @@ qed qed then show False - using `T \ S` \T face_of S\ face_of_imp_subset by blast + using \T \ S\ \T face_of S\ face_of_imp_subset by blast qed @@ -2504,11 +2504,11 @@ then consider "card S = 0" | "card S = 1" | "2 \ card S" by arith then show ?thesis proof cases - case 1 then have "S = {}" by (simp add: `finite S`) + case 1 then have "S = {}" by (simp add: \finite S\) then show ?thesis by simp next case 2 show ?thesis - by (auto intro: card_1_singletonE [OF `card S = 1`]) + by (auto intro: card_1_singletonE [OF \card S = 1\]) next case 3 with assms show ?thesis @@ -2535,7 +2535,7 @@ then have "x \ (\a\S. convex hull (S - {a}))" using True affine_independent_iff_card [of S] apply simp - apply (metis (no_types, hide_lams) Diff_eq_empty_iff Diff_insert0 `a \ T` `T \ S` `x \ convex hull T` hull_mono insert_Diff_single subsetCE) + apply (metis (no_types, hide_lams) Diff_eq_empty_iff Diff_insert0 \a \ T\ \T \ S\ \x \ convex hull T\ hull_mono insert_Diff_single subsetCE) done } note * = this have 1: "convex hull S \ (\ a\S. convex hull (S - {a}))" diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Nat.thy Wed May 25 11:49:40 2016 +0200 @@ -757,10 +757,10 @@ instance nat :: dioid by standard (rule nat_le_iff_add) -declare le0[simp del] -- \This is now @{thm zero_le}\ -declare le_0_eq[simp del] -- \This is now @{thm le_zero_eq}\ -declare not_less0[simp del] -- \This is now @{thm not_less_zero}\ -declare not_gr0[simp del] -- \This is now @{thm not_gr_zero}\ +declare le0[simp del] \ \This is now @{thm zero_le}\ +declare le_0_eq[simp del] \ \This is now @{thm le_zero_eq}\ +declare not_less0[simp del] \ \This is now @{thm not_less_zero}\ +declare not_gr0[simp del] \ \This is now @{thm not_gr_zero}\ instance nat :: ordered_cancel_comm_monoid_add .. instance nat :: ordered_cancel_comm_monoid_diff .. diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Series.thy --- a/src/HOL/Series.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Series.thy Wed May 25 11:49:40 2016 +0200 @@ -362,7 +362,7 @@ end -context --\Separate contexts are necessary to allow general use of the results above, here.\ +context \\Separate contexts are necessary to allow general use of the results above, here.\ fixes f :: "nat \ 'a::real_normed_vector" begin diff -r ef72b104fa32 -r 703edebd1d92 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Tue May 24 22:46:23 2016 +0200 +++ b/src/HOL/Transcendental.thy Wed May 25 11:49:40 2016 +0200 @@ -2471,7 +2471,7 @@ from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one) have "n = log b (b ^ n)" using assms(1) by (simp add: log_nat_power) - also have "\ \ log b m" using assms `0 < m` by simp + also have "\ \ log b m" using assms \0 < m\ by simp finally show ?thesis . qed