# HG changeset patch # User huffman # Date 1179158605 -7200 # Node ID 7134874437acdd2277155bae05da75258fa22d6b # Parent 0651b224528a7b9da55e378d929c3c5b7a9b5af7 tuned diff -r 0651b224528a -r 7134874437ac src/HOL/Complex/Complex.thy --- a/src/HOL/Complex/Complex.thy Mon May 14 17:45:42 2007 +0200 +++ b/src/HOL/Complex/Complex.thy Mon May 14 18:03:25 2007 +0200 @@ -67,8 +67,8 @@ lemma complex_Im_zero [simp]: "Im 0 = 0" by (simp add: complex_zero_def) -lemma complex_zero_iff [simp]: "(Complex x y = 0) = (x = 0 \ y = 0)" -unfolding complex_zero_def by simp +lemma Complex_eq_0 [simp]: "(Complex x y = 0) = (x = 0 \ y = 0)" +by (simp add: complex_zero_def) lemma complex_Re_one [simp]: "Re 1 = 1" by (simp add: complex_one_def) @@ -76,12 +76,18 @@ lemma complex_Im_one [simp]: "Im 1 = 0" by (simp add: complex_one_def) +lemma Complex_eq_1 [simp]: "(Complex x y = 1) = (x = 1 \ y = 0)" +by (simp add: complex_one_def) + lemma complex_Re_i [simp]: "Re(ii) = 0" by (simp add: i_def) lemma complex_Im_i [simp]: "Im(ii) = 1" by (simp add: i_def) +lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \ y = 1)" +by (simp add: i_def) + subsection{*Unary Minus*} @@ -156,16 +162,12 @@ subsection{*Inverse*} lemma complex_inverse [simp]: - "inverse (Complex x y) = Complex (x/(x ^ 2 + y ^ 2)) (-y/(x ^ 2 + y ^ 2))" + "inverse (Complex x y) = Complex (x / (x\ + y\)) (- y / (x\ + y\))" by (simp add: complex_inverse_def) lemma complex_mult_inv_left: "z \ (0::complex) ==> inverse(z) * z = 1" apply (induct z) -apply (rename_tac x y) -apply (auto simp add: - complex_one_def complex_zero_def add_divide_distrib [symmetric] - power2_eq_square mult_ac) -apply (simp_all add: real_sum_squares_not_zero real_sum_squares_not_zero2) +apply (simp add: power2_eq_square [symmetric] add_divide_distrib [symmetric]) done @@ -510,17 +512,6 @@ "(Complex x y = complex_of_real xa) = (x = xa & y = 0)" by (simp add: complex_of_real_def) -lemma Complex_eq_0 [simp]: "(Complex x y = 0) = (x = 0 & y = 0)" -by (simp add: complex_zero_def) - -lemma Complex_eq_1 [simp]: "(Complex x y = 1) = (x = 1 & y = 0)" -by (simp add: complex_one_def) - -lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 & y = 1)" -by (simp add: i_def) - - - lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z" proof (induct z) case (Complex x y) diff -r 0651b224528a -r 7134874437ac src/HOL/Hyperreal/NthRoot.thy --- a/src/HOL/Hyperreal/NthRoot.thy Mon May 14 17:45:42 2007 +0200 +++ b/src/HOL/Hyperreal/NthRoot.thy Mon May 14 18:03:25 2007 +0200 @@ -475,7 +475,7 @@ subsection {* Square Root of Sum of Squares *} lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \ sqrt(x*x + y*y)" -by (rule real_sqrt_ge_zero [OF real_mult_self_sum_ge_zero]) +by (rule real_sqrt_ge_zero [OF sum_squares_ge_zero]) lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \ sqrt (x\ + y\)" by simp